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Abstract: Current status data are commonly encountered in medical and
epidemiological studies in which the failure time for study units is the out-
come variable of interest. Data of this form are characterized by the fact
that the failure time is not directly observed but rather is known relative to
an observation time, i.e., the failure times are either left- or right-censored.
Due to its structure, the analysis of such data can be challenging. To cir-
cumvent these challenges and to provide for a flexible modeling construct
which can be used to analyze current status data, herein a partially lin-
ear additive transformation model is proposed. In the formulation of this
model, constrained B-splines are employed to model the monotone transfor-
mation function and nonparametric covariate effects. To provide for more
efficient estimators, a penalization technique is used to regularize the esti-
mation of all unknown functions. An easy to implement hybrid algorithm
is developed for model fitting, and a simple and consistent estimator of the
large-sample variance-covariance matrix for regression parameter estima-
tors is proposed. It is shown theoretically that the proposed estimators of
the finite-dimensional regression coefficients are root-n consistent, asymp-
totically normal, and achieve the semiparametric information bound, while
the estimators of the nonparametric components attain the optimal rate of
convergence. The finite-sample performance of the proposed methodology is
evaluated through extensive numerical studies and is further demonstrated
through the analysis of human papillomavirus (HPV) data.
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1. Introduction

Current status data are characterized by the fact that the failure/event time
cannot be directly measured, but rather is known relative to a single observa-
tion time. That is, the failure time is known to be smaller or larger than an
observation time leading to left- or right-censored data, respectively. Data of
this structure commonly arise as a part of medical and epidemiological studies,
among many others, in which study participants are observed only once due
to destructive/invasive testing, resource limitations, etc. For example, as part
of the National Health and Nutrition Examination Survey (NHANES), partic-
ipants were examined for the presence of the human papillomavirus (HPV).
In this study, HPV onset time could not be directly observed but was known
relative to the participant’s age at the examination time.

For the regression analysis of current status data, several parametric and
semiparametric methods have been proposed. In particular, many of these efforts
have focused on the proportional hazards (PH) [4] and proportional odds (PO)
models [5]; for a review see [11, 19, 26] and the references therein. To provide a
more general modeling framework, some researchers have developed estimation
techniques under linear transformation models [7, 10, 12, 27, 35, 37, 38]. A po-
tentially prohibitive assumption made in all of the aforementioned works is that
the covariate effects on the failure time are “linear”. To relax this assumption,
Ma and Kosorok [17] and Lu and McMahan [13] presented partially linear trans-
formation and PH models, respectively, for current status data. These works
allowed for the estimation of a single nonparametric effect, which could again
be limiting. To avoid this potential limitation, Cheng and Wang [2] developed a
semiparametric additive transformation model which allows for the estimation
of multiple nonparametric regression functions. To our knowledge, the work of
these authors is the most general model designed for the analysis of current
status data.

Motivated by the work of Cheng and Wang [2], herein we seek to develop a
flexible, easy to implement, and computationally efficient methodology which
can be used to conduct the regression analysis of current status data under
a partially linear additive transformation model. The proposed model makes
use of constrained B-splines to approximate all unknown functions, i.e., the
transformation and regression functions. In order to provide for more efficient
estimates and to largely circumvent the need to carefully specify the basis func-
tion representation, a penalization strategy is used to regularize the estimation
of the unknown functions. The novelty of our approach resides in the carefully
constructed form of the proposed model which leads to the development of a
computationally efficient and easy to implement hybrid algorithm for model
fitting. The uniqueness of this algorithm is that it determines all penalty pa-
rameters as a part of the model fitting process; thus obviating the need to
conduct a computationally expensive grid search to identify the same. Theoret-
ically, it is shown that the proposed estimators of the regressions coefficients,
which rely on the penalization and spline approximation technique, are asymp-
totically normal and efficient, i.e., they attain the semiparametric information
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bound. Moreover, we establish that the estimators of the nonparametric compo-
nents achieve the optimal rate of convergence for appropriately chosen order of
the smoothing parameters and knots of spline spaces. Moreover, the estimator of
the variance-covariance matrix of the estimated regression coefficients is shown
to be asymptotically consistent and its finite-sample performance is also eval-
uated. Further, through numerical studies we demonstrate that the proposed
methodology has better inferential and computational characteristics than the
method developed by Cheng and Wang [2] and Lu and McMahan [13], the only
existing, to our knowledge, competing approaches that are the most directly
comparable.

The remainder of this manuscript is organized as follows. In Section 2, we de-
velop a penalized partial linear additive transformation model for current status
data. In Section 3, we outline the details of our model and the hybrid algorithm.
In Section 4, we present the large-sample properties of the penalized estimators
and the estimator of the variance-covariance matrix of the estimated regres-
sion coefficients. In Section 5, we summarize the results of a simulation study
that was designed to examine the finite-sample performance of our approach.
In Section 6, we further illustrate our methodology by applying it to HPV data
collected as a part of the NHANES study. In Section 7, we conclude with a
summary discussion. Technical details and proofs of the asymptotic properties
are relegated to Appendix A and the additional results referenced in Sections 5
and 6 are available in Appendices B and D. Finally, the simulation results for
comparison between the proposed penalized approach and the regression spline
method of Lu and McMahan [13] are presented in Appendix C.

2. Model

Consider a study which examines n subjects for a failure time of interest. Let
Ti denote the time that the ith subject experiences the failure, for i = 1, ...., n.
To provide for modeling flexibility, we assume that Ti obeys a partially linear
additive transformation model which is given by

η(Ti) = −Zᵀ
i β −

J∑
j=1

ϕj(Wij) + εi, (1)

where η(·) is an unknown monotone increasing transformation function on (0,∞)
with η(0) = −∞ and εi is a random variable having cumulative distribution
function (CDF) H(·). In the above specification, β is a q-dimensional vector
of regression coefficients corresponding to the covariate Zi = (Zi1, ..., Ziq)

ᵀ and
ϕj(·) is an unknown smooth regression function taking the covariate Wij as its
argument, for j = 1, ..., J . Throughout, we assume that εi ⊥ εj , for i �= j, and
εi ⊥ Xi, where ⊥ denotes statistical independence andXi = (Zᵀ

i ,Wi1, ...,WiJ)
ᵀ.

This formulation provides for a very general modeling construct that holds sev-
eral popular models as special cases. For example, specifying H(·) to be the
CDF of the extreme value distribution causes (1) to reduce to the standard PH
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model, while taking H(·) to be the CDF of the standard logistic distribution
results in the PO model.

Under the assumed model, we note that the conditional CDF of Ti, given the
covariate vector Xi, can be expressed as

F (t|Xi) = g−1

⎧⎨⎩Zᵀ
i β + η(t) +

J∑
j=1

ϕj(Wij)

⎫⎬⎭ , (2)

where g(·) is a known, smooth, and strictly increasing link function on (0, 1).
Though equivalent to (1), the representation provided in (2) is more convenient
for reasons that will shortly become apparent. Here g(·) assumes the role of H(·)
with respect to determining the final form of the proposed model, e.g., specifying
g(x) = log{− log(1− x)} provides for the PH model and g(x) = log{x/(1− x)}
results in the PO model.

A key feature of current status data is that the failure times (i.e., Ti, for i =
1, . . . , n) are not directly observed but rather are known relative to observation
times, i.e., Ti is either left- or right-censored indicating that Ti occurred before or
after the observation time, respectively. To mathematically frame the structure
of this data, let Yi denote the observation time for the ith individual and let
Δi = I(Ti < Yi) denote the corresponding censoring indicator, where I(·) is
the usual indicator function. Note, Δi = 1(0) represents the event that the ith
individual’s failure time is left (right)-censored. Thus, the observed data consist
of {(Yi,Δi,Xi)}ni=1. Following the works of [16, 17, 18], we propose to estimate
the unknown parameters via the following penalized log-likelihood

lλ(τ ) =
n∑

i=1

[Δi logF (Yi|Xi) + (1−Δi) log{1−F (Yi|Xi)}]

− λ2
0

2
J 2(η)−

J∑
j=1

λ2
j

2
J 2(ϕj),

where τ = (β, η, ϕ1, ..., ϕJ) represents the collection of unknown model param-
eters, λ = (λ0, . . . , λJ)

ᵀ is a vector of smoothing parameters, such that λj ≥ 0
for all j, and

J 2(η) =

∫
{η(r)(t)}2dt, J 2(ϕj) =

∫
{ϕ(r)

j (Wj)}2dWj .

In the penalties above, η(r)(·) and ϕ
(r)
j (·) denote the rth derivative of η(·) and

ϕj(·), respectively, r ≥ 1. This penalized log-likelihood is derived under the
assumption that the covariates are time-invariant and that the failure and cen-
soring times are conditionally independent, given the covariates. These assump-
tions are common among the literature, e.g., see [1, 2, 17] and the references
therein.



A partially linear additive transformation model 2251

3. Estimation

3.1. Penalized spline log-likelihood

In general, estimating β, η(·) and ϕj(·) directly from the penalized log-likelihood
can be a tumultuous task. Thus, motivated by the works of [11, 17, 33], we pro-
pose to strike a balance between modeling flexibility and complexity by approx-
imating all unknown functions in (2) through the use of constrained B-splines
functions. In particular,

η(·) ≈ ηn(· |γ) =
p0∑
k=1

γkb0k(·) and ϕj(·) ≈ ϕnj(· |α∗
j ) =

pj∑
k=1

α∗
jkb

∗
jk(·),

where b0k(·) and b∗jk(·) are B-spline basis functions with unknown coefficients
γ = (γ1, . . . , γp0)

ᵀ and α∗
j = (α∗

j1, ..., α
∗
jpj

)ᵀ, respectively, 1 ≤ j ≤ J . Once a
knot set is chosen and the degree of the spline function is specified these basis
functions are uniquely determined; for further discussion see Schumaker [21].
To insure monotonicity of ηn(· |γ) we require that γ1 ≤ . . . ≤ γp0 ; see Theorem
5.9 of Schumaker [21]. It is important to note that other techniques of enforcing
the monotoncity constraint have been proposed but often lead to complex and
unreliable model fitting strategies, e.g., see Cheng and Wang [2].

As with all additive models, ϕj(·) is only identifiable up to an additive con-
stant. Thus, sum-to-zero constraints are imposed such that

∑n
i=1 ϕnj(Wji|α∗

j ) =
0, for 1 ≤ j ≤ J . For implementation purposes, the sum-to-zero constraints
can be expressed as B∗

j
ᵀα∗

j = 0, where B∗
j =

∑n
i=1 B

∗
ji, B

∗
ji = {b∗j1(Wji), . . . ,

b∗jpj
(Wji)}ᵀ, and α∗

j = (α∗
j1, ..., α

∗
jpj

)ᵀ. Motivated by Wood [30], the model is
reparameterized such that the constrained set of parameters α∗

j can be uniquely
determined by an unconstrained reduced set αj = (αj1, ..., αjpj−1)

ᵀ. In partic-
ular, let Qj denote a pj × (pj − 1) semi-orthogonal matrix whose columns are
orthogonal to B∗

j . Obviously, B∗
j
ᵀQjαj = 0. Thus, for any α∗

j ∈ R
pj satisfying

the sum-to-zero constraint there exists αj ∈ R
pj−1 such that α∗

j = Qjαj . Note,
Qj can easily be found via a QR-decomposition of B∗

j ; see Wood [30] for further
details. Thus, the log-likelihood under the proposed spline model is obtained by
replacing F (Yi|Xi) in the penalized log-likelihood function by

Fn(Yi|Xi) = g−1

⎧⎨⎩Zᵀ
i β +Mᵀ

i γ +
J∑

j=1

Bᵀ
jiαj

⎫⎬⎭ , (3)

where Mi = {b01(Yi), . . . , b0p0(Yi)}ᵀ and Bji = Qᵀ
jB

∗
ji, for 1 ≤ i ≤ n. Thus,

the set of unknown parameters to be estimated are given by θ = (βᵀ,γᵀ,αᵀ)ᵀ,
where α = (αᵀ

1 , . . . ,α
ᵀ
J)

ᵀ.
Under this strategy, the penalized spline log-likelihood function is given by

ln,λ(θ) =
n∑

i=1

[Δi logFn(Yi|Xi) + (1−Δi) log{1− Fn(Yi|Xi)}]
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− λ2
0

2
γᵀD0γ −

J∑
j=1

λ2
j

2
αᵀ

jDjαj , (4)

where D0 and Dj are band diagonal matrices whose (k, l)th elements are given

by
∫
b
(r)
k (y)b

(r)
l (y)dy and

∫
b
(r)
jk (wj)b

(r)
jl (wj)dwj , respectively. Cubic splines are

well-known for their numerical stability and are widely used in semiparmatric
regression in literature; e.g., see [3, 15, 11], among many others. For this reason,
cubic splines are used to approximate the unknown functions in our numerical
experiments and data application, and hence r is set to be 2. The algorithm for
finding D0 and Dj is discussed in Wood [30] and is implemented in the smooth-
Con function in the R package mgcv. The penalized spline maximum likelihood
estimator of θ is given by θ̂ = argmaxθln,λ(θ), where the maximization is com-
pleted subject to the monotonicity constraints, i.e., γ1 ≤ . . . ≤ γp0 . Accordingly,

the spline penalized estimator of τ is defined as τ̂ = (β̂ᵀ, η̂, ϕ̂1, . . . , ϕ̂J )
ᵀ with

η̂(·) = ηn(· |γ̂) and ϕ̂j(·) = ϕnj(· |α̂j). The theoretical properties and numerical
performance of τ̂ are discussed in Section 4 and Section 5, respectively.

The proposed penalized spline estimation approach has several appealing fea-
tures when compared to existing methods. In particular, under the smoothness
assumption, η can be well approximated by a monotone spline which can be writ-
ten as a linear combination of spline basis functions with a much smaller number
of coefficients to estimate, for instance, n1/3 instead of n, which is required by
fully nonparameteric estimation methods like Ma and Kosorok [17]. Further, the
performance of existing spline techniques including Cheng and Wang [2] and Lu
and McMahan [13] is intrinsically tied to the specification of these basis func-
tions. Regretfully, as with most spline based procedures, to effectively implement
these techniques one must perform a grid search over different basis function
representations, which can be computationally expensive, especially when there
are multiple unknown functions to be estimated. On the other hand, via the
proposed penalized approach we are able to regularize the estimation of these
parameters to address the potential issue of over-fitting. These two features act-
ing in concert provide an estimation framework which is both more accurate
and more efficient. Moreover, as discussed in Section 3.2, our formulation leads
to the development of a computationally efficient and easy to implement hybrid
algorithm for model fitting. All of these features lead to a methodology that is
of practical interest to practitioners who are left to analyze data of this form.

3.2. Parameter estimation

To complete model fitting in a computationally efficient manner, herein we de-
velop a novel hybrid algorithm which can be used to simultaneously identify
both the penalized spline estimators and the smoothing parameters via a nested
iterative process. The inner process is aimed at identifying the value of θ that
maximizes (4) for a fixed value of λ, while adhering to the monotonicity con-

straints, i.e., the inner step identifies θ̃λ = argmaxθ ln,λ(θ) s.t. γ1 ≤ . . . ≤ γp0 .
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To solve this constrained optimization problem, an iterative algorithm is de-
veloped. In each iteration of this algorithm, the unconstrained updates of the
parameters, say θ∗, are first determined based on the current parameter value,
say θ(m), via the following Fisher-scoring step

θ∗ = θ(m) + I−1
n,λ(θ

(m))∇ln,λ(θ
(m)),

where ∇ln,λ(θ
(m)) and In,λ(θ

(m)) are the gradient and the expected negative
value of the hessian matrix of (4) evaluated at θ(m), respectively. Closed form
expressions for these quantities are given by

∇ln,λ(θ) = X ᵀΩ(θ)Δ(θ)− Sθ

In,λ(θ) = X ᵀΩ(θ)X + S,

where X = (Z,M,B1, ...,BJ), Z
ᵀ = (Z1, . . . ,Zn), M

ᵀ = (M1, . . . ,Mn), and

Bᵀ
j = (Bj1, . . . ,Bjn), and S =

∑J
j=0 λ

2
jSj , with S0 = diag{0q×q,D0,0r20×r20},

r20 = p1 + ... + pJ − J , Sj = diag{0r1j×r1j ,Dj ,0r2j×r2j}, r1j = q + p0 + ... +
pj−1 − (j − 1), and r2j = pj+1 + ... + pJ − (J − j), 2 ≤ j ≤ J − 1, and
SJ = diag{0r1J×r1J ,DJ}, r1J = q+ p0 + ...+ pJ−1 − (J − 1). In the expressions
above, the transformed response vector and weight matrix for a specific value
of θ are given by

Δ(θ) =

{
Δ1 − π1

G′(X ᵀ
1 θ)

, ...,
Δn − πn

G′(X ᵀ
nθ)

}ᵀ

Ω(θ) = diag

{
G′(X ᵀ

1 θ)
2

π1(1− π1)
, ...,

G′(X ᵀ
nθ)

2

πn(1− πn)

}
,

where Xi is the ith row of X , G′(·) is the first derivative of G(·) = g−1(·), and
πi = g−1(X ᵀ

i θ).
The updated values of γ available in θ∗ do not necessarily satisfy the mono-

tonicity constraints; see Section 2. To enforce these conditions, isotonic regres-
sion is implemented to project the unconstrained estimates into the constrained
space, i.e., into Γ = {γ : γ1 ≤ . . . ≤ γp0}. This is accomplished by solving the
following minimization problem

γ(m+1) = argmin
γ∈Γ

{
p0∑
k=1

σ2
k(γk − γ∗

k)
2

}
,

where σ2
k is the diagonal element of I−1

n,λ(θ
∗) corresponding to γk, for k =

1, ..., p0. This problem can be solved using the pava function in the R package
Iso, which takes γ∗ and (σ2

1 , . . . , σ
2
p0
)ᵀ as inputs. Substituting γ(m+1) for γ∗ in

θ∗ one obtains the constrained update θ(m+1). These two steps are completed in
turn until convergence is attained, i.e., the difference between θ(m) and θ(m+1)

is less than some specified stopping criterion. At the point of convergence of
this inner process, one obtains θ̃λ, i.e., the maximizer of the penalized spline
log-likelihood function for a fixed value of λ. Once the inner process is complete,
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the outer process updates the smoothing parameters and the inner process is
restarted. To obtain the updated smoothing parameters, say λ∗ = (λ∗

0, ..., λ
∗
J)

ᵀ,
a generalized Fellner-Schall approach [31] is adopted and makes the update as

λ∗2
j =

tr{S−Sj} − tr
{
I−1

n,λ(θ̃λ)Sj

}
θ̃ᵀ
λSj θ̃λ

λ2
j , for 0 ≤ j ≤ J,

where S− is the generalized inverse of S. Using the updated smoothing pa-
rameters (i.e., λ∗), the inner process is then used to identify θ̃λ∗ . This nested

iterative process continues until the difference between θ̃λ and θ̃λ∗ is less than
some specified stopping criterion. It is worthwhile to point out that the update
of λj is guaranteed to be positive, which is required, as long as In,λ(θ̃λ) is
positive definite (see Wood and Fasiolo [31]), which is the case for the proposed
model. At convergence of the proposed hybrid algorithm, the final update of θ
is defined as the spline penalized estimator θ̂.

4. Large-sample properties

4.1. Assumptions

In this section we present the asymptotic properties of the penalized spline esti-
mators. Let T0 = [a0, b0] and Tj = [aj , bj ] be supports of Y and Wj , respectively,
for j = 1, . . . , J . Define M as a space of monotone splines with degree r+ 1 on
the compact set T0 and Sj as a space of splines with degree r+1 on the compact
set Tj . Let the regression parameter space Φ be a compact set of Rq and the
nonparametric space be N = {(η, ϕ1, . . . , ϕJ) : η ∈ M, ϕj ∈ Sj ,J (η) < ∞,
J (ϕj) < ∞}, where J (·) is the Sobolev norm for a fixed integer r ≥ 1 de-
fined in Section 2. Denote by τ0 = (β0, ϕ0,0, ϕ0,1, ..., ϕ0,J) with ϕ0,0 = η0 and

τ̂ = (β̂, ϕ̂0, ϕ̂1, ..., ϕ̂J) with ϕ̂0 = η̂ the true value and the penalized spline like-
lihood estimator of τ , respectively. Let ‖ · ‖n, ‖ · ‖2, and ‖ · ‖∞ be empirical
norm, L2-norm, and uniform norm, respectively. We established the asymptotic
properties of τ̂ under the following regularity conditions:

Condition 1: The true parameter β0 is an interior point of Φ.
Condition 2: The rth derivative of ϕ0,j , for 0 ≤ j ≤ J , satisfies the Lipschitz

condition on Tj , and ϕ0,0 is strictly increasing on T0.
Condition 3: The support of the observation times is an interval within [ly, uy]

with 0 < ly < uy < inf{t : F0(t) = 1}, where F0 is the CDF of the
observation times.

Condition 4: The covariate vector Z has a bounded support and E(ZZᵀ) is
non-singular.

Condition 5: The first derivative of the link function Q(·) ≡ g−1(·) is bounded
away from 0 and infinite, and the second derivative of Q(·) is bounded.
Further, there exists some constant 0 < ε0 < 1 such that ε0 ≤ Q(x) ≤
1− ε0.
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Condition 6: The joint density of (Y,Z,W,Δ) is bounded away from 0 and
infinite.

Condition 7: For any β �= β0, Pr(Z
ᵀβ �= Zᵀβ0) > 0 and E{ϕj(Wj)} = 0, for

1 ≤ j ≤ J .
Condition 8: The smoothing parameters are specified such that

λj = Op(n
−r/(2r+1)) and λ−1

j = Op(n
r/(2r+1)), for 0 ≤ j ≤ J.

Condition 9: The ratio of maximum and minimum spacings of the knots for
Sj is uniformly bounded in n, for 0 ≤ j ≤ J with S0 ≡ M. Further, the
dimension of sum space S+ = S0 + . . .+ SJ is O(qn) with qn = nr/(1+2r).

Condition 10: The efficient information I (β0) defined in (5) is non-singular.

It is noted that condition 1 is a standard assumption in semiparametric esti-
mation. The smoothness assumption of ϕ0,j in condition 2 guarantees that the
unknown nonparametric components can be well approximated by B-splines.
Further, under the smooth condition, the upper bound of entropy for Soblev
space is lower than that for a collection of monotone functions; see Examples of
19.10 and 19.11 of van der Vaart [29] for more information. It follows that the
penalized estimator of ϕ0 achieves faster rate of convergence compared to that
of nonparametric alternative proposed by Ma and Kosorok (2005). Conditions
3–6 are necessary in entropy calculation used to derive the rate of convergence
of τ̂ and the asymptotic normality of β̂. Condition 7 is required to establish the
identifiability of the model. Condition 8 is a typical assumption used to derive
the asymptotic properties of the penalized estimators. Condition 9 specifies the
appropriate order of dimensions of spline spaces to derive the optimal rate of
convergence of τ̂ . Finally, condition 10 is common for the asymptotic normality
and the efficiency of β̂.

4.2. Efficient information calculation

The log-likelihood of (Y,Δ,Z,W) for τ is given by

�(τ ) = Δ logQ(ζ) + (1−Δ){1−Q(ζ)},

where ζ = Zᵀβ + η(Y ) +
∑J

j=1 ϕj(Wj). Define l(t) = q(t)/[Q(t){1 − Q(t)}],
where q(t) is the first derivative of Q(t). The score function for β takes the form

�̇β(τ ) = {Δ−Q(ζ)} l(ζ)Z.

Differentiating the log-likelihood �(τ ) along the parametric submodels ηt =
η+ ta for J (a) < ∞ at t = 0 and ϕsj = ϕj + sjhj for J (hj) < ∞ at sj = 0, for
1 ≤ j ≤ J , yields the score operator for η

�̇η(τ )[a] = {Δ−Q(ζ)} l(ζ)a(Y )

and the score operator for ϕj

�̇ϕj (τ )[hj ] = {Δ−Q(ζ)} l(ζ)hj(Wj),
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respectively. Let H0 = {a : J (a) < ∞} and Hj = {hj : E{hj(·)} = 0,J (hj) <
∞}, for 1 ≤ j ≤ J . In the sequel, to simplify notation, define ϕ0(·) = η(·)
and h0(·) = a(·). For hj = (hj,1, . . . , hj,q)

ᵀ ∈ Hq
j , 0 ≤ j ≤ J , and h = h0 +

. . . + hJ , define �̇ϕj (τ )[hj ] = (�̇ϕj (τ )[hj,1], . . . , �̇ϕj (τ )[hj,q])
ᵀ and �̇ϕ(τ )[h] =

�̇ϕ0(τ )[h0] + . . . �̇ϕJ
(τ )[hJ ]. By applying the similar arguments to those in the

proof of Lemma 5 in Lu and McMahan [13], we conclude that there exist unique

functions h∗
1, . . . ,h

∗
J that minimize the distance ‖�̇β(τ ) −

∑J
j=0 �̇ϕj (τ )[hj ]‖22,

for hj ∈ Hq
j . Further, it can be shown that h∗

j is bounded and smooth on T q
j ;

see Lemma S.1 of Cheng et al. [3] for more information. Let h∗ = h∗
0 + . . .h∗

J .
Define the efficient information of β at τ = τ0 as

I (β0) = E
{
�∗β(τ0)

}⊗2 ≡ E
{
�̇β(τ )− �̇ϕ(τ )[h

∗]
}⊗2

. (5)

4.3. Asymptotic results

Theorem 1 (Consistency and rate of convergence) Under conditions 1–9, the

penalized estimator β̂ is asymptotically consistent for β0, ‖ϕ̂j‖∞ = Op(1),
J (ϕ̂j) = Op(1), ‖ϕ̂j − ϕ0,j‖∞ = op(1), and ‖ϕ̂j − ϕ0,j‖2 = Op(n

−r/(1+2r)), for
0 ≤ j ≤ J .

Theorem 2 (Asymptotic normality and efficiency) Under conditions 1–10,

n1/2(β̂ − β0)
d−→ N{0,I −1(β0)}, as n → ∞.

The proofs of these results are relegated to Appendix A. It is worthwhile to
point out that if the smoothing parameters and the dimensions of spline spaces
are chosen to be of the appropriate order (see conditions 8 and 9), our functional
estimators are uniformly bounded and consistent on compact sets, i.e., uniform
convergence can be achieved on boundaries for penalized spline estimators, and
attain the optimal rate of convergence, Op(n

−r/(1+2r)), which is the best attain-
able rate of convergence in the context of semiparametric regression; see Stone
[23] for more information. Moreover, β̂ is efficient in the semiparametric sense
since it achieves the information bound.

4.4. Variance estimation

As discussed in Section 4.2, the least favorable direction (h∗
0, . . . ,h

∗
J) is the one

that minimizes the distance ‖�̇β(τ )−
∑J

j=0 �̇ϕj (τ )[hj ]‖22, for hj ∈ Hq
j . Since the

least favorable direction does not have a closed form, it is very demanding to
estimate it directly, and so is the information matrix I (β0). To address the
issue, we adopt the least-square approach proposed by Zhang et al. [36]. In
particular, we use B-splines to approximate h∗

j = (h∗
j,1, . . . , h

∗
j,q)

ᵀ, 0 ≤ j ≤ J ,
i.e., for 1 ≤ l ≤ q,

h∗
0,l(·) ≈ h∗

n0,l(·) =
p0∑
k=1

δ0l,kb0k(·)
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and

h∗
j,l(·) ≈ h∗

nj,l(·) =
pj−1∑
k=1

δjl,kbjk(·),

up to some constant. Here the sum-to-zero constraints are applied to h∗
nj,l(·),

for 1 ≤ j ≤ J and 1 ≤ l ≤ q. The constraint only affects h∗
nj,l(·) vertically to

ensure its mean to be zero. Let

(ĥ∗
0, . . . , ĥ

∗
J) = min

hj∈Hq
nj

‖�̇β(τ̂ )−
J∑

j=0

�̇ϕj (τ̂ )[hj ]‖2n,

where Hnj is the approximated B-spline space Hj . For ĥ∗
j = (ĥ∗

j,1, . . . , ĥ
∗
j,q)

ᵀ,

j = 0, . . . , J , write ĥ∗
j,l(·) =

∑pj

k=1 δ̂jl,kbjk(·), for 1 ≤ l ≤ q and then define

În = Pn

⎧⎨⎩�̇β(τ̂ )−
J∑

j=0

�̇ϕj (τ̂ )[ĥ
∗
j ]

⎫⎬⎭
2

, (6)

where Pn is the empirical measure. In the above specification, δ̂l = (δ̂ᵀ
0,l, . . . ,

δ̂ᵀ
J,l)

ᵀ for δ̂j,l = (δ̂jl,1, . . . , δ̂jl,pj )
ᵀ, for j = 0, 1, . . . , J , minimize

Pn

⎧⎨⎩�̇β,l(τ̂ )−
J∑

j=0

�̇ϕj (τ̂ )[h
∗
nj,l]

⎫⎬⎭
2

,

where �̇β,l(τ̂ ) is the lth element of �̇β(τ̂ ). By the standard least-square calcula-
tion,

δ̂l =
(
PnG

⊗2
)−1

Pn

{
�̇β,l(τ̂ )G

}
,

where G = (Gᵀ
0 , . . . ,G

ᵀ
J )

ᵀ with Gj = (�̇ϕj (τ̂ )[bj1], . . . , (�̇ϕj (τ̂ )[bjpj ])
ᵀ, for j =

0, 1, . . . , J . Thus,

În = Pn

[
�̇β(τ̂ )− Pn

{
�̇β(τ̂ )G

ᵀ
}(

PnG
⊗2
)−1

G
]⊗2

= Pn

{
�̇β(τ̂ )

}⊗2

− Pn

{
�̇β(τ̂ )G

ᵀ
}(

PnG
⊗2
)−1

Pn

{
G�̇ᵀ

β(τ̂ )
}
.

Clearly, by the formula of the inverse of block matrix, Î −1
n is the upper q × q

submatrix of the inverse of the observed information of (4) for β without the

penalized term. It can be shown that În is a consistent estimator of I (β0). For
the purposes of conducting large-sample inference, we proposed to estimate the

variance-covariance matrix of β̂ by În,λ, which is the upper q× q submatrix of

Σ(θ̂) = (X ᵀΩ(θ̂)X + S)−1X ᵀΩ(θ̂)X (X ᵀΩ(θ̂)X + S)−1.

Using this estimator one can conduct standard Wald type inference about the

regression coefficients. Theorem 3 shows that În,λ and În are asymptotically

equivalent, and hence I (β0) can be consistently estimated by În,λ.
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Theorem 3 (Variance estimation) Under conditions 1–10, În,λ is a consistent
estimator of I (β0).

Moreover, the simulation study presented in Section 5 indicates that the
proposed variance estimation technique performs well in practical situations.

5. Simulation Study

To assess the finite-sample performance of the proposed methodology the fol-
lowing simulation study was conducted. In this study, the true failure time T
was generated according to the following model

gα{F (t|X)} = Z1β1 + Z2β2 + η(t) + ϕ1(W1) + ϕ2(W2), (7)

where Wj ∼ U [−1, 1], for j = 1, 2, Z1 ∼ Bernoulli(0.5) and Z2 ∼ N (0, 1). To
provide for a broad range of examples, the link function gα(·) was assumed to
belong to a family of links indexed by a parameter α as:

gα(u) =

{
log (1−u)−α−1

α if α > 0,

log{− log(1− u)} if α = 0.
(8)

Proceeding in this fashion allows us to capture several common survival models,
i.e., α = 0 leads to a PH model, while α = 1 corresponds to a PO model.

To examine different forms of the unknown functions and regression coef-
ficients three scenarios were considered. In Scenario 1 (S1) the three func-
tions were specified as η(t) = log(2t), ϕ1(w) = exp(w + 0.5) − {exp(1.5) −
exp(−0.5)}/2, and ϕ2(w) = 2 sin(−πw), and the regression coefficients were
chosen to be β1 = 0.5 and β2 = −0.5; in Scenario 2 (S2) the three func-
tions were specified as η(t) = log{1.5t − log(1 + 1.5t)}, ϕ1(w) = 2 sin(−πw),
and ϕ2(w) = 4w2 − 4/3, and the regression coefficients were set to be β1 =
0.5 and β2 = 0.5; in Scenario 3 (S3) the three functions were specified as
η(t) = log{log(1 + t/10) +

√
t/10}, ϕ1(w) = 4w2 − 4/3, and ϕ2(w) = exp(w +

0.5) − {exp(1.5) − exp(−0.5)}/2, and the regression coefficients were set to be
β1 = −0.5 and β2 = −0.5. In each of S1-S3, we consider values of α ∈ {0, 0.5, 1}.
To create current status data, observation times (Y ) were sampled from an ex-
ponential distribution with a mean of 2, 2, and 1 under S1, S2, and S3, respec-
tively, and the censoring indicator was determined as Δ = I(T < Y ). These
specifications were made to yield a variety of right-censoring rates; for exam-
ple when α = 0(1), we have right censoring rates of 27% (36%), 44% (51%),
and 77% (81%) under S1, S2, and S3, respectively. For each simulation config-
uration, this data generating process was repeated 1000 times to create 1000
independent data sets consisting of n = 200 or 400 observations.

The proposed methodology was used to analyze each of the simulated data
sets. For purposes of comparison, we also implement the method of Cheng and
Wang [2]. To compute both estimators, cubic B-spines were used to approxi-
mate all unknown functions with interior knots being placed at equally-spaced
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quantiles of the covariate values. For each data set, the proposed approach made
use of a single knot set consisting of �n1/3� interior knots. In contrast, the com-
peting estimator was computed using multiple knot set configurations with the
number of interior knots ranging from �n1/3� − 2 to �n1/3� + 2, with the final
unpenalized estimator being selected based on the BIC criterion; for further
discussion see Cheng and Wang [2]. The estimator of the variance-covariance

matrix of β̂ developed in Section 4 was used to construct 95% Wald confidence
intervals for the estimated regression coefficients, while the observed informa-
tion approach proposed in Cheng and Wang [2] was applied for inference on the
regression parameter estimators obtained from the competing approach.

Tables 1 and 2 summarize the results of estimating the regression coefficients
across all considered simulation configurations for both the proposed penalized
spline method and the competing approach with n = 200 and 400, respectively.
Provided in this summary are the empirical bias, sample standard deviation,
and mean squared error of the 1000 point estimates, as well as the average
of the 1000 estimated standard errors and empirical coverage probability as-
sociated with 95% confidence intervals. From these results it is apparent that
the proposed approach works well, i.e., the penalized spline estimators of the
regression coefficients exhibit little bias, the mean squared errors of estimates
decrease as sample size increases, the standard deviations of the point estimates
are in agreement with the average estimated standard errors, and the empirical
coverage probabilities are at their nominal level. The latter two findings tend
to suggest that the proposed method of estimating the variance-covariance ma-
trix works well and that large-sample inference is possible even for relatively
small sample sizes. Further, the proposed penalized spline estimator performed
as good if not better than the competing technique across all considered simula-
tion configurations even though this competing estimator was chosen as the best
from amongst multiple candidates. In fact, the performance of this competing
technique varied dramatically (results not shown) across the different knot set
configurations, i.e., it was found to be sensitive to the specification of the number
and placement of the basis functions. This sensitivity resulted in the necessity
to conduct a grid search over the different knot set configurations. This search
resulted in an average model fitting time that was between approximately 20
and 100 times slower than the proposed approach.

One of the primary goals of this study was to assess the performance of
the proposed method with respect to estimating the unknown functions. To
this end, Figures 1 and 2 summarize the estimates of the unknown functions
under S2 with all considered values of α for both approaches when n = 200 and
400, respectively. This summary includes the 0.025, 0.5, and 0.975 point-wise
quantiles of the estimates. Four figures providing analogous results under S1
and S3 when n = 200 and 400, respectively, are presented in Appendix B (i.e.,
Figures 4, 5, 6 and 7). These results suggest that the proposed methodology can
be used to accurately estimate all unknown functions; i.e., very little bias can
be observed when one compares the median of the functional estimates to the
true underlying function. The same can not be said for the competing technique.
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Table 1

Summary of the results that were obtained using the competing technique (Cheng and
Wang[2]) and the proposed penalized spline estimator when α = 0 (PH model), α = 0.5, and

α = 1 (PO model) under n = 200. Presented results include the empirical bias (Bias),
sample standard deviation (SD), average of the 1000 estimated standard errors (SE), mean
squared error (MSE) of the 1000 point estimates, as well as empirical coverage probability
associated with 95% confidence intervals (CP) and average model fitting time (TIME;

measured in Seconds).

n = 200 Cheng and Wang Penalized Spline Estimator

Bias SD SE MSE CP TIME Bias SD SE MSE CP TIME

S1(α = 0.0)
β1 0.075 0.467 0.394 0.224 92.2

871
-0.008 0.364 0.320 0.133 92.6

13
β2 -0.117 0.288 0.222 0.097 91.3 -0.004 0.223 0.173 0.050 90.2

S2(α = 0.0)
β1 0.096 0.437 0.382 0.200 93.3

821
0.014 0.363 0.326 0.131 94.8

15
β2 0.085 0.231 0.210 0.061 94.1 0.003 0.204 0.173 0.041 94.0

S3(α = 0.0)
β1 -0.060 0.457 0.415 0.212 94.5

436
-0.028 0.410 0.384 0.169 94.6

7
β2 -0.062 0.242 0.220 0.062 93.5 -0.043 0.228 0.202 0.054 92.6

S1(α = 0.5)
β1 0.038 0.420 0.403 0.177 94.3

827
0.002 0.367 0.364 0.134 96.1

13
β2 -0.056 0.234 0.215 0.058 94.6 0.006 0.198 0.191 0.039 95.5

S2(α = 0.5)
β1 0.073 0.465 0.415 0.221 92.6

831
0.027 0.400 0.376 0.160 94.3

17
β2 0.075 0.243 0.220 0.065 94.1 0.011 0.210 0.197 0.044 95.1

S3(α = 0.5)
β1 -0.020 0.502 0.466 0.252 93.9

454
0.013 0.473 0.442 0.224 93.5

8
β2 -0.055 0.266 0.245 0.074 94.1 -0.037 0.253 0.230 0.065 94.0

S1(α = 1.0)
β1 0.009 0.479 0.443 0.229 93.3

825
-0.000 0.426 0.408 0.181 94.2

16
β2 -0.056 0.246 0.232 0.064 94.2 -0.006 0.221 0.212 0.049 94.8

S2(α = 1.0)
β1 0.025 0.478 0.453 0.229 94.7

828
0.000 0.416 0.417 0.173 95.6

18
β2 0.049 0.245 0.238 0.062 95.0 -0.003 0.223 0.216 0.050 95.0

S3(α = 1.0)
β1 -0.016 0.562 0.513 0.316 94.6

443
0.023 0.530 0.493 0.281 95.2

8
β2 -0.037 0.298 0.266 0.090 93.7 -0.022 0.275 0.255 0.076 94.2

In particular, the approach of Cheng and Wang [2] provides estimates that are
far more biased and variable than our approach. These findings reinforce the
assertion that the proposed penalized spline estimator performs better with
respect to both estimation and inference than this existing procedure.

To further examine the performance of our approach, we conducted a second
simulation study to compare our method to the proposal of Lu and McMahan
[13]. It is important to note that this existing technique was developed for the
partially linear Cox PH model; i.e., this approach can only accommodate a sin-
gle unknown function of a covariate. Thus, in this study comparisons were made
under the partially linear Cox PH model. In particular, three data generating
scenarios and two sample sizes (n = 200 and n = 400) were considered. Under
each setting 1000 data sets were created and analyzed by the two techniques.
More details on the specific simulation settings are provided in Appendix C. In
addition, the simulation results are summarized and presented in Table 4 and
Figures 8 and 9 in Appendix C. In conclusion, both of these techniques can
accurately estimate the regression coefficients and unknown functions and draw
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Table 2

Summary of the results that were obtained using the competing technique (Cheng and
Wang[2]) and the proposed penalized spline estimator when α = 0 (PH model), α = 0.5, and

α = 1 (PO model) under n = 400. Presented results include the empirical bias (Bias),
sample standard deviation (SD), average of the 1000 estimated standard errors (SE), mean
squared error (MSE) of the 1000 point estimates, as well as empirical coverage probability
associated with 95% confidence intervals (CP) and average model fitting time (TIME;

measured in Seconds).

n = 400 Cheng and Wang Penalized Spline Estimator

Bias SD SE MSE CP TIME Bias SD SE MSE CP TIME

S1(α = 0.0)
β1 0.038 0.280 0.246 0.080 92.1

1176
-0.019 0.229 0.214 0.053 93.5

20
β2 -0.042 0.149 0.136 0.024 93.4 0.023 0.126 0.115 0.016 92.1

S2(α = 0.0)
β1 0.037 0.252 0.244 0.065 95.2

1188
0.006 0.227 0.222 0.051 94.7

18
β2 0.032 0.147 0.131 0.023 93.1 -0.010 0.129 0.118 0.017 93.2

S3(α = 0.0)
β1 -0.029 0.296 0.270 0.088 92.6

610
-0.018 0.270 0.256 0.073 93.8

9
β2 -0.035 0.156 0.143 0.025 93.3 -0.022 0.144 0.134 0.021 93.3

S1(α = 0.5)
β1 0.006 0.288 0.285 0.083 93.2

1181
-0.022 0.251 0.250 0.063 94.8

17
β2 -0.031 0.153 0.147 0.024 92.5 0.014 0.136 0.131 0.019 94.5

S2(α = 0.5)
β1 0.035 0.297 0.274 0.089 93.9

1206
0.008 0.265 0.258 0.070 94.4

20
β2 0.023 0.152 0.144 0.023 94.6 -0.014 0.139 0.134 0.019 95.5

S3(α = 0.5)
β1 -0.022 0.308 0.307 0.095 95.9

653
0.005 0.294 0.298 0.086 95.8

6
β2 -0.015 0.166 0.161 0.028 94.1 -0.006 0.157 0.154 0.025 94.1

S1(α = 1.0)
β1 0.017 0.328 0.299 0.107 93.6

1187
0.011 0.298 0.281 0.089 93.3

18
β2 -0.032 0.169 0.155 0.029 94.0 0.008 0.154 0.146 0.024 94.5

S2(α = 1.0)
β1 0.012 0.327 0.307 0.107 94.2

1191
-0.008 0.292 0.289 0.085 95.4

20
β2 0.039 0.172 0.161 0.031 92.8 0.004 0.154 0.150 0.024 93.9

S3(α = 1.0)
β1 -0.035 0.360 0.341 0.131 94.5

634
-0.001 0.338 0.333 0.114 95.6

11
β2 -0.027 0.187 0.177 0.036 94.1 -0.013 0.176 0.172 0.031 94.7

reliable inference. That being said, our approach performs as good if not better
than this existing technique. In particular, it is observed that our method yields
a smaller bias, variability, and mean squared error for the regression coefficients
and attains less variability in the estimated functions. More importantly, our
approach is far more computational efficient than the approach of Lu and McMa-
han [13]. That is, our approach is able to complete model fitting approximately
15 to 70 times faster than this existing technique.

6. Application to HPV data

To further illustrate our approach, the proposed methodology is now used to
analyze HPV data which was collected as a part of the National Health and
Nutrition Examination Survey (NHANES). HPV is one of the most common
sexually transmitted diseases (STD) in the United States and persistent infec-
tions may lead to cancer (e.g., cervical cancer) and genital warts. Thus, given
these potential sequelae and the asymptomatic nature with which this disease
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Fig 1. Estimates of the unknown functions under scenario S2 when n = 200. From top to
bottom, the panels correspond to α = 0, 0.5, 1.0, respectively. The solid grey curves correspond
to the true value of the functions. Dashed lines are the medians (black), 0.025 and 0.975
quantiles (grey) of the estimates obtained from the penalized spline approach. Dotted curves
are the medians (black), 0.025 and 0.975 quantiles (grey) of the estimates obtained from the
approach of Cheng and Wang [2].

presents, it is essential to monitor the prevalence of this disease within the
population of the United States, and elsewhere.

To this end, we consider analyzing the most recent data released by the
NHANES study containing HPV test results (2015-2016). In total, there are
2840 participants and the left-censoring rate is approximately 41.7%. Given that
HPV is an STD, we define the HPV onset time relative to the reported time of
first sexual intercourse for each participant. In addition to HPV status, several
covariate were also available; namely, gender (Z1 = 1 if male), race (Z2 = 1 if
Mexican American, Z3 = 1 if Other Hispanic, Z4 = 1 if Non-Hispanic Black
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Fig 2. Estimates of the unknown functions under scenario S2 when n = 400. From top to
bottom, the panels correspond to α = 0, 0.5, 1.0, respectively. The solid grey curves correspond
to the true value of the functions. Dashed lines are the medians (black), 0.025 and 0.975
quantiles (grey) of the estimates obtained from the penalized spline approach. Dotted curves
are the medians (black), 0.025 and 0.975 quantiles (grey) of the estimates obtained from the
approach of Cheng and Wang [2].

and Z5 = 1 if Other; with Non-Hispanic White as the reference), ratio of family
income to poverty (W1) and the participant’s age at first sexual intercourse
(W2). To identify how the continuous covariates should enter into the final model
(i.e., W1 and W2), the model was first fit allowing for nonlinear effects in these
two variables. From this fit, there was very little evidence of nonlinearity in W1;
see Figure 13 in Appendix D. Thus, the HPV onset time is related to risk factors
through the following model

gα{F (t|X)} = Z1β1 + Z2β2 + Z3β3 + Z4β4 + Z5β5 +W1β6 + η(t) + ϕ(W2),

where gα(u) is defined as in (8). In fitting the proposed model, cubic B-splines
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Table 3

Human Papillomavirus data: Presented results include the parameter estimates, estimated
standard errors (SE) and 95% Wald type confidence intervals (95% C.I.). The results were
obtained from the penalized spline method and two competing approaches under both the PH

and PO models.

Parameter
PH Model PO Model

Estimate SE 95% C.I. Estimate SE 95% C.I.

P
e
n
a
li
z
e
d

A
p
p
r
o
a
c
h

Male -0.025 0.060 (-0.142, 0.092) -0.032 0.079 (-0.187, 0.124)
Mexican American -0.290 0.096 (-0.478, -0.102) -0.361 0.121 (-0.598, -0.124)
Other Hispanic 0.085 0.098 (-0.108, 0.277) 0.135 0.131 (-0.121, 0.392)
Non-Hispanic Black 0.356 0.077 (0.204, 0.508) 0.503 0.108 (0.291, 0.715)
Other race -0.183 0.105 -0.389, 0.022) -0.237 0.131 (-0.493, 0.020)
Income -0.078 0.020 (-0.117, -0.040) -0.101 0.026 (-0.152, -0.050)

C
h
e
n
g

a
n
d

W
a
n
g

Male 0.139 0.056 (0.028, 0.249) 0.017 0.079 (-0.138, 0.173)
Mexican American 0.257 0.085 (0.090, 0.424) -0.268 0.121 (-0.505, -0.032)
Other Hispanic 0.350 0.095 (0.163, 0.536) 0.178 0.131 (-0.079, 0.435)
Non-Hispanic Black 0.591 0.078 (0.439, 0.743) 0.586 0.109 (0.373, 0.799)
Other race 0.271 0.102 (0.072, 0.470) -0.319 0.132 (-0.577, -0.061)
Income -0.068 0.019 -0.105, -0.030) -0.112 0.026 (-0.163, -0.062)

L
u

a
n
d

M
c
M

a
h
a
n

Male -0.019 0.060 (-0.136, 0.098)
Mexican American -0.272 0.095 (-0.458, -0.087)
Other Hispanic 0.095 0.097 (-0.094, 0.284)
Non-Hispanic Black 0.370 0.077 (0.219, 0.522)
Other race -0.153 0.107 (-0.363, 0.057)
Income -0.082 0.020 (-0.120, -0.043)

with a knot set consisting of �n1/3� = 15 interior knots were used to approximate
all unknown functions. Model fitting was completed under both PH (α = 0) and
PO (α = 1) models using the hybrid algorithm outlined in Section 4. The same
variance-covariance estimation strategies as those used in Section 5 were used
to conduct inference for the regression coefficients.

Table 3 summarizes the regression parameter estimates, along with their
estimated standard errors and corresponding 95% confidence intervals. Results
obtained from both the PH and PO models are very similar. The results suggest
that gender is not a significant factor, Mexican Americans have a significantly
lower and Non-Hispanic Blacks have a significantly higher hazard of developing
HPV when compared to Non-Hispanic Whites, while Other Hispanic and Other
race do not. The ratio of family income to poverty has a significantly negative
linear effect. Figure 3 provides the estimates of η(·) and ϕ(·), along with 95%
point-wise confidence intervals. The lower and upper limits of the 95% point-wise
confidence intervals were obtained as the 0.025 and 0.975 point-wise quantiles of
1000 bootstrap estimates, respectively. The estimated functions obtained under
the PH model show similar features to those obtained under the PO model.
The estimate of ϕ(·) clearly exhibits a nonlinear pattern, i.e., age at first sexual
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Fig 3. Penalized functional estimates for η(·) and ϕ(·). First and second row correspond to the
PH and PO model, respectively. The solid black curve corresponds to the estimated function
and the dashed curves correspond to the 0.025 and 0.975 quantiles of 1000 estimated functions
based on bootstrap samples.

intercourse has a nonlinear impact on the hazard of contracting HPV. Note, the
confidence interval for ϕ(·) becomes wider at the right end which is attributable
to the small number (1.48%) of individuals whose age at first sexual intercourse
exceeds 30; see Figure 10 in Appendix D for a histogram of these ages.

For comparative purposes, we also fit the models proposed by Cheng and
Wang [2] and Lu and McMahan [13] to the HPV data. To achieve the best
performance for these competing approaches, for each of the functions η(·) and
ϕ(·), we conducted a grid search to identify the optimal number of interior knots
where the candidate models had knot set configurations with the number of
interior knots ranging from 1 to 20. The final model for each of these competing
techniques was selected from among these candidates based on the BIC criterion.
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The results from these competing approaches are also included in Table 3. From
these results, one will first note that the estimates of the regression coefficients
and the associated 95% confidence intervals obtained from the proposed method
and that of Lu and McMahan [13] exhibit a large degree of similarity under
PH model, but differ quite a bit from those obtained from the approach of
Cheng and Wang [2]. Note, for our approach the results obtained under the
PH and PO models do not contradict each other. However, for the approach
of Cheng and Wang [2] the results under the PH and PO model do contradict
each other. Second, to complete a model fitting, the proposed approach took
4 seconds, however due to the need to conduct a grid search to determine the
appropriate number of interior knots, the approach of Cheng and Wang [2]
took approximately 4 hours, and Lu and McMahan [13] took around 3 minutes.
The estimates of η(·) and ϕ(·) obtained by the two competing approaches are
summarized in Figures 11 and 12 in Appendix D.

Finally, to select the best model for these data, we note that under our
general model the 2 candidates (i.e., the PH or PO model) are special cases
which correspond to the specification of α. For this reason, a common approach
used to select from amongst these models is to simply examine which possess
a larger likelihood value [34, 39]. In order to account for the penalization in
the proposed approach, we proceed similarly but make use of a modified BIC
criterion. The modification involves replacing the usual degrees of freedom with
an expression that quantifies the effective degrees of freedom that results due
to penalization. In particular, following the work of [8] (i.e., §6.8.3) and [32],

the effective degrees of freedom is given by trace{(X ᵀΩ(θ̂)X )I−1
n,λ(θ̂)}, where

In,λ(θ̂) = X ᵀΩ(θ̂)X + S is the negative of the expected Hessian matrix of

the penalized log likelihood (4). Expressions for X , Ω(θ̂), and S are provided
in Section 3.2. As a result, the effective degrees of freedom for the PH and PO
models are 14.58 and 14.45, respectively. Accordingly the modified BIC is 3771.9
and 3769.6 for the PH and PO model. Thus, the PO model is slightly preferred
for this considered data set.

7. Discussion

In this work we developed a computationally efficient penalized approach for
fitting a flexible partially linear additive transformation model to current status
data. The proposed procedure demonstrates appealing properties, both numer-
ical and theoretical. The hybrid algorithm developed for model fitting is easy to
implement and robust to initialization. A simple variance-covariance estimation
procedure was established and was shown to provide reliable Wald-type infer-
ence. In addition to attractive finite-sample performance, the estimators of the
nonparametric components are shown to attain the optimal rate of convergence
and we prove that estimators of regression coefficients are asymptotically normal
and efficient in the semiparametric sense. To further disseminate this work, code
(written in R) which implements all aspects of this research has been prepared
and is available upon request from the corresponding author.
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Given the successes of this approach, future work will be directed at gen-
eralizing this methodology to allow for the analysis of interval-censored data.
A key obstacle in the development of this methodology will be the model fit-
ting strategy, which will be far more complicated due to the complex nature of
interval-censored data. Another direction for future research could involve fur-
ther extending this work to allow for multiple end points, both for current status
and interval censored data. Moreover, this penalized spline technique could be
used to facilitate the estimation of other survival models, such as semiparamet-
ric generalized probit models for informative current status data [6]. Lastly, and
potentially most challenging, would be the development of goodness-of-fit tests
that could be used to guide the specification of the link function. This is a no-
toriously hard problem in the transformation model setting, and is only made
harder when one considers censored data, and/or additive models.

Appendix A: Proofs

A.1. Notations and technical lemmas

For a probability measure P and a class of measurable functions F , H(ε,F ,
L2(P )) is the ε-entropy for L2(P )-metric. In view of standard spline estimation
and Lemma A1 of Lu et al. [14], there exist a monotone B-spline ϕn,0 ∈ S0 and
B-splines ϕn,j ∈ Sj such that ‖ϕ0,0 − ϕn,0‖∞ = O(ρn) and ‖ϕ0,j − ϕn,j‖∞ =
O(ρn), for ρn = n−r/(1+2r), r ≥ 1, j = 1, . . . , J . Write τn = (β0, ϕn,0, . . . , ϕn,J).

Let ζ̂, ζn, and ζ0 denote ζ evaluated at τ = τ̂ , τ = τn, and τ = τ0, respectively.
Define Q(ζ) = {Q(ζ) + Q(ζn)}/2. In the sequel, let J (ζ) =

∑J
j=0 J (ϕj) and

J 2(ζ,λ) =
∑J

j=0 λ
2
jJ 2(ϕj) with ϕ0(·) = η(·). Define

G =

⎧⎨⎩Zᵀβ +

J∑
j=0

ϕj : β ∈ Φ, ϕj ∈ Sj ,J (ϕj) < ∞

⎫⎬⎭ .

The following are key results to derive the consistency and rate of convergence of
τ̂ . Lemma 4 is Lemma 8.4 of van de Geer [29], and Lemma 5 is a generalization
of Lemma 7.2 of Mammen and van de Geer [18] to additive models.

Lemma 4 Suppose that U1, . . . , Un are independent random variables with ex-
pectation 0 satisfying the uniformly sub-Guassiion condition, i.e.,

max
i=1,...,n

K2{E exp(U2
i /K

2)− 1} ≤ σ2
0

for some fixed positive constants K and σ0 and that

H(ε,F , ‖ · ‖n) ≤ Aε−α,

for all ε > 0 and some constants A > 0 and 0 < α < 2. Further, assume
supf∈F ‖f‖n ≤ R for some constant R > 0. Then for some constant C > 0
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depending on A, α, R, K and σ0, we have for all T ≥ C,

P

(
sup
f∈F

n1/2 ‖Uf‖n
‖f‖1−

α
2

n

≥ T

)
≤ C exp(−T 2/C2).

Lemma 5 For every probability measure P and every ε > 0,

sup
P

H

(
ε,

{
Q

1/2
(ζ)

1 + J (ζ)
: ζ ∈ G

}
, L2(P )

)
≤ C

(
1

ε

)1/r

,

for some constant C > 0.

A.2. Proof of Lemma 5

The proof follows similar arguments to those in the proof of Lemma 7.2 of
Mammen and van de Geer [29]. For any function f(·) defined on [x1, x2] with
J (f) < ∞, by a Taylor expansion, for x ∈ [x1, x2],

f(x) =
r−1∑
k=0

f (k)(x1)

k!
(x− x1)

k +

∫ x

x1

f (r)(u)

(r − 1)!
(x− u)r−1du ≡ f1(x) + f2(x).

In view of the Cauchy-Schwarz inequality, we have supx∈[x1,x2] |f2(x)| ≤ C0J (f)
for C0 > 0 and J (f) = J (f2). Without loss of generality, assume 0 < C0 < 1,
i.e, supx∈[x1,x2] |f2(x)| ≤ J (f). Thus, write ζ = ζ1 + ζ2, where ζ1 = Zᵀβ +∑J

j=0 ϕ1,j and ζ2 =
∑J

j=0 ϕ2,j with J (ϕj) = J (ϕ2,j), for j = 0, 1, . . . , J .
Clearly, J (ζ) = J (ζ2). Let H be a class of measurable functions h with
‖h‖∞ ≤ M and J (h) ≤ M for a constant M > 0. According to Lemma 2.4
of van de Geer [29], for any ε > 0, the entropy number H(ε,H , ‖ · ‖∞) is of
the order (1/ε)1/r, and hence the uniform entropy number of H for L2-norm
is also of the order (1/ε)1/r, i.e., for some constant C > 0,

sup
P

H(ε,H , L2(P )) ≤ C

(
1

ε

)1/r

. (9)

For a fixed bounded function h, by Example 3.7.4d of van de Geer [29], the class
of uniformly bounded functions ζ1+h is a Vapnik-Chervonenkis subgraph class
of index bounded by q + rJ + 2, and hence, Lemma 19.15 of van der Vaart [28]
applies and concludes

sup
P

H (ε, {ζ1 + h} , L2(P )) ≤ C log

(
1

ε

)
. (10)

Under the assumptions ‖Q′‖∞ ≤ M and ε0 ≤ Q(x) ≤ 1 − ε0 for M > 0 and
0 < ε0 < 1, we have∣∣∣Q1/2

(ζ)−Q
1/2

(ζ̃)
∣∣∣ ≤ 1

2
ε
−1/2
0 M |ζ − ζ̃|,

i.e., Q
1/2

(·) is Lipschitz. Thus, we read
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sup
P

H
(
ε,
{
Q

1/2
(ζ1 + h)

}
, L2(P )

)
≤ C1 log

(
1

ε

)
, (11)

for some constant C1 > 0. Write

ν(ζ) =

⌊
1

{1 + J (ζ)} ε

⌋
ε,

where �·� is the floor function. In view of 1/2 < a�1/a� < 1 for 0 < a < 1 and
‖ζ2‖∞ ≤ J(ζ), we read J (ν(ζ)ζ2) ≤ 1 and ‖ν(ζ)ζ2‖∞ ≤ 1. Thus, the entropy
result (9) holds for {ν(ζ)ζ2}, i.e.,

sup
P

H (ε, {ν(ζ)ζ2} , L2(P )) ≤ C2

(
1

ε

)1/r

, (12)

for some constant C2 > 0. Then, for ζ = ζ1 + ζ2, by entropy results (11) and
(12), there exist γk for 1 ≤ k ≤ exp{C2(1/ε)

1/r} such that

‖ν(ζ)ζ2 − γk‖n ≤ ε

and ρl for 1 ≤ l ≤ (1/ε)C1 such that∥∥∥∥Q1/2
(
ζ1 +

γk
ν(ζ)

)
−Q

1/2
(
ρl +

γk
ν(ζ)

)∥∥∥∥
n

≤ ε.

Thus, in view of the fact that Q
1/2

(·) is Lipschitz and bounded, together with
1/2 < a�1/a� < 1 for 0 < a < 1, we have∥∥∥∥∥Q

1/2
(ζ1 + ζ2)

1 + J (ζ)
−Q

1/2
(
ρl +

γk
ν(ζ)

)
ν(ζ)

∥∥∥∥∥
n

≤ 1

1 + J (ζ)

∥∥∥∥Q1/2
(ζ1 + ζ2)−Q

1/2
(
ζ1 +

γk
ν(ζ)

)∥∥∥∥
n

+Q
1/2

(
ζ1 +

γk
ν(ζ)

) ∣∣∣∣ 1

1 + J (ζ)
− ν(ζ)

∣∣∣∣
+ ν(ζ)

∥∥∥∥Q1/2
(
ζ1 +

γk
ν(ζ)

)
−Q

1/2
(
ρl +

γk
ν(ζ)

)∥∥∥∥
n

≤ C3ε+ C4ε+ ε,

for some constants C3, C4 > 0. The Lemma follows.

A.3. Proof of Theorem 1 (Consistency and rate of convergence)

For observations (Δ1, Y1,X1), . . . , (Δn, Yn,Xn), the log-likelihood function for
τ can be written as

ln(τ ;Q) = Pn[Δ log{Q(ζ)}+ (1−Δ) log{1−Q(ζ)}].
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In view of the concavity of logarithm function, together with Q(ζn) = Q(ζn),
we have

ln(τ̂ ;Q)− ln(τn;Q) = Pn

{
Δlog

Q(ζ̂)

Q(ζn)
+ (1−Δ) log

1−Q(ζ̂)

1−Q(ζn)

}

≥ 1

2
Pn

{
Δlog

Q(ζ̂)

Q(ζn)
+ (1−Δ) log

1−Q(ζ̂)

1−Q(ζn)

}
.

Then, by the definition of τ̂ ,

1

4
J 2(ζ̂,λ)− 1

4
J 2(ζn,λ) ≤ ln(τ̂ ;Q)− ln(τn;Q). (13)

On the other hand, by the inequality log(x) < 2(
√
x− 1) for x > 0,

ln(τ̂ ;Q)− ln(τn;Q) (14)

≤ 2Pn

⎧⎨⎩Δ

⎛⎝√ Q(ζ̂)

Q(ζ0)
− 1

⎞⎠+ (1−Δ)

⎛⎝√ 1−Q(ζ̂)

1−Q(ζ0)
− 1

⎞⎠⎫⎬⎭
+ 2PnΔ

⎛⎝√ Q(ζ̂)

Q(ζn)
−

√
Q(ζ̂)

Q(ζ0)

⎞⎠
+ 2Pn(1−Δ)

⎛⎝√ 1−Q(ζ̂)

1−Q(ζn)
−

√
1−Q(ζ̂)

1−Q(ζ0)

⎞⎠ ≡ I1 + I2 + I3. (15)

Write U = Δ− E(Δ|X). We have

I1 = 2PnU

⎛⎝√ Q(ζ̂)

Q(ζ0)
− 1

⎞⎠− 2PnU

⎛⎝√ 1−Q(ζ̂)

1−Q(ζ0)
− 1

⎞⎠− h2
n(ζ̂, ζ0),

where

h2
n(ζ̂, ζ0) =

∥∥∥∥√Q(ζ̂)−
√

Q(ζ0)

∥∥∥∥2
n

+

∥∥∥∥√1−Q(ζ̂)−
√

1−Q(ζ0)

∥∥∥∥2
n

.

Next we show that I2 = I3 = Op(ρ
2
n)
{
1 + J (ζ̂)

}1/(2r)

. Under the assumption

ε0 ≤ Q(x) ≤ 1− ε0 for 0 < ε0 < 1, the class

F1 =

⎧⎨⎩ 1

1 + J (ζ)

⎛⎝√ Q(ζ)

Q(ζn)
−

√
Q(ζ)

Q(ζ0)

⎞⎠ , ζ ∈ G

⎫⎬⎭
is uniformly bounded. Applying Lemma 5 yields

H (ε,F1, ‖ · ‖n) ≤ C

(
1

ε

)1/r

,

for some constant C > 0. Further, the sub-Guassian condition holds for binary
indicator Δ. It concludes from Lemma 4 that
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PnΔ

⎛⎝√ Q(ζ̂)

Q(ζn)
−

√
Q(ζ̂)

Q(ζ0)

⎞⎠
= Op(n

−1/2)‖Q(ζn)−Q(ζ0)‖1−1/(2r)
n

{
1 + J (ζ̂)

}1/(2r)

.

Here we use the fact∥∥∥∥∥∥
√

Q(ζ)

Q(ζn)
−

√
Q(ζ)

Q(ζ0)

∥∥∥∥∥∥
n

≤ C‖Q(ζn)−Q(ζ0)‖n.

Since Q′(·) is assumed to be bounded and ‖ζn − ζ0‖∞ = O(ρn), we obtain I2 =

Op(ρ
2
n)
{
1 + J (ζ̂)

}1/(2r)

. The same result can also be read for I3. Combining

(13) and (14) with the results of I2 and I3 yields

1

4
J 2(ζ̂,λ) + h2

n(ζ̂, ζ0) ≤ 2PnU

⎛⎝√ Q(ζ̂)

Q(ζ0)
− 1

⎞⎠− 2PnU

⎛⎝√ 1−Q(ζ̂)

1−Q(ζ0)
− 1

⎞⎠
(16)

+
1

4
J 2(ζn,λ) +Op(ρ

2
n)
{
1 + I(ζ̂)

}1/(2r)

.

Next, applying the similar arguments to those for deriving I2 and I3 yields

PnU

⎛⎝√ Q(ζ̂)

Q(ζ0)
− 1

⎞⎠ (17)

= Op(n
−1/2)

∥∥∥∥√Q(ζ̂)−
√

Q(ζ0)

∥∥∥∥1−1/(2r)

n

{
1 + J (ζ̂)

}1/(2r)

and

PnU

⎛⎝√ 1−Q(ζ̂)

1−Q(ζ0)
− 1

⎞⎠ (18)

= Op(n
−1/2)

∥∥∥∥√1−Q(ζ̂)−
√

1−Q(ζ0)

∥∥∥∥1−1/(2r)

n

{
1 + J (ζ̂)

}1/(2r)

.

Thus, combing (17) and (18) with (16), we derive the basic inequality

1

4
J 2(ζ̂,λ) + h2

n(ζ̂ , ζ0)

≤ Op(n
−1/2)

{
h2
n(ζ̂, ζ0) ∨Op(ρ

2
n)
}(2r−1)/(4r) {

1 + J (ζ̂)
}1/(2r)

+
1

4
J 2(ζn,λ), (19)
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which implies either

1

4
J 2(ζ̂ ,λ) + h2

n(ζ̂, ζ0) ≤
1

4
J 2(ζn,λ) (20)

or

1

4
J 2(ζ̂ ,λ) + h2

n(ζ̂, ζ0)

≤
{
Op(n

−1/2)h1−1/(2r)
n (ζ̂, ζ0) ∨Op(ρ

2
n)
}{

1 + J (ζ̂)
}1/(2r)

. (21)

Clearly, in view of the assumption of the order of λj , j = 0, . . . , J , (20) implies

hn(ζ̂, ζ0) = Op(ρn) and J (ζ̂) = Op(1). Inequality (21) implies either

1

4
J 2(ζ̂,λ) + h2

n(ζ̂, ζ0) ≤ Op(ρ
2
n)
{
1 + J (ζ̂)

}1/(2r)

(22)

or
1

4
J 2(ζ̂ ,λ) + h2

n(ζ̂, ζ0) ≤ Op(n
−1/2)h1−1/(2r)

n

{
1 + J (ζ̂)

}1/(2r)

. (23)

In view of the assumption of the order of λj , (22) implies J (ζ̂) ≤ Op(1){1 +

J (ζ̂)}1/(2r), and hence J (ζ̂) = Op(1). As a result, it concludes from (22) that

hn(ζ̂, ζ0) = Op(ρn). Further, (23) implies

hn(ζ̂, ζ0) ≤ Op(ρn)
{
1 + J (ζ̂)

}1/(1+2r)

. (24)

Combing (23) and (24) yields J 2(ζ̂,λ) ≤ Op(ρ
2
n)
{
1 + J (ζ̂)

}2/(1+2r)

. It con-

cludes from the assumption of the order of λj that J (ζ̂) = Op(1), and hence, in

view of (24), hn(ζ̂ , ζ0) = Op(ρn). In either case, J (ζ̂) = Op(1) and hn(ζ̂, ζ0) =
Op(ρn), and in turn this implies

‖Q(ζ̂)−Q(ζ0)‖n = Op(ρn).

Here we use the triangle inequality and ‖Q(ζn) − Q(ζ0)‖n = O(ρn). Applying
the similar arguments to those in the proof of Lemma 5, we can establish

sup
P

H

(
ε,

{
Q(ζ)−Q(ζ0)

1 + J (ζ)
, ζ ∈ G

}
, L2(P )

)
≤ C

(
1

ε

)1/r

.

Thus, the class {Q(ζ) − Q(ζ0)}/{1 + J (ζ)} for ζ ∈ G is a Donsker class, and

hence is a Glivenko-Cantelli class. Since ‖Q(ζ̂)−Q(ζ0)‖n = op(1), together with

J (ζ̂) = Op(1), it follows from Glivenko-Cantelli theorem that

‖Q(ζ̂)−Q(ζ0)‖2 = ‖Q(ζ̂)−Q(ζ0)‖n + op(1)
{
1 + J (ζ̂)

}
= op(1),

i.e., Q(ζ̂) converges to Q(ζ0) in L2-norm. Thus, Lemma 19.24 of van der Vaart
[28] applies and yields that
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‖Q(ζ)−Q(ζ0)‖2 = ‖Q(ζ)−Q(ζ0)‖n + op(n
−1/2)

{
1 + J (ζ̂)

}
= Op(ρn).

Under the assumption |Q′(ζ)| > η0 > 0 for all ζ in a neighborhood of ε0, we

obtain the rate of convergence for ζ̂, i.e.,

‖ζ̂ − ζ0‖2 = Op(ρn).

Then, by Lemma 3.1 of Stone [25],

‖Zᵀ(β̂ − β)‖22 +

∥∥∥∥∥∥
J∑

j=0

(ϕ̂j − ϕ0,j)(Wj)

∥∥∥∥∥∥
2

2

≤ Op(1)‖ζ̂ − ζ0‖22 = Op(ρ
2
n).

Thus, ‖Zᵀ(β̂−β)‖2 = Op(ρn), and hence ‖β̂−β0‖2 = Op(ρn) results from the
non-singularity assumption of E(ZZᵀ). Further, by Lemma 1 of Stone [24], we
have ‖ϕ̂j −ϕ0,j‖2 = Op(ρn), j = 0, . . . , J . The rate of convergence for τ̂ follows.
By Lemma 7.3 of Murphy and van der Vaart [20], ‖ϕ̂j‖∞ ≤ C {J (ϕ̂j) + ‖ϕ̂j‖2},
j = 0, . . . , J , for some constant C > 0. Since J (ϕ̂j) = Op(1) and ‖ϕ̂j‖2 ≤
‖ϕ̂j − ϕ0,j‖2 + ‖ϕ0,j‖2 = Op(1), ‖ϕ̂j‖∞ = Op(1) follows. Finally, by Cauchy-
Schwarz inequality and J(ϕ̂j) = Op(1), the first derivative of ϕ̂j(·) is uniformly
bounded in probability, and hence is uniformly equicontinuous in probability
on the compact set Tj . The uniform convergence of ϕ̂(·) follows from the Arzel-
Ascoli theorem.

Proof of Theorem 2 (Asymptotic normality and efficiency)

We first show that τ̂ satisfies the efficient score equations Pn�
∗
β(τ̂ ) = 0, up to

a op(n
−1/2) term. Differentiating the penalized log-likelihood function lλ(β̂ +

t, ϕ̂0 − tᵀh∗
0, . . . , ϕ̂J − tᵀh∗

J) at t = 0 with h∗
j satisfying J (h∗

j ) < ∞, for 0 ≤
j ≤ J , yields

Pn�
∗
β(τ̂ ) +

J∑
j=0

λ2
j

∫
ϕ̂
(r)
j (uj)h

∗(r)
j (uj)duj = 0. (25)

The second term in (25) can be bounded by
∑

λ2
jJ (ϕ̂j)J (h∗

j ) as a result of
Cauchy-Schwarz inequality. In view of J (ϕ̂j) = Op(1), together with the as-
sumption of the order of λj , we derive the stationary equation

Pn�
∗
β(τ̂ ) = Pn

{
Δ−Q(ζ̂)

}
l(ζ̂)D = op(n

−1/2), (26)

where D = Z−
∑J

j=0 h
∗
j . Let Dk be kth element of the vector D, for 1 ≤ k ≤ q.

Write

Pn�
∗
β(τ̂ ) = Pn {Δ−Q(ζ0)} l(ζ̂)D− Pn(ζ̂ − ζ0)q(ζ0)l(ζ0)D

−Pn

{
Q(ζ̂)−Q(ζ0)− (ζ̂ − ζ0)q(ζ0)

}
l(ζ0)D
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−Pn

{
Q(ζ̂)−Q(ζ0)

}{
l(ζ̂)− l(ζ0)

}
D

≡ A1 −A2 −A3 −A4.

Because the second derivative of Q(·) is assumed to be bounded, l(·) is Lip-
schitz. Further, since both Δ − Q(ζ0) and Dk are fixed bounded functions, it
concludes from Theorem 2.4 of van de Geer [29] and Theorem 9.23 of Kosorok [9]
that the entropy for uniform norm of the class of uniformly bounded functions
{Δ−Q(ζ0)} {l(ζ)− l(ζ0)}Dk with ‖ζ − ζ0‖2 ≤ M , ‖ζ‖∞ ≤ M , and J (ζ) ≤ M
is of order (1/ε)1/r, and hence the class is a Donsker class. Since l(·) is Lipschitz,
we have∥∥∥{Δ−Q(ζ0)} {l(ζ̂)− l(ζ0)}Dk

∥∥∥
2
= Op(1)

∥∥∥l(ζ̂)− l(ζ0)
∥∥∥
2
= op(1).

Further, according to Theorem 1, {Δ−Q(ζ0)} {l(ζ̂) − l(ζ0)}Dk is within the
above class. Thus, it concludes from Lemma 19.24 of van der Vaart [28] that

(Pn − P ) {Δ−Q(ζ0)} {l(ζ̂)− l(ζ0)}Dk = op(n
−1/2),

and hence

A1 = Pn{Δ−Q(ζ0)}l(ζ0)D+ op(n
−1/2) = Pn�

∗
β(τ0) + op(n

−1/2). (27)

Here we use the fact that E {Δ−Q(ζ0)} {l(ζ̂) − l(ζ0)}Dk = 0. Similarly, by
Theorem 2.4 of van der Geer [29], together with the fact that q(ζ0)l(ζ0)D is
bounded, the class of uniformly bounded functions (ζ − ζ0)q(ζ0)l(ζ0)D with
‖ζ − ζ0‖2 ≤ M , ‖ζ‖∞ ≤ M , and J (ζ) ≤ M is a Donsker class. It concludes
from Theorem 1 and Lemma 19.24 of van der Vaart [28] that

Pn(ζ̂ − ζ0)q(ζ0)l(ζ0)D = E(ζ̂ − ζ0)q(ζ0)l(ζ0)D+ op(n
−1/2).

In view of the definition of (h∗
0, . . . ,h

∗
J), we have E�∗β(τ0)�ϕj (τ0)[hj(Wj)] = 0 for

any hj(Wj), j = 0, . . . , J . Thus, E(ϕ̂j − ϕ0,j)(Wj)q(ζ0)l(ζ0)D = 0. Therefore,

E(ζ̂ − ζ0)q(ζ0)l(ζ0)D = E [{Δ−Q(ζ0)} l(ζ0)D]
⊗2

(β̂ − β0).

It follows that
A2 = I (β0)(β̂ − β0) + op(n

−1/2). (28)

As shown above, the class of uniformly bounded functions ζ−ζ0 with ‖ζ‖∞ ≤ M
and J (ζ) ≤ M is a Donsker class. It concludes from Theorem 1 and Lemma

19.24 of van der Vaart [28] that ‖ζ̂−ζ0‖n = ‖ζ̂−ζ0‖2+op(n
−1/2), which implies

that ‖ · ‖2 and ‖ · ‖n share the same rate of convergence. Then, under condition
5, a Taylor expansion yields

|A3| ≤ Op(1)‖ζ̂ − ζ0‖2n = Op(1)‖ζ̂ − ζ0‖22 + op(n
−1/2) = op(n

−1/2). (29)

Further, since both Q(·) and l(·) are Lipschitz, it follows from Theorem 1 that

|A4| ≤ Op(1)‖ζ̂ − ζ0‖2n = op(n
−1/2). (30)
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Therefore, combing the stationary equation (26) with (27) –(30) yields

n1/2I (β0)(β̂ − β0) = n1/2
Pn�

∗
β(τ0) + op(1).

The asymptotic normality of β̂ follows immediately from the standard central
limit theorem.

A.4. Proof of Theorem 3

Define h∗
+,l =

∑J
j=0 h

∗
j,l and ĥ∗

+,l =
∑J

j=0 ĥ
∗
j,l. In addition, let �̇ϕ(τ , h+) =∑J

j=0 �̇ϕj (τ )[hj ] for h+,l =
∑J

j=0 hj,l, κl(τ , h+,l) =
{
�̇β,l(τ )− �̇ϕ(τ )[h+,l]

}2

.

Because h∗
+,l(·) is bounded and smooth, according to standard spline approx-

imation result, there exists h∗
n+,l ∈ S+ such that ‖h∗

+,l − h∗
n+,l‖∞ = o(1). As

shown in the proof of Theorem 2, the class of uniformly bounded functions ζ
with ‖τ −τ0‖2 ≤ M , J(ζ) ≤ M , and ‖ζ‖∞ ≤ M for M > 0 is Donsker. Further,
κl(τ , h+,l) is uniformly bounded and Lipschitz with respect to ζ, and hence, in
view of Donsker preservation theorem (e.g. Corollary 9.32 of Kosorok [9]), for
any h+,l ∈ H+ ≡ H+ . . .+H, the class

F2 = {κl(τ , h+,l) : ‖τ − τ0‖2 ≤ M,J(ζ) ≤ M, ‖ζ‖∞ ≤ M}

is also Donsker. In view of Theorem 1 and the Glivenko-Cantelli theorem, we
have

(Pn − P )κl(τ̂ , h+,l) = op(1) and (Pn − P )κl(τ̂ , h
∗
+,l) = op(1). (31)

Further, it follows from the continuous mapping theorem and dominated con-
vergence theorem, together with the consistency of τ̂ that

P {κl(τ̂ , h+,l)− κl(τ0, h+)} = op(1),

P
{
κl(τ̂ , h

∗
+,l)− κl(τ0, h

∗
+,l)

}
= op(1). (32)

Combining (31) and (32) yields

Pn

{
κl(τ̂ , h+,l)− κl(τ̂ , h

∗
+,l)

}
= P

{
κl(τ0, h+)− κl(τ0, h

∗
+,l)

}
+ op(1).

By the characteristic of the least favorable direction h∗
+,l, for any ε > 0 and any

h+,l ∈ H+ with |h+,l − h∗
+,l| ≥ ε, P

{
κl(τ0, h+,l)− κl(τ0, h

∗
+,l)

}
> 0, and hence

we have

Pn

{
κl(τ̂ , h+,l)− κl(τ̂ , h

∗
l,+)

}
> 0 (33)

with probability converging to 1. As shown in the proof of Theorem 2, the class
of uniformly bounded functions {Δ−Q(ζ)} l(ζ) for ‖τ − τ0‖ ≤ M , ‖ζ‖∞ ≤ M ,
and J(ζ) ≤ M is a Donsker class. Further, in view of bracketing entropy calcu-
lation of spline in Shen and Wong [22], the class of uniformly bounded functions
zl−h+,l for h+,l ∈ S+, ‖h+,l−h∗

+,l‖∞ ≤ M is also a Donsker class. The Donsker
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preservation theorem (e.g., Corollary 9.32 of Kosorok [9]) applies and yields that
the class of uniformly bounded functions κl(τ , h+,l) with ‖τ−τ0‖2 ≤ M , J(ζ) ≤
M , ‖ζ‖∞ ≤ M , h+,l ∈ S+, and ‖h+,l − h∗

+,l‖2 ≤ M is a Donsker class, hence a
Glivenko-Cantelli class. Thus, it concludes from the continuous mapping theo-
rem and dominated convergence theorem, together with the consistency of τ̂ and

‖h∗
n+,l − h∗

+,l‖∞ = o(1) that Pn

{
κl(τ̂ , h

∗
n+,l)− κl(τ̂ , h

∗
+,l)

}
= op(1), and hence

Pn

{
κl(τ̂ , ĥ

∗
+,l)− κl(τ̂ , h

∗
+,l)

}
= Pn

{
κl(τ̂ , ĥ

∗
+,l)− κl(τ̂ , h

∗
n+,l)

}
+ op(1). (34)

Thus, by definition of ĥ∗
+,l, |ĥ∗

+,l − h∗
+,l| ≥ ε implies that Pn{κl(τ̂ , ĥ

∗
+,l) −

κl(τ̂ , h
∗
+,l)} ≤ 0 with probability converging to 1 from (34). Thus, it concludes

from (33) that

P (|ĥ∗
+,l − h∗

+,l| ≥ ε) ≤ P
[
Pn

{
κl(τ̂ , ĥ

∗
+,l)− κl(τ̂ , h

∗
+,l)

}
≤ 0

]
→ 0, as n → ∞.

The consistency of ĥ∗
+,l follows, and hence |ĥ∗

+,l| ≤ |ĥ∗
+,l−h∗

+,l|+|h∗
+,l| ≤ op(1)+

O(1) = Op(1), i.e., ‖ĥ∗
+,l‖∞ = Op(1). Since Theorem 2.4 of van de Geer [29] is

also valid for high dimensions (see van de Geer [29], p. 187 for further detail), the
class of uniformly bounded functions κl(τ , h+,l) with ‖τ−τ0‖2 ≤ M , J(ζ) ≤ M ,
‖ζ‖∞ ≤ M , ‖h+,l − h∗

+,l‖2 ≤ M , J(h) ≤ M , and ‖h+,l‖∞ ≤ M is Donsker. It
concludes from the continuous-mapping theorem and dominated convergence

theorem, together with the consistency of τ̂ and ĥ∗ yield În = I (β0) + op(1).

The consistency of În,λ follows immediately from the assumption of the order
of λ.

Appendix B: Results of simulation study under scenario S1 and S3

In this section, figures 4, 5, 6 and 7 summarize the estimates of the unknown
functions under scenario S1 and S3 for n = 200 and 400. In particular, each
figure presents the 0.025, 0.5, and 0.975 point-wise quantiles of the estimates
for all considered values of α (i.e., 0, 0.5, 1.0) obtained under our proposed
approach and Cheng and Wang’s approach [2].

Appendix C: Results of simulation study under partially linear Cox
PH model

In this simulation study, we compare the finite sample performance of our pro-
posed penalized approach and the approach of Lu and McMahan [13]. Note,
Lu and McMahan’s method was developed for a partially linear Cox PH model,
and hence the comparison is made under the following model specifying the true
failure time

F (t|X) = 1− exp[− exp{Z1β1 + Z2β2 + η(t) + ϕ(W )}], (35)

where Z1 ∼ Bernoulli(0.5), Z2 ∼ N (0, 1), and W ∼ U [−1, 1]. We consider three
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Fig 4. Estimates of the unknown functions under scenario S1 when n = 200. From top to
bottom, the panels correspond to α = 0, 0.5, 1.0, respectively. The solid grey curves correspond
to the true value of the functions. Dashed lines are the medians (black), 0.025 and 0.975
quantiles (grey) of the estimates obtained from the penalized spline approach. Dotted curves
are the medians (black), 0.025 and 0.975 quantiles (grey) of the estimates obtained from the
approach of Cheng and Wang [2].

scenarios. In particular, in Scenario 1 (S1) the two functions were specified as
η(t) = log(2t), ϕ(w) = 2w, and the regression coefficients were β1 = 0.5 and
β2 = −0.5; in Scenario 2 (S2) the two functions were η(t) = log{1.5t− log(1 +
1.5t)}, ϕ(w) = 2 sin(−πw), and the regression coefficients were β1 = 0.5 and
β2 = 0.5; and in Scenario 3 (S3) the two functions were η(t) = log{log(1+t/10)+√
t/10}, ϕ(w) = 4w2 − 4/3, and the regression coefficients were β1 = −0.5 and

β2 = −0.5. To create current status data, observation times (Y ) were simulated
from an exponential distribution with a mean of 2, 2, and 1 under S1, S2, and
S3, respectively, and the censoring indicator was determined as Δ = I(T < Y ).
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Fig 5. Estimates of the unknown functions under scenario S3 when n = 200. From top to
bottom, the panels correspond to α = 0, 0.5, 1.0, respectively. The solid grey curves correspond
to the true value of the functions. Dashed lines are the medians (black), 0.025 and 0.975
quantiles (grey) of the estimates obtained from the penalized spline approach. Dotted curves
are the medians (black), 0.025 and 0.975 quantiles (grey) of the estimates obtained from the
approach of Cheng and Wang [2].

These specifications yield a variety of right-censoring rates; for example, under
S1, S2, and S3 the right censoring rates are 22%, 43%, and 80%, respectively.
For each simulation configuration, this data generating process was repeated
1000 times to create 1000 independent data sets consisting of n = 200 and
n = 400 observations. We use �n�1/3 inner knots for our approach. In contrast,
for the competing approach, estimators were computed using multiple knot set
configurations with the number of interior knots of each function ranging from
�n1/3� − 4 to �n1/3�+ 4, then the final unpenalized estimator is selected based
on the BIC criterion. Table 4 summarizes the estimation of the regression coef-
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Fig 6. Estimates of the unknown functions under scenario S1 when n = 400. From top to
bottom, the panels correspond to α = 0, 0.5, 1.0, respectively. The solid grey curves correspond
to the true value of the functions. Dashed lines are the medians (black), 0.025 and 0.975
quantiles (grey) of the estimates obtained from the penalized spline approach. Dotted curves
are the medians (black), 0.025 and 0.975 quantiles (grey) of the estimates obtained from the
approach of Cheng and Wang [2].

ficients for all simulation configurations, while Figures 8 and 9 summarize the
estimates of the two unknown functions when n = 200 and n = 400, respectively.

Appendix D: Additional results for HPV data from two competing
approaches

Figure 10 presents the histogram of age at first sexual intercourse. Figure 11
summarizes the estimates of η(·) and ϕ(·) (i.e., nonlinear function of age at first
sexual intercourse) under both PH (first row) and PO (second row) models,
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Fig 7. Estimates of the unknown functions under scenario S3 when n = 400. From top to
bottom, the panels correspond to α = 0, 0.5, 1.0, respectively. The solid grey curves correspond
to the true value of the functions. Dashed lines are the medians (black), 0.025 and 0.975
quantiles (grey) of the estimates obtained from the penalized spline approach. Dotted curves
are the medians (black), 0.025 and 0.975 quantiles (grey) of the estimates obtained from the
approach of Cheng and Wang [2].

along with 95% point-wise confidence intervals, using the approach by Cheng
and Wang [2]. Figure 12 presents the estimates of η(·) and ϕ(·) under PH model
using the approach by Lu and McMahan [13]. Figure 13 summarizes the esti-
mates of η(·), ϕ1(·) and ϕ2(·).
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Fig 13. Functional estimates obtained from the proposed penalized approach for η(·), ϕ1(·)
and ϕ2(·). Left and right row correspond to the PH and PO model, respectively. The solid
black curve corresponds to the estimated function.
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