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Abstract: In this paper we revisit the classical problem of nonparamet-
ric regression, but impose local differential privacy constraints. Under such
constraints, the raw data (X1,Y1),...,(Xn,Ys), taking values in R% x R,
cannot be directly observed, and all estimators are functions of the ran-
domised output from a suitable privacy mechanism. The statistician is free
to choose the form of the privacy mechanism, and here we add Laplace
distributed noise to a discretisation of the location of a feature vector X;
and to the value of its response variable Y;. Based on this randomised data,
we design a novel estimator of the regression function, which can be viewed
as a privatised version of the well-studied partitioning regression estimator.
The main result is that the estimator is strongly universally consistent, and
we further establish an upper bound on the rate of convergence. Our meth-
ods and analysis also give rise to a strongly universally consistent binary
classification rule for locally differentially private data.
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1. Introduction

In recent years there has been a surge of interest in data analysis methodology
that is able to achieve strong statistical performance without comprimising the
privacy and security of individual data holders. This has often been driven by
applications in modern technology, for example by Google [16], Apple [30], and
Microsoft [11], but the study goes at least as far back as [35] and is often used
in more traditional fields of clinical trials [32, 8] and census data [25, 14]. While
there has long been an awareness that sensitive data must be anonymised, it
has become apparent only relatively recently that simply removing names and
addresses is insufficient in many cases [e.g. 29, 26]. The concept of differential
privacy [15] was introduced to provide a rigorous notion of the amount of private
information on individuals published statistics contain. Statistical treatments of
this framework include [36, 23, 2, 6].

Although it is a suitable constraint for many problems, procedures that are
differentially private often require the presence of a third party, who may be
trusted to handle the raw data before statistics are published. To address this
shortcoming, the local differential privacy constraint [see, for example, 21, 12,
and the references therein] was introduced to provide a setting where analysis
must be carried out in such a way that each raw data point is only ever seen by
the original data holder. The simplest example of a locally differentially private
mechanism is the randomised response [35] used with binary data, but mecha-
nisms have also been developed for tasks such as classification [3], generalised
linear modelling [12], empirical risk minimisation [33], density estimation [5],
functional estimation [27] and goodness-of-fit testing [4].

Regression is a cornerstone of modern statistical analysis, routinely used
across the sciences and beyond. We recall that, in a standard stochastic model,
a regression estimator predicts for an observed d dimensional random feature
vector an unknown random response, with finite second moment. The regression
function, given by the conditional expectation of the response given the feature
vector, achieves minimum mean squared error. Typically, the statistician does
not know the underlying stochastic structure, but has access to a corresponding
finite sample of independent identically distributed design-response vectors in
R? x R, and on this basis estimates the regression function. The background will
be given below at the beginning of Section 2, and in the following we shall refer
several times to the monograph of [19]. A binary classification (pattern recog-
nition) rule predicts for a feature vector an unknown random response taking
values in {—1,1}. The so-called Bayes decision rule achieves minimum error
probability (Bayes error). Given a finite sample of i.i.d. design-response vectors
in R% x {—1, 1}, the Bayes rule is approximated. We formulate the setup in Sec-
tion 5, while the monograph of [9] contains a detailed theory of nonparametric
classification.

While regression has been relatively well-studied in the non-local model of
differential privacy [e.g. 6], results in the local model are scarce. [37] studies
sparse linear regression, kernel ridge regression and GLMs. [28, 33] study para-
metric empirical risk minimisation. [34] studies sparse linear regression. [12, 13]
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study GLMs. The recent work [17] concerns a relaxed version of the locally pri-
vate regression model where responses can be observed exactly, and empirically
studies a Nadaraya—Watson-type estimator, but we are unaware of any other
work on locally private nonparametric regression. The simpler problem of binary
classification is studied in [3], but there are significant additional challenges in
designing a suitable estimator for the regression problem.

In this paper we introduce and investigate a new method for nonparametric
regression under a-local differential privacy constraints and also present a cor-
responding classification rule. For regression our procedure combines a simple
non-interactive privacy mechanism with a cubic partitioning regression esti-
mate modifying the regressogram, which was originally introduced by [31] and
has been well-studied since [see, e.g., 19, Chapter 4 and Section 23.1, and the
references therein|. In Section 3 we describe the procedure and state that the
sequence of estimates is strongly universally consistent, in that the Ls-risk con-
verges almost surely to zero in the large sample limit for any data-generating
distribution for which the response has a finite second moment. Moreover, we
give an upper bound on the rate of convergence of this estimator. Let us men-
tion that in the degenerate case without privacy the estimator reduces to the
strongly universally consistent partitioning estimator of [18]. The problem of
classification is strictly easier than regression, therefore our methods and anal-
ysis also give rise to a strongly universally consistent binary classification rule
for locally differentially private data.

The remainder of the paper is organised as follows. In Section 2 we introduce
the necessary background on regression and local differential privacy. In Sec-
tion 3 we introduce our privacy mechanism and estimators, and state our main
results in the regression setting, discussing their implications for local differen-
tial privacy in Section 4. In Section 5 we study the consequences of the results
for binary classification. All proofs will be deferred to Section 6.

2. Preliminaries

Let (X,Y) be a pair of random variables such that the feature vector X takes
values in R% and its response variable Y is a real-valued random variable with
E[Y?] < co. We denote by p the distribution of the feature vector X, that is,
for all measurable sets A C RY, we have p(A) = P{X € A}. Then the regression
function

m(z) =E[Y | X = z] (1)

is well defined for p-almost all z. For each measurable function g : R? — R one
has

E [{g(X) = V}?*] =E[{m(X) - Y}*] + E [{m(X) — g(X)}*],

therefore, with the notation

L* =E[{m(X) =Y} ,
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we have
E[{g(X) - V}?] = L* + / {m(z) — g(x)}u(dz). @)

We measure the performance of an estimator m of m through the loss function
Lim, i) = [ {m(z) = n(e) (),

which, by (2), may be interpreted as the excess prediction risk for a new obser-
vation X.
In this paper we are mainly concerned with regression estimates m based
on partitions of the sample space, which were originally studied by [31]. Let
= {An1,Apa,...} be a cubic partition of R? such that the cells Ay ; are
cubes of volume h%. If xp,; denotes the center of the cube Ay, ;, then introduce
the discretization of x by the quantiser

Qh(x) = Tp4, ifx € AhJ.
The raw data will be independent and identically distributed copies
Dn = {(Xla }/1)) MR (X’I’HYTL)}

of the random vector (X,Y’), and the estimators that we consider will be (ran-
domised) functions of the binned data, defined by

{(@n(X1), Y1), .., (Qn(Xn), Ya)}.

Using this binned data, when we do not have to satisfy privacy constraints, one
may create a scheme for a public data set as follows: there are n individuals in
the study such that individual i generates the sample pair (X;,Y;) and he sub-
mits the discretised version (Qn(X;),Y;) to a data collector. The data collector
calculates the empirical distributions

1
Vn(Ah,j) = E Z Y;
1;Qn (Xi)=zph

and

1
,Un(AhJ) = n Z 1.

;Qn (Xi)=xh

Then, the public data set

Dn,h - {(.77 Vn(Ah,j)vMn(Ah,j));:U’n(Ah,j) > O}

is published. The data set D, ; has the favourable property that with high
probability the size #(D,, ;) is much less than n [cf. 24].
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Using this binned data and allowing h = h, to depend on the sample size,
the partitioning regression estimate is defined by
3 ~ Vp(An, ) Y i Yilixiea,, ;)
/’[”I’L(Ah" ;]) Zi:l ]I{Xi,EAh”,j}

if x € Ahn,j, (3)

where 0/0 is 0 by definition and I denotes the indicator function. In order to have
strong universal consistency, [19] modify the partitioning regression estimate as
follows:

Vn(An, 5)

(Ap, 5) lin(An )Zlogn/n) ifx e Ap, ;.

mp(z) =
(@)=
Theorem 1 (Theorem 23.3 in [19]). If

lim h, =0 and lim nhl/logn = oo,
n— oo n— oo

then the estimate m,, is strongly universally consistent, i.e.,

lim [ (m(x) — mo(x))*u(dz) = 0 (4)

n—oo

a.s. for any distribution of (X,Y) with EY? < cc.

There is a huge literature on weak and strong universal consistency of regres-
sion estimates. Weak universal consistency means convergence

lim [ E [{m(z) — m,(z)}*] p(dx) =0

n—oo
for any distribution of (X,Y) with EY? < oo. For the weak universal consis-
tency of local averaging regression estimates m,, which includes partitioning

estimates, kernel estimates and nearest neighbor estimates, we refer to Chap-
ters 4-6 in [19].

3. Our regression estimation method and its strong universal
consistency

Similarly to [3] we consider locally privatised data given as follows: the privacy
mechanism is formulated by independent double arrays {e; ;} and {¢; ;} such
that the elements of the arrays are i.i.d. with centred, unit-variance Laplace

distributions. For + = 1,...,n and for 0 < M, < oo, we write [K—]JYJ@[” =
min{ M, max(Y;, —M,)} for the truncated response; it will be sometimes be
convenient to write [¥;]>, =Y; for no truncation. Choose a sphere S, centered

at the origin. Assume that the cells Ay, ; are numbered such that A, ; NS, # 0
when j < N,, for some integer N,, > 0, and Ay ; N S,, = 0 otherwise. Individual
1 < n generates and transmits the data

Zivj = [K]JYJT\L[”H{XZEAhJ} + 0ZE€,j, J S Nn (5)



Locally private nonparametric regression 2435

and
Wi =1Iix,ea, ;3 towCij, J < Np, (6)

where oz > 0 and o > 0. This means that individual ¢ generates noisy data
for any cell Ay, ; with j < IV,,. Proposition 1 in Section 4 shows that, for suitable
choices of oy and oz, this mechanism satisfies the a-LDP constraint. For such
ow, 0oz, the data set

Do = {0y o Ang)s fin(Any)) s G =1,..., N, }

may be published without violating the a-LDP constraint, where

Un(Apj) = ZZJ}I{KN} and  fin(An;) = ZW,J]I{NV} (7)
=1 =1

Now that we have introduced our privacy mechanism we may define our
estimator of m based on D,, . For ¢,, > 0 we define

~ 17774 A >
mn(a:) = (7’1]%]1{”"(14}1" 7)>Cnhd}H{]<N } when x € Ah",j~

This is a novel estimator that extends the classical partitioning regression esti-
mate to the LDP setting. In non-private settings such estimators may be seen as
averaging the value of the response over each element of the partition, but here
we are unable to retain this interpretation as we cannot know exactly how many
data points fall in each cell. This lack of knowledge is particularly problematic
in low-density regions, where the estimate of y is necessarily especially noisy,
and where our estimator must be carefully defined. A crucial component of the
estimate is the way it detects the empty cells and truncates. If X has a density,
then (A, ;) is of order hZ. Furthermore, on the support of an arbitrary pu,
w(Ap, j)/he is bounded away from zero. More precisely, if A, (z) stands for the
cube Ay, ; containing x, then

hmlnf,u( w(x))/he >0

for p-almost all x, at least when we have a nested sequence of partitions, see
Lemma 24.10 in [19]. Thus, for arbitrary u, the order of u(Ap, ;) is at least h.
Therefore, ¢, — 0 implies that u(Ap, ;) > ¢, he, for large enough n.

When ow = 0z = 0 and ¢, = logn/(nhe) then we recover the non-private
partitioning estimator, which has access to the raw data, discussed above.

Our first main new result extends Theorem 1 to the private setting where
ow,oz > 0 are fixed, and establishes the strong universal consistency of m,,.

Theorem 2. If S, 1 R%, ¢, — 0, h,, = 0, M,, — oo and

(log n)®

o2 y2d -0 (8)
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then

n—0o0

lim /{m(x) — g (2) Y2 u(de) =0 a.s., 9)

for any distribution of (X,Y) with EY? < co.

The proof of Theorem 2 shows that replacement of (8) by nc2h2? — oo yields

the weak universal consistency of 1m,.

Comparing with Theorem 1, we see that that the usual condition nh¢ — oo
has been replaced by nh2? — co. Heuristically, this difference can be understood
by considering the properties of 7, (Ap, ;). Writing v(A) := [, m(z)p(dz), we
have

E{on(An, )} = v(An, 5),

which is the same as in the non-private case. However, we see a difference when
we consider that

nVar{v, (A, ;)} = nVar{v,(An, ;)} + o2 (10)

In the non-private case, the only contribution is from the first term, which can
be seen to typically be O(h%). However, in the private case we will usually take
oz to be large, and hence the variance in (10) is dominated by the second term,
which does not vanish with h,. This occurs in other LDP problems [e.g. 4];
the privacy constraint introduces an unavoidable homoscedastic term into the
variance of our estimator, which results in very different behaviour, including a
curse-of-dimensionality that is often more severe than in non-private problems.

The proof techniques used for Theorem 2 can be used to derive upper bounds
on the rates of convergence of our estimator for suitable data-generating mech-
anisms.

Theorem 3. If S, 1+ R?, ¢, — 0, h,, — 0, M,, — oo, m is Lipschitz continuous,
Y is bounded and X has a density, which is bounded away from zero, then

B [ (o) ~ i) *utde) = O (3 ) + 00

For the choices

h, = 'n=1/2d+1)

and

cn = 1/+/logn, (11)

this upper bound results in

B [ (n(o) — inafe) *utde) = 0 (it ).
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1
o (n1/(d+1)>

is the minimax lower bound over all a-LDP privacy mechanisms for Lipschitz
continuous regression function, which would imply that our estimate is minimax
optimal up to a factor of logn. Furthermore, the lower bound on the density
appears to be crucial; we speculate that if the density is not bounded away from
zero, then the rate of convergence of any estimate can be arbitrarily slow.

We conjecture that

4. Local differential privacy

As discussed above, when working under privacy constraints, no estimator can
have direct access to the raw data D,,, or even the binned data D,, ;. Instead,
it will only be allowed to depend on randomised data (Z1,...,Z,), defined on
some measurable space (Z™,B™), that has been generated conditional on D,,.
Formally, a privacy mechanism is a conditional distribution @ : B® x (R x
R)®™ — [0, 1] with the interpretation that

(Z1s 3 Zn){Dn = {21, 91), - (@0, 9n) ) ~ QCI(E1,91), - (20, 9n))-

This privacy mechanism will be said to be sequentially interactive [12] if it
respects the graphical structure

(X1Y1) (X2 Y2) (X0 Yn)

] |

In particular, this requires that Z; 1L (X;,Y;){X;,Y;, Z1,..., Z;_1} for any j #
i, so that Z; is generated with only the knowledge of (X;,Y;) and Z1,...,Z;_1.
For this reason, such privacy mechanisms are said to be locally private. Se-
quentially interactive privacy mechanisms may be specified by a sequence of
conditional distributions (Q1,...,Q,) with Q; : B x (R? x R) x Zi=1 — [0,1]
and with the interpretation that

Zi{(X3,Y)=(zi,9:), Z1 = 21, -, Zic1 = Zic1 } ~ Qi(-[(%i, i), 215 - -5 Zim1)-

Given « > 0, a sequentially interactive mechanism specified by (Q1,...,Q,) is
said to be a-locally differentially private (a-LDP) if

- Qi(A|(miayi)azl7'"azi—l)
sup sup sup VR
AEB 21,2 1 €2 (wry0) (e ) RO xR Qi(Al(@, ¥7), 215+ 2im1)

<e”
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for each : = 1,...,n. Let Q, denote the set of all a-LDP privacy mechanisms.
Our privacy mechanisms, given by (5) and (6), are actually of a simpler,

non-interactive form, where, with Z, = (W, ;, Zi,j);-v;ll for i =1,...,n, we also

have

for all j # . In this case we have

n

Q(Ala . ~3An|(m1ay1)v B (xn,yn)) = HQZ(AZ‘(CUU.%))

i=1

for all (Ay,...,A,) € B™. Such mechanisms satisfy the a-LDP constraint if and

only if
(Alzi, vi
sup sup 7Ql( | . yj) <e®
A€B (zi,y:),(z},y}) ERIAXR Qi(Alx, y;)
for each ¢ = 1,...,n. Non-interactive mechanisms are computationally attrac-

tive in practice as they require minimal communication between the statistician
and the orginal data holders, and in large-scale applications there are many
practical barriers to interactivity [20].

The following result studies the local differential privacy of the mechanism
given by (5) and (6) in the case that N, = oo, but it is a straightforward
consequence of this that the mechanism satisfies the same bound when N,, < co.

Proposition 1. Consider the privacy mechanism defined in (5) and (6) when
e1,1 and (1,1 have unit-variance Laplace distribution with probability density
x 5 exp(—V2|z|)/V2. Writing qw,z xy (w,z|z,y) for the probability density
function of (W1 ;)324,(Z1,4)521) conditional on X1 = x,Y1 =y, we have

w, 2|\,
sup  sup sup aw,z|x,y (w, 2|z, y) §exp(23/2/aw+23/2M/Uz).

/ !
w,z€RN z,2/ €R? y,y’ €[— M, M] QW,Z|X,Y(w7 Z\l‘ Y )

Given a > 0, we can therefore ensure that our privacy mechanism is a-LDP
by choosing M, oy, oz such that 23/2(1/ow + M /o) < a. This is satisfied if,
for example, we take 03, = 32/a? and 0% = 32M?/a>.

In problems of differential privacy one often wants to work in a high-privacy
regime, where we have a — 0 as n — oco. With our privacy mechanism, this
requires that min(ow,oz/M,) — oo, and so we remark that Theorem 2 can
easily be extended to the setting in which the variances 0% and 0‘2/‘, may depend
on the sample size n. Replacing the condition (8) with

(logn)*(1+ 0% ,, + ofi)
nc2 h2d

— 0,
a straightforward extension of the proof of Theorem 2 implies the strong uni-
versal consistency. Choosing oz < M, /a, with M,, — oo and

(logn)3 max(1, M2 /a?)
nc2 h2d

— 0,
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then our mechanism satisfies the a-LDP constraint and the strong universal
consistency holds.

5. Consequences in classification

For the setup of binary classification, let the feature vector X take values in R?,
and let its label Y be 41 valued. If g is an arbitrary decision function then its
error probability is denoted by

L(g) =P{g(X) #Y}.

The Bayes decision rule g*, given by
g% (x) = signm(z),

where sign(z) = 1 for z > 0 and sign(z) = —1 for z < 0, minimises the error
probability. Let
L* =P{g"(X) #Y}

denotes its error probability.
For privatised data, the partitioning classification rule is defined by

gn(‘x) = Slgn (Dn(Ahnaj)) When T e Ahnaj'
Note that this rule does not use the data {W; ;}. Under the conditions

lim h, =0 and lim nh2? = oo,
n— oo n—oo

[3] showed that the partitioning classification rule g, is weakly universally con-
sistent, i.e.,

Jim E{L(gn)} = L
for any distribution of (X,Y"). Our work here allows us to strengthen this result

to the following theorem on strong universal consistency:

Theorem 4. If

lim h, =0 and lim nh??/logn = oo,
n— oo n—o0

then the classification rule g, is strongly universally consistent, i.e.,
lim L(g,)=L"
n—oo

a.s. for any distribution of (X,Y).

The rates of convergence of the classification rule g,, over classes of data-
generating mechanisms satisying Holder continuity and a strong density as-
sumption, were established in [3], and were moreover shown to match a minimax
lower bound. We remark that, even in the non-private case, the absence of the
strong density assumption leads to slower rates of convergence [22, 1, 7].
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6. Proofs and auxiliary results

The proof of Theorem 2 uses two lemmas.

Lemma 1. For 0 < e < 2 and (q,...,Cy i.i.d. with mean-zero, unit-variance
Laplace distribution, one has

1 n
P{EZQ

i=1
Proof. Taking t = ne/2 and using the fact that log(1—z) > —2x for z € [0,1/2],
we have

> g} < 9e /4,

P(n Y6 <) < e CBlexp(tcy/n)”

2

t
= exp(—ta — nlog(l — ﬁ))
2

< exp(—t6+ —)
n
_ 67n52/4.

An analogous bound holds for the lower tail of the distribution, and the result
follows. U

Lemma 2. Let Z = (Zy, ..., Zy,) be a collection of i.i.d. random variables taking
values in some measurable set A. Let f : A™ — R be a measurable, symmetric,
real-valued function, such that f(Zi,...,2Zy,) is integrable, let g : A"~! — R
be the function obtained from f by dropping the first argument. Then for any
nteger q > 1,

E [(f(Zla AR Zn) - Ef(Zla AR Zn))Qq]
< 2(c*q)"nE [(f(Zl, s Zn) = g(Za, .. .,zn))ﬂ .
with a universal constant ¢* < 5.1.

Proof. Applying Jensen’s inequality, this lemma is a special case of Lemma 4.4
in [10]. O

Proof of Theorem 2. We use the decomposition
My, = ml, +m?,
where for x € Ay, ; we write

2Z N e
() = A Gy g
(2) fin(An,, ;) {fin(An, ;) >cnhd Y{G<N,}
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and

, V(A ,j)
T) == T N>e Iiicn e
n(@) = oy zeanty T

It suffices to show that

lim m! (2)*u(dz) =0 as., (12)
and
Jim [ {m(o) = mi @) ulde) =0 s (13)
But (4) implies that
Jim [ {m(e) = mo () u(de) =0 as. (14)

for any distribution of (X,Y’) with E(Y?) < oo, and in order to prove (13) it
therefore suffices to show that

lim /{mn(z) —m’(2)Yu(de) =0 as., (15)
for any distribution of (X,Y) with E(Y?) < oo

Proof of (12). Because of

n 2

oz g o

/m%(@%(dw) => GiXiias) = A 160) L, can, Hzeandylj<n,yi(An, ;)
j :u’n( hnvj)

n e )2
1
o3y G Céhlzd D (A, ),

] n'"n
it suffices to show that
€ )2
’L 1%4,5 .
nlgrgo o2 E 220 w(Ap, ;) =0 as. (16)

We note
E{e%ql =279(2¢)! < 27(1(2(])2%72:1/3 — 2qq24672q/3,

which together with Lemma 2 implies

n 2q
(Z 6’%1) < 2(c*q)'IE{e]h } < 27 c*gPe 2/ 3,
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Jensen’s inequality yields

Ly e 2
iy EZmal o, s
j n' "n
q
(L5 e;)
- ( ’ c;;éd ’ (Ahmj) > el
j n-'n
(3 T i)™
n 2ui=16ij
<P Z c;qhqu w(An, ;) > €?
7 n n
E{(E 0L e1)™)
—q
=¢ 22
Thus,
2q
(L3 ay)’ c—a n
i=1 €i,j
P Z 5 2 2d W(An, ;) > € §c2qh2qdn2qE qul
j n''n n Iln i=1
€—q2qc*qq3qe—2q/3
- 21p29%4
:2 q3 !
nc2h2de /(2c*e=2/3) )
Choose
q = |(ncihle/(2¢7e! %)) /3 .
Then

A ) > e b < pp-manztey 2 e
no, -

P Z(%E?_leiﬁ) M(

2 2d
Cnhn

Condition (8) yields

iy )2
ZP Z (n Zz:l 6%]) M(Ahn,j) Se < oo

2 h2d
j n''n
and thus the Borel-Cantelli lemma results in (16).

Proof of (15). If in the definition of m,, we modify v,, such that

n

1
Vn(AhJ) = E Z[Yﬂy&nﬂ{xieflh,j}7

i=1
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then a slight modification of the proof of Theorem 23.3 in [19] together with the
condition M,, — oo implies (4), too. We have that

/{mn - )}2 (dx)
J 2
-y o) p ol An)y | } o
= {Un Ahm]) {ttn(An,,,j)>logn/n} — n(Ahn,j) Do (An,, ;) u( hn,])
V(A ) 2
+ Z {,LLn Ah ;)]I{/Ln(Ah,,L,j)Zlogn/n}} M(Ahn,j)
Jj=Nn+1 n

Ath Un(Ahn 7]) ?
Z {un H{un(Ahn ))>logn/n} — mﬂDn(Ahn,j) (An, 5)

]
/ dz),
where

Di(An,j) = {fin(An, 5) > enhi} = {in(An, 5) + Ta(An, 5) > cahiy }

with 7,(Ap, ;) = 2= 3" 1 G, - Since we have [m(z)?p(dz) < oo, then (4)
together with S, T R? yields that

[

_l_

i (2)2u(dz) = 0
S5

a.s. Now (8) implies that
cnhd > logn/n
if n is large enough. For such large n, set

n(An,,j) Vn(Ah,,5) ?
E, = zj: { (AhTL;)H{H,L(Ahn j)>logn/n} — Mn(Ahn,j‘)HDn(Ah"’j) 'U(Ahnvj)

Vn(An,,5)* fin(An, ;) 2
= n> _ HnlBhni) g | 4 N
Z Ah”,J )2 {Hn(Ahn j)=>logn/n} { ﬂn(Ahn,j) Dy (An,, ;) u( hm])

Note that
fn(An,5) pn (A, )
‘1 - m%mhn,j) = ‘1 — Sl D (a0 + Db A, e

Fn (Ahn N )

b, (an,5) T Ipa(An, e

Wi (Any )2 eandy T Lin(An, )<eand}-
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Let A, (x) denote the cube Ay, ;, which contains z. Then,

o Tn(Ay(2))?
E, = / My () ﬁﬂmmmw(d@

/mn Wi (A (2))<cnha }1(d)
27'71(1471(33
+2/vmmw—numfuwm

+2/m(x)Q]I{ﬁn(An(m))<cnh:{}ﬂ(d$)

=F+G,+ H,.
Define the notation
— [ miauldo)
A
and
=/mmﬁmm
Since E(Y?) < oo we have [ m(z)?u(dz) < oo and hence we also have

/Wl u(dz) /m +o(1) < oo,

so that p* and p; are bounded measures. Thus, a very similar argument to that
used to prove (16) shows that

. Tn(Ahf)él *
nhﬁngoz WMH(A;LJ) =0 as. (17)

where we use the fact that {¢; ;}, {¢;}, {(X;,Y;)} are independent. Then the
Cauchy-Schwarz inequality, (14) and (17) imply

Fn:/ _ (( n(( ))))2H{M,L(A (2))>enhd } o (dT)

Ton(An,4)?
Z :U'n(Ah . )QH{“" Anp, J)>Cnhd}:u’n(Ahn,j)

Tn(Ah )2
<20 g )

Tn Ahn,j 4/,6 A /m
A4 1.4d n hm] ”
Cnhn

—0 a.s.
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The fact that G, — 0 a.s. follows from (14). We now turn to H,,. Since we have
[ m(z) ) < o0, it suffices to show that

/H{gnmn(z))@nhg}u(dx) -0  as,
ie.,
ZH{ﬂn(Ahn,j)<cnhg}ﬂ(14hn,j) —0 a.s.
j
By the inequality
L, (An, ;) <enhd}
< Wirng D1zentid /22 + Wl (A, )= nAn, )1zennd /2y T Lu(an ) <2ennd}s

one gets
T Ahn, 2
Hn < 82 - 2h2dj 1(An,,.5)
b S (A ) — (A, ) (A, )

+2 Tua,,)<2e,nt } (A, 5)-
J

(16) implies that the first term tends to 0 a.s. Concerning the second term, we
observe that, by the fact that Bernoulli random variables are subgaussian with
variance proxy bounded by 1/4, there exists L > 0 such that for any ¢ € N we
have

E[(/”L”(Ahn,j) - N(Ahn,j))zq] < n*q(Lq1/2)2q

Thus, the second term tends to zero a.s. by using a very similar argument to
that used to prove (16). Finally, the third term is non-random. Let S be a sphere
centred at the origin such that p(S°¢) < e, and set

Bn = U Ahn,j~
Ji(An, ,;)<2¢nhd Ay, ;NS#D
If A denotes the Lebesgue measure, then
> Tiuan,y<zenndyi(An, ) < pn(Bn) + 1(S) < p(Bn) + ¢
J
and

Ji(Any,,5)<2cnhd,Ap,, ;NS0
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<2 Y AMAn,)

j:Ah,nyjﬂS?f@

— 0.

Thus, we proved that H, — 0 a.s. U

Proof of Theorem 3. Since Y is bounded, we may assume that n is sufficiently
large that [Y]]X[&n =Y almost surely. We use the decomposition

My, = m,, +m,
where for x € Ay, ; we recall from the proof of Theorem 2 that

oz n o
n_ D i1 i

/ _
M, () = (A ) L (an, )z ennd <,y

and

* Vn(Ahn, )
my, () = mj) {(in (A, ) 2enht Y LGN, -

It suffices to show that
[ EaPntan) =0 (i ) (18)
and
JEn@) = mi @ utin) =0 (i ) 002 19)
But, recalling the definition of 7, from (3), Theorem 4.3 of [19] implies that
[ Bnte) — ma(@Putn) = 0 (1 ) + 002, (20)
and in order to prove (19) it therefore suffices to show that

[ Bl (@) - @) Putde) = O (i ) (21)

Proof of (18). We have that

2
=1 Za])
/]Em ZE{WH{MMM Dzeahd <, }}M(Ahmj)

2
2 16 J)
<o Z %M(Ahn,j)

_ o2 #
Z 2 h2d



Locally private nonparametric regression 2447

Proof of (21). We have that

al 2
- V”(Ah j) Vn(Ah j }
= o — = “ ]I n . /‘l’ A .
j_l{/’('n(Ahn,j) u”ﬂ(Ahn,]) Dr(An,.5) ( h j)
0 Vn(Ah j) }2
+ no /JA .
JZ%;+1{M"(Ahn,]) (An,5)
Un(An, i) Vn(An, 5) }2
S L) _ ns ]I ) y A N
;{MTL(A}LT,,]) ,un(Ah_mJ) Dn(Anp,j) ( h j)

where we recall that
Dn(Ahn,j) = {ﬁn(Ahmj) > Cnhgz} = {/ln(Ahn,j) + Tn(Ahn,j) > Cnhi}

with 7,,(Ap, ;) = 2% >t 1 G- Since X is bounded, then S, t R? yields that

i (2)2u(dz) = 0
sg,

if n is large enough. Set

Un(An, ;) Vn(An, ) }2
En = nsJ) — n,J 1 , m Ah” Y
; { fin(An, 5)  Fn(An, ;) DA 5) (An..)

Letting L denote a bound of |Y|, we have

En < ZL2 { %HD (An, ])}QM(Ah,,“j)-
Note that
= %mﬂ{ﬁn(Ahn,_j)>cnhi} + L (An, ;)<cnhd}-

Let A, (z) denote the cube A, ;, which contains x. Then,

Ty (An(2))?
En < LQ/mﬂ{ﬁamn,j)zcnhﬁ}ﬂ(d@ +L2/H{ﬁn(An<m))<cnh:i}/~L(d$)
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Tn(An(x))Q
< LZ/WM((M)+L2/H{ﬂn(An(x))@nhg}M(dx)-

n''n

Therefore

a(p,) < 22 [ B 4 12 [ e, (@) < canbutao)

n'-'n

We have that )
_ 12 9w
=1L nc2 h2d (22)

We now turn to G,,. By the inequality
L (An, ) <enhd)
< Wjr(An, DIzennd /23 T Lpn(An, ) =a(An, IZenbd 2} T Luca, ) <2cnd }s

one gets

E{7.(An, ;) 2
Gy <4L22 { Zh’;dﬂ i w(An, ;)

2 th ZE{ pin(An, ) = (A, 1)) (A, 5)

+L? Z Liucan )<2enndyi(An, )
j
AL%6%, L2 ,
< nc2 124 + nc2 h2d +L zj: H{M(Ah,,j)<267LhZ}M(Ah7zvj)'

Finally, the third term is non-random. X has a density, which is bounded away
from zero, therefore there exists fpi, > 0 such that p(Ap, ;) > 0 implies
/-L(Ahn,j) Z fminhi- Thus,

> Tuany<zennsy i An, 3) = Tigon <u(an.)<2eont y(An, 5) =0
J J
if fmin > 2¢y,. O
Proof of Proposition 1. Fix any w, z € RN, .2’ € R4y, 9/ € [-M, M]. We have

fWZ|XY(w z|z,y)
fw.zixy(w, 22", y")

= eXp( (V2/ow) > (|wj = Ligrea, ;3] — [w; — Lwea, 3 )
j=1
+(V2/02) > (12 ~ Yl wean y| = |5 — Yliean)))-

Jj=1
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Now, if there exists j € N such that z, 2’ € Ay, j, we have

oo

Z(V«Uj' —Lgwrea, 3l = lwjr —Lizea, ;1) =0

Jj'=1

oo
> Uz — ¥ lwea, 3l = 1270 — Yliwea, ) = |z — ' = |2 — yl < 2M.
=1

On the other hand, if x € Ay, ; and &’ € Aj, ;7 with j # 5/, then we have

(o]
D (lwjr = Varea, 3| = lwjr = Liaea, 1)
=1
= |ws| = Jw; = 1+ [wyr — 1] = Jwy [ <2,
(o)
> (20 — ¥ wea, il — 27 — Yliaea, i)
=1

= |zl = |z =yl + 125 — 4| = |25| < 2M.
It therefore follows that

fw.zix,y (w, 2|2, y)
fW,Z|X,Y(waZ|x/7y/)

< exp(23/2/aw + 23/2M/0Z>,
as required. O
Proof of Theorem 4. For the notation

_ n(An,.4)
mn(x) - N(Ahn,j)

the rule g,, has the equivalent form

when x € Ay, 5,

gn(x) = sign My, (x).

Theorem 2.2 in [9] implies that

Llga) = L* = [ Tgutoypar o m(@)ln(da)
- / aign o () sign (e () | 1(d)
< [lm(e) = mo (@) lutae).
Write

mn(x) _ Un (Ahmj)

= when x € Ay,
w(An,, ;)

nsJ
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Then,

/ (2) — 11 () | pu(d)
/ jm(x) — () |(d) + /nmnuwmn(mnéu(dx).

By Theorem 23.1 in [19], the first term tends to 0 a.s. Similarly to the previous
proof, given € > 0 let S be a sphere centred at the origin such that u(S¢) < ¢,
and set

Bn = U Ahn,j-
Ji ARy, NS#D

Then,

/[Imn(x) — it (@)lgu(de) < Y [va(An, ) = Pn(An, )16 + 1(S°)

JjEBR

s

jEB,

oz ZEW
0
d
< Z <€hn+H[|°—ZZZE‘=1€LJ'|];25”%> e

JEBn "

For n sufficiently large,
> ehl <2\(S)e
JE€EBR

and Lemma 1 implies

n
oz
— E €i,1
n

i=1

ZE Z H|Uv_zz Ty €| >ehd = Z Bn|]P{

jEB’Vl

> ehi}

4N (S) onleht foz)? /4
Thi

n

< 00,

where the last step follows from the condition nh2?/logn — oco. Therefore, by
Markov’s inequality and the Borel-Cantelli lemma, we have proved that

limsup/[\mn(m) — () []op(dz) < 2X(S)e + ¢

n

a.s. Since € > 0 was arbitrary, this completes the proof. O
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