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1. Introduction

Consider a stationary, regularly varying Rd-valued time seriesX = {Xj , j ∈ Z}.
We are interested in a thorough understanding of its extremal behaviour. A
classical approach to this problem is to calculate the extremal index. If | · | is
an arbitrary norm on R

d, then the extremal index θ (if exists) of {|Xj |, j ∈ Z}
is defined as a parameter in the limiting distribution of the maxima. With Q
being the quantile function of |X0| and an = Q(1− 1/n) we have

lim
n→∞

P(a−1
n max

j=1,...,n
{|X1|, . . . , |Xn|} ≤ x) = exp(−θx−α) , x > 0 .

The parameter θ ∈ (0, 1] indicates the amount of clustering, with θ = 1 (the
case of extremal independence) meaning no-clustering of large values.

The extremal index is just one parameter that describes clustering of ex-
tremes. A related object is the cluster size distribution. It is the probability
mass function of the number of exceedences over a large threshold within a
given cluster. Both the extremal index and the cluster size distribution stem
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from an application of a suitable functional to a cluster. This leads to a more
general concept of cluster indices.

Informally speaking, a cluster is a triangular array (X1/un, . . . ,Xrn/un)
with rn, un → ∞ that converges in distribution in a certain sense. Cluster
indices are obtained by applying the appropriate functional H to the cluster.
The functionals are defined on (Rd)Z, the space of Rd-valued sequences, and
are such that their values do not depend on coordinates that are equal to zero.
More precisely, for X = {Xj , j ∈ Z} ∈ (Rd)Z and i ≤ j ∈ Z, we denote Xi,j =
(Xi, . . . ,Xj) ∈ (Rd)(j−i+1). Then, we identify H(Xi,j) with H((0,Xi,j ,0)),
where 0 ∈ (Rd)Z is the zero sequence. Such functionals H will be called cluster
functionals.

Let |·| be an arbitrary norm on R
d and {un}, {rn} be such that

lim
n→∞

un = lim
n→∞

rn = lim
n→∞

nP(|X0| > un) = ∞ ,

lim
n→∞

rn/n = lim
n→∞

rnP(|X0| > un) = 0 . (R(rn, un))

Given a cluster functional H on (Rd)Z, we want to estimate the limiting
quantity

ν∗(H) = lim
n→∞

ν∗
n,rn(H) = lim

n→∞

E[H(X1,rn/un)]

rnP(|X0| > un)
. (1.1)

To guarantee existence of the limit we will require additional anticlustering
assumptions on the time series {Xj , j ∈ Z}. For x = {xj , j ∈ Z} ∈ (Rd)Z define
x∗ = supj∈Z

|xj |. The cluster indices of interest are, among others:

• the extremal index obtained with H1(x) = 1{x∗ > 1}, x = {xj , j ∈ Z} ∈
(Rd)Z;

• the cluster size distribution obtained with

H2(x) = 1

⎧⎨⎩∑
j∈Z

1
{
|xj | > 1

}
= m

⎫⎬⎭ , x = {xj , j ∈ Z} ∈ (Rd)Z , m ∈ N ;

(1.2)

• the stop-loss index of a univariate time series obtained with

H3(x) = 1

⎧⎨⎩∑
j∈Z

(xj − 1)+ > η

⎫⎬⎭ , x = {xj , j ∈ Z} ∈ R
Z , η > 0 ; (1.3)

• the large deviation index of a univariate time series obtained with

H4(x) = 1{K(x) > 1} , K(x) =

⎛⎝∑
j∈Z

xj

⎞⎠
+

, x = {xj , j ∈ Z} ∈ R
Z ;

(1.4)
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• the ruin index of a univariate time series obtained with

H5(x) = 1{K(x) > 1} , K(x) = sup
i∈Z

⎛⎝∑
j≤i

xj

⎞⎠
+

, x = {xj , j ∈ Z} ∈ R
Z .

(1.5)

As mentioned above, the extremal index is the classical quantity that arises in
the extreme value theory for dependent sequences. The cluster size distribution
is again a well-known object and was studied in [Hsi91] and [DR10]. The large
deviation index was studied under the name cluster index in [MW13, MW14].
It quantifies the effect of dependence in large deviations results. The remaining
cluster indices seem to be new.

It has to be pointed out that the aforementioned cluster indices describe clus-
tering of extremes in blocks of an increasing size rn. In this general framework,
we can also consider summation functionals

Hφ(x) =
∑
j∈Z

φ(xj , . . . ,xj+h)

with φ : Rd(h+1) → R. Such summation functionals yield tail array sums, which
in turn give finite-dimensional extremal characteristics. A suitable choice of φ
leads to extremogram (see [DM09]) or the distribution of the spectral tail process
(see [DSW15]). See also Section 10.4.3 in [KS20] for more examples. However,
as we will indicate below, the tail array sums are not interesting in the context
of the present paper.

Several methods of estimation of the limit ν∗(H) in (1.1) may be employed.
The natural one is to consider a statistics based on disjoint blocks of size rn, cf.
[DR10] and [KS20],

ν̃∗
n,rn(H) :=

1

nP(|X0| > un)

mn∑
i=1

H(X(i−1)rn+1,irn/un) ,

where mn = [n/rn]. It is proven in the aforementioned references that the
appropriately scaled and centered estimator is asymptotically normal with the
limiting variance given by ν∗(H2) (see [KS20, Chapter 10] for the expression
for the limiting variance). The data-based estimator is constructed as follows.
Let kn → ∞ be a sequence of integers and define un by kn = nP(|X0| > un).
Let |X|

(n:1)
≤ · · · ≤ |X|

(n:n)
be order statistics from |X1| , . . . , |Xn|. Define

ν̂∗
n,rn(H) :=

1

kn

mn∑
i=1

H(X(i−1)rn+1,irn/|X|
(n:n−kn)

) . (1.6)

Although some special cases were considered (estimation of the extremal in-
dex in [Hsi91] and [SW94]; tail array sums in [RLdH98]), the general theory was
developed in [DR10]. The summary of the theory for the disjoint blocks estima-
tors can be found in [KS20, Chapter 10], where consistency and the central limit
theorems are established. The limiting variance of the disjoint blocks estimator
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can be represented as

ν∗({H − ν∗(H)E}2) , (1.7)

where E(x) =
∑

j∈Z
1
{
|xj | > 1

}
. This result was established (implicitly) in

[DR10], but the form of the limiting variance is again given in [KS20, Chapter
10].

In this paper we consider the sliding blocks statistics

μ̃∗
n,rn(H) :=

1

qnrnP(|X0| > un)

qn−1∑
i=0

H (Xi+1,i+rn/un) , (1.8)

where qn = n−rn−1 and the corresponding estimator defined in terms of order
statistics:

μ̂∗
n,rn(H) =

1

rnkn

qn−1∑
i=0

H
(
Xi+1,i+rn/|X|

(n:n−kn)

)
. (1.9)

The sliding blocks estimators have been studied for some specific functionals
H, however there has been no unified theory available. Recently, [DN20] used
the framework of [DR10] and showed that the limiting variance of the sliding
blocks estimator never exceeds that of the disjoint blocks estimator. In case of
the extremal index, both variances were proven to be equal.

The goal of this paper is to obtain the asymptotic normality of the sliding
blocks estimators. Our focus is on providing the conditions that can be easily
verified for a variety of time series models. At the same time, we will show that
the limiting variance of both disjoint and sliding blocks estimators is the same.
To achieve our goal, we combine [DR10] approach with the modern theory of
stationary, regularly varying time series. We note in passing that in case of the
tail array sums, the sliding blocks estimators reduce to disjoint blocks one. As
such, the limiting theory is already known, see [RLdH98] and Chapter 10 in
[KS20]. In order to proceed, in Section 2 we fix the notation, recall the notion
of the tail process associated to a stationary regularly varying time series; and
introduce the cluster indices.

Next, we need to answer a non-trivial question: When does the limit ν∗(H)
exist?. For this, Section 3 deals with convergence of cluster measures and cluster
indices ν∗(H) appear as the limit. Existence of the limit requires an anticluster-
ing assumption. In conjunction with a particular choice of functionals, we will
be in position to give specific examples of cluster indices. The contents of this
section is based on [KS20, Chapter 6]. Some results stem from [MW14, MW16]
and [BPS18].

The main result is Theorem 4.3. We prove the central limit theorem for
the data-based sliding blocks estimator (1.9) under easy to verify assumptions.
Those conditions can be verified for a variety of models: regularly varying func-
tions of Markov chains, infinite order moving averages, max-stable processes.
See [KSW19] and [KS20, Part III].

The most important (and somehow surprising) conclusion is that both sliding
(1.9) and disjoint (1.6) blocks estimators yield the same variance. This is in
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agreement with the result for the extremal index in [DN20]. On the other hand,
it seems to be a contradiction with other available results; see [BS18b], [BS18a]
or [ZVB20]. The main difference is that we obtain our asymptotic results in the
Peaks-over-Threshold framework, while the latter papers deal with the block
maxima framework. We discuss different results in both frameworks in Section 5.

In Section 6 we illustrate the asymptotic theory by a small simulation study
for simple time series models, AR(1) and ARCH(1). Interestingly, although es-
timators of the extremal index perform better in case of a stronger dependence
(which is not surprising, see e.g. simulation studies in [RSF09]), we have the
opposite situation for the stop-loss index.

All proofs are included in Section 7.

2. Preliminaries

In this section we fix the notation and introduce the relevant classes of functions.
In Section 2.3 we recall the notion of the tail and the spectral tail process (cf.
[BS09]). In Section 2.4 we define cluster indices; see [KS20, Chapter 5] for a
detailed introduction.

2.1. Notation

Let | · | be a norm on R
d. For a sequence x = {xj , j ∈ Z} ∈ (Rd)Z and i ≤ j ∈

Z ∪ {−∞,∞} we denote xi,j = (xi, . . . ,xj) ∈ (Rd)j−i+1, x∗
i,j = maxi≤l≤j |xl|

and x∗ = supj∈Z
|xj |. By 0 we denote the zero sequence; its dimension can be

different in each of its occurrences.

By �0(R
d) we denote the set of Rd-valued sequences which tend to zero at

infinity. Likewise, �1(R
d) consists of sequences such that

∑
j∈Z

|xj | < ∞.

We will use the blocking method. If X is a time series of interest, then
(X†

1, . . . ,X
†
n) is a pseudo-sample such that the blocks (X†

(i−1)rn+1, . . . ,X
†
irn

),

i = 1, . . . ,mn = [n/rn], are mutually independent with the same distribution as
the original block (X1, . . . ,Xrn).

2.2. Classes of functions

FunctionalsH are defined on �0(R
d) with the conventionH(xi,j)=H((0,xi,j ,0)).

In particular, the map E is defined on �0(R
d) by E(x) =

∑
j∈Z

1
{
|xj | > 1

}
. For

s > 0, the function Hs : (R
d)Z → R is defined by Hs(x) = H(x/s). We consider

the following classes:

• L is the class of bounded real-valued functions defined on (Rd)Z that are
either Lipschitz continuous with respect to the uniform norm or almost
surely continuous with respect to the distribution of the tail process Y .

This class includes functions like 1{x∗ > 1}, 1
{∑

j∈Z
|xj | > 1

}
. See Re-

mark 6.1.6 in [KS20].
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• A ⊂ L is the class of shift-invariant functionals with support separated
from 0. In particular, for H ∈ A, H(0) = 0. The class A includes
1{x∗ > 1}.

• K is the class of shift-invariant functionals K : (Rd)Z → R defined on
�1(R

d) such that K(0) = 0 and which are Lipschitz continuous with con-
stant LK , i.e.

|K(x)−K(y)| ≤ LK

∑
j∈Z

∣∣xj − yj

∣∣ , x,y ∈ �1(R
d) . (2.1)

• B ⊂ L is the class of functionals H of the form H = 1{K > 1}, where
K ∈ K. Functionals in B may have support which is not separated from

0. The typical example is H(x) = 1
{∑

j |xj | > 1
}
; note that H �∈ A.

2.3. Tail and spectral tail process

Let X = {Xj , j ∈ Z} be a stationary, regularly varying time series with values
in R

d and tail index α. In particular,

lim
x→∞

P(|X0| > tx)

P(|X0| > x)
= t−α

for all t > 0. Then, there exists a sequence Y = {Y j , j ∈ Z} such that

P(x−1(Xi, . . . ,Xj) ∈ · | |X0| > x) converges weakly to P((Y i, . . . ,Y j) ∈ ·)
as x → ∞ for all i ≤ j ∈ Z. We call Y the tail process. See [BS09]. We note that,
in particular, |Y 0| has Pareto distribution with the density αx−α−1, x > 1. As
such, it follows automatically that Y ∗ = supj∈Z

|Y j | > 1. Equivalently, viewing

X and Y as random elements with values in (Rd)Z, we have for every bounded
or non-negative functional H on (Rd)Z, continuous with respect to the product
topology,

lim
x→∞

E[H(x−1X)1{|X0| > x}]
P(|X0| > x)

= E[H(Y )] .

Define Θj = Y j/|Y 0|, j ∈ Z. The sequence Θ = {Θj , j ∈ Z} is called
the spectral tail process. The random variable |Y 0| has the Pareto distribution
with index α and is independent from Θ. Hence for a non-negative measurable
function H : (Rd)Z → R,

E[H(Y )] =

∫ ∞

1

E[H(rΘ)]αr−α−1dr . (2.2)

2.4. Cluster measure and cluster indices

Consider the infargmax functional C0 defined on (Rd)Z by C0(y) = inf{j :
y∗
−∞,j = y∗}, with the convention that inf ∅ = +∞. If P(C0(Y ) /∈ Z) = 0

then we can define

ϑ = P(C0(Y ) = 0) . (2.3)
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In fact, C0 can be replaced with any anchoring map (see [PS18] and [KS20,
Theorem 5.5.3]), but we do not pursue it here. For the purpose of this paper it
is sufficient to note that we can write alternatively

ϑ = P

(
sup
j≤−1

|Y j | ≤ 1

)
. (2.4)

The relationship between (2.3) and (2.4) is certainly not obvious. The proof
is given in Section 7.1. Equation (2.4) emphasizes a special role of the event
{supj≤−1 |Y j | ≤ 1} and with its help ϑ can be recognized as the (candidate)
extremal index. It becomes the usual extremal index under additional mixing
and anticlustering conditions.

Definition 2.1. Let Y and Θ be the tail process and the spectral tail process,
respectively, such that P(lim|j|→∞ Y j = 0) = 1. The cluster measure is the

measure ν∗ on �0(R
d) defined by

ν∗ = ϑ

∫ ∞

0

E[δrΘ1{C0(Θ) = 0}]αr−α−1dr . (2.5)

The measure ν∗ is boundedly finite on (Rd)Z \ {0}, puts no mass at 0 and is
α-homogeneous. Furthermore, the cluster measure can be expressed in terms of
another sequence.

Definition 2.2. Assume that P(C0(Y ) /∈ Z) = 0. The conditional spectral tail
process Q is a random sequence with the distribution of (Y ∗)−1Y conditionally
on C0(Y ) = 0.

The sequence Q appeared implicitly in the seminal paper [DH95]. See also
[BS09], [PS18, Definition 3.5] and [KS20, Chapter 5]. An abstract setting is
considered in [DHS18].

Note that C0(Y ) = 0 if and only if C0(Θ) = 0. Then also Y ∗ = |Y 0|. Thus,
(2.5) and the definition of Q give for a bounded or non-negative measurable
function H on �0(R

d),

ν∗(H) = ϑ

∫ ∞

0

E[H(rQ)]αr−α−1dr = ϑ

∫ ∞

0

E[H(rΘ)1{C0(Θ) = 0}]αr−α−1dr .

(2.6)

If moreover H is such that H(y) = 0 if y∗ ≤ ε for one ε > 0, then

ν∗(H) = ε−α
E[H(εY )1{C0(Y ) = 0}] = ε−α

E[H(εY )1
{
Y ∗

−∞,−1 ≤ 1
}
] . (2.7)

Note that with H(x) = 1{x∗ > 1} and recalling that Y ∗ > 1, (2.7) reduces to
(2.4). As such, functionals from A will have typically the representation given in
(2.7). On the other hand, for functionals from B we are not able to conclude the
representation (2.7), however, the general form (2.6) is still valid, possibly under
additional conditions. See Section 3.3. Comparing (2.5) or (2.7) with (2.2) we
can see that the ν∗(H) does not agree with E[H(Y )]. The additional indicator
comes essentially from the conditioning on the location of the maximum of the
sequence Y .
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Definition 2.3 (Cluster index). We will call ν∗(H) the cluster index associated
to the functional H.

3. Convergence of cluster measure

Recall R(rn, un). Define the measures ν∗
n,rn , n ≥ 1, on �0(R

d) as follows:

ν∗
n,rn =

1

rnP(|X0| > un)
E

[
δu−1

n X1,rn

]
.

We are interested in convergence of ν∗
n,rn to ν∗. The results of this section

are extracted from [KS20, Chapter 6]. See also [PS18] and [BPS18].

3.1. Anticlustering condition

For each fixed r ∈ N, the distribution of u−1
n X−r,r conditionally on |X0| > un

converges weakly to the distribution of Y −r,r. In order to let r tend to infinity,
we must embed all these finite vectors into one space of sequences. By adding
zeroes on each side of the vectors u−1

n X−r,r and Y −r,r we identify them with
elements of the space �0(R

d). Then Y −r,r converges (as r → ∞) to Y in �0(R
d)

if (and only if) Y ∈ �0(R
d) almost surely.

However, this is not enough for statistical purposes and we consider the fol-
lowing definition.

Definition 3.1 ([DH95], Condition 2.8). Condition AC(rn, un) holds if for all
x, y > 0,

lim
k→∞

lim sup
n→∞

P

(
max

k≤|j|≤rn
|Xj | > unx | |X0| > uny

)
= 0 . (AC(rn, un))

Condition AC(rn, un) is referred to as the anticlustering condition. It is ful-
filled by many models, including geometrically ergodic Markov chains, short-
memory linear or max-stable processes. AC(rn, un) implies that Y ∈ �0(R

d). Its
main consequence is the following result.

Proposition 3.2 ([BS09], Proposition 4.2; [KS20], Theorem 6.1.4). Let H ∈ L.
If Condition AC(rn, un) holds, then

lim
n→∞

E[H(u−1
n X−rn,rn) | |X0| > un] = E[H(Y )] .

Condition AC(rn, un) holds for sequence of i.i.d. random variables whenever
limn→∞ rnP(|X0| > un) = 0, which can be recognized as on the restrictions
imposed in R(rn, un)

3.2. Vague convergence of cluster measure

We now investigate the unconditional convergence of u−1
n X1,rn . Contrary to

Proposition 3.2, where an extreme value was imposed at time 0, a large value in
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the cluster can happen at any time. Moreover, the convergence of ν∗
n,rn(H) to

ν∗(H) may hold only for shift-invariant functionals H. Therefore, we need the
following definition.

Definition 3.3. The space �̃0(R
d) is the space of equivalence classes of �0(R

d)
endowed with the equivalence relation ∼ defined by

x ∼ y ⇐⇒ ∃j ∈ Z , Bjx = y ,

where B is the backshift operator.

The proof of the next result is given in Section 7.

Proposition 3.4. Let condition AC(rn, un) hold. The sequence of measures
ν∗
n,rn , n ≥ 1 converges vaguely# on �̃0(R

d) \ {0} to ν∗, that is, for all H ∈ A,

lim
n→∞

ν∗
n,rn(H) = lim

n→∞

E[H(u−1
n X1,rn)]

rnP(|X0| > un)
= ν∗(H) .

The immediate consequence is the following limit (cf. (2.3)):

lim
n→∞

P(X∗
1,rn > un)

rnP(|X0| > un)
= ϑ .

Since H2, H3 ∈ A (cf. (1.2)-(1.3)), we can introduce the following cluster
indices.

Example 3.5 (Cluster size distribution). If AC(rn, un) holds, Proposition 3.4
yields

lim
n→∞

P

⎛⎝ rn∑
j=1

1
{
|Xj | > un

}
= m | X∗

1,rn > un

⎞⎠
= P

⎛⎝∑
j∈Z

1
{
|Y j | > 1

}
= m | Y ∗

−∞,−1 ≤ 1

⎞⎠ =: π(m) .

�
Example 3.6 (Stop-loss index). Consider a univariate time series. Define the
stop-loss index:

θstoploss(η) = lim
n→∞

P

(∑rn
j=1(Xj − un)+ > ηun

)
rnP(X0 > un)

= P

⎛⎝ ∞∑
j=0

(Yj − 1)+ > η,Y ∗
−∞,−1 ≤ 1

⎞⎠ .

This index seems to be new. �
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3.3. Indicator functionals not vanishing around zero

Proposition 3.4 entails convergence of ν∗
n,rn(H) for H ∈ A. For functionals

which are not defined on the whole space �0(R
d), such as H4 and H5 from (1.4)-

(1.5), we need an additional assumption on Asymptotic Negligibility of Small
Jumps.

Definition 3.7. Condition ANSJB(rn, un) holds if for all η > 0,

lim
ε→0

lim sup
n→∞

P(
∑rn

j=1 |Xj |1{|Xj | ≤ εun} > ηun)

rnP(|X0| > un)
= 0 . (ANSJB(rn, un))

The proofs of the next two results are given in Section 7.

Lemma 3.8. If AC(rn, un) and ANSJB(rn, un) hold, then

lim
n→∞

P(
∑rn

i=1 |Xj | > un)

rnP(|X0| > un)
= E

⎡⎣⎛⎝∑
j∈Z

|Qj |

⎞⎠α⎤⎦ < ∞ .

Proposition 3.9. Assume that AC(rn, un) and ANSJB(rn, un) hold. Then for
K ∈ K,

ν∗(1{K > 1}) = lim
n→∞

P(K(X1,rn/un) > 1)

rnP(|X0| > un)
= ϑ

∫ ∞

0

P(K(zQ) > 1)αz−α−1dz

and the latter integral is finite.

If K is a 1-homogeneous satisfying the assumptions of Proposition 3.9, then

ν∗(1{K > 1}) = ϑE[Kα
+(Q)] = E[Kα

+(Θ0,∞)−Kα
+(Θ1,∞)] .

Example 3.10 (Large deviations index). Let {Xj , j ∈ Z} be an univariate time
series. The functional H4 defined in (1.4) yields the large deviations index:

θlargedev = lim
n→∞

P

((∑rn
j=1 Xj

)
+
> un

)
rnP(|X0| > un)

= E

⎡⎣⎛⎝ ∞∑
j=0

Θj

⎞⎠α

+

−

⎛⎝ ∞∑
j=1

Θj

⎞⎠α

+

⎤⎦ .

The index θlargedev, under the name cluster index, was introduced in [MW16].
�
Example 3.11 (Ruin index). Take H5 defined in (1.5). Proposition 3.9 gives

θruin = lim
n→∞

P(max1≤j≤rn

∑j
i=1 Xi > un)

rnP(|X0| > un)
= ϑE

⎡⎣sup
i∈Z

⎛⎝∑
j≤i

Qj

⎞⎠α

+

⎤⎦ .

�
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Remark 3.12. At this point we would like to point out the following. Consider
H ∈ A to be an indicator functional. If moreover H is such that H(y) = 0 if
y∗ ≤ 1, then thanks to (2.7),

ν∗(H) = E[H(Y )1
{
Y ∗

−∞,−1 ≤ 1
}
] ∈ (0, 1] .

This is the situation for the extremal index and the functionals from Exam-
ples 3.5 and 3.6. On the other hand, if H does not vanish around zero, then
at the first place we need additional conditions to guarantee that ν∗(H) < ∞
(e.g. ANSJB(rn, un)). Second, there is no restriction on the values of the cluster
index.

4. Central limit theorem for blocks estimators

4.1. Sliding blocks estimators

Let qn = n − rn + 1. Thanks to Proposition 3.4 and Proposition 3.9, we have
for H ∈ A ∪ B,

lim
n→∞

E

[∑qn−1
i=0 H (Xi+1,i+rn/un)

qnrnP(|X0| > un)

]

= lim
n→∞

E [H (X1,rn/un)]

rnP(|X0| > un)
= lim

n→∞
ν∗
n,rn(H) = ν∗(H) .

This indicates that a consistent pseudo-estimator of ν∗(H) can be defined as

μ̃∗
n,rn(H) :=

1

qnrnP(|X0| > un)

qn−1∑
i=0

H (Xi+1,i+rn/un) . (4.1)

The above estimator is not feasible, since it involves an unspecified sequence
{un} and the tail of |X0|. Thus, in (4.1) we replace qnP(|X0| > un) with its
empirical estimate

∑qn
j=1 1

{
|Xj | > un

}
to obtain a quasi-feasible estimator

̂̂μ∗
n,rn(H) =

1

rn

1∑qn
j=1 1

{
|Xj | > un

} qn−1∑
i=0

H (Xi+1,i+rn/un) .

Likewise, let kn be an intermediate sequence of integers, i.e. limn→∞ kn = ∞,
limn→∞ kn/n = 0. Define un by kn = nP(|X0| > un). Replacing un with
|X|

(n:n−kn)
and noting that (assuming for simplicity that there are not ties in

the data)
n∑

j=1

1
{
|Xj | > |X|

(n:n−kn)

}
= kn ,

we obtain a feasible estimator of ν∗(H) given in (1.9).
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4.2. Weak dependence assumptions

For asymptotic normality, we need to strengthen the anticlustering condition
AC(rn, un).

Definition 4.1. Condition S(rn, un) holds if for all s, t > 0

lim
m→∞

lim sup
n→∞

1

P(|X0| > un)

rn∑
j=m

P(|X0| > uns, |Xj | > unt) = 0 . (S(rn, un))

This condition implies that
∑

j∈Z
P(|Y j | > 1) < ∞. The latter series appears

explicitly in the statement for the limiting variance.
Dependence in {Xj , j ∈ Z} will be controlled by the β-mixing rates {βn}.

Recall R(rn, un). Let {�n} be a sequence of integers such that limn→∞ �n = ∞
and limn→∞ �n/rn = 0.

Definition 4.2. Condition β(rn) holds if:

1. βj = O(j−ν), ν > 1 and limn→∞ r1+ν
n /n = +∞; and

2. there exists δ > 0 such that limn→∞ rν−δ
n P(|X0| > un) = +∞.

From the basic assumptions on the time series, we have limn→∞ rn/n = 0.
Thus, ν has to be big enough. The above mixing condition is clearly satisfied for
time series with geometric mixing rates since then ν can be chosen arbitrarily
large.

4.3. Main result

Let G be the Gaussian process on L2(ν∗) with covariance

cov(G(H),G(H̃)) = ν∗(HH̃) .

Recall that for a functional H : (Rd)Z → R and s > 0 we define Hs(x) =
H(x/s).

The main result of this paper is Theorem 4.3, the asymptotic normality of
the appropriately normalized estimator μ̂∗

n,rn(H). The limiting variance agrees
with the one for the disjoint blocks estimator; cf. [DR10] and [KS20, Chapter
10].

Theorem 4.3. Let {Xj , j ∈ Z} be a stationary, regularly varying R
d-valued

time series. Assume that R(rn, un), β(rn), S(rn, un) hold. Fix 0 < s0 < 1 <
t0 < ∞. Let H : (Rd)Z → R be a shift-invariant measurable map such that the
class {Hs : s ∈ [s0, t0]} is linearly ordered. Assume moreover that

lim
n→∞

√
kn sup

s∈[s0,t0]

|E[μ̃∗
n,rn(Es)]− ν∗(Es)| = 0 , (4.2a)

lim
n→∞

√
kn sup

s∈[s0,t0]

|E[μ̃∗
n,rn(Hs)]− ν∗(Hs)| = 0 . (4.2b)
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If H ∈ A, then√
kn

{
μ̂∗

n,rn(H)− ν∗(H)
} d−→ G(H − ν∗(H)E) . (4.3)

If moreover ANSJB(rn, un) is satisfied, then (4.3) holds for H ∈ B.
Remark 4.4. The limiting distribution is centered Gaussian with variance (cf.
Lemma 7.22):

ν∗({H − ν∗(H)E}2) = ν∗(H2)− 2ν∗(H)ν∗(HE) + (ν∗(H))2ν∗(E2)

= ν∗(H2)− 2ν∗(H)E[H(Y )] + (ν∗(H))2
∑
j∈Z

P(|Y j | > 1) .

Thus, in view of (1.7), the limiting variance for the sliding blocks estimator
agrees with the one for the disjoint blocks estimator. ⊕
Remark 4.5. The linear ordering of the class {Hs : s ∈ [s0, t0]} may seem to
be too restrictive. However, all the cluster functionals that, from the authors
perspective, seem to be of interest in the context of sliding blocks estimators,
have this property. This includes the functionals H1, H2, H3, H4, H5 considered
in the Introduction. The linear ordering can be replaced with an assumption
that the function class is of VC-type (see [DR10]), or can be approximated
by VC-classes. See [BBKS20, Lemma A.3], [DK20] and [KS20, Appendix C.4].
This generalization is obvious, but does not bring anything to the contents of
the paper, since the random entropy assumption has to be checked for each case
separately.

4.4. Examples

Example 4.6 (Extremal index). For H(x) = 1{x∗ > 1} we have ν∗(H) =
ν∗(H2) = ϑ. The data-based estimator (1.9) is asymptotically normal with
mean zero and the limiting variance is

ν∗({H − ν∗(H)E}2) = ϑ2
∑
j∈Z

P(Yj > 1)− ϑ .

See Section 5 for a discussion on the existing results. �
Example 4.7 (Cluster size distribution). Consider the situation from Exam-
ple 3.5. The limiting distribution is centered normal with the variance

π(m) (1− 2P(E(Y ) = m)) + π2(m)
∑
j∈Z

P(Yj > 1) .

�
Example 4.8 (Stop-loss index). Consider the stop-loss index θstoploss(η) intro-
duced in Example 3.6. The limiting distribution is centered normal with the
variance

θstoploss(η)
(
1− 2P

(∑
j∈Z

(Yj − 1)+ > η
))

+ θ2stoploss(η)
∑
j∈Z

P(Yj > 1) .

�
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Example 4.9 (Large deviations index). We continue with the situation from
Example 3.10. The limiting distribution is centered Gaussian with variance

θlargedev − 2θlargedevP

⎛⎝⎛⎝∑
j∈Z

Yj

⎞⎠
+

> 1

⎞⎠+ θ2largedev
∑
j∈Z

P(|Yj | > 1) .

�

5. Comments and extensions

5.1. Existing results

We discuss the existing results. For the sake of clarify, we consider univariate,
non-negative, regularly varying time series with the marginal distribution F .

PoT approach. In [DN20] the authors study asymptotic normality of the slid-
ing blocks estimators in a general setting. They show that the limiting variance
of such estimators does not exceed the one for the disjoint blocks estimators. For
the extremal index they found the variances to be equal. As in this paper, they
use the threshold un such as in R(rn, un). The results in [DR10] and [KS20,
Chapters 9-10] (disjoint blocks) as well as in [DN20] and in the current paper
fit into Peaks-Over-Threshold (PoT) framework.

In particular, consider the disjoint blocks estimator of the extremal index,

ϑ̃n,1 = ϑ̃n,1(x) =

∑mn

i=1 1
{
X∗

(i−1)rn+1,irn > x
}

∑mnrn
j=1 1{Xj > x} .

In [KS20, Example 10.4.2] we calculated the limiting variance of ϑ̃n,1(un)
to be σ2

1 = −ϑ + ϑ2
∑

j∈Z
P(Yj > 1). This is in agreement with Corollary 4.6

in [Hsi91] (where the variance σ2
1 is given in a complicated form). We can see

that σ2
1 agrees with the one limiting variance for the sliding blocks estimator in

Example 4.6. The blocks estimator ϑ̃n,1(un) is also considered in [SW94] and
[WN98].

Block maxima framework. One can also use the threshold crn given by

rnF (crn) → 1 . (5.1)

We are not aware of the asymptotic theory for ϑ̃n,1(crn). However, using
[RSF09, Theorem 4.2] and the delta method we can compare the variances of

ϑ̃n,1(un) and ϑ̃n,1(crn):

σ2
1 = −ϑ+ ϑ2

∑
j∈Z

P(Yj > 1) vs. σ2
3 := e−ϑ(1− e−ϑ)− 2ϑe−ϑ + ϑ2

∑
j∈Z

P(Yj > 1) .
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Thus, the estimator ϑ̃n,1(un) has a smaller variance than ϑ̃n,1(crn).
In the following discussion, we will use the threshold (5.1). In [RSF09] the

authors consider another disjoint blocks estimator of the extremal index, mo-
tivated by the approximation log(1 − x) ∼ x (x → 0). Also, the corresponding
sliding blocks estimator is considered. It is shown that the sliding blocks one
yields a smaller asymptotic variance.

In [BS18b, BS18a] the authors estimate the parameters (α, σ) of the Fréchet
distribution stemming from the limiting behaviour of the maxima. Disjoint
blocks yield a larger variance than sliding blocks. Similarly, in [BB18] the au-
thors use the blocking method to estimate the extremal index and again the
sliding block estimator is more efficient.

The estimator ϑ̃n,1(crn) as well as the ones in [RSF09] and [BS18b, BS18a]
can be thought of as the application of the block maxima method. Indeed, the
threshold crn is the normalizing sequence for the limiting distribution of maxima.
In the context of the latter two papers, X∗

1,rn/σrn converges in distribution to
a standard Fréchet random variable with tail index α (denoted by Z). On the
other hand, for ξ ∈ (0, 1), the pair

(X∗
1,rn/σrn ,X

∗
1+[ξrn],rn+[ξrn]/σrn)

converges in distribution to a dependent random vector (Z1, Z2) with Fréchet
marginals and parametrized by ξ ∈ (0, 1). See [BS18a, Lemma 5.1]. Consider
now for f : R → R

G
(BS)
n (f) =

√
mn

⎧⎨⎩m−1
n

mn∑
j=1

f

(
X∗

(j−1)rn+1,jrn

σrn

)
− E[f(Z)]

⎫⎬⎭ ,

F
(BS)
n (f) =

√
mn

{
q−1
n

qn∑
i=1

f

(
X∗

i,i+rn−1

σrn

)
− E[f(Z)]

}
.

The aforementioned convergence gives the limiting variance. For the disjoint
blocks empirical process the limiting variance is var(f(Z)), while for the sliding
blocks one it becomes (cf. Lemma 5.3 in [BS18a])

C(f) := 2

∫ 1

0

covξ(f(Z1), f(Z2))dξ .

In the context of our paper, if we choose f(z) = 1{z > 1}, then we can
evaluate:

var(f(Z)) = exp(−1)− exp(−2) > C(f) = 2 exp(−1)− 4 exp(−2) .

In the PoT framework considered in our paper, both the disjoint blocks and
the sliding blocks empirical processes yield the limiting variance ν∗(H).

In summary:

• The PoT method, as proven in this paper, gives the same limiting
behaviour for both disjoint and sliding blocks estimators.
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• The situation seems to be different in case of the block maxima method,
at least for the inference problems considered up to date.

• One can argue that the blocks maxima method is restricted to estimation
of the parameters of the limiting distribution of maxima (the tail index,
the extremal index) and is rather hard to see how the method can be
employed to other cluster indices.

5.2. Bias

The sliding block estimators of cluster functionals are subjected to bias

E[μ̃∗
n,rn(H)]− ν∗(H) .

The bias vanishes asymptotically thanks to the assumption (4.2b). The latter
assumption imposes some restrictions on kn, rn. Classically, e.g. in case of the
Hill estimator of the tail index, the bias is controlled by the second order condi-
tion. In the present context we know nothing about how to control bias, except
that there exist sequences kn and rn such that (4.2b) holds. On a positive side,
from a point of comparing disjoint and sliding blocks estimators, the theoretical
bias is obviously the same for both.

5.3. Open questions

• For the sliding blocks estimators, obtain consistency under minimal con-
ditions (that is, without relying on β-mixing). In [KS20, Chapter 10] we
obtain consistency of the disjoint blocks estimators for time series that
can be approximated by m-dependent sequences, including long memory
ones.

• Extend Theorem 4.3 to unbounded functionalsH. The method of the proof
presented in the paper should be applicable, however, some substantial
modifications may be needed. Certainly, more restrictive conditions will
need to be implemented.

• In view of the behaviour of ϑ̃n,1(un) and ϑ̃n,1(crn), it would be interesting
to know if (whenever possible) the PoT method always gives a smaller
variance than the block maxima ones.

6. Simulation study

We conducted some simulations in order to study the finite sample performance
of the sliding and disjoint blocks estimators for selected cluster indices.

6.1. Stationary AR process

We start with a simple AR(1) process. For this process we have explicit formulas
for all cluster indices. Samples of size n = 1000 are generated from AR(1) with
α = 4 and ρ = 0.5, 0.9. Simulations for the classical extremal index are compared
to simulations for the stop-loss index.
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Extremal index. For AR(1) with ρ > 0 the extremal index is θ = 1− ρα; cf.
[KS20, p. 396].

• We start with the Hill plots in Figure 1. There, for one simulated data set
we compare a performance of both disjoint and sliding blocks estimators.
For weak dependence (ρ = 0.5), both sliding and disjoint blocks estimators
under-estimate the extremal index while for strong dependence (ρ = 0.9),
the results are stable around the true extremal index for a small number
of order statistics. Bigger values of k introduce more bias. In any case, the
performance of both estimators is comparable.

• Table 1 includes the results for Monte Carlo simulation for the extremal
index based on disjoint and sliding blocks, with the block size rn =
7, 8, 9, 10. We used k = 5% and 10% order statistics. We note that
for the strong dependence (ρ = 0.9), the estimation is acceptable for the
small block sizes and small k for both disjoint and sliding estimators.
A larger block size rn and/or larger number of order statistics k results
in a biased estimation. For weak dependence (ρ = 0.5), the results are
heavily biased for all considered parameters. We note that both disjoint
and sliding blocks estimators yield almost the same variances, which is in
agreement with the theoretical results obtained in the paper.

• The box plots and histograms in Figure 2 and Figure 3 are based again
on Monte Carlo simulations. The following parameters are used: ρ = 0.9,
α = 4 and the block size rn = 7 along with k = 5% and 10%. We notice
again that ρ = 0.9, rn = 7 and k = 5% yield acceptable results. However,
small ρ yields a lot of bias.

In summary, in case of the extremal index, both disjoint and slid-
ing blocks estimators yield similar results (as suggested by theory).
Stronger dependence implies better performance. Typically estima-
tors suffer from a bias. As such, bias-reduction techniques should be inves-
tigated.

We note also that the fact that stronger dependence yields smaller variability
of the estimators is not surprising, cf. e.g. Figure 5 in [RSF09].

Stop-loss index. For AR(1) with ρ > 0 the formula for the stop-loss index is
given in [KS20, p. 619]:

θstop−loss(S) = (1− ρα)P

⎛⎝ ∞∑
j=0

(ρjY0 − 1)+ > S

⎞⎠ , (6.1)

where Y0 is a Pareto random variable with the parameter α.

• At the first step we use the formula (6.1) and performed the Monte-Carlo
simulation to obtain the approximate value of the stop-loss index.

• Figure 4 displays Hill plots for the stop-loss index. The Hill plots indicate
a similar performance of both disjoint and sliding blocks estimators. We
note that, unlike in the extremal index case or in the classical case of the
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Table 1

The median and the variance (in brackets) of disjoint and sliding blocks estimators for the
extremal index. Data are simulated from AR(1) with α = 4, ρ = 0.5 (thus, θ = 0.94), and
ρ = 0.9 (thus θ = 0.34). Block size rn = 7, 8, 9, 10. The number of order statistics is
k = 5% and 10% for a sample n = 1000 based on N = 1000 Monte Carlo simulations.

ρ = 0.9, Extremal Index=0.34 ρ = 0.5, Extremal Index= 0.94

(k %) k = 5 k = 10 k = 5 k = 10

rn = 7

Disjoint bl 0.34 (0.05) 0.31 (0.03) 0.68 (0.05) 0.58 (0.03)

Sliding bl 0.35 (0.04) 0.31 (0.03) 0.68 (0.04) 0.58 (0.03)

rn = 8

Disjoint bl 0.32 (0.05) 0.29 (0.03) 0.67 (0.05) 0.56 (0.03)

Sliding bl 0.33 (0.04) 0.29 (0.03) 0.67 (0.04) 0.56 (0.03)

rn = 9

Disjoint bl 0.32 (0.05) 0.28 (0.03) 0.66 (0.05) 0.53 (0.03)

Sliding bl 0.32 (0.04) 0.28 (0.03) 0.65 (0.05) 0.53 (0.03)

rn = 10

Disjoint bl 0.30 (0.05) 0.26 (0.03) 0.64 (0.05) 0.52 (0.03)

Sliding bl 0.30 (0.04) 0.26 (0.03) 0.63 (0.05) 0.52 (0.03)

Hill estimator of the tail index, one needs to take a much bigger number
of the order statistics. We do not have clear explanation for this.

• With this in mind, we performed simulation studies for k = 50% and
k = 70%. We noticed then (see Table 2) that, as opposed to the extremal
index, the weaker dependence (ρ = 0.5) yields a good estimation for any
given block size, while for the strong dependence (ρ = 0.9), the simulation
results are rather poor. This may be quite intuitive, since the stop-loss
functional is based on sums of large values. In any case, both sliding and
disjoint blocks estimators yield comparable results.

In summary, in case of the stop-loss index, both disjoint and slid-
ing blocks estimators yield similar results (as suggested by theory).
Weaker dependence implies better performance. One should use a
high number of order statistics.

6.2. Stationary ARCH process

We consider a stationary ARCH(1) process defined by X2
j =

√
β + λX2

j−1Zj ,

where {Zj , j ∈ Z} are i.i.d standard normal random variables. For λ = 0.9 the
extremal index is θ = 0.612 (see [EKM97, p. 480]).
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Fig 1. Hill plots of sliding and disjoint blocks estimators for the extremal index plotted against
the number of order statistics k. Data are simulated from AR(1) with ρ = 0.5 and θ = 0.94
(left panel), ρ = 0.9 and θ = 0.34 (right panel), α = 4, block size rn = 7. Dotted lines
indicated the true value of the extremal index.

• We start with Hill plots in Figure 5. The plots again illustrate little dif-
ference between the disjoint and sliding blocks estimators.

• Monte Carlo results are included in Table 3 and visualised as boxplots in
Figure 6.

Again, both disjoint and sliding blocks estimators yield similar re-
sults (as suggested by the theory).

6.3. Other cluster indices

We conducted simulation studies for other cluster indices, in particular for those
from class B. Here the results are rather not very promising. One of the reasons
is the following observation. Recall (see Remark 3.12) that unlike in class A,
the cluster indices for functional from class B can have arbitrary values. At the
same time, the largest possible value of the disjoint blocks estimator is mn/kn.
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Fig 2. Monte Carlo simulations of sliding and disjoint blocks estimators for the extremal
index. Data are simulated from AR(1) with ρ = 0.5 and θ = 0.94 (left panel), ρ = 0.9 and
θ = 0.34 (right panel), α = 4, block size rn = 7 and the number of order statistics k = 5%
and 10%. Dotted lines indicated the true value of the extremal index.

In theory, this ratio is
1

rnP(|X0| > un)
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Fig 3. Monte Carlo simulations of disjoint (blue) and sliding (red) blocks estimators for the
extremal index. Data are simulated from AR(1) with ρ = 0.5 (left panel), ρ = 0.9 (right
panel), α = 4, block size rn = 7 and the order statistics k = 5% and 10%.

and hence diverges to infinity thanks to R(rn, un). However, for finite samples,
the ratio stays bigger than one for very few values of kn. As such, we believe
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Fig 4. Hill plots of disjoint and sliding blocks estimators for the stop-loss index plotted against
the number of order statistics k. Data are simulated from AR(1) with: ρ = 0.5, S = 0.3 (top
left), ρ = 0.5, S = 0.7 (bottom left), ρ = 0.5, S = 0.7 (top right) and ρ = 0.9, S = 0, 7,
(bottom right), α = 4, block size rn = 7, 9.
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Fig 5. Hill plots of disjoint and sliding blocks estimators for extremal index plotted against
the number of order statistics k. Data are simulated from ARCH(1) with: λ = 0.9.
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Table 2

The median and the variance (in brackets) of disjoint and sliding blocks estimators for
stop-loss index with S = 0.7. Data are simulated from AR(1) with α = 4, ρ = 0.5, ρ = 0.9.
The block size is rn = 7, 8, 9, 10. The number of order statistics is k = 50% and 70% for a

sample n = 1000 based on N = 1000 Monte Carlo simulations.

ρ = 0.9, Stop-loss Index=0.096 ρ = 0.5, Stop-loss Index= 0.11

(k %) k = 50 k = 70 k = 50 k = 70

rn = 7

Disjoint bl 0.0320 (0.009) 0.0414 (0.008) 0.0960 (0.009) 0.1071 (0.007)

Sliding bl 0.0314 (0.008) 0.0418 (0.008) 0.0954 (0.008) 0.1067 (0.006)

rn = 8

Disjoint bl 0.0340 (0.008) 0.0443 (0.007) 0.0980 (0.009) 0.1071 (0.006)

Sliding bl 0.0332 (0.008) 0.0436 (0.007) 0.0968 (0.007) 0.1055 (0.005)

rn = 9

Disjoint bl 0.0360 (0.008) 0.0457 (0.007) 0.0960 (0.008) 0.1043 (0.006)

Sliding bl 0.0349 (0.007) 0.0460 (0.007) 0.0967 (0.007) 0.1038 (0.004)

rn = 10

Disjoint bl 0.0320 (0.007) 0.0429 (0.007) 0.0980 (0.007) 0.1014 (0.005)

Sliding bl 0.0314 (0.007) 0.0424 (0.006) 0.0974 (0.006) 0.1009 (0.004)

that alternative methods of estimation of e.g. the large deviation index have to
be implemented.

7. Proofs

In Section 7.1 we prove the equivalence between (2.3) and (2.4). In Section 7.3
we show that (1.1) holds for H ∈ A ∪ B. The proofs in that section stem from
[KS20]. The results from Section 7.3 are extended in Section 7.4 to covariance of
clusters. In Section 7.5 we introduce the empirical process of sliding blocks and
state its functional convergence. The proof of the latter is separated into several
parts. First, in Section 7.6 we derive the limiting covariance of the empirical
process of sliding blocks. Next, in Section 7.7 we prove the finite-dimensional
convergence. Asymptotic continuity is dealt with in Section 7.8. We conclude
the proof in Section 7.9.

7.1. Representations of the (candidate) extremal index

We first quote the time-change formula (see [BS09], [KS20, Theorem 5.3.1]). Let
B be the backshift operator on (Rd)Z defined by (Bx)i = xi−1, i ∈ Z.
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Table 3

The median and the variance (in brackets) of disjoint and sliding blocks estimators for the
extremal index in ARCH(1) model with λ = 0.9. The block size is rn = 7, 8, 9, 10. The
number of order statistics is k = 5% and 10% for a sample n = 1000 based on N = 1000

Monte Carlo simulations.

Extremal Index=0.612

(k %) k = 5 k = 10

rn = 7

Disjoint bl 0.680 (0.06) 0.620 (0.04)

Sliding bl 0.670 (0.06) 0.620 (0.03)

rn = 8

Disjoint bl 0.660 (0.06) 0.600 (0.04)

Sliding bl 0.648 (0.06) 0.593 (0.03)

rn = 9

Disjoint bl 0.640 (0.06) 0.590 (0.04)

Sliding bl 0.631 (0.05) 0.567 (0.03)

rn = 10

Disjoint bl 0.620 (0.06) 0.550 (0.04)

Sliding bl 0.616 (0.05) 0.546 (0.03)

Fig 6. Monte Carlo simulations of sliding and disjoint blocks estimators for the extremal
index. Data are simulated from ARCH(1) with λ = 0.9, block size rn = 7 and the number
of order statistics k = 5% (left panel) and 10% (right panel). Dotted lines indicated the true
value of the extremal index.

Lemma 7.1. Let Y be the tail process. Let H be a bounded or non-negative
measurable functional on (Rd)Z. Then for all i ∈ Z,

E[H(BiY )1{|Y −i| > 1}] = E[H(Y )1{|Y i| > 1}] .
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Lemma 7.2. Assume that P(C0(Y ) /∈ Z) = 0. Then

ϑ = P(C0(Y ) = 0) = P(Y ∗
−∞,−1 ≤ 1) .

Proof. Recall that C0(y) = inf{j : y∗
−∞,j = y∗}. From the definition of the tail

process we have Y ∗ > 1. Thus

P(C0(Y ) = 0) = P

(
sup
j≤−1

|Y j | < |Y 0|, sup
j≥1

|Y j | ≤ |Y 0|,Y ∗ > 1

)
.

By the assumption P(C0(Y ) /∈ Z) = 0, the maximum Y ∗ is achieved at some
|Y i|, i ∈ Z. We split the event {Y ∗ > 1} according to the first exceedence over
1 and then apply the time-change formula:

P(C0(Y ) = 0) =
∑
i∈Z

P
(
Y ∗

−∞,−1 < |Y 0|,Y ∗
1,∞ ≤ |Y 0|,Y ∗

−∞,i−1 ≤ 1, |Y i| > 1
)

=
∑
i∈Z

P
(
Y ∗

−∞,−i−1 < |Y −i|,Y ∗
−i+1,∞ ≤ |Y −i|,Y ∗

−∞,−1 ≤ 1, |Y −i| > 1
)

=
∑
i∈Z

P(Ci ∩ {Y ∗
−∞,−1 ≤ 1})

with
Ci = {Y ∗

−∞,−i−1 < |Y −i|,Y ∗
−i+1,∞ ≤ |Y −i|, |Y −i| > 1} .

The events Ci are disjoint, their union gives {Y ∗ > 1} and the latter event
holds with probability one. Thus

P(C0(Y ) = 0) = P({Y ∗ > 1} ∩ {Y ∗
−∞,−1 ≤ 1}) = P(Y ∗

−∞,−1 ≤ 1) .

The next lemma shows that there are other possible representations for ϑ.

Lemma 7.3. Assume that P(C0(Y ) /∈ Z) = 0. Then

ϑ = P(Y ∗
1,∞ ≤ 1) .

Proof. We use again Y ∗ > 1 and the fact that the maximum Y ∗ is achieved
at some |Y i|. This time we split the event {Y ∗ > 1} according to the last
exceedence over 1, and then apply the time-change formula:

P(Y ∗
−∞,−1 ≤ 1) = P(Y ∗

−∞,−1 ≤ 1,Y ∗ > 1)

=
∑
i∈Z

P(Y ∗
−∞,−1 ≤ 1, |Y i| > 1,Y ∗

i+1,∞ ≤ 1)

=
∑
i∈Z

P(Y ∗
−∞,−i−1 ≤ 1, |Y −i| > 1,Y ∗

1,∞ ≤ 1)

= P(Y ∗ > 1,Y ∗
1,∞ ≤ 1) = P(Y ∗

1,∞ ≤ 1) .

In fact, we can replace C0 with any anchoring map; see [KS20, Theorem 5.5.3]
for more details.
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7.2. Consequences of the mixing assumption

Since �n can be chosen as r1−δ
n (δ > 0) with δ arbitrarily close to zero, β(rn)

gives:

lim
n→∞

n

rn
βrn = 0 , (7.1a)

lim
n→∞

1

rnP(|X0| > un)

∞∑
j=	n

βj = 0 , (7.1b)

lim
n→∞

1

rnP(|X0| > un)

∞∑
j=1

βjrn = 0 . (7.1c)

We recall the covariance inequality for bounded, beta-mixing random vari-
ables (in fact, the inequality holds for α-mixing). Let β(F1,F2) be the β-mixing
coefficient between two sigma fields. Then ([Ibr62])

|cov(H(Z1), H(Z2))| ≤ cst ‖H‖∞‖H̃‖∞β(σ(Z1), σ(Z2)) . (7.2)

In (7.2) the constant cst does not depend on H, H̃.

7.3. Convergence of cluster measure

Proof of Proposition 3.4. Since H has a support separated from zero, there ex-
ists ε > 0 such that H(x) = 0 if x∗ ≤ ε. Applying its shift invariance and the
stationarity, we obtain

ν∗
n,rn(H)

=
1

rnP(|X0| > un)

rn∑
j=1

E
[
H(u−1

n X1,rn)1
{
X∗

1,j−1 ≤ unε
}
1
{
|Xj | > unε

}]
=

P(|X0| > unε)

P(|X0| > un)

1

rn

rn∑
j=1

E
[
H(u−1

n X1−j,rn−j)1
{
X∗

1−j,−1 ≤ unε
}
| |X0| > unε

]
=

P(|X0| > unε)

P(|X0| > un)

∫ 1

0

gn(v)dv ,

with

gn(v) = E

[
H(u−1

n X1−[rnv],rn−[rnv])1
{
X∗

1−[rnv],−1 ≤ unε
}
| |X0| > unε

]
.

By Proposition 3.2, limn→∞ gn(v) = E[H(εY )1
{
Y ∗

−∞,−1 ≤ 1
}
] for each v ∈

(0, 1). Moreover, the sequence gn is uniformly bounded, thus by dominated
convergence, regular variation of |X0| and (2.7), we obtain

lim
n→∞

ν∗
n,rn(H) = ε−α

E[H(εY )1
{
Y ∗

−∞,−1 ≤ 1
}
] = ν∗(H) .
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Proof of Lemma 3.8. By Proposition 3.4 and (2.6), we have

lim
n→∞

P(
∑rn

j=1 |Xj | 1
{
|Xj | > εun

}
> un)

rnP(|X0| > un)

= ϑ

∫ ∞

0

P

⎛⎝z
∑
j∈Z

∣∣Qj

∣∣ 1{z ∣∣Qj

∣∣ > ε
}
> 1

⎞⎠αz−α−1dz . (7.3)

By monotone convergence, the right hand side converges to ϑE
[(∑

j∈Z
|Qj |

)α]
as ε → 0.

Consider the function

g(ζ) = ϑ

∫ ∞

0

P

⎛⎝z
∑
j∈Z

|Qj |1
{
z|Qj | > ζ

}
> 1

⎞⎠αz−α−1dz .

It increases when ζ decreases to zero and its limit is ϑE
[(∑

j∈Z
|Qj |

)α]
.

To prove that this quantity is finite, it suffices to prove that the function g is
bounded. Fix ε > 0 and η ∈ (0, 1). By ANSJB(rn, un), there exists ζ such that

lim sup
n→∞

P(
∑rn

j=1 |Xj | 1
{
|Xj | ≤ ζun

}
> ηun)

rnP(|X0| > un)
≤ ε .

Fix ζ ′ < ζ. Starting from (7.3) and applying ANSJB(rn, un), we obtain

0 ≤ g(ζ ′) = ϑ

∫ ∞

0

P

⎛⎝z
∑
j∈Z

|Qj |1
{
z|Qj | > ζ ′

}
> 1

⎞⎠αz−α−1dz

= lim
n→∞

P(
∑rn

j=1 |Xj |1{|Xj | > unζ
′} > un)

rnP(|X0| > un)

= lim
n→∞

P

(∑rn
j=1 |Xj |1{|Xj | > unζ}+ |Xj |1{unζ ≥ |Xj | > εunζ

′} > un

)
rnP(|X0| > un)

≤ lim sup
n→∞

P(
∑rn

j=1 |Xj | 1
{
|Xj | ≤ unζ

}
> ηun)

rnP(|X0| > un)

+ lim
n→∞

P(
∑rn

j=1 |Xj | 1{|Xi| > unζ} > (1− η)un)

rnP(|X0| > un)

≤ ε+ ϑ

∫ ∞

0

P

⎛⎝z
∑
j∈Z

∣∣Qj

∣∣ 1{z ∣∣Qj

∣∣ > ζ
}
> 1− η

⎞⎠αz−α−1dz ≤ ε+ ϑζ−α .

The latter bound holds since the probability inside the integral is zero if
z ≤ ζ since |Qj | ≤ 1 for all j. This proves that the function g is bounded in a
neighbourhood of zero as claimed.
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By Condition ANSJB(rn, un), we finally obtain

lim
n→∞

P

(∑rn
j=1 |Xj | > un

)
rnP(|X0| > un)

= lim
ε→0

lim
n→∞

P

(∑rn
j=1 |Xj |1{|Xj | > unε} > un

)
rnP(|X0| > un)

= lim
ε→0

ϑ

∫ ∞

0

P

⎛⎝z
∑
j∈Z

|Qj |1
{
z|Qj | > ε

}
> ε

⎞⎠αz−α−1dz = ϑE

⎡⎣⎛⎝∑
j∈Z

|Qj |

⎞⎠α⎤⎦ .

Proof of Proposition 3.9. For ε > 0, we define the truncation operator Tε by

Tε(x) = {xj1{|xj |>ε}, j ∈ Z} . (7.4)

The operator Tε is continuous with respect to the uniform norm at every
x ∈ �0 such that |xj | �= ε for all j ∈ Z.

Fix η ∈ (0, 1) and ζ > 0. Let LK be as in (2.1) and choose ε > 0 such that

lim sup
n→∞

P(
∑rn

j=1 |Xj | 1
{
|Xj | ≤ εun

}
> ηun/LK)

rnP(|X0| > un)
≤ ζ .

Set Kε = K ◦ Tε. Applying assumption (2.1), we obtain

P(K(X1,rn/un) > 1)

rnP(|X0| > un)

≤ P(Kε(X1,rn/un) > 1− η)

rnP(|X0| > un)
+

P(|K(X1,rn/un)−Kε(X1,rn/un)| > η)

rnP(|X0| > un)

≤ P(Kε(X1,rn/un) > 1− η)

rnP(|X0| > un)
+

P(
∑rn

i=1 |Xj | 1
{
|Xj | ≤ εun

}
> ηun/cst)

rnP(|X0| > un)
.

Applying Proposition 3.4 toKε along with the representation (2.6), this yields

lim sup
n→∞

P(K(X1,rn/un) > 1)

rnP(|X0| > un)
≤ lim sup

n→∞

P(Kε(X1,rn/un) > 1− η)

rnP(|X0| > un)
+ ζ

=

∫ ∞

0

P(Kε(zQ) > 1− η)αz−α−1dz + ζ .

Similarly,

lim inf
n→∞

P(K(X1,rn/un) > 1)

rnP(|X0| > un)
≥
∫ ∞

0

P(Kε(zQ) > 1 + η)αz−α−1dz − ζ .

Since K(0) = 0, (2.1) implies that |K(x)| ≤ cst
∑

j∈Z
|xj |, thus for all y > 0,

P(Kε(zQ) > y) ≤ P

⎛⎝∑
j∈Z

z
∣∣Qj

∣∣ > y/cst

⎞⎠
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and the latter quantity is integrable (as a function of z) with respect to αz−α−1dz
in view of ANSJB(rn, un) and Lemma 3.8. By bounded convergence, this yields

lim
ε→0

∫ ∞

0

P(Kε(zQ) > y)αz−α−1dz =

∫ ∞

0

P(K(zQ) > y)αz−α−1dz .

Altogether, we obtain∫ ∞

0

P(Kε(zQ) > 1 + η)αz−α−1dz − ζ ≤ lim inf
n→∞

P(K(X1,rn/un) > 1)

rnP(|X0| > un)

≤ lim sup
n→∞

P(K(X1,rn/un) > 1)

rnP(|X0| > un)
≤
∫ ∞

0

P(Kε(zQ) > 1− η)αz−α−1dz + ζ .

Since ζ and η are arbitrary, this finishes the proof.

7.4. Covariance of clusters

We consider the limit

lim
n→∞

1

rnP(|X0| > un)
cov

(
H(X1,rn/un), H̃(X1+h,rn+h/un)

)
for different choices of h, possibly depending on n. Under the conditions of
Proposition 3.4, if moreover R(rn, un) holds, the above limit is the same as

lim
n→∞

1

rnP(|X0| > un)
E

[
H(X1,rn/un)H̃(X1+h,rn+h/un)

]
.

Thus, we impose R(rn, un) and switch freely between E and cov whenever
suitable.

7.4.1. Uniform convergence of cluster measure

In Propositions 3.4 and 3.9 we proved (1.1) for H ∈ A ∪ B. We note further

that if (1.1) holds for H and H̃, then it also holds for any linear combination
of both functions. To deal with asymptotic normality, we need (1.1) to hold
uniformly over a subclass of functions. With this in mind, we introduce two
additional classes of functions. First, we recall that for a class G of functions
H : (Rd)Z → R its envelope is

G(x) = sup
H∈G

|H(x)| , x ∈ (Rd)Z .

Definition 7.4. Ã ⊆ span(A) (resp. B̃ ⊆ span(B)) is a class of functions with
a finite envelope such that

lim
n→∞

sup
H∈Ã

ν∗
n,rn(|H|) < ∞ (7.5)
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(resp. limn→∞ supH∈B̃ ν∗
n,rn(|H|) < ∞) and that for each H there exist func-

tions KH
n : (Rd)	n → R+ such that∣∣∣∣H (

X1,rn

un

)
−H

(
X1,rn−	n

un

)∣∣∣∣ ≤ KH
n (Xrn−	n+1,rn) ,

lim
n→∞

sup
H∈Ã

E
[
KH

n (X1,	n)
]

rnP(|X0| > un)
= 0 . (7.6)

Remark 7.5. The uniform convergence condition (7.5) strengthens the state-
ment of Proposition 3.4. Conditions (7.5) and (7.6) are needed for asymptotic
equicontinuity of empirical cluster process to be introduced below. ⊕
Remark 7.6. We note that

lim
n→∞

E
[
KH

n (X1,	n)
]

rnP(|X0| > un)
= 0

for each H ∈ Ã ∪ B̃. Let us verify it for H ∈ B. We have

|1{K(x1,rn) > 1} − 1{K(x1,rn−	n) > 1}|
= 1{K(x1,rn) > 1}1{K(x1,rn−	n) ≤ 1}+1{K(x1,rn) ≤ 1}1{K(x1,rn−	n) > 1} .

We consider the first pair of indicators in the last line. The events {K(x1,rn) >
1} and {K(x1,rn−	n) ≤ 1} imply that there exists s > 0 such that K(x1,rn) −
K(x1,rn−	n) > s. Applying the same reasoning to the second pair of indicators,
we have

|1{K(x1,rn) > 1} − 1{K(x1,rn−	n) > 1}| ≤ 21

⎧⎨⎩cst

rn∑
j=rn−	n+1

|xj | > s

⎫⎬⎭ .

Since �n = o(rn)

P

⎛⎝ rn∑
j=rn−	n+1

|Xj | > sun

⎞⎠ = O(�nP(|X0| > un)) = (rnP(|X0| > un)) .

In summary, (7.6) holds if the envelope function is in Ã ∪ B̃. ⊕
Remark 7.7. Let δ > 0. If H is bounded then

ν∗
n,rn(|H|1+δ) ≤ ‖H‖δ∞ν∗

n,rn(|H|)

and by the assumptions on the classes Ã and B̃,

lim
n→∞

sup
H∈Ã∪B̃

ν∗
n,rn(|H|1+δ) < ∞ .

⊕
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Remark 7.8. Assume that AC(rn, un) holds. Fix 0 < s0 < t0 < ∞. Let H ∈ A
and recall that Hs(x) = H(x/s). Assume that Ã := {Hs, s ∈ [s0, t0]} is linearly

ordered. Note that Ã ⊂ A. The envelope is |Hs0 | ∨ |Ht0 | ∈ Ã hence (7.6) holds.
Moreover, sups∈[s0,t0] ν

∗
n,rn(|Hs|) is achieved at s0 or t0. Likewise,

lim
n→∞

sup
s,t∈[s0,t0]

ν∗
n,rn(|Hs −Ht|) < ∞ .

The same applies to H ∈ B if additionally ANSJB(rn, un) holds. ⊕

7.4.2. Conditional convergence

We consider conditional convergence of functions H, H̃ acting on overlapping
blocks.

Lemma 7.9. Assume that AC(rn, un) holds. Let h < rn, H, H̃ ∈ L and H̃(0) =
0. Then

lim
n→∞

E[H(X1,rn/un)H̃(X1+h,rn+h/un) | |X0| > un]

=

{
E[H(Y 1,∞)H̃(Y 1+h,∞)] , if h fixed ,
0 , if h = hn → ∞ .

and

lim
n→∞

E[H(X−rn,rn/un)H̃(X−rn+h,rn+h/un) | |X0| > un] = E[H(Y )H̃(Y )] .

Proof. Since H, H̃ are bounded, the first expectation of interest is dominated
by

‖H‖∞‖H̃‖∞P(X∗
1+h,rn+h > un | |X0| > un) .

Thus, the statement for h = hn → ∞ follows immediately from AC(rn, un)
(cf. the argument in the proof of [KS20, Theorem 6.1.4]).

Now, let h be fixed. Fix r. Since H, H̃ are bounded Lipschitz continuous, we
have by Proposition 3.2,

lim
n→∞

E[H(X1,r/un)H̃(X1+h,r+h/un) | |X0| > un] = E[H(Y 1,r)H̃(Y 1+h,r+h)] ,

lim
n→∞

E[H(X−r,r/un)H̃(X−r+h,r+h/un) | |X0| > un]

= E[H(Y −r,r)H̃(Y −r+h,r+h)] .

Since the tail process tends to zero under condition AC(rn, un), it also holds
that

lim
r→∞

E[H(Y 1,r)H̃(Y 1+h,r+h)] = E[H(Y 1,∞)H̃(Y 1+h,∞)] ,

lim
r→∞

E[H(Y −r,r)H̃(Y −r+h,r+h)] = E[H(Y )H̃(Y )] = E[H(Y )H̃(Y )] .
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Indeed, considering the first statement only we have

lim
r→∞

∣∣∣E[H(Y 1,r)H̃(Y 1+h,r+h)]− E[H(Y 1,∞)H̃(Y 1+h,∞)]
∣∣∣

≤ lim
r→∞

E[|H(Y 1,r)−H(Y 1,∞)| |H̃|(Y 1+h,r+h)]

+ lim
r→∞

E

[
|H|(Y 1,∞)

∣∣∣H̃(Y 1+h,r+h)− H̃(Y 1+h,∞)
∣∣∣]

≤ ‖H̃‖∞ lim
r→∞

{
E [|H(Y 1,r)−H(Y 1,∞)|] + E

[∣∣∣H̃(Y 1+h,r+h)− H̃(Y 1+h,∞)
∣∣∣]}

and the limit is zero. To conclude, we only need to apply the triangular argu-
ment, that is to prove that

lim
r→∞

lim sup
n→∞∣∣∣E[H(X1,r/un)H̃(X1+h,r+h/un)−H(X1,rn/un)H̃(X1+h,rn+h/un) | |X0|>un]

∣∣∣
is zero. Using again the fact that H, H̃ are bounded, the conditional expectation
is dominated by

‖H̃‖∞ |E[H(X1,r/un)−H(X1,rn/un) | |X0| > un]|

+ ‖H‖∞
∣∣∣E[H̃(X1+h,r+h/un)− H̃(X1+h,rn+h/un) | |X0| > un]

∣∣∣ . (7.7)

Fix ε > 0. Since H is Lipschitz continuous, applying condition AC(rn, un) yields

lim
r→∞

lim sup
n→∞

|E[H(X1,r/un)−H(X1,rn/un) | |X0| > un]|

≤ cst

{
ε+ lim

r→∞
lim sup
n→∞

P(X∗
r,rn > εun | |X0| > un)

}
= cst× ε .

The same argument applies to (7.7). Since ε is arbitrary, this concludes the
proof.

7.4.3. Covariance of clusters: Disjoint blocks

The first result is straightforward under the beta-mixing conditions.

Lemma 7.10 (Disjoint blocks I). Assume that AC(rn, un), R(rn, un), (7.1b)
hold. Then

lim
n→∞

1

rnP(|X0| > un)
supE

[
H(X1,rn/un)H̃(X1+[ξ′rn],rn+[ξ′rn]/un)

]
= 0 ,

where the sup is taken over ξ′ > 1 and H, H̃ ∈ Ã ∪ B̃.
Proof of Lemma 7.10. Let H, H̃ ∈ Ã ∪ B̃. Then, using (7.6),∣∣∣E [H(X1,rn/un)H̃(X1+[ξ′rn],rn+[ξ′rn]/un)

]∣∣∣
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≤
∣∣∣E [H(X1,rn−	n/un)H̃(X1+[ξ′rn],rn+[ξ′rn]/un)

]∣∣∣+ ‖H̃‖∞E
[
KH

n (X1,	n)
]

and the latter term is o(rnP(|X0| > un)), uniformly over Ã ∪ B̃ by the assump-
tion.

Using (7.2) and (7.1b), we have∣∣∣cov (H(X1,rn−	n/un), H̃(X1+[ξ′rn],rn+[ξ′rn]/un)
)∣∣∣

rnP(|X0| > un)

≤ ‖H‖∞‖H̃‖∞
β	n+[(ξ′−1)rn]

rnP(|X0| > un)

and the latter is o(1) uniformly over the class of functions.

We extend the above result to the excess functional Es(x) =
∑

j∈Z
1
{
|xj | > s

}
.

Lemma 7.11 (Disjoint blocks II). Assume that AC(rn, un), R(rn, un), (7.1b)
hold. Then

lim
n→∞

1

rnP(|X0| > un)
supE

[
H(X1,rn/un)Es(X1+[ξ′rn],rn+[ξ′rn]/un)

]
= 0 ,

where the sup is taken over ξ′ > 1, H ∈ Ã ∪ B̃ and s ∈ [s0, t0].

Proof. Recall that �n = o(rn). Split the sum
∑rn+[ξ′rn]

j=[ξ′rn]+1 into
∑rn+	n

j=[ξ′rn]+1 and∑rn+[ξ′rn]
j=rn+	n+1.

For the first sum we have

1

rnP(|X0| > un)

rn+	n∑
j=[ξ′rn]+1

∣∣E[H(X1,rn/un)1
{
|Xj | > uns

}
]
∣∣

≤ ‖H‖∞
�nP(|X0| > uns)

rnP(|X0| > un)
= o(1)

uniformly over the class of functions and over s.

Using (7.2) we have

1

rnP(|X0| > un)

rn+[ξ′rn]∑
j=rn+	n+1

∣∣cov(H(X1,rn/un),1
{
|Xj | > uns

}
)
∣∣

≤ ‖H‖∞
rnP(|X0| > un)

∞∑
j=rn+	n+1

βj−rn .

We finish the proof using the mixing assumption (7.1b).
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7.4.4. Covariance of clusters: Overlapping blocks

We consider three cases separately: a)H, H̃ ∈ A (Proposition 7.12); b)H, H̃ ∈ B
(Proposition 7.13); c) the excess functional (Proposition 7.14).

Proposition 7.12 (Overlapping blocks I). Assume that AC(rn, un) and

R(rn, un) hold. Let h < rn and ξ ∈ (0, 1). For H, H̃ ∈ A we have

lim
n→∞

1

rnP(|X0| > un)
E

[
H(X1,rn/un)H̃(X1+h,rn+h/un)

]
=

{
ν∗(HH̃) , if h/rn → 0 ,

(1− ξ)ν∗(HH̃) , if h = hn = [ξrn]
. (7.8)

Proof of Proposition 7.12. Note that if H, H̃ ∈ A, then HH̃ ∈ A (but it does
not mean that we can apply Lemma 7.9 since here the functions are applied to
different blocks).

Since H, H̃ vanish around 0, there exists ε > 0 such that H(x1,rn)H̃(x1,rn) =
0 whenever x∗

1,rn < ε. Then, splitting the event {X∗
1,rn > un} and using sta-

tionarity we write the expression of interest as

1

rnP(|X0| > un)
E

[
H(X1,rn/un)H̃(X1+h,rn+h/un)1

{
X∗

1,rn > unε
}]

=
1

rnP(|X0| > un)

×
rn∑
j=1

E

[
H(X1,rn/un)H̃(X1+h,rn+h/un)1

{
X∗

1,j−1 ≤ unε
}
1
{
|Xj | > unε

}]
=

1

rn

P(|X0| > εun)

P(|X0| > un)

×
rn∑
j=1

E

[
H(X1−j,rn−j/un)H̃(X1+h−j,rn+h−j/un)1

{
X∗

1−j,−1 ≤ unε
}
| |X0|

> unε
]
.

To shorten the exposition, let Aj = {X∗
1−j,−1 ≤ unε}. We write the last

expression as
∫ 1

0
gn(v)dv with gn(v) defined by

E[H(X1−[rnv],rn−[rnv]/un)H̃(X1+h−[rnv],rn+h−[rnv]/un)1
{
A[rnv]

}
| |X0| > unε] .

If h = o(rn), then using the second part of Lemma 7.9 we get

lim
n→∞

gn(v) = ε−α
E[H(εY )H̃(εY )1

{
Y ∗

−∞,−1 ≤ 1
}
] = ν∗(HH̃)

independently of v ∈ (0, 1). If h = [ξrn], ξ ∈ (0, 1), then we split the integral.
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If ξ > v, then we use boundedness of both H, H̃ and the fact that H̃ vanishes
around 0. Thanks to the anticlustering condition AC(rn, un), we have as n → ∞,

E[H(X1−[rnv],rn−[rnv]/un)H̃(X1+h−[rnv],rn+h−[rnv]/un)1
{
A[rnv]

}
| |X0| > unε]

≤ cstP
(
X∗

1+[ξrn]−[rnv],rn+[ξrn]−[rnv] > unε | |X0| > unε
)

≤ cstP
(
X∗

[rn(ξ−v)],3rn > unε | |X0| > unε
)
→ 0 .

If ξ ≤ v, then we apply the second part of Lemma 7.9:

E[H(X1−[rnv],rn−[rnv]/un)H̃(X1+h−[rnv],rn+h−[rnv]/un)1
{
A[rnv]

}
| |X0| > unε]

→ ε−α
E[H(εY )H̃(εY )1

{
Y ∗

−∞,−1 ≤ 1
}
] = ν∗(HH̃) , n → ∞ .

Since the sequence {gn} is uniformly bounded, we have

lim
n→∞

∫ ξ

0

gn(v)dv + lim
n→∞

∫ 1

ξ

gn(v)dv = 0 + (1− ξ)ν∗(HH̃) .

Proposition 7.13 (Overlapping blocks II). Assume that AC(rn, un), R(rn, un)

and ANSJB(rn, un) hold. Let h < rn and ξ ∈ (0, 1). Then (7.8) holds for H, H̃ ∈
B.

Proof of Proposition 7.13. We mimic the proof of Proposition 3.9 (refer to that

proof for the notation). Set Kε = K ◦T ε, K̃ε = K̃ ◦T ε. Let η ∈ (0, 1). Note that

Hε
± := 1{Kε > 1± η} ∈ A, H̃ε

± := 1
{
K̃ε > 1± η

}
∈ A and hence HεH̃ε ∈ A;

see the comment at the beginning of the proof of Proposition 7.12.
Fix η ∈ (0, 1) and ζ > 0. Let LK , LK̃ be as in (2.1) and choose ε > 0 such

that

lim sup
n→∞

2P(
∑rn

j=1 |Xj | 1
{
|Xj | ≤ εun

}
> ηun/(LK ∨ LK̃))

rnP(|X0| > un)
≤ ζ .

This is allowed thanks to ANSJB(rn, un). We have

1

rnP(|X0| > un)
P

(
K(X1,rn/un) > 1, K̃(X1+h,rn+h/un) > 1

)
≤

2P(
∑rn

i=1 |Xj | 1
{
|Xj | ≤ εun

}
> ηun/cst)

rnP(|X0| > un)

+
E[Hε

−(X1,rn/un)H̃
ε
−(X1+h,rn+h/un)]

rnP(|X0| > un)
.

Application of Proposition 7.12 gives

lim
n→∞

1

rnP(|X0| > un)
P

(
K(X1,rn/un) > 1, K̃(X1+h,rn+h/un) > 1

)
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≤ ζ +

{
ν∗(Hε

−(Y )H̃ε
−(Y )) , if h/rn → 0 ,

(1− ξ)ν∗(Hε
−(Y )H̃ε

−(Y )) , if h = hn = [ξrn]
.

Similarly, we obtain the lower bound with Hε
+, H̃

ε
+ instead of Hε

−, H̃
ε
− and

−ζ instead of +ζ. Since ζ is arbitrary, the proof is concluded by letting ε → 0.
This follows the same argument as in the proof of Proposition 3.9.

Proposition 7.14 (Overlapping blocks III). Assume that AC(rn, un), R(rn, un)
hold. Let h < rn. For H ∈ L we have

lim
n→∞

1

rnP(|X0| > un)
E [H(X1,rn/un)Es(X1+h,rn+h/un)]

=

{
s−α

E[H(sY )] , if h/rn → 0 ,
s−α(1− ξ)E[H(sY )] , if h = hn = ξrn

.

Proof of Proposition 7.14. We have for h < rn,

1

rnP(|X0| > un)
E [H(X1,rn/un)Es(X1+h,rn+h/un)]

=
1

rnP(|X0| > un)

rn+h∑
j=h+1

E[H(X1,rn/un)1
{
|Xj | > uns

}
]

=
1

rn

P(|X0| > uns)

P(|X0| > un)

rn+h∑
j=h+1

E[H(X1−j,rn−j/un) | |X0| > uns] .

We write the last expression as

P(|X0| > uns)

P(|X0| > un)

∫ 1+h/rn

h/rn

gn(v)dv

with (omitting the dependence on s)

gn(v) = E[H(sX1−[rnv],rn−[rnv]/(uns)) | |X0| > uns] .

Since H is bounded, AC(rn, un) and Proposition 3.2 give

lim
n→∞

gn(v) =

{
E[H(sY )] if v ∈ (0, 1) ,
0 if v > 1 .

We split ∫ 1+h/rn

h/rn

gn(v)dv =

∫ 1

h/rn

gn(v)dv +

∫ 1+h/rn

1

gn(v)dv .

Since the sequence {gn} is uniformly bounded, for any h < rn the second
integral above converges to zero as n → ∞. If h = o(rn) and since there is no
problem at v = 0 with gn(v), then the first integral converges to∫ 1

0

E[H(sY )]dv = E[H(sY )] .
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Likewise, when h = [ξrn] then the first integral converges to∫ 1

ξ

E[H(sY )]dv = (1− ξ)E[H(sY )] .

7.5. Empirical cluster process of sliding blocks

Recall that for s > 0, Hs(x) = H(x/s). In order to deal with asymptotic
normality of sliding blocks estimators, we study the empirical process

Fn(Hs) :=
√
kn

{
μ̃∗

n,rn(Hs)− ν∗(Hs)
}

=
√
kn

{∑qn−1
i=0 Hs (Xi+1,i+rn/un)

qnrnP(|X0| > un)
− s−αν∗(H)

}
.

The process Fn(Hs) is viewed as a random element with values in D([s0, t0]).

Theorem 7.15. Let {Xj , j ∈ Z} be a stationary, regularly varying R
d-valued

time series. Assume that R(rn, un), β(rn) and AC(rn, un) hold. Let H ∈ A be
such that the class {Hs : s ∈ [s0, t0]} is linearly ordered and (4.2b) holds.

Then Fn(H·) converges weakly in (D([s0, t0]), J1) to a Gaussian process with
the covariance ν∗(HsHt).

If moreover ANSJB(rn, un) is satisfied, then the convergence holds for H ∈ B.
If additionally S(rn, un) and (4.2a) are satisfied, then the processes Fn(H·)

and Fn(E·) converge jointly.

7.5.1. Tail empirical process

Consider the following tail empirical process:

T̃n(s) =
√

kn
{
Tn(s)− s−α

}
=
√
kn

{∑qn
j=1 1

{
|Xj | > uns

}
qnP(|X0| > un)

− s−α

}
, s > 0 .

Note that this is the classical tail empirical process based on the random
variables |Xj |, j ≥ 1, with the only one difference: qn replaces n. We argue that
this process can be obtained (approximately) as the empirical process of sliding
blocks. Indeed,

μ̃∗
n,rn(Es)

=
1

qnrnP(|X0| > un)

⎧⎨⎩
rn∑
j=1

j + rn

qn∑
j=rn+1

+

n∑
j=qn+1

(n− j)

⎫⎬⎭1
{
|Xj | > uns

}
.

The difference between μ̃∗
n,rn(Es) and Tn(s) is

A :=
1

qnrnP(|X0| > un)

⎧⎨⎩
rn∑
j=1

(rn − j)−
n∑

j=qn+1

(n− j)

⎫⎬⎭1
{
|Xj | > uns

}
.
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We have
∑rn

j=1(rn−j) ≤ r2n and
∑n

j=qn+1(n−j) ≤ r2n, thus under R(rn, un):

lim
n→∞

√
knE[|A|] ≤ cst lim

n→∞

√
nP(|X0| > un)

rn
qn

= cst lim
n→∞

√
rn
n

√
rnP(|X0| > un) = 0 .

This implies that Fn(Es) and T̃n(s) are asymptotically equivalent in the sense
that they yield the same process F(Es) as the distributional limit.

7.6. Covariance of the empirical process of sliding blocks

Proposition 7.16. Assume that AC(rn, un) and R(rn, un) are satisfied. Let

• H, H̃ ∈ Ã, or
• H, H̃ ∈ B̃ and ANSJB(rn, un) holds.

If (7.1b) and (7.1c) hold then

lim
n→∞

cov(Fn(H),Fn(H̃)) = ν∗(HH̃) . (7.9)

If (7.1b) holds then

lim
n→∞

cov(Fn(H),Fn(Es)) = ν∗(HEs) = E[H(sY )] . (7.10)

Remark 7.17. • The second equality in (7.10) follows from Lemma 7.22.
• In view of the discussion in Section 7.5.1, (7.10) can be re-phrased as

lim
n→∞

cov(Fn(H), T̃n(s)) = ν∗(HEs) = E[H(sY )] .

⊕

7.6.1. Bounds for integral representation

Before we proceed with the proof, we define

gn(ξ;H) = E
[
H(X1,rn/un)H(X1+[rnξ],[rnξ]+rn/un)

]
, ξ > 0

and

g̃n(ξ;H) =
gn(ξ;H)

rnP(|X0| > un)
.

For ξ = 0, using Remark 7.7 we immediately obtain under AC(rn, un):

lim
n→∞

sup
H∈Ã∪B̃

g̃n(0;H) = lim
n→∞

sup
H∈Ã∪B̃

ν∗
n,rn(H

2) < ∞ . (7.11)

Furthermore, for j = 1, 2, 3, . . .,

1

rn

jrn−1∑
i=(j−1)rn

g̃n(i/rn;H) =

∫ j

j−1

g̃n(ξ;H)dξ .
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For j = 1 we will need the precise behaviour of this integral and we will handle
it using Propositions 7.12 and 7.13. For j ≥ 2 the integral vanishes with a given
rate.

Lemma 7.18. Assume that AC(rn, un) holds.

• If (7.1b) holds then for any finite M ,

lim
n→∞

sup
H∈Ã∪B̃

∫ M

1

g̃n(ξ;H)dξ = 0

• For j ≥ 3,

sup
H∈Ã∪B̃

∫ j

j−1

g̃n(ξ;H)dξ ≤ cst
1

rnP(|X0| > un)
β(j−2)rn .

Proof. For the first part we apply Lemma 7.10 and the dominated convergence:

sup
H∈Ã∪B̃

sup
ξ∈(1,2)

|g̃n(ξ;H)| ≤ sup
H∈Ã∪B̃

‖H‖∞ν∗
n,rn(|H|) ≤ cst sup

H∈Ã∪B̃
ν∗
n,rn(|H|) < ∞ .

For the second part, we use (7.2) and the fact that Ã∪B̃ has a finite envelope.

7.6.2. Representation for covariance between blocks

Recall that qn = n−rn+1. Evaluation of the covariance of the empirical process
of sliding blocks will use consecutive disjoint blocks of indices of size rn:

Jj = {(j − 1)rn, . . . , jrn − 1} , j = 1, . . . ,mn = [qn/rn] .

Clearly,
⋃mn

j=1 Jj = {0, . . . , n− rn}. We will assume for simplicity that qn/rn
is an integer.

Write

1

qnrnP(|X0| > un)

qn−1∑
i=0

H (Xi+1,i+rn/un) =
1

qnrnP(|X0| > un)

mn∑
j=1

Ψj(H)

with

Ψj(H) =
∑
i∈Jj

H (Xi+1,i+rn/un) . (7.12)

Note that the indices of the random vectors X1, . . . ,X2rn−1 used in the
construction of Ψ1 overlap with the indices of Xrn+1, . . . ,X3rn−1 used to define
Ψ2, but do not overlap with the indices used in the definition of Ψ3. Likewise,
the indices used in the definition of Ψ2 overlap with those in Ψ3, but not with
any other term Ψj , j ≥ 4. This partially explains where does a contribution to
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the limiting variance come from: from the dependence within each block Jj and
cross dependence between Jj and two neighbouring blocks.

For j ≥ 1 we have

E[Ψ1(H)Ψj+1(H)]

r3nP(|X0| > un)

=
1

r3nP(|X0| > un)
E

⎡⎣rn−1∑
h=0

H (Xh+1,h+rn/un)

(j+1)rn−1∑
i=jrn

H (Xi+1,i+rn/un)

⎤⎦
=

1

rn

jrn∑
i=(j−1)rn

(
i

rn
− (j − 1)

)
g̃n(i/rn;H)

+
1

rn

(j+1)rn∑
i=jrn+1

(
(j + 1)− i

rn

)
g̃n(i/rn;H)

and hence

E[|Ψ1(H)Ψj+1(H)|]
r3nP(|X0| > un)

≤ 1

rn

(j+1)rn∑
i=(j−1)rn

|g̃n(i/rn;H)| ≤
∫ j+1

j−1

|g̃n(ξ;H)|dξ . (7.13)

7.6.3. Proof of Proposition 7.16, Eq. (7.9)

Proof. Note that (since qn ∼ n)

knmn

(qnrnP(|X0| > un))
2 =

qnnP(|X0| > un)

rn (qnrnP(|X0| > un))
2 ∼ 1

r3nP(|X0| > un)
. (7.14)

Write var(Fn(H)) as

knmn

(qnrnP(|X0| > un))
2 cov(Ψ2(H),Ψ1(H) + Ψ2(H) + Ψ3(H)) +An(H) (7.15)

with the reminder An(H) given by

An(H) :=− 2
kn

(qnrnP(|X0| > un))
2 cov(Ψ1(H),Ψ2(H)) (7.16)

+ 2
1 + o(1)

r3nP(|X0| > un)

mn−1∑
j=2

(
1− j

mn

)
{cov (Ψ1(H),Ψ1+j(H))}

(7.17)

=: An,1(H) + (1 + o(1))Bn(H) .

If we show that the leading term on the right-hand side of (7.15) converges to
a finite limit, then automatically limn→∞ An,1(H) = 0 (since mn → ∞). Thus,
the reminder An(H) will be negligible if we show that

lim
n→∞

Bn(H) = 0 . (7.18)
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We will start by analysing the first term in (7.15). Set

Rn(H) =
1

rn

2rn−1∑
i=rn

(2− i/rn)g̃n(i/rn;H) .

Since (7.1b) holds, the application of the first part of Lemma 7.18 gives

lim
n→∞

sup
H∈Ã∪B̃

Rn(H) = 0 . (7.19)

Write the first term in (7.15) as (cf. (7.14))

1 + o(1)

r3nP(|X0| > un)

{
rngn(0;H) + 2rn

rn−1∑
i=1

gn(i/rn;H) + 2rnRn

}

= (1 + o(1))

{
1

rn
g̃n(0;H) + 2

1

rn

rn−1∑
i=1

g̃n(i/rn;H) + 2Rn(H)

}
. (7.20)

Then, using (7.11), (7.18) and (7.19), we have

lim
n→∞

var(Fn(H)) = 2 lim
n→∞

∫ 1

0

g̃n(ξ;H)dξ ,

Applying Propositions 7.12 and 7.13 (the case h = [ξrn]), we have

lim
n→∞

var(Fn(H)) = 2ν∗(H2)

∫ 1

0

(1− ξ)dξ = ν∗(H2) .

To conclude the proof, we show (7.18) in the following lemma.

Lemma 7.19. Assume that (7.1b)-(7.1c) hold. Then

lim
n→∞

sup
H∈Ã∪B̃

Bn(H) = 0 . (7.21)

Proof of Lemma 7.19. Using (7.13) we have

|Bn(H)| ≤ E[|Ψ1(H)Ψ3(H)|]
r3nP(|X0| > un)

+
1

r3nP(|X0| > un)

mn−1∑
j=3

|E[|Ψ1(H)Ψ1+j(H)|]

≤
∫ 3

1

|g̃n(ξ;H)|dξ +
mn−1∑
j=3

∫ j+1

j−1

|g̃n(ξ;H)|dξ .

The first term is o(1) uniformly over the class of functions (cf. the first part
of Lemma 7.18). Using the second part of Lemma 7.18 we bound

mn−1∑
j=3

∫ j+1

j−1

|g̃n(ξ;H)|dξ ≤ cst
1

rnP(|X0| > un)

∞∑
j=1

βjrn .

We finish the proof by applying the mixing assumption (7.1c).
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7.6.4. Proof of Proposition 7.16, Eq. (7.10)

Proof. We write (recall that qn ∼ n)

kn

(
1

qnrnP(|X0| > un)

)2

cov

⎛⎝qn−1∑
i=0

H(Xi+1,i+rn/un),

qn∑
j=1

1
{
|Xj | > un

}⎞⎠
∼ kn

n2rnP2(|X0| > un)

qn−1∑
i=0

qn∑
j=1

cov
(
H(Xi+1,i+rn/un),1

{
|Xj | > un

})
=

1

nrnP(|X0| > un)

qn−1∑
i=0

qn∑
j=1

cov (H(Xi−j+1,i−j+rn/un),1{|X0| > un}) .

Split the inner sum into two pieces,
∑i

j=1 and
∑qn

j=i+1, in the first one replace
j with h = i− j, in the second one replace j with h = j − i to get

1

qnrnP(|X0| > un)

qn−1∑
i=0

i∑
j=1

cov (H(Xi−j+1,i−j+rn/un),1{|X0| > un})

+
1

qnrnP(|X0| > un)

qn−1∑
i=0

qn∑
j=i+1

cov (H(Xi−j+1,i−j+rn/un),1{|X0| > un})

=
1

qnrnP(|X0| > un)

qn−1∑
i=1

i−1∑
h=0

cov (H(Xh+1,h+rn/un),1{|X0| > un})

+
1

qnrnP(|X0| > un)

qn−1∑
i=0

qn−i∑
h=1

cov (H(X−h+1,−h+rn/un),1{|X0| > un}) .

This gives further

1

qnrnP(|X0| > un)

qn−2∑
h=0

qn−1∑
i=h+1

cov (H(Xh+1,h+rn/un),1{|X0| > un})

+
1

qnrnP(|X0| > un)

qn−2∑
h=1

qn−h∑
i=1

cov (H(X−h+1,−h+rn/un),1{|X0| > un})

=
1

rnP(|X0| > un)

qn−1∑
h=0

(1− h/qn)cov (H(Xh+1,h+rn/un),1{|X0| > un})

(7.22)

+
1

rnP(|X0| > un)

qn−1∑
h=0

(1− h/qn)cov (H(X−h+1,−h+rn/un),1{|X0| > un}) .

(7.23)

We show that the term in (7.22) is negligible, while the one in (7.23) yields
the limit. We split the term in (7.22) into two pieces, according to h ≤ rn and
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h > rn. Then the first part is bounded by

1

rn

rn∑
h=0

E [|H(Xh+1,h+rn/un)| | |X0| > un] =

∫ 1

0

gn(v)dv

with

gn(v) = E
[
|H(X [rnv]+1,[rnv]+rn/un)|| |X0| > un

]
.

Under AC(rn, un), gn(v) → 0 (cf. the first part of Lemma 7.9 with H ≡ 1

and H̃ = |H|). Likewise, since rn/qn → 0,

1

rnqn

rn∑
h=0

hE [|H(Xh+1,h+rn/un)|| |X0| > un] = q−1
n

∫ 1

0

[rnv]gn(v)dv → 0 .

Furthermore, applying (7.2),

1

rnP(|X0| > un)

qn−1∑
h=rn+1

(1− h/qn)|cov (H(Xh+1,h+rn/un),1{|X0| > un}) |

≤ ‖H‖∞
rnP(|X0| > un)

n∑
h=1

βh+rn

and the latter term vanishes by (7.1b). In summary, (7.22) is negligible.
For the term in (7.23) we write (recall that we can replace cov with E thanks

to R(rn, un))

1

rn

rn∑
h=0

E [H(X−h+1,−h+rn/un) | |X0| > un] =

∫ 1

0

gn(v)dv

with

gn(v) = E
[
H(X−[rnv]+1,−[rnv]+rn/un) | |X0| > un

]
.

By Proposition 3.2, gn(v) → E[H(Y )] for each v.

7.7. Proof of Theorem 7.15 - fidi convergence

Recall that qn = n− rn + 1 and recall the disjoint blocks of size rn:

Jj = {(j − 1)rn, . . . , jrn − 1} , j = 1, . . . ,mn = [qn/rn] .

These blocks were chosen to calculate the limiting covariance of the process
Fn. However, they are not appropriate for a proof of the central limit theorem.
We need to introduce a large-small blocks decomposition. For this purpose let
zn be a sequence of integers such that zn → ∞ and

lim
n→∞

zn√
nP(|X0| > un)

= 0 . (7.24)
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Set

m̃n =

[
qn

(zn + 2)rn

]
and assume for simplicity that m̃n is an integer. Since zn → ∞, we have m̃n =
o(mn). For j = 1, . . . , m̃n define now large and small blocks as follows:

L1 = {0, . . . , znrn − 1} , S1 = {znrn . . . , znrn + 2rn − 1} ,

L2 = {znrn + 2rn, . . . , 2znrn + 2rn − 1} ,

S2 = {2znrn + 2rn . . . , 2znrn + 4rn − 1} ,

Lj = {(j − 1)znrn + 2(j − 1)rn, . . . , jznrn + 2(j − 1)rn − 1} ,

Sj = {jznrn + 2(j − 1)rn, . . . , jznrn + 2jrn − 1} .

The block L1 is obtained by merging zn consecutive blocks J1, . . . , Jzn of
size rn. Likewise, S1 = Jzn+1 ∪ Jzn+2. Therefore, the large block of size znrn is
followed by the small block of size 2rn, which in turn is followed by the large
block of size znrn and so on. All together,

m̃n⋃
j=1

(Lj ∪ Sj) = {0, . . . , n− rn} .

Write

qn−1∑
i=0

H (Xi+1,i+rn/un) =

m̃n∑
j=1

Ψ
(l)
j (H) +

m̃n∑
j=1

Ψ
(s)
j (H) , (7.25)

where now

Ψ
(l)
j (H) =

∑
i∈Lj

H (Xi+1,i+rn/un) , Ψ
(s)
j (H) =

∑
i∈Sj

H (Xi+1,i+rn/un) .

With such the decomposition, X1, . . . ,Xznrn+rn−1 used in the definition of

Ψ
(l)
1 (H) are separated by rn+2 from the random variables that define Ψ

(l)
2 (H).

The mixing condition (7.1a) allows us to replace X with the independent blocks

process, that is, we can treat the random variables Ψ
(l)
j (H), j = 1, . . . , m̃n, as

independent. The same applies to Ψ
(s)
j (H).

Set

Zn(H) =

m̃n∑
j=1

{Zn,j(H)− E[Zn,j(H)]} =:

m̃n∑
j=1

Z̄n,j(H) (7.26)

with

Zn,j(H) =

√
kn

qnrnP(|X0| > un)
Ψ

(l)
j (H) . (7.27)

The next steps are standard.
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• First, we show that the limiting variance of the large blocks process Zn is
the same as that of the process Fn;

• Next, we show that the small blocks process (the second term in (7.25))
is negligible;

• Finally, we will verify the Lindeberg condition for the large blocks process.

Variance of the large blocks. We have (using the assumed independence of

Ψ
(l)
j (H))

knvar

⎛⎝ 1

qnrnP(|X0| > un)

m̃n∑
j=1

Ψ
(l)
j (H)

⎞⎠ =
knm̃n

(qnrnP(|X0| > un))2
var(Ψ

(l)
1 (H))

∼ 1

znr3nP(|X0| > un)
var

(
znrn−1∑

i=0

H (Xi+1,i+rn/un)

)

=
1

znr3nP(|X0| > un)
var

⎛⎝ zn∑
j=1

Ψj(H)

⎞⎠ , (7.28)

where in the last line we decomposed the block L1 = {0, . . . , znrn − 1} into zn
disjoint blocks J1, . . . , Jzn , used the notation (7.12), the asymptotics (7.14) and
m̃n ∼ mn/zn.

The next steps are a repetition of the proof of Proposition 7.16, with the
appropriate adjustments. The term in (7.28) becomes

var (Ψ1(H))

r3nP(|X0| > un)
+ 2

1

r3nP(|X0| > un)

zn−1∑
j=1

(
1− j

zn

)
cov(Ψ1(H),Ψ1+j(H))

and as in (7.15) we can write it as

1

r3nP(|X0| > un)
{cov(Ψ2(H),Ψ1(H) + Ψ2(H) + Ψ3(H))}+ Ãn(H) (7.29)

with the reminder Ãn(H) given this time by (cf. (7.16)-(7.17))

Ãn(H) := −2
1

zn

1

r3nP(|X0| > un)
cov(Ψ1(H),Ψ2(H))

+
2

r3nP(|X0| > un)

zn−1∑
j=2

(
1− j

zn

)
{cov (Ψ1(H),Ψ1+j(H))}

=: Ãn,1(H) + B̃n(H) . (7.30)

The reminder is negligible by the same argument as before. Indeed, we note
that B̃n(H) is just Bn(H) from (7.17) with mn replaced with zn. The depen-
dence on mn vanishes in the final stage of the proof of Lemma 7.19. The leading
term in (7.29) is the same as in the proof of Proposition 7.16; cf. (7.15).
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In summary, the variance of the large block process is

lim
n→∞

var (Zn(H)) = ν∗(H2) .

Variance of the small blocks. We have (using again the assumed indepen-

dence of Ψ
(s)
j (H) thanks to the beta-mixing)

knvar

⎛⎝ 1

qnrnP(|X0| > un)

m̃n∑
j=1

Ψ
(s)
j (H)

⎞⎠ ∼ 1

znr3nP(|X0| > un)
var(Ψ

(s)
1 (H)) .

Since Ψ
(s)
1 (H) is just Ψ1(H) defined in (7.12), we have

knvar

⎛⎝ 1

qnrnP(|X0| > un)

m̃n∑
j=1

Ψ
(s)
j (H)

⎞⎠ = O(1/zn) = o(1) .

Lindeberg condition for Zn(H). We need to show that for all η > 0,

lim
n→∞

m̃nE
[
Z2
n,1(H)1{|Zn,1(H)| > η}

]
= 0 . (7.31)

Since H is bounded, then by (7.24),

|Zn,1(H)| ≤
√
knznrn

qnrnP(|X0| > un)
‖H‖∞ ∼ zn√

nP(|X0| > un)
‖H‖∞ = o(1) .

Thus, the indicator in (7.31) becomes zero for large n.
Lindeberg condition for Zn(E). The functional E is not bounded and we will
prove the Lindeberg condition under S(rn, un). Write

w̃n =

√
kn

qnrnP(|X0| > un)

so that

Zn,1(E) = w̃n

znrn−1∑
i=0

E (Xi+1,i+rn/un) = w̃n

znrn−1∑
i=0

i+rn∑
j=i+1

1
{
|Xj | > un

}

= w̃n

⎧⎨⎩
rn∑
j=1

j−1∑
i=0

+

rn(zn+1)∑
j=rn+1

j−1∑
i=j−rn

⎫⎬⎭1
{
|Xj | > un

}
≤ w̃nrn

rn(zn+1)∑
j=1

1
{
|Xj | > un

}
≤

√
kn

qnrnP(|X0| > un)
rn

2rn∑
j=1

1
{
|Xj | > un

}
=

1 + o(1)√
nP(|X0| > un)

2rn∑
j=1

1
{
|Xj | > un

}
.
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The last term can be recognized as one (scaled) block of size 2rn of the tail

empirical process T̃n(s). [KSW19, Lemma 3.6] (see also [KS20, Lemma 9.2.8])
gives

lim
n→∞

mnE
[
Z2
n,1(E)1{|Zn,1(E)| > η}

]
= 0 .

If moreover R(rn, un) holds then

lim
n→∞

mnE
[
Z̄2
n,1(E)1

{
|Z̄n,1(E)| > η

}]
= 0 .

Since m̃n = o(mn), we obtain the Lindeberg condition for Zn(E).

7.8. Proof of Theorem 7.15 - asymptotic equicontinuity

We need the following lemma which is an adapted version of Theorem 2.11.1
in [vdVW96]. Let Zn be the empirical process indexed by a semi-metric space
(G, ρ), defined by

Zn(f) =

m̃n∑
j=1

{Zn,j(f)− E[Zn,j(f)]} ,

where {Zn,j , n ≥ 1}, j = 1, . . . , m̃n, are i.i.d. separable, stochastic processes and
m̃n is a sequence of integers such that m̃n → ∞. Define the random semi-metric
dn on G by

d2n(f, g) =

m̃n∑
j=1

{Zn,j(f)− Zn,j(g)}2 , f, g ∈ G .

Lemma 7.20. Assume that (G, ρ) is totally bounded. Assume moreover that:

(i) For all η > 0,

lim
n→∞

m̃nE[‖Zn,1‖2G1
{
‖Zn,1‖2G > η

}
] = 0 .

(ii) For every sequence {δn} which decreases to zero,

lim
n→∞

sup
f,g∈G

ρ(f,g)≤δn

E[d2n(f, g)] = 0 . (7.32)

(iii) There exists a measurable majorant N∗(G, dn, ε) of the covering number
N(G, dn, ε) such that for every sequence {δn} which decreases to zero,∫ δn

0

√
logN∗(G, dn, ε)dε P−→ 0 . (7.33)

Then {Zn, n ≥ 1} is asymptotically ρ-equicontinuous, i.e. for each η > 0,

lim
δ→0

lim sup
n→∞

P

⎛⎝ sup
f,g∈G

ρ(f,g)<δ

|Zn(f)− Zn(g)| > η

⎞⎠ = 0 .
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Remark 7.21. The separability assumption is not in [vdVW96]. It implies mea-
surability of ‖Zn,1‖G . Furthermore, the separability also implies that for all
δ > 0, n ∈ N, (ej)1≤j≤m̃n

∈ {−1, 0, 1}m̃n and i ∈ {1, 2}, the supremum

sup
f,g∈G

ρ(f,g)<δ

∣∣∣∣∣∣
m̃n∑
j=1

ej (Zn,j(f)− Zn,j(g))
i

∣∣∣∣∣∣ = sup
f,g∈G0

ρ(f,g)<δ

∣∣∣∣∣∣
m̃n∑
j=1

ej (Zn,j(f)− Zn,j(g))
i

∣∣∣∣∣∣
is measurable, which is an assumption of [vdVW96]. ⊕

7.8.1. Asymptotic equicontinuity of the empirical process of sliding
blocks

Recall the big-blocks process Zn(H) (cf. (7.26)-(7.27)). Recall also that thanks

to β-mixing we can consider random variables Ψ
(l)
j (H), j = 1, . . . , m̃n to be

independent. We need to prove asymptotic equicontinuity of Zn(H) indexed by

the class G = {Hs, s ∈ [s0, t0]} equipped with the metric ρ∗(H, H̃) = ν∗({H −
H̃}2). The same argument can be used to prove asymptotic equicontinuity for
the small blocks process. This yields asymptotic equicontinuity of Fn(H·). We
note further that asymptotic continuity of Fn(E·) follows from [KSW19].

• The Lindeberg condition (i) of Lemma 7.20 holds because the class G is lin-
early ordered and by applying (7.31).

• Since G is linearly ordered, the random entropy condition (7.33) of
Lemma 7.20 holds.

• Define the random metric

d2n(H, H̃) =

m̃n∑
j=1

(Zn,j(H)− Zn,j(H̃))2 .

We need to evaluate E[d2n(Hs, Ht)]:

E[d2n(Hs, Ht)]

=
knm̃n

(qnrnP(|X0| > un))2
E

[(
znrn−1∑

i=0

{Hs (Xi+1,i+rn/un) (7.34)

−Ht (Xi+1,i+rn/un)}
)2]

∼ 1

znr3nP(|X0| > un)
E

[(
zn∑
j=1

{Ψj(Hs)−Ψj(Ht)}
)2]

, (7.35)

where in the last line we decomposed the block L1 into zn disjoint blocks
J1, . . . , Jzn , used the notation (7.12), the asymptotics (7.14) and m̃n ∼ mn/zn;
cf. (7.28).
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The term in (7.34) becomes

E[(Ψ1(Hs)−Ψ1(Ht))
2]

r3nP(|X0| > un)

+
2

r3nP(|X0| > un)

zn−1∑
j=1

(
1− j

zn

)
E[{Ψ1(Hs)−Ψ1(Ht)}

× {Ψ1+j(Hs)−Ψ1+j(Ht)}]

and as in (7.15) we can write it as

1

r3nP(|X0| > un)
E

⎡⎣{Ψ2(Hs)−Ψ2(Ht)}
2∑

j=1

{Ψj(Hs)−Ψj(Ht)}

⎫⎬⎭+ Ãn(H, s, t)

(7.36)

with the reminder (cf. (7.30))

Ãn(H, s, t) := −2
1

zn

1

r3nP(|X0| > un)
E[{Ψ1(Hs)−Ψ1(Ht)} {Ψ2(Hs)−Ψ2(Ht)}]

+
2

r3nP(|X0| > un)

zn−1∑
j=2

(
1− j

zn

)
E [{Ψ1(Hs)−Ψ1(Ht)}

× {Ψj+1(Hs)−Ψj+1(Ht)}]
= Ãn,1(Hs −Ht) + B̃n(Hs −Ht) .

Remark 7.8 applies and hence by Lemma 7.19,

lim
n→∞

sup
s∈[s0,t0]

B̃n(Hs −Ht) = 0 .

The leading term in (7.36) is decomposed as (cf. (7.20))

1

rn
g̃n(0;Hs −Ht) + 2

1

rn

rn−1∑
i=1

g̃n(i/rn;Hs −Ht) + 2Rn(Hs −Ht) .

Again, Remark 7.8 applies and (7.19) gives

lim
n→∞

sup
s∈[s0,t0]

Rn(Hs −Ht) = 0 .

It remains to show that for every sequence {δn} decreasing to zero,

lim
n→∞

sup
s,t∈[s0,t0]

|s−t|≤δn

1

rn

rn−1∑
i=1

g̃n(i/rn;Hs −Ht)

= lim
n→∞

sup
s,t∈[s0,t0]

|s−t|≤δn

∫ 1

0

g̃n(ξ,Hs −Ht)dξ = 0 .
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Because of the monotonicity

|g̃n(ξ,Hs −Ht)| ≤ 2 sup
s∈[s0,t0]

|Hs|ν∗
n,rn(|Hs −Ht|)

≤ 2max{|Hs0 |, |Ht0 |}|ν∗
n,rn(Hs)− ν∗

n,rn(Ht)| .
The convergence of ν∗

n,rn(Hs) to s−αν∗(H2) is uniform on [s0, t0]. Thus, for
s, t ∈ [s0, t0],∣∣ν∗

n,rn(Hs)− ν∗
n,rn(Ht)

∣∣ ≤ 2 sup
s0≤u≤t0

∣∣ν∗
n,rn(Hu)− ν∗(Hu)

∣∣+ν∗(H){s−α−t−α} .

Fix η > 0. For large enough n, the uniform convergence yields

sup
s0≤s,t≤t0
|s−t|≤δn

∣∣ν∗
n,rn(Hs)− ν∗

n,rn(Ht)
∣∣

≤ η + ν∗(H) sup
s0≤s,t≤t0
|s−t|≤δn

{s−α − t−α} ≤ η + αs−α−1
0 δnν

∗(H) .

This proves that (7.32) holds. The conditions of Lemma 7.20 hold, thus the

sequence Zn is asymptotically equicontinuous.

7.9. Proof of Theorem 4.3

Write ζn = |X|(n:n−kn)
/un. Since kn = nP(|X0| > un), we have the relationship

μ̂∗
n,rn(H) = μ̃∗

n,rn(Hζn) (cf. (1.8)-(1.9)). Therefore,√
kn

{
μ̂∗

n,rn(H)− ν∗(H)
}
= Fn(Hζn) +

√
kn {ν∗(Hζn)− ν∗(H)} . (7.37)

Step 1. Theorem 7.15 gives local uniform convergence of {Fn(Hs), s ∈ [s0, t0]}
to a continuous Gaussian process G. At the same time, convergence of

{Fn(Es), s ∈ [s0, t0]} yields ζn
P−→ 1, jointly with Fn(Hs). Therefore,

Fn(Hζn)
d−→ G(H).

Step 2. Using Vervaat’s theorem, we have, jointly with the previous convergence,√
k(ζ−α

n − 1)
d−→ G(E). Therefore, by the homogeneity of ν∗,

√
k {ν∗(Hζn)− ν∗(H)} = ν∗(H)

√
k(ζ−α

n − 1)
d−→ −ν∗(H)G(E) .

Since the convergences hold jointly, we conclude the result.

7.10. Auxiliary results

Lemma 7.22 (Problems 5.24 and 5.25 in [KS20]). Assume that
P(lim|j|→∞ |Y j | = 0) = 1 and let H, H ′ be bounded functionals on (Rd)Z such
that H ′(x) = 0 if x∗ ≤ 1 and E[|H(Y )||H ′(Y 0,∞)−H ′(Y 1,∞)|] < ∞. Then

ν∗(HH ′) = E[H(Y ){H ′(Y 0,∞)−H ′(Y 1,∞)}] ,
ν∗(HE) = E[H(Y )] , ν∗(E) = 1 , ν∗(E2) =

∑
j∈Z

P(|Y j | > 1) .



Sliding blocks estimators 2829

Proof. Applying (2.7) and the time change formula (see [PS18, Lemma 2.2]),
we obtain

ν∗(HH ′) = E[H(Y )H ′(Y )1
{
Y ∗

−∞,−1 ≤ 1
}
]

= E[|H(Y )||H ′(Y 0,∞)|1
{
Y ∗

−∞,−1 ≤ 1
}
]

≤
∞∑
j=0

E[|H(Y )||H ′(Y j,∞)−H ′(Y j+1,∞)|1
{
|Y j | > 1

}
1
{
Y ∗

−∞,−1 ≤ 1
}
]

=

∞∑
j=0

E[H(Y )|H ′(Y 0,∞)−H ′(Y 1,∞)|1
{
|Y −j | > 1

}
1
{
Y ∗

−∞,−j−1 ≤ 1
}
]

= E[H(Y )|H ′(Y 0,∞)−H ′(Y 1,∞)|] < ∞ .

This proves that ν∗(HH ′) < ∞. Hence, we can switch the expectation with
the summation and the first result follows. The second statement follows by
noting that E(Y 0,∞)− E(Y 1,∞) = 1 almost surely.

Lemma 7.23 (Example 6.2.2 and Problem 6.7 in [KS20]). Let π(m), m ≥ 0,
be the limiting cluster size distribution. Assume that P(lim|j|→∞ |Y j | = 0) = 1.
Then

∞∑
m=1

mπ(m) = ϑ−1 ,
∞∑

m=1

m2π(m) = ϑ−1
∑
j∈Z

P(|Y j | > 1) .

Proof. For the first statement, applying (2.7) and Lemma 7.22, we have,

∞∑
m=1

mπ(m) =

∞∑
m=1

mP(E(Y ) = m | C0(Y ) = 0)

= E[E(Y ) | C0(Y ) = 0] = ϑ−1ν∗(E) = ϑ−1 .

Likewise,

∞∑
m=1

m2π(m) = E[E2(Y ) | C0(Y ) = 0] = ϑ−1ν∗(E2) = ϑ−1
∑
j∈Z

P(|Y j | > 1) .
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