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Abstract: The formal assessment of the stochastic dominance of a random
pair with respect to another one is a question of interest in the economic
analysis of populations. For example, a manager may wonder if the com-
ponents of a portfolio are more associated than that of another competing
portfolio, in which case the former is generally considered more at risk. In
this paper, a new family of copula-based concordance orderings in the spirit
of increasing convex and concave orderings of random pairs is introduced
as a natural extension of the well-known concordance ordering. In addition,
a complete statistical methodology to test the stochastic dominance of a
random pair with respect to another one according to the new concordance
orderings is developed. The proposed tests are nonparametric, consistent
against all alternatives, and valid under serially dependent data satisfying
the α-mixing assumption. The sampling properties of the tests are inves-
tigated with the help of Monte–Carlo simulations and their usefulness is
illustrated on real multivariate data.
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1. Introduction

Stochastic dominance is a key concept in the economic analysis of populations
that allows to compare, for instance, incomes, poverty rankings and earnings.
The most basic notion is that of first order stochastic dominance of a random
variable Y over another variableX, which is defined as E{U(Y )} ≥ E{U(X)} for
all utility functions U that are monotonically increasing; it can be shown to be
equivalent to P(Y ≤ x) ≤ P(X ≤ x) for all x ∈ R. More generally, as described
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by Whitt (1976), the Integral stochastic ordering on a class F of measurable
functions states that Y dominatesX, notedX �F Y , if E{φ(Y )} ≥ E{φ(X)} for
all φ ∈ F for which these expectations exist. Among particular cases of interest
are the s-increasing convex and concave orders based respectively, for s ∈ N, on
the sets Fs−ICX = {φ : φ[i] ≥ 0 ∀i ≤ s} and Fs−ICV = {φ : (−1)i+1φ[i] ≥ 0 ∀i ≤
s}, where φ[i] = diφ(x)/dxi; see Denuit, Lefevre and Shaked (1998) for details.
According for instance to Goovaerts et al. (1990) and Hesselager (1996), the
s-increasing convex ordering is referred to as the stop-loss order of degree s− 1,
while the s-increasing concave ordering is the stochastic dominance of degree s.

An extensive literature has been developed to formally check for the stochas-
tic dominance of two populations with respect to s-increasing convex (concave)
stochastic orderings, i.e. testing for the null and alternative hypotheses

H0 : X �s−ICX Y and H1 : X �s−ICX Y.

Such tests have been developed by McFadden (1989) for s = 1, 2 and Anderson
(1996), Davidson and Duclos (2000) for s = 1, 2, 3 using a Kolmogorov–Smirnov
statistic. Noting that these procedures compare distributions at a fixed number
of arbitrary points, so that the tests may be inconsistent, Barrett and Don-
ald (2003) propose a global statistic computed from the empirical distribution
functions and where p-values are approximated using either a multiplier or a
bootstrap method. A test for the stochastic dominance of degree s = 2 has been
proposed by Eubank, Schechtman and Yitzhaki (1993) based on a necessary
but not sufficient condition. Some extensions of these procedures have also been
proposed. For instance, Linton, Maasoumi and Whang (2005) allow for serial de-
pendence and residuals of linear models, while Linton, Song and Whang (2010)
propose to base their decision rule on an improved bootstrap method.

Of a particular interest in this work is the stochastic dominance of a ran-
dom pair (Y1, Y2) over another pair (X1, X2). Specifically, (Y1, Y2) is said to
stochastically dominate (X1, X2) in the positive quadrant dependence order if
the components of the former are more likely than those of the latter to take
small values simultaneously; this is formally stated as P (X1 ≤ x1, X2 ≤ x2) ≤
P (Y1 ≤ x1, Y2 ≤ x2) for all (x1, x2) ∈ R2. Under a setup of fixed marginals,
Yanagimoto and Okamoto (1969) and Tchen (1980), among others, state that
a pair (X1, X2) is stochastically dominated by (Y1, Y2) with respect to the con-
cordance order if for all (x1, x2) ∈ R2,

P (X1 > x1, X2 > x2) ≤ P (Y1 > x1, Y2 > x2) . (1)

Because of the assumption of fixed marginals, Equation (1) is equivalent to
P (X1 ≤ x1, X2 ≤ x2) ≤ P (Y1 ≤ x1, Y2 ≤ x2) for all (x1, x2) ∈ R2.

The stochastic ordering as defined in (1) is in fact closely related to the
copulas underlying the joint distributions of the pairs to be compared. Specif-
ically, according to a celebrated Theorem of Sklar (1959), there exist copulas
C,D : [0, 1]2 → [0, 1] such that for all (x1, x2) ∈ R2,

P (X1 ≤ x1, X2 ≤ x2) = C {P(X1 ≤ x1),P(X2 ≤ x2)}
and P (Y1 ≤ x1, Y2 ≤ x2) = D {P(Y1 ≤ x1),P(Y2 ≤ x2)} .
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When the marginal distributions of (X1, X2) and (Y1, Y2) are continuous, C
and D are unique. If in addition P(X1 ≤ x1) = P(Y1 ≤ x1) and P(X2 ≤ x2) =
P(Y2 ≤ x2), then the stochastic dominance of (Y1, Y2) over (X1, X2) as defined
in (1) reduces to the ordering of their respective copulas in the sense that

C(u1, u2) ≤ D(u1, u2) for all (u1, u2) ∈ [0, 1]2. (2)

In other words, the stochastic dominance of pairs is a copula-based notion under
the fixed marginals setup.

The stochastic dominance of pairs on a class F of measurable functions on
R2 has been defined by Marshall (1991), for which (Y1, Y2) is said to domi-
nate (X1, X2), noted (X1, X2) �F (Y1, Y2), if E{φ(Y1, Y2)} ≥ E{φ(X1, X2)}
for all φ ∈ F for which these expectations exist. Particular cases are the s-
increasing convex and concave orderings as proposed by Denuit, Lefèvre and
Mesfioui (1999); the latter are related respectively, for s = (s1, s2) ∈ N2, to
the sets Fs−ICX = {φ : φ[i1,i2] ≥ 0 ∀(i1, i2) ≤ s, i1 + i2 ≥ 1} and Fs−ICV =
{φ : (−1)i1+i2+1φ[i1,i2] ≥ 0 ∀(i1, i2) ≤ s, i1 + i2 ≥ 1}, where φ[i1,i2](x1, x2) =
∂i1+i2φ(x1, x2)/∂x

i1
1 ∂xi2

2 . Note that the stochastic ordering in (1) corresponds
to the (1, 1)-increasing convex ordering.

This paper’s starting point is the ascertainment that the s-increasing con-
vex and concave orderings are not copula-based notions, even when s = (1, 1).
Indeed, for (X1, X2) �(1,1)−ICX (Y1, Y2) to imply the ordering of their copu-
las as stated in (2) necessitates that the two pairs belong to a Fréchet class
of bivariate distributions having the same marginals. Moreover, as noted by
Fernández-Ponce and Rodŕıguez-Griñolo (2017), the (2, 2)-convex and concave
orderings of two pairs no longer entail the ordering of their corresponding cop-
ulas, even within a Fréchet class, unless additional assumptions are made on
the marginals. From our point-of-view, this is a clear limitation of these orders
when the prime goal is to gain an insight on the relative strength of dependence
between two random couples. This paper has two main goals:

(1) Introduce a family of copula-based stochastic orderings between random
pairs (having possibly different marginals) and explore their properties;

(2) Develop a formal statistical methodology to assess the stochastic ordering
of two bivariate populations with respect to the new class, in a spirit similar to
Barrett and Donald (2003) for the ordering of univariate distributions.

The paper is organized as follows. Section 2 defines the new family of copula-
based orderings called s-concordance and explores their properties. Section 3
describes some interpretations of these orders, including the establishment of
interesting links with conditional and unconditional versions of Spearman’s rank
correlation. Section 4 and Section 5 develop a whole statistical methodology to
assess the s-concordance ordering of two populations when serial data are avail-
able. Section 6 investigates the size and power of the new tests under various
data-generating scenarios. Section 7 shows how to adapt these tools to deal with
bivariate pairs coming from the same multivariate population, and illustrates the
idea on Cook & Johnson’s Uranium exploration dataset; another illustration on
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exchange rate currencies is detailed as well. The proofs are relegated to two ap-
pendices and all the code is freely available on www.uqtr.ca/MyMatlabWebpage.

2. The new class of copula-based orderings

2.1. Definition of the s-concordance orders

The new family of concordance orderings that will be defined is based on the
s-increasing convex ordering �s−ICX as defined by Denuit, Lefèvre and Mesfioui
(1999). Specifically, (X1, X2) �s−ICX (Y1, Y2) if E{φ(X1, X2)} ≤ E{φ(Y1, Y2)}
for all φ ∈ Fs−ICX = {φ : φ[i1,i2] ≥ 0 ∀(i1, i2) ≤ s, i1 + i2 ≥ 1}.

Now let (X1, X2) be a random pair from a distribution function with contin-
uous marginal distributions F1(x1) = P(X1 ≤ x1) and F2(x2) = P(X2 ≤ x2),
and unique copula C such that C(u1, u2) = P{X1 ≤ F−1

1 (u1), X2 ≤ F−1
2 (u2)}.

Consider another pair (Y1, Y2) with continuous marginals G1, G2 and unique
copula D. Let F̄1, F̄2, Ḡ1 and Ḡ2 be the marginal survival functions of, respec-
tively, X1, X2, Y1 and Y2. The following definitions of orthant s-concordance
orderings are based on the s-increasing convex ordering of uniformized pairs.

Definition 2.1. The pair (Y1, Y2) is said to dominate (X1, X2) according to the
lower orthant s-concordance ordering, noted (X1, X2) ��

s−�o (Y1, Y2), if

(F̄1(X1), F̄2(X2)) �s−ICX (Ḡ1(Y1), Ḡ2(Y2)).

Similarly, the pair (Y1, Y2) stochastically dominates (X1, X2) according to the
upper orthant s-concordance ordering, noted (X1, X2) ��

s−uo (Y1, Y2), if

(F1(X1), F2(X2)) �s−ICX (G1(Y1), G2(Y2)).

The lower orthant s-concordance ordering could as well be defined in terms
of the s-increasing concave ordering �s−ICV as described by Denuit, Lefèvre
and Mesfioui (1999). Specifically, because of the duality relationship between
the s-increasing concave and convex orders expressed in their Proposition 2.3,
one has that (X1, X2) ��

s−�o (Y1, Y2) could have been defined similarly as
(G1(Y1), G2(Y2)) �s−ICV (F1(X1), F2(X2)).

By construction, the new orthant s-concordance orderings are marginal-free
since they depend only on the copula of the pairs being compared. Indeed, for an
arbitrary pair (X1, X2) from a joint distribution with continuous marginals F1

and F2, it is well known that (F1(X1), F2(X2)) ∼ C; also, (F̄1(X1), F̄2(X2)) ∼ Ĉ,

where Ĉ(u1, u2) = u1+u2−1+C(1−u1, 1−u2) is the survival copula of C. This is
to be contrasted with the s-increasing convex ordering that imply some ordering
of the marginals. Specifically, if (X1, X2) �s−ICX (Y1, Y2), then Xj �sj−ICX Yj

for j = 1, 2, thus involving the marginal distributions.
From the characterization of the (1, 1)-increasing convex order, one deduces

that (X1, X2) ��
(1,1)−�o (Y1, Y2) is equivalent to P{F̄ (X1) > u1, F̄ (X2) > u2} ≤

P{Ḡ(Y1) > u1, Ḡ(Y2) > u2} for all (u1, u2) ∈ [0, 1]2. Because P{F̄ (X1) >
u1, F̄ (X2) > u2} = P{F (X1) < 1 − u1, F (X2) < 1 − u2} = C(1 − u1, 1 − u2),

http://www.uqtr.ca/MyMatlabWebpage
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and similarly P{Ḡ(Y1) > u1, Ḡ(Y2) > u2} = D(1−u1, 1−u2), the lower orthant
(1, 1)-concordance ordering corresponds to the usual concordance ordering; the
exact same conclusion applies to the upper orthant (1, 1)-concordance ordering.

As reported by Fernández-Ponce and Rodŕıguez-Griñolo (2017), the (2, 2)-
increasing convex ordering (X1, X2) �(2,2)−ICX (Y1, Y2) is characterized by∫ ∞

t1

∫ ∞

t2

P(X1 > x1, X2 > x2) dx1 dx2 ≤
∫ ∞

t1

∫ ∞

t2

P(Y1 > x1, Y2 > x2) dx1 dx2.

The lower orthant (2, 2)-concordance ordering ��
(2,2)−�o is therefore based on the

integration over [t1, 1]×[t2, 1] of P{F̄ (X1) > x1, F̄ (X2) > x2} = C(1−x1, 1−x2)
and P{Ḡ(Y1) > x1, Ḡ(Y2) > x2} = D(1 − x1, 1 − x2). Thus, from the simple
change-of-variable u1 = 1 − x1 and u2 = 1 − x2, one has (X1, X2) ��

(2,2)−�o

(Y1, Y2) if and only if, for all (t1, t2) ∈ [0, 1]2,∫ t1

0

∫ t2

0

C(u1, u2) du1 du2 ≤
∫ t1

0

∫ t2

0

D(u1, u2) du1 du2. (3)

Similarly, (X1, X2) ��
(2,2)−uo (Y1, Y2) if and only if, for all (t1, t2) ∈ [0, 1]2,∫ 1

t1

∫ 1

t2

C(u1, u2) du1 du2 ≤
∫ 1

t1

∫ 1

t2

D(u1, u2) du1 du2. (4)

Generally speaking, the lower orthant s-concordance ordering compares the de-
pendence structures of the pairs on the lower orthants of [0, 1]2, while its upper
orthant version does it on the upper orthants of [0, 1]2.

2.2. Basic properties

The first result concerns the duality that exists between ��
s−�o and ��

s−uo.

Property 2.1. (X1, X2) ��
s−uo (Y1, Y2) ⇐⇒ (−X1,−X2) ��

s−�o (−Y1,−Y2).

As stated next, the new class of orderings is hierarchical.

Property 2.2. If (X1, X2)��
s−�o (Y1, Y2) for some s ∈ N2, then (X1, X2)��

s′−�o

(Y1, Y2) for all s
′ ≥ s. Similarly, (X1, X2) ��

s−uo (Y1, Y2) entails (X1, X2)��
s′−uo

(Y1, Y2) for all s′ ≥ s.

Since copulas are invariant under monotone increasing transformations of the
marginals, it is expected that the lower and upper orthant s-concordance order-
ings be invariant under such mappings. The next result establishes this basic
fact, and explores situations involving monotone decreasing transformations.

Property 2.3. Let ��
s be either ��

s−�o or ��
s−uo. For ψ1, ψ2 : R → R strictly

monotone, one has (ψ1(X1), ψ2(X2)) ��
s (ψ1(Y1), ψ2(Y2)) if and only if

(i) (X1, X2) ��
s (Y1, Y2), if both ψ1 and ψ2 are increasing;

(ii) (−X1,−X2) ��
s (−Y1,−Y2), if both ψ1 and ψ2 are decreasing;
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(iii) (X1,−X2) ��
s (Y1,−Y2), if ψ1 is increasing and ψ2 is decreasing;

(iv) (−X1, X2) ��
s (−Y1, Y2), if ψ1 is decreasing and ψ2 is increasing.

When C = Ĉ, where Ĉ is the survival copula of C, it is said that C is a
radially symmetric copula. In generic terms, radial symmetry means that the
lower tail of (the density of) C has the same form as the upper tail. Knowing
that, the next result which establishes the equivalence between ��

s−�o and ��
s−uo

under radially symmetric dependence structures will come as no surprise.

Property 2.4. If the respective copulas of (X1, X2) and (Y1, Y2) are radially
symmetric, then (X1, X2) ��

s−�o (Y1, Y2) ⇐⇒ (X1, X2) ��
s−uo (Y1, Y2).

2.3. The fixed marginals setup and beyond

Suppose that the pairs (X1, X2) and (Y1, Y2) belong to the same Fréchet class
of bivariate distributions with marginals F1 and F2. In that case, the lower
and upper orthant (1, 1)-concordance orderings are equivalent to the (1, 1)-
increasing convex order. Things are not as straightforward when s �= (1, 1).
As one can deduce from Theorem 3 of Fernández-Ponce and Rodŕıguez-Griñolo
(2017), (X1, X2) ��

(2,2)−uo (Y1, Y2) entails (X1, X2) �(2,2)−ICX (Y1, Y2) not only
if the pairs belong to the same Fréchet class, but if in addition F1, F2 have
decreasing densities. On the other side, a consequence of Theorem 4 of these
authors is that (X1, X2) �(2,2)−ICX (Y1, Y2) entails (X1, X2) ��

(2,2)−uo (Y1, Y2)
if F1, F2 have increasing densities. One then deduces that the only case where
��

(2,2)−uo and �(2,2)−ICX are equivalent is under uniform marginal distributions.
The next result generalizes these findings by Fernández-Ponce and Rodŕıguez-

Griñolo (2017) to an arbitrary s = (s1, s2) ∈ N2. Before stating it, a real-valued
function φ is said to be s-convex if φ ∈ Fs−ICX = {φ : φ[i] ≥ 0 ∀i ≤ s}, and s-
concave if φ ∈ Fs−ICV = {φ : (−1)i+1φ[i] ≥ 0 ∀i ≤ s}, where φ[i] = diφ(x)/dxi.

Proposition 2.1. Let (X1, X2) and (Y1, Y2) be in the same Fréchet class of
bivariate distributions with continuous marginals F1 and F2.

Lower orthant s-concordance

(i) If F−1
1 is s1-concave and F−1

2 is s2-concave, then (X1, X2) ��
s−�o (Y1, Y2)

entails (−X1,−X2) �s−ICX (−Y1,−Y2).

(ii) If F1 is s1-concave and F2 is s2-concave, then (−X1,−X2)�s−ICX (−Y1,−Y2)
entails (X1, X2) ��

s−�o (Y1, Y2).

Upper orthant s-concordance

(iii) If F−1
1 is s1-convex and F−1

2 is s2-convex, then (X1, X2) ��
s−uo (Y1, Y2)

entails (X1, X2) �s−ICX (Y1, Y2).

(iv) If F1 is s1-convex and F2 is s2-convex, then (X1, X2) �s−ICX (Y1, Y2) entails
(X1, X2) ��

s−uo (Y1, Y2).

One recovers Theorem 3 of Fernández-Ponce and Rodŕıguez-Griñolo (2017)
by letting s = (2, 2) in parts (i) and (iii) of Proposition 2.1, since the 2-concavity
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of F−1
1 , F−1

2 means that F1, F2 have decreasing densities, while their 2-convexity
is equivalent to having increasing densities. For similar reasons, their Theorem 4
is a special case of parts (ii) and (iv) of Proposition 2.1.

2.4. s-concordance orderings of popular copula families

Consider the Normal, Clayton, Gumbel and Plackett copulas whose expressions
are given in Table 1. These models have been extensively used for bivariate
copula modeling and their properties are well-known; see Nelsen (2006) and Joe
(2015), for instance. For example, the family of Normal copulas share with the
Plackett dependence structures the property of radial symmetry.

Table 1

The Normal, Clayton, Gumbel and Plackett copulas

Copula Expression of the copula Parameter space

Normala Φθ

{
Φ−1(u1),Φ

−1(u2)
}

θ ∈ [−1, 1]

Clayton
(
u−θ
1 + u−θ

2 − 1
)−1/θ

θ ∈ (0,∞)

Gumbel exp

{
−
(
| lnu1|1/(1−θ) + | lnu2|1/(1−θ)

)1−θ
}

θ ∈ [0, 1]

Plackettb
gθ(u1, u2)−

√
g2θ(u1, u2)− 8θ(θ + 1)u1u2

4θ
θ ∈ [−1, 1]

aΦθ is the cdf of the bivariate Normal with correlation θ
bgθ(u1, u2) = 1− θ + 2θ(u1 + u2)

These four copula families are parametrized such that Cθ(u1, u2)≤Cθ′(u1, u2)
for all (u1, u2) ∈ (0, 1)2 when θ ≤ θ′. In view of Property 2.2, they are also
ordered with respect to s-concordance for any s ∈ N2. Things become less
clear, and in fact more interesting, when the goal is to stochastically com-
pare two copulas C and D that belong to different parametric families. To
this end, let (X1, X2) and (Y1, Y2) be random pairs with copulas C and D,
respectively. Table 2 reports scenarios when (X1, X2) and (Y1, Y2) cannot be or-
dered according to the usual concordance, i.e. (X1, X2) ��

(1,1)−�o (Y1, Y2), while

(X1, X2) ��
(2,2)−�o (Y1, Y2). In order to standardize the comparisons, each model

has been parametrized in terms of its associated Kendall’s tau, i.e.

τC = 4

∫ 1

0

∫ 1

0

C(u1, u2) dC(u1, u2)− 1.

As an example of a situation where ��
(1,1)−�o and ��

(2,2)−�o, consider D being

the Clayton copula with τD = 1/3; in that case, (X1, X2) ��
(1,1)−�o (Y1, Y2) and
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Table 2

Some scenarios where the respective copulas C and D of random pairs (X1, X2) and
(Y1, Y2) are such that (X1, X2) ⊀�

(1,1)−�o
(Y1, Y2) and (X1, X2) ��

(2,2)−�o
(Y1, Y2)

C D τD ��
(1,1)−�o

��
(2,2)−�o

��
(1,1)−�o

and ��
(2,2)−�o

Gumbel Clayton
1/3 τC ∈ [0, .0071] τC ∈ [0, .3346] τC ∈ (.0071, .3346]
2/3 τC ∈ [0, .0281] τC ∈ [0, .6640] τC ∈ (.0281, .6640]

Plackett Clayton
1/3 τC ∈ [0, .1556] τC ∈ [0, .3330] τC ∈ (.1556, .3330]
2/3 τC ∈ [0, .3536] τC ∈ [0, .6750] τC ∈ (.3536, .6750]

Gumbel Plackett
1/3 τC ∈ [0, .0250] τC ∈ [0, .2529] τC ∈ (.0250, .2529]
2/3 τC ∈ [0, .1568] τC ∈ [0, .5825] τC ∈ (.1568, .5825]

(X1, X2) ��
(2,2)−�o (Y1, Y2) if the copula C of (X1, X2) belongs to the Gumbel

family with τC ∈ (.0071, .3346]. It also happens when τD = 2/3 and τC ∈
(.0281, .6640], and more particularly when τC = τD = 1/3. Another example
occurs when D is the Clayton copula with τD = 1/3 and C belongs to the
Plackett family with τC ∈ (.1556, .3330].

2.5. Characterization of ��
s−�o and ��

s−uo

A characterization of the s-increasing convex ordering of random pair was de-
duced by Denuit, Lefèvre and Mesfioui (2003) in terms of iterated distributions.
Such characterizations for the s-concordance orders ��

s−�o and ��
s−uo are devel-

oped here. The latter will prove useful later to formally test for s-concordance
ordering. To this end, let �∞([0, 1]2) be the space of bounded functions on [0, 1]2.
For g ∈ �∞([0, 1]2), define for each i ∈ N2 the operator Ji : �∞([0, 1]2) →
�∞([0, 1]2) such that for (u1, u2) ∈ [0, 1]2, J(1,1)(u1, u2; g) = g(u1, u2) and for
i ∈ N2 with max(i1, i2) > 1, one has recursively

Ji(u1, u2; g) =

∫ u1

0

J(i1−1,i2)(x1, u2; g) dx1 (if i1 > 1)

=

∫ u2

0

J(i1,i2−1)(u1, x2; g) dx2 (if i2 > 1). (5)

As formally stated in the following result, the lower orthant s-concordance or-
dering of random pairs can be seen as a functional of the difference between
their respectively copulas. Similarly, the upper orthant s-concordance ordering
appears as a functional of their associated survival copulas.

Proposition 2.2. Let (X1, X2) and (Y1, Y2) be random pairs with continuous
marginals and respective copulas C and D. For Es = {s} ∪ {i ∈ N2 : i ≤
s,min(i1, i2) > 1}, one has (X1, X2) ��

s−�o (Y1, Y2) if and only if

max
i∈Es

Ji

(
u
I(i1=s1)
1 , u

I(i2=s2)
2 ;C −D

)
≤ 0 for all (u1, u2) ∈ [0, 1]2. (6)
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Also, (X1, X2) ��
s−uo (Y1, Y2) if and only if

max
i∈Es

Ji

(
u
I(i1=s1)
1 , u

I(i2=s2)
2 ; Ĉ − D̂

)
≤ 0 for all (u1, u2) ∈ [0, 1]2,

where Ĉ (resp. D̂) is the survival copula of C (resp. D).

There is only one condition needed to establish the s-concordance ordering
of two pairs when s ≤ (2, 2), since Es = {s} in that case. Proposition (2.2) then
reduces to (X1, X2) ��

s−�o (Y1, Y2) if and only if

Js(u1, u2;C −D) ≤ 0 for all (u1, u2) ∈ [0, 1]2.

In particular, (X1, X2) ��
(1,1)−�o (Y1, Y2) if and only if C(u1, u2) ≤ D(u1, u2) for

all (u1, u2) ∈ [0, 1]2, while (X1, X2) ��
(2,2)−�o (Y1, Y2) if and only if Equation (3)

holds. Since Ĉ(x1, x2)− D̂(x1, x2) = C(1− x1, 1− x2)−D(1− x1, 1− x2), the
simple change of variable y1 = 1 − x1 and y2 = 1 − x2 allows to conclude that
(X1, X2) ��

(2,2)−uo (Y1, Y2) if and only if Equation (4) holds.

3. Some interpretations of the new concordance orders

3.1. The (2, 1) and (1, 2)-concordance orderings

As outlined by Denuit and Mesfioui (2017), the (2, 1)-increasing concave order-
ing (Y1, Y2) �(2,1)−ICV (X1, X2) holds if and only if for all (t1, t2) ∈ R2,

(i) F̄2(t2) ≥ Ḡ2(t2);

(ii) E
{
(t1 −X1)+ I (X2 ≤ t2)

}
≤ E

{
(t1 − Y1)+ I (Y2 ≤ t2)

}
.

While condition (i) expresses the usual stochastic dominance of X2 over Y2,
the second condition compares the strength of the corresponding conditional
shortfalls of the pairs. Specifically, (t1 − X1)+ I(X2 ≤ t2) vanishes given that
X2 is larger than the threshold t2, so that the shortfall (t1 −X1)+ with respect
to the threshold t1 becomes irrelevant. This shows some sort of compensation
between the components of (t1 − X1)+ I(X2 ≤ t2). Also, as shown in Proposi-
tion 3.2 of Denuit and Mesfioui (2017), the (2,1)-concave order characterizes the
Rothschild–Stiglitz type of increase in risk as introduced by Guo et al. (2016).

As was noted after the statement of Definition 2.1, the lower orthant s-
concordance (X1, X2)��

s−�o (Y1, Y2) holds if and only if (G1(Y1), G2(Y2))�s−ICV

(F1(X1), F2(X2)). Since the marginal distributions of the pairs to be compared
are, by construction, uniform on (0, 1), condition (i) becomes irrelevant and the
lower orthant (2, 1)-concordance (X1, X2) ��

(2,1)−�o (Y1, Y2) is equivalent to

E
{
(t1 − F1(X1))+ I (F2(X2) ≤ t2)

}
≤ E

{
(t1 −G1(Y1))+ I (G2(Y2) ≤ t2)

}
.

Clearly, the above inequality holds when the components of the pair (Y1, Y2) are
more associated than those of (X1, X2), since then, (t1−F1(X1))+I(F2(X2) ≤ t2)
tends to vanish more frequently than (t1 −G1(Y1))+I(G2(Y2) ≤ t2). Otherwise,
similar interpretations as those above can be made, but at the level of the
dependence structures of the pairs that are being compared.
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3.2. Consequences of ��
s−�o on Spearman’s rho and other

concordance measures

Several measures of dependence are concordance measures in the sense given
by Scarsini (1984); see also Nelsen (2002). Generally, they can be expressed in
terms of the concordance operator between two copulas as defined by

Q(C1, C2) = P(U1 < U2) + P(U1 > U2) = 2P(U1 < U2), (7)

where U1 ∼ C1 and U2 ∼ C2 are independent pairs. For example, the Kendall
and Spearman measures of dependence of a random pair (X1, X2) with copula
C can be expressed respectively as

τ(X1, X2) =
Q(C,C)−Q(Π,Π)

Q(M,M)−Q(Π,Π)
= 4

∫ 1

0

∫ 1

0

C(u1, u2)dC(u1, u2)− 1

and ρSp(X1, X2) =
Q(C,Π)−Q(Π,Π)

Q(M,Π)−Q(Π,Π)
= 12

∫ 1

0

∫ 1

0

C(u1, u2)du1du2 − 3,

where Π(u1, u2) = u1u2 and M(u1, u2) = min(u1, u2) are the copulas of in-
dependence and perfect positive dependence, respectively. In fact, concordance
measures are closely linked to the concordance ordering ��

(1,1)−�o. On one side,

it can be shown that if C1 ≤ C�
1 and C2 ≤ C�

2 , then Q(C1, C2) ≤ Q(C�
1 , C

�
2 ). On

the other side, C ≤ D when (X1, X2) ��
(1,1)−�o (Y1, Y2), so that γ(X1, X2) ≤

γ(Y1, Y2) for any concordance measure γ. In particular, τ(X1, X2) ≤ τ(Y1, Y2)
and ρSp(X1, X2) ≤ ρSp(Y1, Y2) when (X1, X2) ��

(1,1)−�o (Y1, Y2).

Note that if (X1, X2) ��
(1,1)−�o (Y1, Y2) holds strictly, i.e. C �= D a.s.,

then ρSp(X1, X2) < ρSp(Y1, Y2), i.e. ρSp(X1, X2) �= ρSp(Y1, Y2). The (2, 2)-
concordance ordering imposes a milder restriction, since (X1, X2) ��

(2,2)−�o

(Y1, Y2) may happen to hold strictly while ρSp(X1, X2) = ρSp(Y1, Y2).

3.3. Consequences of ��
(2,2)−�o and ��

(2,2)−uo on conditional
versions of Spearman’s rho

As noted in (3), (X1, X2) ��
(2,2)−�o (Y1, Y2) entails the ordering of the lower

orthant integrated copulas; in view of (4), (X1, X2) ��
(2,2)−uo (Y1, Y2) implies a

similar ordering, but with respect to upper orthant integration. In particular,∫ 1

0

∫ 1

0

C(x1, x2) dx2dx1 ≤
∫ 1

0

∫ 1

0

D(x1, x2) dx2dx1.

In fact, this inequality holds when (X1, X2) ��
s−�o (Y1, Y2) for any s ∈ N2. This

easily entails ρSp(X1, X2) ≤ ρSp(Y1, Y2), so that the s-concordance ordering of
two pairs always implies the ordering of their corresponding Spearman’s rho.
But still more can be said about Spearman’s rho under the (2, 2)-concordance
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ordering. To this end, first define a version of the concordance operator in (7)
constrained to the lower rectangle [0, u1]× [0, u2], namely

Qu(C1, C2) = 2P (U1 < U2 ∩U2 < u) , u = (u1, u2).

Replacing the concordance operator Q by Qu in the definitions of Kendall and
Spearman measures of association yields conditional versions of these concor-
dance measures. Doing so for Spearman’s rho, one obtains

ρSpu1,u2
(X1, X2) =

∫ u1

0

∫ u2

0
C(x1, x2)dx1dx2 −

∫ u1

0

∫ u2

0
Π(x1, x2)dx1dx2∫ u1

0

∫ u2

0
M(x1, x2)dx1dx2 −

∫ u1

0

∫ u2

0
Π(x1, x2)dx1dx2

. (8)

This is exactly the bivariate version of the conditional Spearman’s rho as defined
by Schmid and Schmidt (2007) while letting d = 2 and g := I(· ≤ u1, · ≤ u2) in
their Equation (4). As a consequence, (X1, X2) ��

(2,2)−�o (Y1, Y2) if and only if

ρSpu1,u2
(X1, X2) ≤ ρSpu1,u2

(Y1, Y2) for all (u1, u2) ∈ [0, 1]2.
The upper-orthant (2, 2)-concordance also entails the ordering of an “upper

orthant” version ρ̃Spu1,u2
(X1, X2) of ρ

Sp
u1,u2

(X1, X2) that arises by integrating on
[u1, 1]× [u2, 1] instead of [0, u1]× [0, u2], namely

ρ̃Spu1,u2
(X1, X2) =

∫ 1

u1

∫ 1

u2
C(x1, x2)dx1dx2 −

∫ 1

u1

∫ 1

u2
Π(x1, x2)dx1dx2∫ 1

u1

∫ 1

u2
M(x1, x2)dx1dx2 −

∫ 1

u1

∫ 1

u2
Π(x1, x2)dx1dx2

.

Hence, based on (4), one can conclude that (X1, X2) ��
(2,2)−uo (Y1, Y2) if and

only if ρ̃Spu1,u2
(X1, X2) ≤ ρ̃Spu1,u2

(Y1, Y2) for all (u1, u2) ∈ [0, 1]2.

4. Tests of s-concordance orderings

As stated in the Introduction, this paper’s second aim is to provide a nonpara-
metric statistical methodology to formally assess the s-concordance ordering of
two bivariate populations. Even in the case of the usual concordance ordering,
i.e. when s = (1, 1), no procedure has been developed yet. A paper by Cebriàn,
Denuit and Scaillet (2004) entitled “Testing for concordance ordering” is seem-
ingly achieving this, but in fact the goal of these authors is to compare one
bivariate population’s joint distribution with a pre-specified parametric model.

4.1. Null and alternative hypotheses

For a fixed s ∈ N2, the goal is to test for the stochastic dominance of a random
pair (Y1, Y2) over (X1, X2) with respect to the lower orthant s-concordance
ordering. In other words, one wants to test for

H(s)
0 : (X1, X2) ��

s−�o (Y1, Y2) against H(s)
1 : (X1, X2) �

�
s−�o (Y1, Y2). (9)

In view of Property 2.1, the methodology that will be developed in the sequel can
easily be adapted to test for the upper orthant s-concordance ordering ��

s−uo

by considering the lower orthant dominance of (−Y1,−Y2) over (−X1,−X2).
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Now a reformulation of the null and alternative hypotheses in (9) will prove
useful. To this end, let C and D be the copulas of (X1, X2) and (Y1, Y2), re-

spectively. In view of Equation (6) in Proposition 2.2, the null hypothesis H(s)
0

is true if Ji(u
I(i1=s1)
1 , u

I(i2=s2)
2 ;C − D) ≤ 0 for all i ∈ Es. On the other side,

Ji(u
I(i1=s1)
1 , u

I(i2=s2)
2 ;C − D) > 0 for some i ∈ Es and (u1, u2) ∈ [0, 1]2 under

H(s)
1 . This suggests basing a measure of s-concordance on some functional of

Ji(·, ·;C −D). Letting �∞([0, 1]2) be the space of bounded functions on [0, 1]2

equipped with the supremum norm, consider μκ : �∞([0, 1]2) → R for some
κ ≥ 1 such that for x+ = max(x, 0),

μκ(g) =

{∫ 1

0

∫ 1

0

(g(u1, u2))
κ
+ du1du2

}1/κ

. (10)

Measuring the lower orthant s-concordance of a pair (X1, X2) with respect to
(Y1, Y2) can then be based on

Θ
(s)
κ,(C,D) = max

i∈Es

μκ

{
Ji

(
u
I(i1=s1)
1 , u

I(i2=s2)
2 ;C −D

)}
. (11)

Combination rules others than taking the maximum over i ∈ Es could be con-
sidered as well, e.g. the sum. However, the most interesting situations are those
when s ≤ (2, 2), in which case Es = {s} has only one element. Because μκ is such
that μκ(g) ≥ 0, with equality if and only if g(u1, u2) ≤ 0 a.s. for (u1, u2) ∈ [0, 1]2,

H(s)
0 holds if and only if Θ

(s)
κ,(C,D) = 0. The null and alternative hypotheses stated

in (9) may therefore be reformulated alternatively as

H(s)
0 : Θ

(s)
κ,(C,D) = 0 against H(s)

1 : Θ
(s)
κ,(C,D) > 0. (12)

4.2. Test statistics and asymptotics under α-mixing

This subsection provides an empirical version of Θ
(s)
κ,(C,D) and investigates its

asymptotic behavior under a setup of serially dependent observations. Specif-
ically, it will be assumed that the data at hand are realizations of strongly
stationary processes that satisfy the α-mixing assumption. This notion is very
general, as it is shared by many popular time series models like autoregressive
and GARCH processes. Specifically, following, e.g., Bradley (2005), Carrasco
and Chen (2002) or Rio (2000), consider a process (Zt)t∈Z and define

α(�) = sup
t∈Z

{
sup

(A,B)∈Ft×F�
t+�

|P(A ∩B)− P(A)P(B)|
}
,

where Ft and F�
t are the σ-fields Ft = σ{Zi, i ≤ t} and F�

t = σ{Zi, i > t},
respectively. Then (Zt)t∈Z is said to be α-mixing if α(�) → 0 as � → ∞.

Now, let (X11, X12), . . . , (Xn1, Xn2) be a realization of a strongly station-
ary process (Xt1, Xt2)t∈Z that is α-mixing; also assume that for all t ∈ Z, the
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marginal distributions of (Xt1, Xt2) are continuous and C is its unique copula.
Consider another sample (Y11, Y12), . . ., (Ym1, Ym2), independent of the first one,
that is a realization of a strongly stationary α-mixing process (Yt1, Yt2)t∈Z with
copula D. Under these conditions, nonparametric estimators of C and D are
provided by the empirical copulas, namely

Cn(u1, u2) =
1

n

n∑
i=1

I(Ûi1 ≤ u1, Ûi2 ≤ u2)

and Dm(u1, u2) =
1

m

m∑
i=1

I(V̂i1 ≤ u1, V̂i2 ≤ u2),

where nÛi1 (resp. mV̂i1) is the rank of Xi1 (resp. Yi1) among X11, . . . , Xn1 (resp.

Y11, . . . , Ym1), and similarly for nÛi2 (resp. mV̂i2). An empirical plug-in version

of Θ
(s)
κ,(C,D) defined in (11) is then

Θ
(s)
κ,(C,D) = max

i∈Es

μκ

{
Ji

(
u
I(i1=s1)
1 , u

I(i2=s2)
2 ;Cn −Dm

)}
. (13)

As a first step, the following proposition establishes the asymptotic behavior of
Ji(·, ·;Cn −Dm) for any i ∈ N2. This result can be seen somewhat as a copula
version of Lemma 1 of Barrett and Donald (2003) about the iterated sample
and population cdf’s in the univariate case, i.e.

√
n{Is(·;Fn)−Is(·;F )}, where

I1(u;F )} = F (u) and Is(u;F )} =
∫ u

0
Is−1(x;F )}dx, s > 1. Before stating the

result, the concept of a regular copula is reminded.

Definition 4.1 (Regular copula). A bivariate copula C is said to be regular if
its first-order partial derivatives Ċ1(u1, u2) = ∂C(u1, u2)/∂u1 and Ċ2(u1, u2) =
∂C(u1, u2)/∂u2 exist on [0, 1]2 and are continuous, respectively, on the sets
{(u1, u2) : 0 < u1 < 1} and {(u1, u2) : 0 < u2 < 1}.

Now let BC be a Gaussian process on [0, 1]2 with mean zero such that for
(U�1, U�2) = (F1(X�1), F2(X�2)), the covariance function of BC is given by

ΓBC
(u1, u2, u

′
1, u

′
2) =

∑
�∈Z

cov {I(U01 ≤ u1, U02 ≤ u2), I(U�1 ≤ u′
1, U�2 ≤ u′

2)} .

Define a similar process BD based on (V�1, V�2) = (G1(Y�1), G2(Y�2)).

Proposition 4.1. Assume that the respective α-mixing coefficients of strictly
stationary processes (Xt1, Xt2)t∈Z and (Yt1, Yt2)t∈Z are such that α(�) =
O(�−6−ε) for some ε ∈ (0, 1/2]. Then, if the copula C of (Xt1, Xt2) and the
copula D of (Yt1, Yt2) are regular,

L(i)
n,m =

√
nm

n+m
{Ji(·, ·;Cn −Dm)− Ji(·, ·;C −D)} (14)

converges weakly in the space �∞([0, 1]2) to L(i) = Ji(·, ·;
√
1− ωC − √

ωD),
where limn,m→∞ n/(n+m) = ω ∈ (0, 1), and

C(u1, u2) = BC(u1, u2)− Ċ1(u1, u2)BC(u1, 1)− Ċ2(u1, u2)BC(1, u2),
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and D(u1, u2) = BD(u1, u2)− Ḋ1(u1, u2)BD(u1, 1)− Ḋ2(u1, u2)BD(1, u2).

This weak convergence holds jointly for all i ∈ N2.

4.3. Decision rule, significance level and consistency

Based on the null and alternative hypotheses of s-concordance ordering as re-

formulated in (12), it is suggested to reject H(s)
0 in favour of H(s)

1 for large values

of Θ
(s)
κ,(n,m); here, κ refer to some functional μκ as defined in (10). Observe that

with L(i)
n,m defined in (14), and since μκ(rg) = rμκ(g) for r ∈ R+,√

nm

n+m
Θ

(s)
κ,(n,m) = max

i∈Es

μκ

{
L(i)
n,m

(
u
I(i1=s1)
1 , u

I(i2=s2)
2

)
+

√
nm

n+m
Ji

(
u
I(i1=s1)
1 , u

I(i2=s2)
2 ;C −D

)}
. (15)

Since under the null hypothesis H(s)
0 , Ji(u

I(i1=s1)
1 , u

I(i2=s2)
2 ;C −D) ≤ 0 almost

surely for all i ∈ Es, and because μκ(g +Δ) ≤ μκ(g) when Δ ≤ 0 a.s.,√
nm

n+m
Θ

(s)
κ,(n,m) ≤ max

i∈Es

μκ

(
L(i)
n,m

(
u
I(i1=s1)
1 , u

I(i2=s2)
2

))
.

It follows that under H(s)
0 (and as long as the conditions of Proposition 4.1 hold),

lim
n,m→∞

P

(√
nm

n+m
Θ

(s)
κ,(n,m) > x

)
≤ lim

n,m→∞
P

{
max
i∈Es

μκ

(
L(i)
n,m

(
u
I(i1=s1)
1 , u

I(i2=s2)
2

))
> x

}
= β̄(s)

κ (x),

where β̄
(s)
κ is the survival function of maxi∈Es μκ(L(i)(u

I(i1=s1)
1 , u

I(i2=s2)
2 )). There-

fore, the test whose decision rule is to reject H(s)
0 when√

nm

n+m
Θ

(s)
κ,(n,m) > (β̄(s)

κ )−1(α)

has an asymptotic type I error of at most α. Hence, the test has a significance
level equals to α as understood by Lehmann (1986) in the case of a composite

null hypothesis. In the current context, it means that the test based on Θ
(s)
κ,(n,m)

will have a rejection rate that will never exceed α for any pair of copulas C,D

such that Θ
(s)
κ,(C,D) = 0; the asymptotic level is exactly α when C = D.

A violation of H(s)
0 means that there is a set B ⊂ [0, 1]2 of non-null Lebesgue

measure such that for some i ∈ Es, Ji(u
I(i1=s1)
1 , u

I(i2=s2)
2 ;C − D) > 0 for

(u1, u2) ∈ B. It can then be deduced from (15) that under H(s)
1 ,



New concordance orderings and tests 2407

lim
n,m→∞

P

{√
nm

n+m
Θ

(s)
κ,(n,m) > (β̄(s)

κ )−1(α)

}

= lim
n,m→∞

P

{
max
i∈Es

μκ

(
L(i)
n,m

(
u
I(i1=s1)
1 , u

I(i2=s2)
2

)
+

√
nm

n+m
Ji

(
u
I(i1=s1)
1 , u

I(i2=s2)
2 ;C −D

))
> (β̄(s)

κ )−1(α)

}
= 1.

The test based on Θ
(s)
κ,(n,m) is therefore consistent under general alternatives.

5. Performing the tests

5.1. Estimation of the critical value

In order to estimate the asymptotic critical value (β̄
(s)
κ )−1(α), one needs to esti-

mate the distribution function β
(s)
κ (x)=P{maxi∈Es μκ(L(i)(u

I(i1=s1)
1 , u

I(i2=s2)
2 )≤

x}. This is not an easy task, since the limit process L(i) depends on the unknown

copulas C and D under H(s)
0 . The adopted strategy will be based on the mul-

tiplier bootstrap for empirical processes as described by Kosorok (2008) and
adapted to empirical copulas under α-mixing by Bücher and Ruppert (2013);
the latter is a generalization to time series of the multiplier method for empirical
copulas as described for instance by Rémillard and Scaillet (2009).

Definition 5.1 (Serial multipliers). A serial multiplier sample associated to
sample data of size n is a realization ξ = (ξ1, . . . , ξn) of a strictly stationary
process (ξt)t∈Z that is independent of the data process and such that

(i) ξt is independent of ξt+h for all |h| ≥ r�n, where r ∈ R is a constant and as
n → ∞, �n → ∞ and �n/n → 0;
(ii) all central moments of ξt are bounded, E(ξt) = 1 and cov(ξt, ξt+h) =
φ(h/�n), where φ is bounded and symmetric around zero.

Consider two independent serial multiplier samples ξ = (ξ1, . . . , ξn) and
γ = (γ1, . . . , γm) that are associated, respectively, to the observed data, i.e. the
independent samples (X11, X12), . . ., (Xn1, Xn2) and (Y11, Y12), . . . , (Ym1, Ym2).
Then, for ωn,m = n/(n+m), the multiplier version of L(i) is defined by

L̂(i)
n,m = Ji(·, ·;

√
1− ωn,m Ĉn −√

ωn,m D̂m),

where Ĉn and D̂m are the multiplier versions of the empirical processes Cn =√
n(Cn − C) and Dm =

√
m(Dm −D), namely

Ĉn(u1, u2) =
1

n

n∑
i=1

Ξi

{
I(Ûi1 ≤ u1, Ûi2 ≤ u2)

− Ċn1(u1, u2) I(Ûi1 ≤ u1)− Ċn2(u1, u2) I(Ûi2 ≤ u2

}
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and D̂m(u1, u2) =
1

m

m∑
i=1

Γi

{
I(V̂i1 ≤ u1, V̂i2 ≤ u2)

− Ḋm1(u1, u2) I(V̂i1 ≤ u1)− Ḋm2(u1, u2) I(V̂i2 ≤ u2

}
,

where for ξ̄ = (ξ1 + · · · + ξn)/n and γ̄ = (γ1 + · · · + γm)/m, Ξi = (ξi/ξ̄) − 1
and Γi = (γi/γ̄) − 1. In the above expressions, Ċn1, Ċn2 (resp. Ḋm1, Ḋm2) are
uniformly consistent estimators of Ċ1, Ċ2 (resp. Ḋ1, Ḋ2). It is also assumed that
for any ε ∈ (0, 1/2),

sup
u1∈[ε,1−ε],
u2∈[0,1]

∣∣∣Ċn1(u1, u2)− Ċ1(u1, u2)
∣∣∣ and sup

u1∈[0,1],
u2∈[ε,1−ε]

∣∣∣Ċn2(u1, u2)− Ċ2(u1, u2)
∣∣∣

converge in probability to zero, and similarly for Ḋm1, Ḋm2. An estimator that
possess these properties is described in subsection 6.1.

Proposition 5.1. Assume that the respective α-mixing coefficients of strictly
stationary processes (Xt1, Xt2)t∈Z and (Yt1, XY 2)t∈Z are such that there ex-
ists ε ∈ (0, 1/2) with α(�) = O(�−6−ε) and �n = O(n1/2−ε), and for ζ(ε) =
max{28, �2/ε� + 1},

∑∞
�=1(� + 1)ζ(ε)

√
α(�) < ∞. If C and D are regular cop-

ulas, then for any i ∈ N2, (L(i)
n,m, L̂(i)

n,m) converges weakly to (L(i), L̃(i)), where

L̃(i) is an independent copy of L(i) = Ji(·, ·;
√
1− ωC−√

ωD). This weak con-
vergence holds jointly for all i ∈ N2.

In order to approximate the distribution β
(s)
κ of maxi∈Es μκ(L(i)(u

I(i1=s1)
1 ,

u
I(i2=s2)
2 ), the multiplier bootstrap is repeated with B independent serial multi-

plier samples, which yields the independent replicates (L̂(i)
n,m)(1), . . . , (L̂(i)

n,m)(B)

of L(i)
n,m. Next letting, for each b ∈ {1, . . . , B},

(Θ̂
(s)
κ,(n,m))

(b) = max
i∈Es

μκ

{(
L̂(i)
n,m

(
u
I(i1=s1)
1 , u

I(i2=s2)
2

))(b)}
provides withB independent replicates of Θ

(s)
κ,(n,m). The critical value (β̄

(s)
κ )−1(α)

is finally estimated by the (1 − α)-th empirical percentile of these multiplier
bootstrap replicates. The consistency of this estimator is a straightforward con-
sequence of Proposition 5.1.

5.2. Approximation of the test statistics

From the recursive definition of Ji in Equation (5), one can easily establish by
induction that when g(u1, u2) = I(a1 ≤ u1, a2 ≤ u2),

Ji(u1, u2; g) =
(u1 − a1)

i1−1
+

(i1 − 1)!
× (u2 − a2)

i2−1
+

(i2 − 1)!
.
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It follows that

Ji(u1, u2;Cn) =
1

n

n∑
i=1

(u1 − Ûi1)
i1−1
+

(i1 − 1)!
× (u2 − Ûi2)

i2−1
+

(i2 − 1)!
,

and similarly for Ji(u1, u2;Cm). Now the test statistic Θ
(s)
κ,(n,m) defined in (13),

which involves the computation of μκ{Ji(·, ·;Cn −Dm) for each i ∈ Es, will be
based on an approximation of Ji(·, ·;Cn − Dm) = Ji(·, ·;Cn) − Ji(·, ·;Dm) on
a K × K grid of [0, 1]2 for K ∈ N taken large enough to ensure a satisfactory
numerical accuracy. Specifically, consider the product intervals

Ak1,k2 =

(
k1
K ,

k1 + 1

K

]
×
(
k2
K ,

k2 + 1

K

]
, k1, k2 ∈ {1, . . . ,K},

and let uk = (k − 1/2)/K for k ∈ {1, . . . ,K}. Then, define Z(i),W (i) ∈ RK×K

such that Z
(i)
k1,k2

= Ji(uk1 , uk2 ;Cn) and W
(i)
k1,k2

= Ji(uk1 , uk2 ;Dm), so that

Ji(u1, u2;Cn) ≈
K∑

k1,k2=1

Z
(i)
k1,k2

I {(u1, u2) ∈ Ak1,k2}

and Ji(u1, u2;Dm) ≈
K∑

k1,k2=1

W
(i)
k1,k2

I {(u1, u2) ∈ Ak1,k2} .

From the definition of μκ in (10), an easily computable approximation is

Θ
(s)
κ,(n,m) ≈ max

i∈Es

⎧⎨⎩ 1

K2

K∑
k1,k2=1

(
Z

(i)
k1,k2 −W

(i)
k1,k2

)κ
+

⎫⎬⎭
1/κ

.

5.3. User-friendly formulas for the multiplier versions

First define the column vector ICk1,k2
= (IC1,k1,k2

, . . . , ICn,k1,k2
)� such that for each

(k1, k2) ∈ {1, . . . ,K}2 and i ∈ {1, . . . , n},

ICi,k1,k2
= I(Ûi1 ≤ uk1 , Ûi2 ≤ uk2)− Ċn1(uk1 , uk2) I(Ûi1 ≤ uk1)

− Ċn2(uk1 , uk2) I(Ûi2 ≤ uk2).

One can then write Ĉn compactly as Ĉn(uk1 , uk2) = Ξ ICk1,k2
/
√
n, with Ξ =

(Ξ1, . . . ,Ξn). Then, letting Ẑ
(i)
k1,k2

= Ji(uk1 , uk2 ; Ĉn), one has Ẑ
(1,1)
k1,k2

=

Ĉn(uk1 , uk2), and in view of (5), one obtains recursively

Ẑ
(2,1)
k1,k2

=

∫ uk1

0

Ĉn(x1, uk2) dx1 ≈ 1

K

K∑
�=1

I (u� ≤ uk1) Ẑ
(1,1)
�,k2

and Ẑ
(1,2)
k1,k2

=

∫ uk2

0

Ĉn(uk1 , x2) dx2 ≈ 1

K

K∑
�=1

I (u� ≤ uk2) Ẑ
(1,1)
k1,�

,
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and so on. For instance, one obtains

Ẑ
(2,2)
k1,k2

≈ 1

K2

K∑
�1,�2=1

I (u�1 ≤ uk1 , u�2 ≤ uk2) Ẑ
(1,1)
�1,�2

.

One proceeds similarly for Ŵ
(i)
k1,k2

= Ji(uk1 , uk2 ; D̂m) by letting

IDi,k1,k2
= I(V̂i1 ≤ uk1 , V̂i2 ≤ uk2)− Ḋm1(uk1 , uk2) I(V̂i1 ≤ uk1)

− Ḋm2(uk1 , uk2) I(V̂i2 ≤ uk2),

and for a set of (rescaled) multipliers Γ = (Γ1, . . . ,Γm) independent of Ξ,

D̂m(uk1 , uk2) = Γ IDk1,k2
/
√
m, where IDk1,k2

= (ID1,k1,k2
, . . . , IDm,k1,k2

)�. An ap-

proximation of Θ̂
(s)
κ,(n,m) is finally obtained by letting

Θ̂
(s)
κ,(n,m) ≈ max

i∈Es

⎧⎨⎩ 1

K2

K∑
k1,k2=1

(√
1− ωn,m Ẑ

(i)
k1,k2

−√
ωn,m Ŵ

(i)
k1,k2

)κ
+

⎫⎬⎭
1/κ

.

6. Sampling properties of the tests of s-concordance orderings

6.1. Preliminaries

The ability of the tests of (1, 1)-concordance and (2, 2)-concordance orderings to
keep their nominal 5% level, as well as their power against selected alternatives,
is studied in this section. The test statistics that will be investigated are those
based on the functional μκ defined in (10) when κ ∈ {1, 2,∞}. While μ1 and μ2

are global distance measures of the Cramér–von Mises type,

μ∞(g) = sup
(u1,u2)∈[0,1]2

(g(u1, u2))+

is related to the Kolmogorov–Smirnov distance. These functionals are approxi-
mated on a grid of size K×K = 25×25, as described in subsections 5.2-5.3. For
all the results that will be presented, the probabilities of rejection of the null
hypothesis have been estimated from 1 000 replicates, each based on B = 1 000
multiplier bootstrap samples. The estimation of the partial derivatives Ċ1, Ċ2,
Ḋ1 and Ḋ2 are based on a finite-difference estimator. Explicitly, the estimator
of Ċ1 is given for bn = b/

√
n, with b ∈ N, by

Ċn1(u1, u2) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Cn(2bn, u2)

2bn
, if u1 < bn;

Cn (u1 + bn, u2)− Cn (u1 − bn, u2)

2bn
, if bn ≤ u1 ≤ 1− bn;

Cn(1, u2)− Cn(1− 2bn, u2)

2bn
, if u1 > 1− bn,

and similarly for Ċn2, Ḋm1 and Ḋm2; in the sequel, b = 1.



New concordance orderings and tests 2411

6.2. Tests of (1, 1)-concordance ordering in the i.i.d. case

One first considers the size and power of the tests of concordance ordering, i.e. of

H(1,1)
0 against H(1,1)

1 , under the i.i.d. setup where one is willing to assume serial
independence in both time series. In that case, the multiplier random variables
can be taken i.i.d., i.e. �n = �m = 1, and Exponential with mean 1. The results
on the estimated probabilities of rejection of the null hypothesis are found in
Table 3 for (n,m) ∈ {(100, 100), (100, 200), (200, 200)}.

The four scenarios in the upper part of Table 3 are under the null hypothesis.
In the case of the first two scenarios, i.e. when C and D are normal copulas, the
null hypothesis holds strictly in the sense that C = D; in that case, the three
tests are rather good at holding their 5% nominal level, except for small sample
sizes (n = m = 100) and a high level of dependence (τC = τD = 2/3). The other

two scenarios are cases where H(1,1)
0 holds, but not strictly, i.e. C �= D; it is

therefore not surprising that the probabilities of rejection are far below the 5%
nominal level of the tests.

All the other entries in Table 3 are obtained under the alternative hypothesis.

Overall, the power is an increasing function of the departure from H(1,1)
0 as

measured by Θ
(1,1)
∞,(C,D). However, when the value of Θ

(1,1)
∞,(C,D) is small (say <

.02), the power is often below the nominal level. Otherwise, the power of the
three tests is very good and increases with the sample sizes, a consequence of
their asymptotic consistency. It is hard to identify a statistic that is uniformly
the best, but the tests based on μ1 and μ2 are generally preferable to that using
μ∞. The test based on μ2 is generally the most powerful when D is a Clayton
copula, and that using μ1 is the best when D is Plackett.

6.3. Tests of (2,2)-concordance ordering in the i.i.d. case

A study similar to that presented in subsection 6.2 has been conducted for test-

ing H(2,2)
0 against H(2,2)

1 . Since ��
(1,1)−�o implies ��

(2,2)−�o, only the scenarios for

which �(1,1)−�o, as identified in Table 1, have been considered . The results on
the estimated probabilities of rejection of the null hypothesis are found in Ta-
ble 4. First note that the four scenarios in the upper part of Table 4 concern non
strict null hypotheses, i.e. situations where C �= D; this explains why the prob-
abilities of rejection are below the 5% nominal level in that case. The remaining

six entries in the bottom part of Table 4 correspond to scenarios under H(2,2)
1 .

As expected, the power of the tests increases with the sample sizes, as well as

according to the value of Θ
(2,2)
∞,(C,D). Here, the test based on the functional μ∞

is clearly the most powerful against all kinds of alternatives.

6.4. Size and power under Gaussian serial dependence

When there is temporal dependence between the observations, one has to rely
on the serial multiplier method. In the sequel, one follows Bücher and Rup-
pert (2013) and let (ζj)j∈Z be a process of independent Gamma(q, q) ran-
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Table 3. Percentages of rejection, as estimated from 1 000 replicates, of the tests for the (1, 1)-concordance ordering hypothesis based on Θ
(1,1)
1,(n,m)

,

Θ
(1,1)
2,(n,m)

and Θ
(1,1)
∞,(n,m)

under the i.i.d. setup involving the Normal (N), Clayton (C�), Gumbel (Gu) and Plackett (P�) copulas

Scenario n = 100, m = 100 n = 100, m = 200 n = 200, m = 200

C τC D τD Θ
(1,1)
∞,(C,D)

Θ
(1,1)
1,(n,m)

Θ
(1,1)
2,(n,m)

Θ
(1,1)
∞,(n,m)

Θ
(1,1)
1,(n,m)

Θ
(1,1)
2,(n,m)

Θ
(1,1)
∞,(n,m)

Θ
(1,1)
1,(n,m)

Θ
(1,1)
2,(n,m)

Θ
(1,1)
∞,(n,m)

N 1/3 N 1/3 0 5.1 4.4 3.6 5.5 5.1 3.3 3.6 3.4 2.6
N 2/3 N 2/3 0 2.2 2.2 1.9 4.1 4.2 3.7 3.3 3.6 2.8

P� .35 C� 2/3 0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Gu .15 P� 2/3 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N .40 N 1/3 .0167 20.8 18.5 11.8 25.9 23.0 15.9 27.4 25.2 18.8
N .60 N 1/3 .0666 95.1 93.2 79.4 99.3 98.8 92.9 100.0 100.0 97.3

Gu .40 C� 1/3 .0469 24.6 28.0 23.6 31.9 39.7 39.2 46.2 57.6 55.1
Gu .60 C� 1/3 .0861 95.9 95.8 90.2 98.8 99.2 97.9 100.0 100.0 99.7
Gu .40 C� 2/3 .0169 0.0 0.0 0.3 0.0 0.0 0.3 0.0 0.0 0.4
Gu .60 C� 2/3 .0362 2.0 5.5 9.1 2.7 8.2 16.8 4.1 16.2 29.4
Gu .80 C� 2/3 .0615 85.0 89.7 72.5 97.7 98.9 96.0 99.6 99.9 99.1

P� .40 C� 1/3 .0376 22.3 25.6 21.2 32.4 37.9 35.0 37.6 44.5 42.4
P� .60 C� 1/3 .0847 94.7 95.5 90.8 98.2 98.8 97.6 99.8 100.0 100.0
P� .40 C� 2/3 .0006 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
P� .60 C� 2/3 .0208 0.9 2.3 4.7 1.5 3.4 7.5 2.0 4.2 9.2
P� .80 C� 2/3 .0549 69.3 77.2 63.1 86.9 94.3 91.2 94.7 98.3 96.7

Gu .40 P� 1/3 .0262 18.6 15.3 9.5 23.4 19.7 13.3 25.9 21.8 13.8
Gu .60 P� 1/3 .0635 93.8 91.1 75.3 98.2 97.9 90.3 100.0 100.0 97.6
Gu .40 P� 2/3 .0031 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Gu .60 P� 2/3 .0105 0.1 0.0 0.3 0.3 0.3 0.4 0.1 0.2 0.7
Gu .80 P� 2/3 .0305 66.5 51.9 22.1 89.2 81.5 49.4 95.6 92.4 60.5
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Table 4. Percentages of rejection, as estimated from 1 000 replicates, of the tests for the (2, 2)-concordance ordering hypothesis based on Θ
(2,2)
1,(n,m)

,

Θ
(2,2)
2,(n,m)

and Θ
(2,2)
∞,(n,m)

under the i.i.d. setup involving the Gumbel (Gu) and Plackett (P�) copulas

Scenario n = 100, m = 100 n = 100, m = 200 n = 200, m = 200

C τC D τD Θ
(2,2)
∞,(n,m)

Θ
(2,2)
1,(n,m)

Θ
(2,2)
2,(n,m)

Θ
(2,2)
∞,(n,m)

Θ
(2,2)
1,(n,m)

Θ
(2,2)
2,(n,m)

Θ
(2,2)
∞,(n,m)

Θ
(2,2)
1,(n,m)

Θ
(2,2)
2,(n,m)

Θ
(2,2)
∞,(n,m)

Gu .33 C� 1/3 0 0.2 0.6 3.3 0.2 0.5 2.2 0.3 0.6 4.7
Gu .66 C� 2/3 0 0.0 0.3 3.0 0.0 0.0 1.3 0.0 0.0 2.9

Gu .25 P� 1/3 0 0.4 0.3 0.5 0.1 0.1 0.2 0.1 0.1 0.2
Gu .58 P� 2/3 0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0

Gu .60 C� 1/3 .0258 55.6 75.5 95.3 66.6 84.2 97.5 87.8 96.4 99.8
Gu .80 C� 1/3 .0387 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Gu .80 C� 2/3 .0080 10.4 33.8 80.8 4.6 24.5 71.6 29.8 71.6 97.8

Gu .60 P� 1/3 .0258 81.7 87.5 94.8 86.2 89.9 96.5 97.9 98.8 99.8
Gu .80 P� 1/3 .0387 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Gu .80 P� 2/3 .0086 46.9 54.8 75.9 42.6 51.6 66.2 80.0 84.8 96.7
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dom variables with q = (2�n − 1)−1, where the bandwidth parameter is set
to �n = �1.1n1/4�. Then, for each j ∈ {1, . . . , n}, one defines ξj as the mean of
ζj−�n+1, . . . , ζj+�n−1. One proceeds similarly for the second sample of size m.

The results reported in the upper part of Table 5 have been obtained for
serial data generated from the lag-1 Gaussian autoregressive process

(Xt1, Xt2) = θ(Xt−1,1, Xt−1,2) +
√

1− θ2(εt1.εt2),

where θ ∈ (−1, 1) and (εt1, εt2)t∈Z is a process of centred independent Normal
pairs with unit variances and correlation ρ ∈ (−1, 1). The middle part of Table 5
concerns the Gaussian moving-average process of order one defined by

(Xt1, Xt2) =
θ(εt−1,1, εt−1,2) + (εt1, εt2)√

1− θ2
.

These processes are stationary and parameterized in such a way that the copula
of (Xt1, Xt2) is Normal with parameter ρ. The level of dependence of the gen-
erated time series is managed by the value of Kendall’s tau via the well-known
relationships ρC = sin(πτC/2) and ρD = sin(πτD/2). Only the results when
τD = 1/3 are presented, since those when τD = 2/3 lead to similar conclusions.
For comparison purposes, the results that have been already obtained under
serial independence are reported here in the bottom part of Table 5.

Overall, the results are very similar to those in Table 3 in the case of i.i.d.
data. In particular, if one looks at the cases when θ = 0, there is no price to pay in
terms of size and power by wrongly assuming serial dependence. When τC = 1/3,

the null hypothesis H(1,1)
0 holds strictly; in that case, the three tests keep their

5% nominal level well, whatever the kind and level of serial dependence. This
is an indication that the serial multiplier method is good at replicating the
behavior of the test statistics under the null hypothesis.

6.5. Comparisons with a test of s-increasing convex order

Suppose a setup of fixed marginals, i.e. of pairs (X1, X2) and (Y1, Y2) that be-
long to the same Fréchet class of bivariate distributions with margins F1, F2. In
that case, according to Proposition 2.1 (ii), the s-increasing convex dominance
of (−Y1,−Y2) over (−X1,−X2) entails that (X1, X2) ��

s−�o (Y1, Y2) as long
as F1 is s1-concave and F2 is s2-concave. Therefore, if in practice one is will-
ing to assume these constraints on the marginal distributions, simplified tests
for Hs

0 against Hs
1 could be based on the observations themselves, and not on

their ranks, as is mandatory when working at the level of copulas. This proce-
dure would avoid the estimation of the partial derivatives of copulas due to the
fact that these terms are missing in the (simpler) asymptotic expression of the
limit.

Specifically, suppose that the goal is to test for H̃s
0 : (−X1,−X2) �s−ICX

(−Y1,−Y2) against H̃s
1 : (−X1,−X2) �s−ICX (−Y1,−Y2). To this end, let

(X11, X12), . . . , (Xn1, Xn2) and (Y11, Y12), . . ., (Ym1, Ym2) be realizations of the
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Table 5. Percentages of rejection, as estimated from 1 000 replicates, of the tests for the (1, 1)-concordance ordering hypothesis based on Θ
(1,1)
1,(n,m)

,

Θ
(1,1)
2,(n,m)

and Θ
(1,1)
∞,(n,m)

under an autoregressive Gaussian process of order one (upper panel) and a moving-average Gaussian process of order one

(bottom panel) when τD = 1/3

Scenario n = 100, m = 100 n = 100, m = 200 n = 200, m = 200

Serial parameter τC Θ
(1,1)
1,(n,m)

Θ
(1,1)
2,(n,m)

Θ
(1,1)
∞,(n,m)

Θ
(1,1)
1,(n,m)

Θ
(1,1)
2,(n,m)

Θ
(1,1)
∞,(n,m)

Θ
(1,1)
1,(n,m)

Θ
(1,1)
2,(n,m)

Θ
(1,1)
∞,(n,m)

θ = 0
1/3 5.9 5.8 5.5 7.2 6.7 5.8 5.5 5.0 4.4
.40 18.5 18.7 14.0 25.4 24.3 16.9 31.8 28.8 18.7
.60 96.1 93.8 79.0 99.2 99.0 93.8 100.0 99.9 98.0

θ = 1/4
1/3 6.4 5.5 4.3 6.8 6.6 5.2 5.7 6.1 4.2
.40 19.2 17.4 11.1 23.8 21.9 14.9 30.6 27.3 18.9
.60 95.2 93.3 77.3 99.1 98.6 92.6 100.0 100.0 97.4

θ = 1/2
1/3 6.4 6.2 4.0 6.4 5.9 4.1 5.8 5.2 3.3
.40 18.9 16.8 10.0 23.0 19.8 12.0 25.9 23.7 15.1
.60 91.1 88.7 63.4 97.0 95.9 84.0 99.2 99.0 91.9

θ = 0
1/3 6.0 5.7 5.0 7.6 7.0 6.4 5.7 5.5 4.0
.40 21.1 19.5 13.2 24.9 22.1 16.3 32.3 27.6 19.7
.60 96.8 95.1 79.0 99.8 99.5 94.0 100.0 99.9 98.5

θ = 1/4
1/3 6.5 6.3 4.4 5.3 4.7 3.6 7.1 7.1 4.5
.40 20.4 17.8 11.3 23.9 22.4 14.3 29.1 25.5 17.8
.60 94.8 92.3 73.9 98.7 98.0 91.6 100.0 100.0 97.4

θ = 1/2
1/3 6.1 5.8 4.7 7.9 7.7 4.0 5.0 4.5 3.7
.40 20.4 19.6 11.0 22.1 20.8 13.3 29.2 26.7 17.4
.60 92.7 90.1 73.3 97.3 96.0 88.8 99.6 99.4 95.3

θ = 0, �n = �m = 1
1/3 5.1 4.4 3.6 5.5 5.1 3.3 3.6 3.4 2.6
.40 20.8 18.5 11.8 25.9 23.0 15.9 27.4 25.2 18.8
.60 95.1 93.2 79.4 99.3 98.8 92.9 100.0 100.0 97.3
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strongly stationary α-mixing processes (Xt1, Xt2)t∈Z and (Yt1, Yt2)t∈Z both tak-
ing values in [a1, b1]×[a2, b2]. One then has that (−X1,−X2) �s−ICX (−Y1,−Y2)

if and only if (1−X̃1, 1−X̃2) �s−ICX (1−Ỹ1, 1−Ỹ2), where X̃j = (Xj−aj)/(bj−
aj) ∈ [0, 1] and Ỹj = (Yj − aj)/(bj − aj) ∈ [0, 1]. It is indeed the case since the

mapping from −Xj to 1 − X̃j is linear increasing. What it means is that the

procedure developed for testing ��
s−�o can be performed on the pairs (X̃i1, X̃i2)

and (Ỹi1, Ỹi2) instead of the pairs of standardized ranks (Ûi1, Ûi2) and (V̂i1, V̂i2).
However, the multiplier method has to be performed by removing the part in-
volving the partial derivatives.

In order to evaluate how such an alternative procedure performs, some sim-
ulations have been made when s = (1, 1) and s = (2, 2) in case the marginal
distribution is the Beta(1,3); the latter has a decreasing density, hence is 2-
concave. For simplicity, only the functional μ∞ has been considered and the
corresponding test statistics is noted Θ̃s

∞,(n,m). The results are found in Ta-
ble 6, where for the sake of comparison, the corresponding results for Θs

∞,(n,m)

extracted from Table 3 and Table 4, have been reproduced.
Looking at Table 6, one first notes that the test based on Θ̃s

∞,(n,m) holds

its 5% nominal level rather well. However, somewhat surprisingly, the test
based on Θs

∞,(n,m) is much more powerful than its counterpart derived un-
der additional assumptions on the marginals. A more detailed investigation
of tests of s-increasing convex ordering would be worth of interest. Neverthe-
less, based on these simulation results, it seems that bringing more information
about the marginal distributions do not transfer into a more powerful proce-
dure.

7. Illustrations on real data

7.1. Adaptation of the methodology for stochastic comparisons
within the same multivariate population

The statistical methodology developed in this work can easily be adapted for the
comparison of two pairs (Xj , Xk) and (Xj′ , Xk′) that come as marginals of a d-
variate random vector X = (X1, . . . , Xd) with continuous marginals F1, . . . , Fd.
If K : [0, 1]d → [0, 1] is the unique copula of X, then C(u1, u2) = K(u(jk)) and
D(u1, u2) = K(u(j′k′)), where

u
(jk)
� =

⎧⎨⎩ u1, � = j;
u2, � = k;
1, otherwise.

In that context, the copula estimators are respectively Cn(u1, u2) = Kn(u
(jk))

and Dn(u1, u2) = Kn(u
(j′k′)), where Kn is the d-dimensional empirical copula

computed from X1, . . . ,Xn. According to Bücher and Volgushev (2013), as long
as K is regular, i.e. K̇� = ∂K/∂u� exists and is continuous on {u ∈ [0, 1]d : 0 <
u� < 1} for each � ∈ {1, . . . , d}, and under the same α-mixing conditions than
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Table 6. Percentages of rejection, as estimated from 1 000 replicates, of the tests for the (1, 1)-concordance ordering (upper panel) and the lower

orthant (2, 2)-concordance ordering (bottom panel) of Θs
∞,(n,m)

and of the modified test based on Θ̃s
∞,(n,m)

under Beta(1,3) marginal distributions

Scenario n = 100, m = 100 n = 100, m = 200 n = 200, m = 200

C τC D τD Θs
∞,(C,D)

Θs
∞,(n,m)

Θ̃s
∞,(n,m)

Θs
∞,(n,m)

Θ̃s
∞,(n,m)

Θs
∞,(n,m)

Θ̃s
∞,(n,m)

N 1/3 N 1/3 0 3.6 5.0 3.3 5.9 2.6 4.3
N 2/3 N 2/3 0 1.9 6.1 3.7 5.1 2.8 5.4

Gu .40 C� 1/3 .0469 23.6 14.8 39.2 15.2 55.1 18.3
Gu .60 C� 1/3 .0861 90.2 27.1 97.9 35.7 99.7 46.0
Gu .40 C� 2/3 .0169 0.3 4.2 0.3 3.9 0.4 4.0
Gu .60 C� 2/3 .0362 9.1 9.4 16.8 10.2 29.4 8.9
Gu .80 C� 2/3 .0615 72.5 15.3 96.0 17.6 99.1 22.1

Gu .33 C� 1/3 0 3.3 6.7 2.2 6.7 4.7 6.6
Gu .66 C� 2/3 0 3.0 6.7 1.5 5.9 2.9 7.7

Gu .60 C� 1/3 .0258 95.7 12.4 97.5 12.8 99.8 16.5
Gu .80 C� 1/3 .0387 100.0 14.6 100.0 16.9 100.0 21.1
Gu .80 C� 2/3 .0080 80.8 6.0 71.6 8.2 97.8 9.1
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those in Proposition 4.1, the empirical process Kn =
√
n(Kn − K) converges

weakly in the space �∞([0, 1]d) to a limit of the form

K(u) = BC(u)−
d∑

�=1

K̇�(u)BC(u
(�)).

In this expression, BC is a Gaussian process on [0, 1]d with mean zero such that
for U� = (F1(X�1), . . . , Fd(X�d)), the covariance function of BC is

ΓBC
(u,u′) =

∑
�∈Z

cov {I(U0 ≤ u), I(U� ≤ u′)} .

One can then derive an adapted version of Proposition 4.1. A multiplier version
of Kn based on a serial multiplier sample ξ can be defined in the same line
as those for Cn and Dm; the counterpart of Proposition 5.1 is straightforward
to obtain. From an implementation perspective, the only necessary adjustment
consists in using the same multiplier sample ξ for both datasets of n pairs.

7.2. Cook & Johnson’s Uranium exploration data

The Uranium exploration dataset has been first considered by Cook and Johnson
(1981, 1986). It consists of concentrations of seven chemical elements measured
on n = 655 water samples collected from the Montrose quadrangle of western
Colorado (USA). All these samples are independent from each other. The fol-
lowing analyses will focus on four of these variables, namely Potassium (K),
Caesium (Cs), Scandium (Sc) and Titanium (Ti).

The histograms and the scatterplots, both of the original data X1, . . . ,X655

and of the standardized ranks Û1, . . . , Û655, are found in Figure 1. Looking
at the histograms of the four variables, it is clear that they are marginally
quite different. Hence, if the goal is to perform stochastic comparisons among
some of the pairs, it cannot reasonably be assumed that they belong to the
same Fréchet class. The s-concordance orderings, which assume nothing on the
marginal distributions (apart from being continuous, which is the case here),
are therefore well-suited for these data.

The first analysis concerns the stochastic comparison of (Cs,Ti) with (K,Cs)
using the adapted methodology of subsection 7.1 with K = 25 and B = 10, 000
i.i.d. multiplier samples; the estimation of the partial derivatives is done by
letting b = 1, since the tests performed with b = 3 yielded very similar values.
If one looks at Figure 1, it seems that (Cs,Ti) ��

(1,1)−�o (K,Cs) cannot hold;
this is confirmed by the results of the tests that are found in Table 7 when
s = (1, 1). This is also confirmed, to a certain extent, by the values of the
empirical Kendall’s tau, namely τn(Cs,Ti) = .279 and τn(K,Cs) = .200.

Nevertheless, their dependence structures can somewhat be ordered if one
looks at other levels. Hence, while the ordering ��

(2,1)−�o is still rejected, the

null hypotheses H(1,2)
0 and H(2,2)

0 are accepted at the 5% level by the tests based
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Fig 1. Histograms (diagonal) and scatterplots of the original data (upper triangle) and of
their associated standardized ranks (lower triangle) for chemical elements K, Cs, Sc and Ti
in the Uranium exploratory dataset

Table 7

P-values (in %) as estimated with B = 10, 000 multiplier bootstrap samples for the
stochastic comparisons of pairs in the Uranium exploratory dataset

Comparison s Θ
(s)
1,(n,m)

Θ
(s)
2,(n,m)

Θ
(s)
∞,(n,m)

(Cs,Ti) ��
s−�o (K,Cs)

(1,1) .4 .1 <.001
(2,1) 2.1 .8 <.001
(1,2) 11.4 5.1 .2
(2,2) 10.9 10.0 1.0

(Cs,Ti) ��
s−�o (Cs,Sc)

(1,1) <.001 <.001 <.001
(2,1) <.001 <.001 <.001
(1,2) 8.7 4.1 .7
(2,2) 13.4 5.5 .1

on the functionals μ1 and μ2; these hypotheses are however rejected by the test
based on μ∞. In view of the link between the lower orthant (2,2)-concordance
ordering and conditional Spearman’s rho established in subsection 3.3, this sug-
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gests that the dependence level of (K,Cs), as measured by Spearman’s rho, can
be larger than that of (Cs,Ti), and vice versa, when one restricts to some lower
corners of [0, 1]2. Replacing C with Cn and developing formula (8) yields

ρ̂Spuk1
,uk2

(X1, X2) =
12Z

(2,2)
k1,k2

− 3u2
k1
u2
k2

2(uk1 ∧ uk2){3uk1uk2 − (uk1 ∧ uk2)} − 3u2
k1
u2
k2

as an empirical Spearman’s rho conditioned on [0, uk1 ] × [0, uk2 ], with uk =
(k−1/2)/K. The top panel of Figure 2 shows ρ̂Spuk1

,uk2
(K,Cs)− ρ̂Spuk1

,uk2
(Cs,Ti).

It can be seen that for u1 ≤ .7, say, Spearman’s rho is larger for (K,Cs) compared
to (Cs,Ti), often significantly (curve above 0); in the complementary region, it
is for (Cs,Ti) that Spearman’s rho is larger (curve below 0), but by a much less
amount. These features could have been anticipated from the results of the tests
when s = (2, 2). That the test based on μ∞ has rejected the null hypothesis of a
(2, 2)-concordance ordering may be explained by the fact that this functional can
be strongly influenced by local discrepancies, while μ1, μ2 are global distances.

Fig 2. 3d-Plots of the difference between conditional Spearman’s rho of (K,Cs) and (Cs,Ti)
(top) and of the difference between conditional Spearman’s rho of (K,Cs) and (Cs,Ti) (bottom)
in the Uranium exploratory dataset

The pair (Cs,Ti) has also been stochastically compared to (Cs,Sc); the results
in Table 7 are similar to those of the previous analysis. Thus, while the null
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hypothesis (Cs,Ti) ��
(1,1)−�o (Cs,Sc) is clearly rejected, there is nevertheless

some sort of ordering at the level of conditional measures of association like
Spearman’s rho that can be clearly observed on the bottom panel of Figure 2.

7.3. Evolution of exchange rates

Another illustration concerns the n = 228 exchange rates of the Euro (EUR),
Canada (CAN), Australia (AUS), New Zealand (NZE) and Japan (JAP) cur-
rencies as measured monthly with respect to US dollar between January 1999
and December 2017. The five time series are found at the top of Figure 3 (Japan
currency has been divided by 100). The series are clearly not marginally station-
ary; however, since the lag-1 differentiated series are reasonably stationary (see
bottom of Figure 3), the latter will be considered for the upcoming analyses.

Fig 3. Time series of the exchange rates of Euro, Canada, Australia, New Zealand and Japan
currencies with respect to US dollard between January 1999 and December 2017 (top) and
lag-1 differentiated series (bottom)

A look at the scatterplots of the lag-1 differentiated time series shown in the
lower triangle of Figure 4 indicates a possible radial symmetry structure; this is
confirmed by the test of radial symmetry of Bahraoui and Quessy (2017), where
based on 1,000 multiplier samples, the test’s p-value is estimated to 21,2%; note
however that the test assumes serial independence (to date, no test exists to
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deal with that situation). Radial symmetry means that the orderings ��
s−�o

and ��
s−uo between two-pairs are equivalent. Because the relationship of Japan

with other currencies is quite low, except maybe with the Australian currency,
the former has been excluded of the following analysis; these low dependence
levels can be seen from the values of Kendall’s tau, i.e. τn(EUR, JAP) = 0.341,
τn(CAN, JAP) = 0.152, τn(AUS, JAP) = 0.226 and τn(NZE, JAP) = 0.165.

Fig 4. Histograms (diagonal) and scatterplots of the original data (upper triangle) and of
their associated standardized ranks (lower triangle) for the lag-1 differentiated exchange rates
of five currencies (Euro, Canada, Australia, New Zealand and Japan) with respect to US
dollar between January 1999 and December 2017

The results of the test based on Θ
(s)
∞,(n,m) for each of the six possible com-

parisons of non-overlapping pairs of (EUR,CAN,AUS,NZE) are presented in
Table 8. Here, the number of serial multiplier samples, as described in subsec-
tion 6.4, has been set to B = 1, 000 with �n = �1.1 × 2281/4� = 4. One of the
conclusions is that the pair (AUS,NZE) significantly dominates (EUR,CAN) at
the 5% level according to (1, 1)-concordance; this feature was expected from
the respective scatterplots of standardized ranks in Figure 4. A similar conclu-
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sion can be made about the dominance of (CAN,NZE) over (EUR,AUS), and
of (CAN,AUS) over (EUR,NZE); in these cases, however, the use of a formal
test prove crucial, since the conclusion could hardly be based on looking at the
scatterplots only.

Table 8

P-values (in %) of the test based on Θ
(s)
∞,(n,m)

as estimated with B = 1, 000 serial multiplier

bootstrap samples for the stochastic comparisons of pairs of non-overlapping currencies

X Y ��
(1,1)−�o

��
(2,1)−�o

��
(1,2)−�o

��
(2,2)−�o

(EUR,CAN) (AUS,NZE) 100 100 100 96.3
(EUR,AUS) (CAN,NZE) 56,4 35.1 43.5 35.5
(EUR,NZE) (CAN,AUS) 98.0 91.7 95.5 94.2
(CAN,AUS) (EUR,NZE) 4.3 6.9 1.5 2.7
(CAN,NZE) (EUR,AUS) 2.9 4.5 4.2 2.3
(AUS,NZE) (EUR,CAN) <.001 <.001 <.001 <.001

8. Discussion

In this paper, a new family of stochastic orders that allow for marginal-free
comparisons between random pairs have been introduced; these orders general-
ize the usual concordance ordering. The construction of this hierarchical family
of orders is rooted around the concept of s-increasing convex orders computed
at the level of the copula that uniquely characterizes the dependence in a ran-
dom couple. It has been shown, in particular, how these orders are related to
Spearman’s measure of association. Also, a complete set of statistical tools has
been developed to formally assess the stochastic dominance of a random pair on
another pair; the proposed framework is quite general, as it allows for serially
dependent data, and can also accommodate the case when the two pairs are
subvectors drawn from the same multivariate population.

The analysis performed on the classical Uranium exploration data is typical
of the information that can be extracted in a multivariate dataset when look-
ing from the point-of-view of s-concordance orders. Hence, while the proposed
statistical methodology has clearly discarded the usual concordance ordering
hypothesis for being too strong, it allowed to establish a relationship at the
level of the less restrictive order s = (2, 2); in turn, this can be interpreted as
the dominance of one pair on another at the level of conditional Spearman’s rho
when one restricts to some lower corners of [0, 1].

In a future investigation, it would be interesting to generalize the notions of
positive quadrant dependence (PQD) and negative quadrant dependence (NQD)
with respect to the new class of s-concordance orderings. Specifically, one could
define (X1, X2) to be s-PQD (resp. s-NQD) if (X⊥

1 , X⊥
2 ) ��

s−�o (X1, X2) (resp.

(X1, X2) ��
s−�o (X⊥

1 , X⊥
2 )), where (X⊥

1 , X⊥
2 ) is a copy of (X1, X2), but with

independent components. The statistical tools of Section 4 and Section 5 could
then be adapted in order to provide not only interesting extensions of the tests of
Scaillet (2005) and Gijbels, Omelka and Sznajder (2010) to s-PQD and s-NQD,
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but also provide new test statistics that are valid under serial data and/or when
the pairs are from the same multivariate population.

Another fruitful avenue of research would be to design an alternative boot-
strap procedure in order to ensure an exact asymptotic size for the tests. A prom-
ising way would be to adapt to the current context a bootstrap procedure pro-
posed by Linton, Song and Whang (2010) for testing univariate stochastic dom-
inance that improves the power of the tests by Barrett and Donald (2003).
Such a version for the tests developed in this work is, however, far from being
straightforward. In fact, since one is working at the level of copulas, the com-
plexity of the asymptotics is increased due to the use of ranks. In addition, the
methodology would have to be adapted to serial data.

Appendix A: Proofs of Properties 2.1, 2.2, 2.3 and 2.4

A.1. Proof of Property 2.1

For j = 1, 2, let F̄⊥
j (x) = P(−Xj > x) = P(Xj < −x) = Fj(−x); similarly,

let G⊥
j (x) = Gj(−x). By definition, (−X1,−X2) ��

s−�o (−Y1,−Y2) if and only

if (F̄⊥
1 (−X1), F̄

⊥
2 (−X2)) �s−ICX (Ḡ⊥

1 (−Y1), Ḡ
⊥
2 (−Y2)). This is equivalent to

(F1(X1), F2(X2)) �s−ICX (G1(Y1), G2(Y2)), which is exactly the definition of
(X1, X2) ��

s−uo (Y1, Y2).

A.2. Proof of Property 2.2

Given that �s−ICX is a hierarchic order, see Equation (2.21) of Denuit, Lefèvre
and Mesfioui (1999), the proof is straightforward.

A.3. Proof of Property 2.3

(i) First define Fψ
j (x) = P{ψ(Xj) ≤ x} for j ∈ {1, 2}. When ψj is strictly

increasing, it follows easily that F
ψj

j {ψj(Xj)} = Fj(Xj) and F̄
ψj

j {ψj(Xj)} =

F̄j(Xj), so that Definition 2.1 entails that (ψ1(X1), ψ2(X2)) ��
s (ψ1(Y1), ψ2(Y2))

if and only if (X1, X2) ��
s (Y1, Y2). This equivalence means that the s-con-

cordance ordering of two pairs depends only on their respective copulas. The
remaining of the proof is therefore straightforward, upon noting that:

(ii) when both ψ1 and ψ2 are decreasing, the copula of (ψ1(X1), ψ2(X2)) is the
same as that of (−X1,−X2).

(iii) when ψ1 is increasing and ψ2 is decreasing, the copula of (ψ1(X1), ψ2(X2))
is the same as that of (X1,−X2).

(iv) when ψ1 is decreasing and ψ2 is increasing, the copula of (ψ1(X1), ψ2(X2))
is the same as that of (−X1, X2).
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A.4. Proof of Property 2.4

If C is radially symmetric, (F̄1(X1), F̄2(X2)) and (F1(X1), F2(X2)) are equal in
distribution. As a consequence,

(X1, X2) ��
s−�o (Y1, Y2) ⇐⇒ (F̄1(X1), F̄2(X2)) �s−ICX (Ḡ1(Y1), Ḡ2(Y2))

⇐⇒ (F1(X1), F2(X2)) �s−ICX (G1(Y1), G2(Y2))

⇐⇒ (X1, X2) ��
s−uo (Y1, Y2).

Appendix B: Proofs of Propositions 2.1, 2.2, 4.1 and 5.1

B.1. Proof of Proposition 2.1

The proof turns around Property 4.1 of Denuit, Lefèvre and Mesfioui (1999) that
states that if φ1 is s1-convex and φ2 is s2-convex, then (X1, X2) �s−ICX (Y1, Y2)
entails (φ1(X1), φ2(X2)) �s−ICX (φ1(Y1), φ2(Y2)).

Lower orthant s-concordance

(i) By definition, (X1, X2) ��
s−�o (Y1, Y2) means that (F̄1(X1), F̄2(X2)) �s−ICX

(F̄1(Y1), F̄2(Y2)). Since by assumption, F−1
j is sj-concave, then −F̄−1

j (x) =

−F−1
j (1−x) is sj-convex. One concludes that (−X1,−X2) �s−ICX (−Y1,−Y2).

(ii) Since Fj is sj-concave, F̄j(−x) is sj-convex so that (−X1,−X2) �s−ICX

(−Y1,−Y2) entails (F̄1(X1), F̄2(X2)) �s−ICX (F̄1(Y1), F̄2(Y2)), or equivalently
(X1, X2) ��

s−�o (Y1, Y2).

Upper orthant s-concordance

(iii) By definition, (X1, X2) ��
s−uo (Y1, Y2) means that (F1(X1), F2(X2)) �s−ICX

(F1(Y1), F2(Y2)). The sj-convexity of F−1
j then entails (X1, X2) �s−ICX (Y1, Y2).

(iv) Since Fj is sj-convex, (X1, X2) �s−ICX (Y1, Y2) entails (F1(X1), F2(X2))
�s−ICX (F1(Y1), F2(Y2)), i.e. (X1, X2) ��

s−uo (Y1, Y2).

B.2. Proof of Proposition 2.2

Let u1, u2, a1, a2 ∈ [0, 1] and define, for i = (i1, i2) ∈ N2 and x+ = max(x, 0),

Oi(a1, a2;u1, u2) =
(u1 − a1)

i1−1
+

(i1 − 1)!
× (u2 − a2)

i2−1
+

(i2 − 1)!
.

Letting g(a1, a2) = I(a1 ≤ u1, a2 ≤ u2), one can show by induction that

Oi(a1, a2;u1, u2) = Ji(u1, u2; g).
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Now since (X1, X2) ��
s−�o (Y1, Y2) holds if and only if (F̄1(X1), F̄2(X2)) �s−ICX

(Ḡ1(Y1), Ḡ2(Y2)), Characterization 3.1 of Denuit, Lefèvre and Mesfioui (1999)
for the s-increasing convex order may be formulated as

E{Os(u1, u2; F̄1(X1), F̄2(X2))} ≤ E{Os(u1, u2; Ḡ1(Y1), Ḡ2(Y2))},
E{O(i1,s2)(0, u2; F̄1(X1), F̄2(X2))}≤E{O(i1,s2)(0, u2; Ḡ1(Y1), Ḡ2(Y2))} ∀i1<s1,

E{O(s1,i2)(u1, 0; F̄1(X1), F̄2(X2))}≤E{O(s1,i2)(u1, 0; Ḡ1(Y1), Ḡ2(Y2))} ∀i2<s2,

E{Oi(0, 0; F̄1(X1), F̄2(X2))} ≤ E{Oi(0, 0; Ḡ1(Y1), Ḡ2(Y2))} ∀i < s. (16)

Since Oi(u1, u2; F̄1(X1), F̄2(X2)) = Oi(F1(X1), F2(X2), 1−u1, 1−u2) for any i ≤
s, E

{
Oi(u1, u2; F̄1(X1), F̄2(X2))

}
= E {Oi(F1(X1), F2(X2); 1− u1, 1− u2)} =

Ji(1− u1, 1− u2;C). From the linearity of the integral, Ji(·, ·;C)−Ji(·, ·;D) =
Ji(·, ·;C −D), so that the inequalities in (16) can be written as

Js(u1, u2;C −D) ≤ 0,

J(i1,s2)(1, u2;C −D) ≤ 0, for i1 < s1,

J(s1,i2)(u1, 1;C −D) ≤ 0, for i2 < s2,

J(i1,i2)(1, 1;C −D) ≤ 0, for i < s.

Since J(1,i2)(1, u2;C−D) = J(i1,1)(u1, 1;C−D) = 0, the latter can be written as
in (6). For the characterization of the upper orthant s-concordance ordering, ob-
serve that (X1, X2) ��

s−uo (Y1, Y2) if and only if (−X1,−X2) ��
s−�o (−Y1,−Y2),

and that the copulas of (−X1,−X2) and (−Y1,−Y2) are, respectively, Ĉ and D̂.

B.3. Proof of Proposition 4.1

Under the conditions stated, Bücher and Volgushev (2013) obtained the weak
convergence in �∞([0, 1]2) of Cn =

√
n(Cn−C) to C; similarly, Dm =

√
m(Dm−

D) converges weakly to D. Strictly speaking, because the two samples are in-
dependent, these two convergences are simultaneous, i.e. the pair of processes
(Cn,Dm) converges to (C,D). From there,

L(i)
n,m =

√
nm

n+m
{Ji(·, ·;Cn −Dm)− Ji(·, ·;C −D)}

=

√
nm

n+m

{
Ji

(
·, ·; Cn√

n
− Dm√

m

)}
= Ji

(
·, ·;
√

m

n+m
Cn −

√
n

n+m
Dm

)
= Ji

(
·, ·;
√
1− ωn,m Cn −√

ωn,m Dm

)
,

where ωn,m = n/(n + m). Since the operator Ji is continuous, one can then

conclude that L(i)
n,m � L(i) = Ji(·, ·;

√
1− ωC − √

ωD). That this convergence

happens jointly for any i ∈ N2 is obvious from the definition of L(i)
n,m as a

functional of Cn −Dm.
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B.4. Proof of Proposition 5.1

Under the conditions stated, Bücher and Ruppert (2013) obtained that (Cn, Ĉn)

converges weakly to (C, C̃), where C̃ is an independent copy of C; similarly,

(Dm, D̂m) converges weakly to (D, D̃), where D̃ is an independent copy of D.
Strictly speaking, these two convergence results occur simultaneously. The re-
mainder of the proof would employ arguments very similar to those of Proposi-
tion 4.1, and therefore are omitted.
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Bücher, A. and Volgushev, S. (2013). Empirical and sequential empirical
copula processes under serial dependence. J. Multivariate Anal. 119 61–70.
MR3061415

Carrasco, M. and Chen, X. (2002). Mixing and moment properties of vari-
ous GARCH and stochastic volatility models. Econometric Theory 18 17–39.
MR1885348 (2002m:62119)
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