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Abstract: We investigate geodesic projections of von Mises–Fisher (vMF)
distributed directional data. The vMF distribution for random directions on
the (p−1)-dimensional unit hypersphere Sp−1 ⊂ Rp plays the role of multi-
variate normal distribution in directional statistics. For one-dimensional cir-
cle S1, the vMF distribution is called von Mises (vM) distribution. Projec-
tions onto geodesics are one of main ingredients of modeling and exploring
directional data. We show that the projection of vMF distributed random
directions onto any geodesic is approximately vM-distributed, albeit not
exactly the same. In particular, the distribution of the geodesic-projected
score is an infinite scale mixture of vM distributions. Approximations by
vM distributions are given along various asymptotic scenarios including
large and small concentrations (κ → ∞, κ → 0), high-dimensions (p → ∞),
and two important cases of double-asymptotics (p, κ → ∞, κ/p → c or
κ/

√
p → λ), to support our claim: geodesic projections of the vMF are ap-

proximately vM. As one of potential applications of the result, we contem-
plate a projection pursuit exploration of high-dimensional directional data.
We show that in a high dimensional model almost all geodesic-projections of
directional data are nearly vM, thus measures of non-vM-ness are a viable
candidate for projection index.
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1. Introduction

The von Mises–Fisher (vMF) distribution, sometimes referred to as the Fisher–
von Mises–Langevin distribution, plays a central role in modeling and inference
for the directional data (Mardia and Jupp, 2000; Ley and Verdebout, 2017).
While the multivariate normal distribution is not defined on the sample space
S
p−1 = {x ∈ R

p : x′x = 1} of directions, the vMF distribution is the closest
notion to the normal distribution. For a random direction x ∈ S

p−1, we write x ∼
vMFp(μ, κ) if its density function is fvMF(x) = cp(κ) exp(κx

′μ) with respect to
the surface area measure of Sp−1, for the location parameter μ ∈ S

p−1 and the
concentration parameter κ ≥ 0. The normalizing constant is

cp(κ) =
κ

p
2−1

(2π)
p
2 I p

2−1(κ)
, (1.1)
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where Iν is the modified Bessel function of the first kind of order ν. (We use the
convention 0/0 = 1.) On S

1, the vMF distribution becomes the von Mises (vM)
distribution.

We consider the one-dimensional projection of directional data onto geodesics,
a notion closest to the orthogonal projection onto a vector in Euclidean space.
Projections onto geodesics and the evaluation of the projection scores and resid-
uals are fundamental ingredients of modern directional statistics and, in gen-
eral, statistics on manifolds; applications include dimension reduction (Fletcher
et al., 2004; Jung, Dryden and Marron, 2012), regression (Fletcher, 2013; Cornea
et al., 2017), classification (Pizer and Marron, 2017) and developments of para-
metric models (Schulz et al., 2015; Kim et al., 2019). Here, the projection onto
a geodesic γ is defined intrinsically. With a distance function ρ : Sp−1 ×S

p−1 →
[0, π], the projection of x ∈ S

p−1 onto γ is the point on γ closest to x, and
the projection score Sγ(x) ∈ (−π, π] is given by a parameterization of γ. See
Section 2 for definitions of the geodesic, the metric, and the geodesic projection.

In Euclidean space, the projection u′z of a Gaussian random vector z ∈
R

p is also Gaussian for any u ∈ S
p−1, and even almost all projections of a

non-Gaussian z are also Gaussian, asymptotically; see Diaconis and Freedman
(1984); Bickel, Kur and Nadler (2018). On the other hand, it is yet unknown
whether the geodesic projection Sγ(x) of a vMF-distributed random direction
x ∈ S

p−1 is also vM.
In this paper, we show that the answer to the above fundamental question

is indeed negative. In particular, we show that for x ∼ vMFp(μ, κ) and for
any geodesic γ, the distribution of Sγ(x) is an infinite scale mixture of vM
distributions with concentration parameters ranging from 0 to κ. Nevertheless,
the density of Sγ(x) is nearly vM-distributed, in the sense that it is close to
the vM family to human eyes. The difference is not statistically significant for
moderately large sample sizes.

The distribution of Sγ(x) is denoted by PvM(p, κ, δ), where δ = ρ(γ,μ) ≥ 0
measures how much γ deviates from the mode of vMFp(μ, κ). In a special case
where the geodesic γ passes through the mode, δ = 0 and we say the geodesic
is canonical with respect to μ. For canonical geodesics γ, the density function
of Sγ(x) is expressed using Iν and Mν , the modified Struve function of the
second kind of order ν, to facilitate approximations by vM densities. We refer
to Appendix A for definitions and several useful properties of Iν and Mν .

We show that PvM(p, κ, δ) is indeed well approximated by vM distributions in
various asymptotic scenarios, including large and small concentrations (κ → ∞
and κ → 0), high dimensions (p → ∞), and a double-asymptotic direction
p → ∞, κ → ∞, κ/p = c ∈ (0,∞). Various asymptotic expansions of Iν and
Mν are used in the approximations. For the special asymptotic regime of p →
∞, κ → ∞, κ/

√
p = λ ∈ (0,∞), we provide a high dimensional approximation of

the distribution by the projected normal distribution (Mardia and Jupp, 2000,
p. 178). The projected normal distribution is again approximated by the vM
distribution.

This work is developed in the course of formulating projection pursuit for
directional data. Projection pursuit (Friedman and Tukey, 1974) is a well-
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developed technique for exploration of multivariate data, aiming at finding low-
dimensional “interesting” projections of high-dimensional data. See Friedman
and Stuetzle (1981); Huber (1985); Friedman (1987); Jee (2009); Alashwali and
Kent (2016); Bickel, Kur and Nadler (2018) and references therein for details
on projection pursuit. While there have been various proposals for the index of
interestingness, most of those measure departures from normality. For example,
Bickel, Kur and Nadler (2018) compared the empirical distribution F̂u′x directly
with the normal distribution function, and Huber (1985) discussed the negative
entropy

∫
f log f as an index of interestingness, which is uniquely minimized

when the density f of the projection score is the normal density.

For directional data on S
p−1 and their projections onto a geodesic (intrin-

sically a circle S
1), the vMF and vM distribution play the role of the normal

distribution. In particular, the vMF density minimizes the negative entropy
among all choices of density on S

p−1 (with fixed location and scale) as shown in
Mardia (1975). Therefore, we propose to use a measure of discrepancy from the
vM distribution as a one-dimensional projection pursuit index for directional
data. To examine the potential of such an index, we show for a location mix-
ture of vMF distributions the projection score is approximately vM-distributed
in high dimensions. In two low-dimensional examples, using the p-value from a
goodness-of-fit test, compared with the vM family, as the measure of uninterest-
ingness, we demonstrate that clusters and outliers stand out in the projection
score with small p-values.

The rest of article is organized as follows. In Section 2, we formally define
the geodesic projection and projection score. In Section 3, the density of the
geodesic-projected scores of vMF-distributed direction, PvM(p, κ, δ), is evalu-
ated. The density of PvM is compared to the Jones–Pewsey distribution family
(Jones and Pewsey, 2005), which includes the vM distribution. In Section 4, we
provide various asymptotic approximations of PvM(p, κ, δ) by the vM, normal,
Cardioid and the projected normal distributions. A numerical comparison of the
approximations is deferred to Appendix C. Section 5 demonstrates the potential
of using non-vM-ness as a projection index, towards a development of projection
pursuit for directional data. We show that almost all projections are nearly vM
in high dimensions. Issues in developing projection pursuit for directional data
are pointed out in Section 6. Special functions and their properties are listed in
Appendix A, and nearly all proofs are contained in Appendix B.

2. Geodesic projections on the unit hypersphere

Geodesics on the unit hypersphere S
p−1 are the notion closest to straight lines

in Euclidean space. A geodesic is a constant-velocity curve γ : R → S
p−1 that

locally minimizes the length of the curve among curves whose endpoints are
fixed. On S

p−1, geodesic paths coincide with great circles, and a geodesic γ can
be parametrized with q ∈ S

p−1 and v ∈ Tq, where Tq = {x ∈ R
p : x′q = 0}

is the tangent space of Sp−1 at q. A vector u ∈ Tq can be mapped to S
p−1 by

the Exponential map, defined as Expq(u) = sin(‖u‖)u/‖u‖ + cos(‖u‖)q. The
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geodesic parameterized by (q,v) is

γ(t) = γ(q,v)(t) = Expq(tv)

for t ∈ R. Throughout, we require ‖v‖ = 1 so that v ∈ S
p−1 and v′q = 0. With

the restriction ‖v‖ = 1, the image of R under γ, γ(R), is equal to the image of
I := (−π, π] under γ. That is, γ(I) = γ(R) = {Expq(tv) : t ∈ R}.

The geodesic distance function ρ : Sp−1 × S
p−1 → [0, π] between x,y ∈ S

p−1

is defined as the length of the shortest path on S
p−1 between the two points,

and is the arc length formed by the geodesic segment joining x and y: ρ(x,y) =
cos−1(x′y). For a w ∈ Tx satisfying y = Expx(w) and ‖w‖ ≤ π, ρ(x,y) = ‖w‖.
If such w is unique, then the shortest path between x and y is given by the
geodesic joining x and y, denoted by Γ(x → y).

Definition 1 (Geodesic projection and score).

(i) The projection of x ∈ S
p−1 onto the geodesic γ(R) is the point on γ(R)

closest to x (in terms of the geodesic distance), and is denoted by Pγ(x) :=
argminp∈γ(R) ρ(p,x).

(ii) The projection score Sγ(x) of x onto γ(R), defined with the parameteri-
zation γ = γ(q,v), is t ∈ (−π, π] satisfying Pγ(x) = Expq(tv).

The geodesic projection and scores for an S
2-valued sample are illustrated in

Fig. 1. For any two points x1,x2, the geodesics Γ(x1 → Pγ(x1)) and Γ(x2 →
Pγ(x2)) are not in general parallel.

The projection Pγ(x) and the score Sγ(x) are invariant and equivariant, re-
spectively, to reparameterizations of γ(q,v). Specifically, let q0 and v0 be any or-
thogonal unit vectors satisfying span(q,v) = span(q0,v0). Let θ = cos−1(q′q0)
and r = det([q,v]′[q0,v0]) ∈ {1,−1} (representing the rotation and reflec-
tion parts of the reparameterization). Then, the reparameterized geodesic γ0 =
γ(q0,v0) satisfies γ0(R) = γ(R), and we have Pγ(x) = Pγ0(x) and Sγ(x) =
rSγ0(x) + θ, for any x ∈ S

p−1.
The next lemma is on the uniqueness and computation of Pγ(x) and Sγ(x).

Lemma 2.1. Given x ∈ S
p−1 and a geodesic γ(q,v), if either x′q or x′v is

nonzero, then Pγ(x) is uniquely given by Pγ(x) = Expq(Sγ(x)v), where

Sγ(x) = argmin
t∈R

ρ(Expq(tv),x) = atan2(x′v,x′q).

Otherwise, x′q = x′v = 0 and Pγ(x) is everywhere on γ(R).

The function atan2(y, x) is the two-argument inverse tangent which takes
the signs of x and y into account to determine in which quadrant (x, y) lies. In
other words, Sγ(x) is the polar angle of the polar coordinates for (x′q,x′v) in
Cartesian coordinates.

3. Geodesic projections of vMF random directions

For x ∈ S
p−1, suppose x ∼ vMFp(μ, κ). We wish to find the distribution of

the projection score Sγ(x) on any given γ. While vMF plays the role of normal



Geodesic projection of von Mises–Fisher 989

Fig 1. (Left) A sample x of size n = 100 from vMF3(e3, 3), and its geodesic-projection Pγ(x)
onto a canonical geodesic γ(q,v) (blue great circle), where q = e3, v = e2. Also shown are
the trajectories of the projection of each observation. (Right) A histrogram and dot plot for
the projected score Sγ(x) (shown in degrees).

distribution in the areas of directional data, a natural question is whether the
projected score of a vMF-distributed x is also a vM. We show that this is not
the case.

The distribution of Sγ(x) can be parameterized by p, κ and the deviation δ
of γ from the mode μ, due to the rotational symmetry of the vMF distribution.
The deviation is defined as

δ = ρ(μ, γ) := min
y∈γ(R)

ρ(μ,y) ∈ [0, π/2]. (3.1)

With respect to the mode μ of the distribution, a geodesic γ is parameterized by
(q,v), where q is the point on γ(R) closest to μ, i.e., δ = ρ(μ,q), and v ∈ γ(R)
is any of the two unit vectors orthogonal to q. For δ < π/2, such q is unique.
The distribution of Sγ(x) is invariant to the choice of v, and to the choice of q
if δ = π/2. In any case, v′μ = 0.

Among the geodesics, we pay special attention to the geodesics passing
through the mean μ, i.e., the case δ = 0. Any geodesic passing though μ can be
parameterized by μ and v ∈ S

p−1 satisfying v′μ = 0. These geodesics γ(μ,v)
will be referred to as canonical geodesics, hereafter. The distribution of Sγ(x)
is identical for any canonical geodesic γ, due to the rotational symmetry of the
vMF distribution.

The opposite extreme is the case δ = π/2, where the geodesic γ is as far as
possible from the center of the distribution.

In the following, we inspect the distribution of Sγ(x), x ∼ vMFp(μ, κ). The
density function of Sγ(x) takes a special form, and does not coincide with any
known distributions. We denote T ∼ PvM(p, κ, δ) for T = Sγ(x), where δ is the
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deviation of γ from μ, defined in (3.1). For the canonical geodesics with δ = 0,
we simply write PvM(p, κ) for PvM(p, κ, 0).

3.1. The density of PvM(p, κ, δ)

The density of T = Sγ(x), with γ = γ(q,v), can be obtained by evaluating
the joint density of (X,Y ) = (x′q,x′v), then switching to the polar coordinates
(R, T ), where R cosT = X and R sinT = Y . In general, there is no closed-form
expression for the density of T , but we show that T ∼ PvM(p, κ, δ) is an infinite
scale mixture of vM distributions.

The vM distribution vM(μ, κ) is the special case of the vMF distribution
for p = 2. Since S

1 is the unit circle, the vM density is oftentimes given for
angles rather than unit vectors as in (1.1). We say the angle θ ∼ vM(μ, κ), for
μ ∈ (−π, π] and κ ≥ 0, if its density function is

fvM(θ;μ, κ) = c2(κ)e
κ cos(θ−μ), c2(κ) =

1

2πI0(κ)
,

for θ ∈ (−π, π]. We use the notation vM(κ) := vM(0, κ) and fvM(θ;κ) :=
fvM(θ; 0, κ) as we are only interested in mean-zero vM distributions.

Theorem 3.1. Let T ∼ PvM(p, κ, δ) for p ≥ 3, κ ≥ 0 and 0 ≤ δ ≤ π/2. Then
the density function of T is

fPvM(t; p, κ, δ) =

∫ 1

0

fR(r)fvM(t;κ cos(δ)r)dr, (3.2)

for t ∈ (−π, π], where the mixing density fR depends on p, κ, δ and is

fR(r) =
2

I∗ν (κ)
I0{κ cos(δ)r}r(1− r2)ν−1I∗ν−1{κ sin(δ)

√
1− r2},

for r ∈ (0, 1), where ν = (p − 2)/2 and I∗ν (z) = ( z2 )
−νIν(z) for z > 0 and

I∗ν (0) = 1/Γ(ν + 1).

For any p ≥ 3, κ > 0 and δ ∈ [0, π/2), fPvM(t) is symmetric about t = 0,
strictly decreasing on t > 0, and has its unique mode at t = 0. These properties
are inherited from the mean-zero vM distributions. In Fig. 2, an example of the
joint density of (R, T ) is displayed. If κ = 0, both vMFp(μ, 0) and PvM(p, 0, δ)
are the uniform distributions on S

p−1 and S
1, respectively.

For the special case of δ = 0 (that is, when γ is a canonical geodesic), we

have fPvM(t; p, κ) = fPvM(t; p, κ, 0) =
∫ 1

0
fR(r)fvM(t;κr)dr, with a simpler ex-

pression of the mixing density

fR(r) =
2(κ2 )

ν

Iν(κ)Γ(ν)
I0(κr)r(1− r2)ν−1.
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Fig 2. The joint density of (X,Y ) = (x′q,x′v) when x ∼ vMFp(μ, κ). Here, δ = 27◦, p =
25, κ = 10. In the polar coordinates (R, T ), where R cosT = X and R sinT = Y , each
conditional distribution of T given R is a vM.

Even in this special case, the integral involved has no closed form solution.
Fortunately, it can be represented by the values of special functions Iν and Mν .
Our next result is on the exact density function of Sγ(x), when γ is a canonical
geodesic.

Theorem 3.2. Let x ∈ S
p−1, p ≥ 3, follow vMFp(μ, κ) for κ ≥ 0. Suppose

that the geodesic γ = γ(q,v) passes through μ with q = μ. Then the density
function of the projection score Sγ(x) is fPvM(t; p, κ) = C(p, κ)(1 + h(t)) for
t ∈ (−π, π], where

h(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
πΓ( p

2 )

( |κ cos t|
2 )

p−3
2

(
M p−1

2
(|κ cos t|) + 2I p−1

2
(|κ cos t|)

)
, if t ∈ (−π

2 ,
π
2 );

0, if t = ±π
2 ;√

πΓ( p
2 )

( |κ cos t|
2 )

p−3
2

M p−1
2
(|κ cos t|), if |t| ∈ (π2 , π],

(3.3)
and

C(p, κ) =

(
κ
2

) p
2−1

2π(p2 − 1)Γ(p2 − 1)I p
2−1(κ)

.

In Fig. 3, the density function fPvM is plotted for a few choices of the
dimension-concentration pair (p, κ). There, the closest vM density is overlaid
as well. The precise meaning of “closest” is defined in Section 3.2. To human
eye, the family of the density fPvM is similar to the vM family.

For the opposite extreme case of δ = π/2 where γ is as far from μ as possible,
all vM distributions in the mixture of (3.2) becomes the uniform distribution on
(−π, π], which in turn leads that fPvM(t; p, κ, π/2) is uniform. A slightly more
general statement is shown in Lemma 3.3.
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Fig 3. Examples of the probability density function fPvM(·; p, κ, 0) of the projection score
Sγ(x), overlaid with the histogram of Sγ(x), obtained from n = 10,000 random sample of
vMFp(μ, κ). The best approximating vM density, obtained by (3.4), shows that fPvM is close
to a vM density, but is not exactly the same with any vM density.

Lemma 3.3. Let x be a random variable on S
p−1 whose distribution is rota-

tionally symmetric about μ. Suppose that q,v of γ(q,v) satisfy q′μ = v′μ = 0.
Then Sγ(x) ∼Uniform(−π, π].

As κ increases, fPvM becomes more concentrated. On the other hand, the
higher the dimension p, the more dispersed fPvM. As the deviation δ increases,
the distribution of Sγ(x) becomes more dispersed toward the uniform. This is
graphically shown in Fig 4, in which the density of Sγ(x) is obtained by the
numerical integration of f(r, t) = fR(r)fvM(t;κ cos(δ)r) over r ∈ (0, 1).

3.2. Comparisons to the Jones–Pewsey distribution family

Although fPvM looks close to a vM density, it is not equal to any vM density.
We show this for a more general distribution family, which includes the vM as
a special case.

The Jones–Pewsey distribution (Jones and Pewsey, 2005) is a general three-
parameter family of symmetric circular distributions. The density function of
the Jones–Pewsey distribution, with location parameter μ, concentration pa-
rameter κ̃ ≥ 0, and a shape parameter φ ∈ R, is given by gJP(θ) = ω(κ̃, φ){1 +
tanh(κ̃φ) cos(θ − μ)}1/φ, for θ ∈ (−π, π), where ω(κ̃, φ) is the normalizing con-
stant. The Jones–Pewsey distribution includes the vM distribution, the Cardioid
distribution, the wrapped Cauchy distribution and the circular t-distribution
(Shimizu and Iida, 2002) as special cases; see Ley and Verdebout (2017) for a
discussion on the Jones–Pewsey distribution.

The following result shows, in particular, that there is no vM distribution
whose density function equals fPvM(t; p, κ).
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Fig 4. Density functions of PvM(p, κ, δ) for (p, κ) = (3, 5) and varying δ = 0 (solid), 30, 60,
70, 80 (dotted) and 90 (dashed) degrees.

Theorem 3.4. For any given p ≥ 3 and κ ∈ (0,∞), there is no Jones–Pewsey
distribution whose density function equals fPvM(t; p, κ).

Note that if κ = 0 or ∞, then fPvM(t) is the uniform distribution or the point
mass at 0, respectively.

The discrepancy of the PvM(p, κ, δ), δ ≥ 0, with the vM distribution is
confirmed numerically. In Fig. 5, we compare fPvM with the closest vM density
function for a fine grid of (p, κ) and for δ = 0, 30◦, 60◦. The closest vM density
is defined by vM(κ̃0) for

κ̃0 = argmin
κ̃

H(fPvM(·; p, κ, δ), fvM(·; κ̃)), (3.4)

where H(f, g) = 1√
2

∫
(
√
f(t)−

√
g(t))2dt is the Hellinger distance between two

density functions f, g. The maximum Hellinger distance shown in the figure is
about 0.0196.

While PvM(p, κ, δ) is not exactly a vM distribution, they are virtually the
same for the majority of possible (p, κ). To support this claim, we test the
null hypothesis of Sγ(x) ∼ vM(0, κ̃) using a random sample of size n from
PvM(p, κ, δ). We use Kuiper (1960)’s goodness-of-fit test (adapted for the vM
as in Section 6.2 of Pewsey, Neuhäuser and Ruxton (2013)), and κ̃ is given by
the maximizer of the vM likelihood. We choose (p, κ, δ) = (20, 10, 0) as used
in the middle panel of Fig. 3. For the sample size up to n = 1000, the power
of the test is less than 6% (numerically evaluated with significance level 5%),
meaning that in the usual situations where the sample size is at most hundreds
one cannot distinguish PvM(p, κ) with a vM distribution.
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Fig 5. The Hellinger distance between fPvM and the closest vM density for various values of
p, κ and for δ = 0 (red), 30◦ (green) and 60◦ (blue).

4. Approximations to vM distributions

In this section, we provide various approximations of PvM(p, κ, δ) by the vM
distributions, to support our claim that PvM is nearly vM. Asymptotic results
in this section will also be useful in our discussion of projection pursuit, in
Section 5. Since a PvM(p, κ, δ) has zero mean, the approximating vM(μ, κ̃) has
μ = 0. We identify the concentration parameter κ̃ as a function of (p, κ, δ).

4.1. The case of canonical geodesics

When γ is a canonical geodesic, i.e., δ = 0, with respect to x ∼ vMFp(μ, κ),
the exact density function of Sγ(x) ∼ PvM(p, κ) is derived in Theorem 3.2. We
approximate the density function fPvM(t; p, κ) by a vM density under various
asymptotic scenarios regarding the parameters of the vMF distribution. Specif-
ically, we consider high concentration (κ → ∞), low concentration (κ → 0),
high dimension (p → ∞), and a combination of high-dimension and high-
concentration where both p, κ → ∞ but p/κ ∈ (0,∞) is fixed.

The big Theta Θ notation is used to state our finding. Under the asymptotic
regime ν → ∞, we say fν = Θ(gν) if limν→∞ fν/gν = c �= 0. For example, for
α ∈ R fixed, fν = Θ(ν−α) if and only if limν→∞ ναfν < ∞ and for any ε > 0,
limν→∞ να−εfν = 0. The asymptotic regime may be sometimes ν → 0, and the
definition of Θ is changed to reflect the appropriate limit.

We summarize our finding in Theorem 4.1. There, φ(·) is the density function
of the standard normal distribution. We say θ follows the Cardioid distribution
(centered at μ = 0) with parameter ρ ∈ (0, 1

2 ) if its density is fCardioid(t; ρ) =
1
2π (1 + 2ρ cos t) on t ∈ (−π, π). It is well-known that the vM distribution is
approximated by the normal distribution, for high concentration, and by the
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Cardioid distribution for low concentration; see Kent (1978) and Mardia and
Jupp (2000).

Theorem 4.1. For T ∼ PvM(p, κ), let fκ(s; p, κ) be the density function of√
κT . Similarly, for θ ∼ vM(0, κ̃), let gκ(s; κ̃) be the density function of

√
κθ.

Here, κ and κ̃ need not be the same.

(i) (High concentration) For any fixed p ≥ 3 and for any s ∈ R, as κ → ∞,

fκ(s; p, κ) = gκ(s;κ) + Θ(κ−1) = φ(s) + Θ(κ−1).

Informally, we write PvM(p, κ) ≈ vM(0, κ) ≈ N(0, κ−1) as κ → ∞.
(ii) (Low concentration) Let κ̃l = B(p2 ,

1
2 )κ/2, where B(·, ·) is the beta func-

tion. For any fixed p ≥ 3 and for any t ∈ (−π, π), as κ → 0,

fPvM(t; p, κ) = fvM(t; κ̃l) + Θ(κ2) = fCardioid(t; κ̃l/2) + Θ(κ2).

(iii) (high dimension) Let κ̃d = κ
√

π
2(p−1) . For any fixed κ > 0 and for any

t ∈ (−π, π), as p → ∞,

fPvM(t; p, κ) = fvM(t; κ̃d) + Θ(p−1) = fCardioid(t; κ̃d/2) + Θ(p−1).

(iv) (High concentration, high dimension) Let κ̃b = κ λ
1+

√
1+λ2

, where λ = κ/u

and u = (p− 1)/2, and ς2λ = κ
κ̃b

= 1+
√
1+λ2

λ . Suppose κ → ∞ and p → ∞
simultaneously while λ = κ/u ∈ (0,∞) is fixed. Then, for any s ∈ R,

fκ(s; p, κ) = gκ(s; κ̃b) + Θ(p−1) =
1

ςλ
φ

(
s

ςλ

)
+Θ(p−1).

Informally, we write PvM(p, κ) ≈ vM(0, κ̃b) ≈ N(0, κ̃−1
b ) as κ, p → ∞

and λ fixed.

An immediate implication of Theorem 4.1 is that for x ∼ vMFp(μ, κ), and
for a canonical geodesic γ, Sγ(x) ⇒ Unif(−π, π) as κ → 0 or as p → ∞. Here
and throughout, the notation ⇒ stands for the convergence in distribution.
This result is consistent with the high-dimensional asymptotic results in the
literature. In particular, it is shown in Watson (1988) and Dryden (2005) that
for a fixed κ, vMFp(μ, κ) converges to the uniform distribution on S

∞ as p → ∞.
The uniform distribution on S

p−1 is a special case of the vMF distribution with
κ = 0, and Unif(−π, π) is a special case of the PvM distribution with κ = 0.
Thus, the approximation by vM(κ̃l) in the low concentration setting and the
high-dimensional approximation vM(κ̃d) are bound to be similar in the high
dimensional situations. In fact, κ̃d ≈ κ̃l for large p; for u = (p−1)/2, Gautschi’s
inequality (Qi, 2010) gives

1 <
κ̃d

κ̃l
= u− 1

2
Γ(u+ 1

2 )

Γ(u+ 1)
<

√
1 +

1

2u
.
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In the opposite case where κ → ∞, the underlying vMFp(μ, κ) converges to
the point mass at μ. The rate of convergence is exactly κ−1/2 and PvM(p, κ) is
approximately vM or normal. In the high-dimensional case, if the concentration
parameter κ increases at the same rate as p, then Case (iv) in Theorem 4.1 leads
that for λ = 2κ/p ∈ (0,∞),

(√
λ2 + 1− 1

λ
κ

) 1
2

Sγ(x) ⇒ N(0, 1),

as κ → ∞. We remark that if κ increases at the rate κ =
√
pλ for λ ∈ (0,∞),

the distribution of Sγ(x) neither diverges to the uniform nor degenerates to a
point mass. This special case will be discussed in the general setting where δ ≥ 0
in Section 4.2.

4.2. The case of general geodesics

Approximation of PvM(p, κ, δ) in the general case where δ ∈ [0, π/2] is discussed
in this section. Since the exact density function is not available for δ > 0, the
results derived here are weaker than the corresponding results for δ = 0 in
Section 4.1, in the sense that the approximation error is not evaluated in most
cases. An exception is the low-concentration case κ → 0 (while other parameters
are fixed), and an extension of Theorem 4.1 (ii) is given. We also inspect two
different asymptotic regimes of high-dimensional cases p → ∞ and p, κ → ∞
at the same rate. It is seen that PvM(p, κ, δ) becomes either as dispersed as
possible (when p → ∞ and κ is fixed) or converges to 0 with the rate κ−1/2

(when p → ∞ and κ = Θ(p)). An interesting result is obtained when we consider
the case κ = Θ(p1/2). As p → ∞, PvM(p, κ, δ) does not degenerate in the limit,
but converges to the projected normal distribution.

In the following, we discuss the four asymptotic scenarios of approximating
PvM(p, κ, δ).

4.2.1. Low concentration approximation

The distribution of Sγ(x), PvM(p, κ, δ), is a mixture of vM(κ cos(δ)R) over R ∈
(0, 1), as given in Theorem 3.1. In the low-concentration asymptotic scenario of
κ → 0, all concentration parameters of the vM converge to zero, but the mixing
density fR does not degenerate. Nevertheless, a mixture of vM(0)’s is simply
vM(0), which is the uniform distribution. A much stronger statement is given
in Theorem 4.2, where we provide an approximation of PvM(p, κ, δ) by vM(κ̃),
and its approximation error.

Theorem 4.2. Let κ̃ = κ̃(p, κ, δ) = B(p2 ,
1
2 )κ cos δ/2. For any p ≥ 3, δ ∈

[0, π/2), and for any t ∈ (−π, π], as κ → 0,

fPvM(t; p, κ, δ) = fvM(t; κ̃) + Θ(κ2).
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Note that the above results coincides with Theorem 4.1 (ii) for δ = 0. It is
conjectured that, for δ > 0, the approximations in the other asymptotic regimes
are simply those in Theorem 4.1 with κ replaced by κ cos δ. While the conjecture
seems true for the case p, κ → ∞ discussed in Theorem 4.3 later, a rigorous proof
has not been obtained.

In our proof of Theorem 4.2, detailed in the Appendix, we provide a uniform
bound of the density function fPvM:

f (−)(t) ≤ fPvM(t) ≤ f (+)

over t ∈ (−π, π]. The functions f (−)(t) and f (+) are easier to handle as the inte-
grals involved have closed-form expressions, and both converge to the uniform
density as κ → 0.

4.2.2. High-dimensional approximations

We consider three asymptotic regimes: κ is fixed, κ = Θ(p) and κ = Θ(
√
p) as

p → ∞.

High-dimension with κ fixed Using the joint density function of (R,Sγ(x))
in Theorem 3.1 and the large-order asymptotic expression of Iν in (A.9), it can
be shown that R → 0 in probability, and furthermore,

(
√
pR, Sγ(x)) ⇒ (X,U), as p → ∞, (4.1)

where X ∼ Rayleigh(1) and U ∼ Uniform(−π, π) are independent. A proof of
(4.1) is given in Appendix Section B.3. This result is not entirely new and can
be derived from Watson (1988).

Watson investigated the vMF distribution in high-dimensional spheres, and
in particular the orthogonal projections of a vMF-distributed random directions
onto a subspace. For the projection onto the subspace spanned by γ(q,v), let
P = [q,v] be the orthogonal frame of the subspace. Watson (1988) showed that

√
pP′x ⇒ N2(0, I2) as p → ∞;

see also Dryden (2005). Since the polar angle Sγ(x) is invariant to positive si-
multaneous scaling of P′x = (q′x,v′x), Lemma 2.1 and the continuous mapping
theorem give

Sγ(x) ⇒ Uniform(−π, π) as p → ∞.

Comparing to Theorem 4.1 (iii), where δ = 0, we conjecture that PvM(p, κ, δ) ≈
vM(κ̃d) as p → ∞ where κ̃d = κ cos δ

√
π

2(p−1) .

High-dimension, high-concentration with κ = Θ(p) Assume that both p
and κ increases at the same rate. If the deviation δ of the geodesic γ from the
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mode μ of vMFp(μ, κ) is not its maximum, i.e. δ < π/2, then Sγ(x) degenerates
as p → ∞ and can be well approximated by either the vM or normal distribution.
In the following we show the convergence of a scaled Sγ(x) in the limit p, κ → ∞,
while κ/p → λ/2 ∈ (0,∞).

In the general geodesic case where δ > 0, the distribution of Sγ(x) is only
available as the mixture of vM distributions vM(κ cos(δ)R). It turns out as
p → ∞, the mixing random variable R concentrates at

r0 =
λ cos δ

1 +
√
1 + λ2

,

shown in Lemma B.7 in Appendix.
Informally, Sγ(x) is the mixture of vM(κ cos(δ)r0), with weight approaching

1, and the rest with weight approaching 0, as p → ∞. This entails that Sγ(x) ∼
vM(κ cos(δ)r0) in the limit, but because κ increases as well, the vM is again
approximated by the normal distribution. This is shown next.

Theorem 4.3. Let u = p/2− 2 for p ≥ 5 and x ∼ vMFp(μ, κ). Suppose both u
and κ increase while λ = κ/u ∈ (0,∞) is fixed, and δ = ρ(μ, γ) is fixed.

(i) If δ ∈ [0, π/2), then for

κ̃ = κ cos2(δ)
λ

1 +
√
1 + λ2

,

√
κ̃Sγ(x) ⇒ N(0, 1) as p → ∞.

(ii) If δ = π/2, then Sγ(x) ⇒ Uniform(−π, π), as p → ∞.

Remark 1. In Theorem 4.3, we used u = (p − 4)/2 as it is the easiest form to
handle, but the conclusion remains the same if u = (p − 1)/2 or p/2 is used
instead.

For the special case of a canonical geodesic γ with cos δ = 1, the statement
of the above theorem can be obtained from Theorem 4.1 (iv). For this special
case, Theorem 4.1 (iv) is in fact a stronger statement than Theorem 4.3, as the
rate of convergence Θ(p−1) is not available in the latter.

Theorem 4.3, together with Lemma B.2, implies that if both p and κ are
large, PvM(p, κ, δ) is well approximated by vM(κ̃) and by N(0, κ̃−1).

High-dimension, moderately large κ = Θ(
√
p) The distribution of Sγ(x)

does not degenerate when κ increases at the rate of
√
p. The case p → ∞

while κ =
√
pλ is investigated by Watson (1988), in which Watson showed that

the orthogonal projection of x ∼ vMFp(μ, κ) onto the subspace spanned by
P = [p,v] converges to a normal distribution when scaled by

√
p. We show in

Theorem 4.4 that the polar angle Sγ(x) of the projection score p1/2P′x converges
to the distribution of polar angle of the limiting 2-variate normal distribution,
called the projected normal distribution.

In the theorem, we in addition allow the geodesic γ = γ(p,v) to be random,
but require that for a given δ ∈ [0, π/2], ρ(μ, γ) → δ in probability as p → ∞.
This will be useful in Section 5.
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The projected normal distribution, sometimes referred to as angular Gaus-
sian or offset normal distribution, is obtained by projecting a Gaussian random
vector on R

q on S
q−1 (in our case, q = 2), and does not coincide with the

vMF distribution. We write PN2(μ, I2) for the distribution of the polar angle
of N2(μ, I2).

Theorem 4.4. Consider a sequence {xp : p = 3, 4, . . .} of random directions,
where xp ∼ vMFp(μp, κp), where for a λ > 0, κp =

√
pλ. For each p, let γp

be a random geodesic parameterized with respect to μp, that is, γp = γ(q,v)
and Δp := cos−1(q′μp) = ρ(μp, γ) and v′μp = 0. Assume that γp and xp are
independent, and for a constant δ ∈ [0, π/2], Δp → δ in probability as p → ∞.
Then as p → ∞,

√
p(q′xp,v

′xp)
′ ⇒ N2((λ cos δ, 0)

′, I2),

and

Sγ(xp) ⇒ PN2((λ cos δ, 0)
′, I2).

The density function of PN2((λ cos δ, 0)
′, I2) is

fPN(θ;λδ) =
1

2π
e−λ2

δ/2

{
1 +

Φ(λδ cos θ)

φ(λδ cos θ)
λδ cos θ

}
,

for θ ∈ [−π, π), where λδ = λ cos δ, and Φ and φ are the distribution function and
the density function of the standard normal distribution, respectively (Watson,
1983; Pukkila and Rao, 1988; Presnell, Morrison and Littell, 1998). The density
fPN is unimodal, symmetric about zero, and exhibits heavier tails than the
vM. Albeit the difference, the density fPN(θ;λδ) is well approximated by vM
distributions when λδ is low or high. In particular, for high concentration case
where λδ → ∞, we have

PN2((λδ, 0)
′, I2) ≈ vM(λ2

δ) ≈ N(0, λ−2
δ ); (4.2)

for low concentration case where λδ → 0, we have for κ̃ =
√

π/2λδ,

PN2((λδ, 0)
′, I2) ≈ vM(κ̃) ≈ Cardioid(κ̃/2). (4.3)

Thus, if p → ∞, κ =
√
pλ and λ cos δ is large, then PvM(p, κ, δ) can be ap-

proximated by vM(p−1κ2 cos2 δ). On the other hand, for p → ∞, κ =
√
pλ but

λ cos δ ≈ 0, we have PvM(p, κ, δ) ≈ vM(
√

π/(2p)κ cos δ). Note that the latter
vM approximation of PN is asymptotically equivalent to the high-dimensional
approximation by vM(

√
π

2(p−1)κ) given in Theorem 4.1 (iii), for δ = 0.

The assertions (4.2) and (4.3) are formally stated in Lemma 4.5.

Lemma 4.5. For T ∼ PN2((λ, 0)
′, I2), let fPN(t;λ) and fλ(s) be the density

function of T and λT , respectively. Similarly, for θ ∼ vM(0, κ̃), let gλ(s; κ̃) be
the density function of λθ.
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Table 1

Asymptotic approximations of PvM(p, κ, δ). (∗: Shown only for δ = 0.)

Scenario κ̃ of vM(κ̃) Relevant result
p fixed, κ → ∞∗ κ cos δ Theorem 4.1 (i)
p fixed, κ → 0 B( p

2
, 1
2
)κ cos δ/2 Theorems 4.1 (ii) and 4.2

p → ∞, κ fixed∗ κ cos δ
√

π
2(p−1)

Theorem 4.1 (iii)

p → ∞, κ → ∞, κ/p → λ/2 κ cos2 δ λ

1+
√

1+λ2
Theorems 4.1 (iv) and 4.3

p → ∞, κ → ∞, κ/
√
p → λ PN2((λ cos δ, 0)′, I2) Theorem 4.4

(i) (High concentration) For any s ∈ R, as λ → ∞,

fλ(s) = gλ(s;λ
2) + Θ(λ−2) = φ(s) + Θ(λ−2).

(ii) (Low concentration) Let λ̃ =
√
π/2λ. Then for any λ > 0 and t ∈ (−π, π),

as λ → 0,

fPN(t;λ) = fvM(t; λ̃) + Θ(λ2) = fCardioid(t; λ̃/2) + Θ(λ2).

4.3. Summary and comparison

In Sections 4.1 and 4.2, several approximations of PvM(p, κ, δ) are identified
and justified in various asymptotic scenarios. A summary is given in Table 1.

A natural question to ask is that for a given (p, κ), which approximation
works the best? We attempt to answer this question numerically. For each p =
3, . . . , 50, a fine grid of κ ∈ (0, 70], and δ ∈ {0, 30◦, 60◦, 80◦}, we compare
fPvM(·; p, κ, δ) with each of the five approximations given in Table 1, and record
the closest approximation to PvM(p, κ, δ) in terms of the Hellinger distance.

The result is shown in Fig. 6. There, the high p, large κ approximation (the
4th row in Table 1) is shown to be superior than the others for most cases.
When δ increases, the PvM distribution becomes less concentrated, and the low-
concentration (small κ) approximation becomes better. We note that the high-
dimensional approximations are similar to the low-concentration approximations
for most cases of (p, κ). The approximation by the projected normal is seen to
be the closest roughly for the cases κ < 2p. However, the difference between
the approximating projected normal density and the other approximating vM
densities, especially the small κ and high p approximations, are not large (in
fact thin). These claims are numerically confirmed in Appendix C, in which we
provide a more careful numerical comparison on the quality of approximations.

5. An application to projection pursuit of directional data

Projection pursuit (Friedman and Tukey, 1974) is a technique for exploration
of multivariate analysis, aiming at finding low-dimensional “interesting” projec-
tions of high-dimensional data in R

p. A direction u ∈ R
p is deemed interesting

if the distribution of the orthogonal projection score x′u is as far from Gaussian
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Fig 6. Regions of best approximations in terms of the smallest Hellinger distance.

as possible (Friedman, 1987; Bickel, Kur and Nadler, 2018). Such a non-normal
distribution is an evidence of potential clusters or outliers in the multivariate
data.

For directional data on S
p−1, we propose to seek the geodesic γ such that the

projection score Sγ(x) is as non-vM as possible. As claimed in preceding sections,
the projection score of a vMF-distributed random direction is approximately
vM-distributed. Since any vMF distribution is rotationally symmetric about its
mode, no geodesic is more interesting than any other geodesics. On the other
hand, if the data exhibits an interesting mode of variation such as clusters, the
projection score onto the geodesic passing through two clusters is bimodal, and
strongly non-vM.

We demonstrate that a measure of non-vM-ness is useful in detecting clusters
and outliers. In the following two examples, conformity to the vM distributions
is measured by the p-value of the Kuiper’s test with respect to the vM family,
using a sample of projection scores Sγi(x).

Example 1. Consider a location mixture of vMF, given by x ∼ 1
2vMF3(μ1, κ)+

1
2vMF3(μ2, κ), where ρ(μ1,μ2) = π/4 and κ = 50. A sample of size n = 100
from this model is plotted in Fig. 7. While we have chosen to use p = 3 for pre-
sentational purposes, exploration of directional data for p > 3 by visualization
is limited. We compare two geodesics γ1 and γ2, where γ1 passes through both
μ1 and μ2, and γ2 stems from the sample Fréchet mean of data, the minimizer
μ of

∑n
i=1{ρ(xi,μ)}2, and is orthogonal to γ1. If the data were in Euclidean
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Fig 7. A sample from a location mixture of vMF distributions, overlaid with geodesics γ1 and
γ2 of interest. The strongly non-vM-distributed Sγ1(x) is related to the usefulness of γ1 in
exploratory data analysis.

space, then γ1 corresponds to the Fisher’s discriminant direction. The clustered
nature of the population appears along the geodesic γ1 whose projection score is
strongly non-vM (small p-value); see the bottom left panel of Fig. 7. On the other
hand, the projection onto γ2 is vM-distributed, and is deemed uninteresting.

Example 2. We consider a contaminated vMF3(μ, 50), where 10 percent of the
observations are located 90 degrees away from μ. A sample of size n = 50 is
plotted in Fig. 8. Two geodesics are compared as well: γ2 passes through the
two clusters and γ1 stems from the sample Fréchet mean of the data and is
orthogonal to γ2. It can be checked that the outliers appear on Sγ2(x) (which
is strongly non-vM), while the uninteresting γ1 has its scores distributed not
significantly different from a vM distribution.

While the above two examples concern a low-dimensional situation, the de-
parture from the vM distribution is a viable measure of interestingness in high-
dimensional situations. We show that under the location mixture model, similar
to the examples above, almost all geodesics γ are uninteresting, i.e., the projec-
tions are approximately vM. Therefore, a geodesic γ0 with a non-vM projection
score is certainly interesting.

In particular, we use the high-dimensional setting of Theorem 4.4, and choose
the geodesic γ from the uniform distribution on the set of all geodesics on S

p−1.
Note that the uniformly distributed γ is given by choosing a random orthogonal
2-frame (q,v). We also consider the case where the geodesic is confined to pass
through the mean of the directional data, a common practice in dimension
reduction. The result is easily derived from Theorem 4.4.
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Fig 8. A sample from a contaminated vMF distribution with outliers.

Corollary 5.1. Suppose that xp ∼ π1vMFp(μ1, κp) + (1 − π1)vMFp(μ2, κp),
κp =

√
pλ for some λ > 0 and π1 ∈ (0, 1).

(i) Suppose that γ = γ(q,v) is chosen from the uniform distribution on the
Stiefel manifold V2,p (consisting of 2-frames in R

p). Then,

Sγ(xp) ⇒ Uniform(−π, π)

as p → ∞.
(ii) Let μ ∈ S

p−1 be any minimizer of
∑2

i=1 ρ
2(μi,μ). Suppose that ρ(μ,μ1)=

ρ(μ,μ2) → d ∈ [0, π/2] as p → ∞, and that v is sampled from the uniform dis-
tribution on the (p − 2) dimensional unit sphere in the null space of μ. Then,
for γ = γ(μ,v),

Sγ(xp) ⇒ PN2((λ cos d, 0)
′, I2)

as p → ∞.

The result above shows that as p → ∞ for almost all choices of γ, the cor-
responding projection score is approximately vM-distributed (either uniform or
the projected normal). However, as demonstrated in Example 1, there certainly
is an interesting direction: For the canonical geodesic γ with respect to both μ1

and μ2, i.e., γ = Γ(μ1 → μ2), Sγ(x) converges to a location mixture of two
projected normal distributions.

Corollary 5.1 also hints a use of “non-Gaussianity” as a projection index in
high dimensions. Unlike the usual vector-valued data where all uninteresting
projections are Gaussian, uninteresting geodesic projections of directional data
can be uniformly distributed. The uniform distribution is a special case of vM,
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but is strongly non-Gaussian. Thus, for directional data, non-normality of scores
does not always indicate interesting patterns of data.

Remark 2. Extensions of Corollary 5.1 may be necessary in developing a pro-
jection pursuit for high-dimensional directional data. For example, instead of
the 2-mixture of equal concentrations assumed in Corollary 5.1, consider a K-
mixture of vMFp(μk, λk

√
p) for K > 2 with possibly different concentration

parameters λk. If the number K of mixtures is fixed, then it can be checked
that the assertion (i) of Corollary 5.1 still holds even if λk’s are distinct. On the
other hand, generalizing the assertion (ii) is tricky. With more than two com-
ponents, the limiting distances from the component centers to the grand mean,
dk := limp→∞ ρ(μ,μk), should be treated arbitrary (as opposed to d1 = d2 = d
in the K = 2 case). With potentially different concentration parameters λk, we
conjecture that Sγ(xp) converges to a scale mixture of PN2((λk cos dk, 0)

′, I2).
Such a situation in a low-dimensional setting was explored in Example 2. There,
the location mixture Sγ2(x) is shown to be more severely non-vM compared to
the scale mixture Sγ1(x).

6. Discussions

We point out two directions of future research topics.

On the projected vMF We have shown that the projection score of the
vMF distribution onto a geodesic is not exactly vM-distributed, but is so ap-
proximately. Whether a similar property holds for more general distributions
with ellipse-like symmetry such as Kent distribution (Kent, 1982) and the scaled
vM distribution (Scealy and Wood, 2019), or for a semiparametric rotationally
symmetric models (see e.g. Paindaveine and Verdebout, 2020), is an interesting
question. An anonymous reviewer has asked whether a property similar to The-
orem 3.1 holds for semiparametric rotationally symmetric models with density
at x ∈ S

p−1 proportional to f(κx′μ). A calculation similar to the proof of the
theorem shows that if f(st) = f(s)f(t), then the distribution of T = Sγ(x)
is a scale mixture of f(κ cos δ cos(t)). Whether the condition on f can be re-
laxed has not been answered. Furthermore, consider a dimension-k subsphere
Ak = {Pkz : z ∈ S

k} ⊂ S
p−1, defined for a p × (k + 1) orthogonal frame Pk.

The subsphere is a multidimensional generalization of the geodesic, as A1 is the
image over a geodesic. A related question is whether the projected score in S

k

onto Ak is approximately vMF-distributed.

On a formal development of projection pursuit for directional data
We have demonstrated that departures from vM distributions can be used as
useful projection pursuit indices. A comprehensive development of projection
pursuit for directional data and a thorough investigation of it are deemed ben-
eficial. We point out two major issues that need to be addressed in the devel-
opment.
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• Projection index: A projection index measures the interestingness of the
geodesic projection. While various measures of non-vM-ness are viable
candidates, computationally simpler notions such as kurtosis may pro-
vide satisfactory exploration of data. As an instance, Alashwali and Kent
(2016) primarily used the kurtosis as the projection index in their study
of projection pursuit.

• Structure removal or k-dimensional projection pursuit: Our discussion is
limited to the dimension-1 projection onto geodesics, and there certainly is
a need to detect more than one interesting geodesics or even a subsphere.
A common technique to explore more than one interesting directions is
structure removal (Friedman, 1987). For directional data, structure re-
moval translates to removing the identified interesting geodesic γ. Such a
task is not straightforward and invites a deeper discussion on the strat-
egy of dimension reduction for directional data (and for data on mani-
folds in general). Roughly, the strategies are categorized into two. The
forward dimension reduction aims to successively increase the dimension
of “interesting” submanifolds. On the other hand, the backward dimension
reduction seeks to successively remove “uninteresting” directions. While
there are evidences that the backward approaches are more suited for
manifold-valued data (Jung, Dryden and Marron, 2012; Huckemann and
Eltzner, 2018; Pennec et al., 2018), whether that remains the same for
projection pursuit shall be answered. See Damon and Marron (2014) for
an introduction on this issue.

Appendix A: Special functions

We collect several facts on the modified Bessel and Struve functions, and their
various asymptotic expansions. We refer to Sections 10 and 11 of Olver et al.
(2010) and DLMF (2020) as a general reference for these special function.

A.1. Standard power series and integral representations

The modified Bessel function of the first kind of order ν can be defined by the
standard power series (Olver et al., 2010, 10.25.2):

Iν(z) =
(z
2

)ν ∞∑
k=0

(
z
2

)2k
k!Γ(ν + k + 1)

. (A.1)

The modified Struve function of the first kind of order ν can be defined by the
standard power series (Olver et al., 2010, 11.2.2):

Lν(z) = (
z

2
)ν+1

∞∑
k=0

( z2 )
2k

Γ(k + 3
2 )Γ(k + ν + 3

2 )
. (A.2)

The modified Struve function of the second kind of order ν is defined by

Mν(z) = Lν(z)− Iν(z), (A.3)
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and can be expressed as

Mν(z) =

∞∑
k=0

(−1)k+1
(
z
2

)ν+k

Γ(1 + k
2 )Γ(ν + k

2 + 1)
. (A.4)

These functions, Iν(z), Lν(z) and Mν(z), are defined for z > 0 and ν > −1
2 .

They appear in our discussion as the solution for special forms of integrals. In
particular, we have (Olver et al., 2010, 10.32.2, 11.5.4):

Iν(z) =
( z2 )

ν

√
πΓ(ν + 1

2 )

∫ 1

−1

ezt(1− t2)ν−
1
2 dt, (A.5)

Mν(z) = −
2( z2 )

ν

√
πΓ(ν + 1

2 )

∫ 1

0

e−zt(1− t2)ν−
1
2 dt. (A.6)

Combining the above with (A.3), we obtain a new integral representation, which
is used in the proof of Theorem 3.2.

Lemma A.1. For z > 0 and ν > −1
2 ,

∫ 1

0

ezt(1− t2)ν−
1
2 dt =

√
πΓ(ν + 1

2 )

( z2 )
ν

(
1

2
Mν(z) + Iν(z)

)
.

Proof of Lemma A.1. Let z > 0 and ν > −1
2 be fixed. Write

mν(z) :=

√
πΓ(ν + 1

2 )

( z2 )
ν

Mν(z) = −2

∫ 1

0

e−zt(1− t2)ν−
1
2 dt

and

iν(z) :=

√
πΓ(ν + 1

2 )

( z2 )
ν

Iν(z) =

∫ 1

−1

ezt(1− t2)ν−
1
2 dt.

Decomposing the latter integral, we have

iν(z) =

∫ 1

0

ezt(1− t2)ν−
1
2 dt+

∫ 0

−1

ezt(1− t2)ν−
1
2 dt

=

∫ 1

0

ezt(1− t2)ν−
1
2 dt+

∫ 1

0

e−zt(1− t2)ν−
1
2 dt

=

∫ 1

0

ezt(1− t2)ν−
1
2 dt− 1

2
mν(z).

Thus, ∫ 1

0

ezt(1− t2)ν−
1
2 dt =

1

2
mν(z) + iν(z).
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A.2. Large argument asymptotic expressions and related arguments

Various forms of Hankel’s expansion can be used to approximate Iν(z) for large
z. The asymptotic equivalence of a(z) and b(z) is denoted by a(z) � b(z) if
limz→∞ a(z)/b(z) = 1. As a simple form of Hankel’s expansion, as z → ∞ and
ν fixed, for any � = 0, 1, . . . ,∞,

Iν(z) �
ez

(2πz)
1
2

�∑
k=0

(−1)k
ak(ν)

zk
, (A.7)

where a0(ν) = 1 and ak(ν) = (4ν2−12)(4ν2−32)···(4ν2−(2k−1)2)
k!8k

for k ≥ 1 (Olver
et al., 2010, 10.40.1). The remainder term can be controlled as well. For any
positive real z > 0 (Olver, 1997, p. 269),

Iν(z) =
ez

(2πz)
1
2

{
�−1∑
k=0

(−1)k
ak(ν)

zk
+R�(−z, ν)

}
+O(

e−z

√
z
). (A.8)

The remainder term R�(−z, ν) is absolutely bounded by |a�(ν)/z�| provided
that ν < �+ 1

2 (Nemes, 2017, Eq. (5.1)). While the expression (A.8) is exact for
any z > 0, it is only useful for large z.

Next two results are on the various asymptotic ratios of the special func-
tions and the exponential function, and are primarily used in high-concentration
asymptotic arguments, e.g., in Theorem B.1.

Lemma A.2. Let ν, u ≥ 0 and � > 0 be fixed.

(i) Iν(z)/Iu(z) � 1 + u2−ν2

2z +O(z−2), as z → ∞.
(ii) limz→∞ z�e−zMν(z) = 0.
(iii) limz→∞ z�Mν(z)/Iu(z) = 0

Proof of Lemma A.2. (i). Using the first two terms of the Hankel’s expansion,

we have Iν(z)/Iu(z) � 1− 4ν2−1
8z +O(z−2)

1− 4u2−1
8z +O(z−2)

= 1 − 4ν2−1
8z + 4u2−1

8z + O(z−2). The

assertion (i) follows.

(ii). Using Dingle’s expansion of Mν(z) (Dingle, 1973, p. 445) (see also Item
11.6.2 of Olver et al. (2010)), we have

z�

ez
Mν(z) =

z�

πez

{
n−1∑
i=0

(−1)i+1Γ(i+
1
2 )(

z
2 )

ν−2i−1

Γ(i− ν + 1
2 )

+ (
z

2
)ν−1−2nTn(z)

}
,

for any n > ν, and the remainder term Tn(z) satisfies supz∈(0,∞) Tn(z) < ∞.

Since there is a constant C = C(ν) > 0 such that Γ(i − ν + 1
2 ) > C for all

i = 0, 1, . . . , n− 1, we have limz→∞ z�e−zMν(z) = 0.

Part (iii) is given by the Hankel’s expansion of Iu(z) combined with (ii).
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Lemma A.3. For any given ν ≥ 0, the function z �→ Mν(z)(
z
2 )

−ν is strictly
negative and increasing on z ≥ 0.

Proof of Lemma A.3. By (A.6), we have

Mν(z)

( z2 )
ν

= − 2√
πΓ(ν + 1

2 )

∫ 1

0

e−zt(1− t2)ν−
1
2 dt,

and
d

dz

Mν(z)

( z2 )
ν

= −Mν(z)

( z2 )
ν

.

Since Mν(z)
( z
2 )

ν < 0 for any z ≥ 0, the statement of the lemma follows.

A.3. Large-order asymptotic expressions and related expansions

The large-order asymptotic expressions for the modified Bessel function of the
first kind of order ν, Iν , and for the modified Struve function of the first kind
of order ν, Lν , are known (Olver et al., 2010, 10.41.1 and 11.6.5): For argument
z fixed, as ν → ∞,

Iν(z) �
1√
2πν

( ez

2ν

)ν

, Lν(z) �
z

πν
√
2

( ez

2ν

)ν

. (A.9)

Note that the extra
√
ν in the denominator of the approximation of Lν(z) makes

Lν(z) negligible compared to Iν(z). Therefore, for the modified Struve function
of the second kind Mν , we have

Mν(z) = Lν(z)− Iν(z) � −Iν(z), (A.10)

and

Mν(z) + 2Iν(z) � Iν(z) �
1√
2πν

( ez

2ν

)ν

. (A.11)

Also useful is the the Poincaré expansion of the gamma function (Olver et al.,
2010, 5.11.3):

Γ(ν) �
√

2π

ν

(ν
e

)ν
{
1 +

1

12ν
+O(ν−2)

}
. (A.12)

A.4. Uniform expansion of the modified Bessel function

Uniformly for 0 < z < ∞,

Iν(νz) =
eνη(z)√

2πν(1 + z2)1/4

(
1 +

1

8zν
+O(ν−2)

)
, (A.13)

as ν → ∞ (Olver et al., 2010, 10.41.3), where

η(z) =
√

1 + z2 + log z − log(1 +
√

1 + z2). (A.14)
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Appendix B: Technical details and proofs

B.1. Proofs of Lemma 2.1, Theorem 3.1, Theorem 3.2, Lemma 3.3
and Theorem 3.4

Proof of Lemma 2.1. We parameterize γ by p(t) = Expq(tv) = cos(t)q+sin(t)v
with t ∈ (−π, π]. Minimizing ρ(p(t),x) is equivalent to maximizing x′p(t) =
cos(t)x′q + sin(t)x′v. Thus, if (x′q,x′v) = (0, 0), then the maximum is every-
where. If (x′q,x′v) �= (0, 0), then there is a unique polar coordinate (r, θ) ∈
(0, 1] × (−π, π] of (x′q,x′v), so that x′p(t) = r cos(t − θ). Thus Sγ(x) =
argmaxt x

′p(t) = θ.

Proof of Theorem 3.1. In this proof, the notation f(x1, · · · , xm) is generically
used for the (joint) density function of variables (x1, . . . , xm). Without losing
generality, let μ = e1, q = cos(δ)e1 + sin(δ)e2 and v = e3.

Write x = (x1, . . . , xp)
′ for x ∼ vMFp(μ, κ). In the spherical coordinate

system (θ1, . . . , θp−2, φ), where θi ∈ [0, π) (i = 1, . . . , p− 2), φ ∈ [−π, π), and

x1 = cos θ1, x2 = sin θ1 cos θ2, . . . , xp =

(
p−2∏
i=1

sin θi

)
sinφ,

we have f(θ1, . . . , θp−2, φ) = cp(κ) exp(κ cos θ1)
∏p−2

j=1(sin θj)
p−j−1.

Suppose that p ≥ 5. Then the marginal density function of (θ1, θ2, θ3) is

f(θ1, θ2, θ3) = cp(κ)Sp−4 exp(κ cos θ1)(sin θ1)
p−2(sin θ2)

p−3(sin θ3)
p−4, (B.1)

for θi ∈ [0, π). Here,

Sw =
2π

w+1
2

Γ(w+1
2 )

,

for w ≥ 0 is surface area of the w-dimensional unit sphere in dimension w + 1.
From (B.1), the joint density function of (x1, x2, x3) is obtained as

f(x1, x2, x3) = cp(κ)Sp−4e
κx1(1− x2

1 − x2
2 − x2

3)
p−5
2 , (B.2)

for x1, x2, x3 satisfying x2
1+x2

2+x2
3 ≤ 1. A similar derivation for the p = 4 case,

involving φ, shows that (B.2) holds for p = 4 as well.
Let z1 = x1 cos δ + x2 sin δ, z2 = −x1 sin δ + x2 cos δ, and z3 = x3. From

f(z1, z2, z3), the joint density of (x′q,x′v) = (z1, z3) is obtained by marginaliz-
ing out z2. This is done by utilizing the integral representation of the modified
Bessel function Iν in (A.5). Also using Sp−4 = Sp−3Γ(ν)/{

√
πΓ(ν − 1

2 )}, we get

f(z1, z3) = cp(κ)Sp−3e
κ cos(δ)z1(1− r2)ν−1I∗ν−1(z)Γ(ν) (B.3)

for z21 + z23 ≤ 1, where ν = (p− 2)/2, r2 = z21 + z23 and z = κ sin(δ)
√
1− r2 and

I∗ν (z) = ( z2 )
−νIν(z).
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For p = 3, calculations show f(z1, z3) = c3(κ)e
κ cos(δ)z1(1 − r2)−

1
2 2 cosh(z).

Using the relation I− 1
2
(z) = ( 2

πz )
1
2 cosh z (Olver et al., 2010, 10.39.1) and S0 = 2

confirms that (B.3) holds for the p = 3 case as well. Switching to the polar
coordinates (r, t) where z1 = r cos t, z3 = r sin t,

f(r, t) = cp(κ)Sp−3 exp{κ cos(δ)r cos(t)}r(1− r2)ν−1I∗ν−1(z)Γ(ν). (B.4)

Using
∫ π

−π
ez cos tdt = 2πI0(z), the marginal density of r is easily obtained. Plug-

ging in the expression of cp(κ) given in (1.1) and Sp−3 = (2πν)/Γ(ν) proves the
assertion.

Proof of Theorem 3.2. The joint density function of (R, T ), where R = Sγ(x),
R cosT = q′x and R sinT = v′x, is given by Theorem 3.1, or more directly by
equation (B.4) in the proof of Theorem 3.1. Setting δ = 0, we have

f(r, t) = cp(κ)Sp−3e
(κ cos t)rr(1− r2)

p−4
2 . (B.5)

Due to Lemma 2.1, the distribution of the projection score t = Sγ(x) is
obtained by marginalizing (B.5). Integration by parts gives the marginal density

of t, f(t) = cp(κ)Sp−3

(
1

p−2 + g(t)
)
, where

g(t) =
κ cos t

p− 2

∫ 1

0

e(κ cos t)r(1− r2)
p−2
2 dr. (B.6)

If t = ±π/2, then g(t) = 0. Thus,

f(π/2) = cp(κ)Sp−3
1

p− 2
.

In general, there is no closed-from expression of g(t). If |t| ∈ (π/2, π], that is,
if κ cos t < 0, then the integral in (B.6) is closely related to the modified Struve
function Mν . Using the integral representation of Mν in (A.6),

g(t) =
κ cos t

p− 2

∫ 1

0

e(κ cos t)r(1− r2)
p−2
2 dr

=
−κ cos t

p− 2

√
πΓ(p2 )

2
(−κ cos t

2

) p−1
2

Mν(−κ cos t).

Suppose now |t| < π/2 so that κ cos t > 0. It is shown in Lemma A.1 that
the integral (B.6) is a linear combination of Mν(κ cos t) and Iν(κ cos t):

g(t) =
κ cos t

p− 2

√
πΓ(p2 )(

κ cos t
2

) p−1
2

(
1

2
Mν(κ cos t) + Iν(κ cos t)

)
.

The derivation is completed by combining above results with the definitions
of cp(κ) and Sp−3.

Proof of Lemma 3.3. Without loss of generality, let μ = e1, q = ep−1 and v =
ep. Then in the spherical coordinate system used in the proof of Theorem 3.2,
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q′x =
∏p−2

j=1 sin(θj) cos(φ) and v′x =
∏p−2

j=1 sin(θj) sin(φ), which in turn leads
that φ = Sγ(x). With the given spherical coordinates, the marginal density of
φ is uniform for any rotationally symmetric distribution about e1 on S

p−1, as
shown in Lemma 3 of Kim, Schulz and Jung (2020).

Proof of Theorem 3.4. The Jones–Pewsey distribution has the unique mode at
μ. Since fPvM has the mode at 0, we do not consider Jones–Pewsey distributions
whose mode is not at 0.

We will prove the theorem by contradiction. Fix any κ ∈ (0,∞). Suppose that
there exists (κ̃, φ) such that gJP(t; κ̃, φ) is equal to fPvM(t; p, κ) for all t ∈ I,
where I ⊂ (−π/2, π/2) is an open set. Let z = z(t) = cos t. By expressing
both density functions as power series in terms of cos t, we have for g∗(z) :=
gJP(t; κ̃, φ),

g∗(z) = ω(κ̃, φ)

{
1 +

τ

φ
z − τ2(φ− 1)

2φ2
z2 +

τ3(φ− 1)(2φ− 1)

6φ3
z3 + · · ·

}
,

where τ = tanh(κ̃φ). Using Mu(z) + 2Iu(z) = Lu(z) + Iu(z), given by (A.3), we
have for z > 0,

f∗(z) := fPvM(t; p, κ) = C(p, κ)

{
1 +

Γ( 12 )Γ(u+ 1
2 )

(κz2 )u−1
(Lu(κz) + Iu(κz))

}

= C(p, κ)

{
1 +

B(12 , u+ 1
2 )κ

2
z +

κ2

2(u+ 1
2 )

z2 +
B( 12 , u+ 1

2 )κ
3

8(u+ 1)
z3 + · · ·

}
,

where u = (p− 1)/2. We used the standard power series representations for the
modified Bessel and Struve functions in (A.1) and (A.2).

Since by assumption g∗(z) = f∗(z) for all z ∈ cos(I), where cos(I) is an open
set in (0, 1), the coefficients of both power series should be equal. By matching
the first four coefficients, we have C(p, κ) = ω(κ̃, φ), τ/φ = B(12 , u + 1

2 )
κ
2 ,

τ2(φ−1)/(2φ2) = −κ2/{2(u+ 1
2 )}, and {τ3(φ− 1)(2φ− 1)}/(6φ3) = {B( 12 , u+

1
2 )κ

3}/{8(u+ 1)}. Comparing the latter three, we must have

φ = 1− 4

B2( 12 , u+ 1
2 )(u+ 1

2 )
=

1

2

{
1−

3(u+ 1
2 )

2(u+ 1)

}
,

which does not hold for any u > 0. Therefore, for any p ≥ 3, there is no φ for
any κ̃ for which gJP(t; κ̃, φ) equals fPvM(t; p, κ).

B.2. Proof of Theorem 4.1

We first give a sketch of the proof of Theorem 4.1, then supply a detailed proof.

Sketch of the proof of Theorem 4.1. As the exact expression of the density
fPvM(·; p, κ) consists of Iu(z), Mu(z) and the gamma function, inspections of
these functions are necessary.
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For high concentration case, the argument z of Iu(z) and Mu(z) are increas-
ing. We use Hankel’s large-argument expansion of the modified Bessel function
to approximate Iu(z) as z → ∞; see (A.7) and (A.8). We use the first two
terms of the Hankel’s expansion while providing a bound for the remainder. In
Lemma A.2, the modified Struve function Mu(z) is shown to be asymptotically
negligible when compared to the exponential function ez or to Iu(z) for large z.
Then, |fκ(s; p, κ)−gκ(s;κ)| is evaluated using the expansions; see Theorem B.1.
In addition, we give an independent proof for the approximation of the vM by
the normal distribution in high concentration in Lemma B.2. The assertion (i)
is given by the above two.

The low concentration case (ii) is handled by the standard power series rep-
resentations of Iu(z) and Mu(z), given in (A.1)–(A.4). We show fPvM(t; p, κ) =
fvM(t; κ̃l) + Θ(κ2) as κ → 0 in Theorem B.4. An independent proof for the ap-
proximation of the vM by Cardioid distribution in low concentration, fvM(t;κ) =
fCardioid(t;κ/2) + Θ(κ2), is given in Lemma B.3.

For the high-dimension case (iii), the order u of Iu(z) and Mu(z) increases.
The large-order asymptotic expressions in (A.9) and (A.11) and the Poincaré
expansion of the gamma function (A.12) are used to show fPvM(t; p, κ) =
fCardioid(t; κ̃d/2)+Θ(p−1) as p → ∞. Applying Lemma B.3 completes the proof
of (iii).

Finally, for the high-concentration, high-dimensional case (iv), the uniform
expansion of the modified Bessel function of the first kind (A.13) is useful:
Uniformly for 0 < z < ∞,

Iν(νz) =
eνη(z)√

2πν(1 + z2)1/4

(
1 +

1

8zν
+O(ν−2)

)
,

as ν → ∞. For example, the uniform expansion can be applied to the expression
Iu(κ) = Iu(uλ), as both u = (p − 1)/2 and κ increase but λ = κ/u is fixed. In
our application, the uniform expansion is carefully applied to expand Iu− 1

2
(uz)

as u → ∞. It turns out Iu− 1
2
(uz) is not asymptotically equivalent to Iu(uz).

These issues are taken care of in Theorem B.6 where we show fκ(s; p, κ) =
gκ(s; κ̃b) + Θ(p−1). The proof for (iv) is completed by applying Lemma B.2
together with a change of variable.

In addition to the big Theta notation, we use the following. For asymptotic
equivalence we say a(ν) � b(ν) if limν→∞ a(ν)/b(ν) = 1. We also use the stan-
dard big O notation: fν = O(gν) if lim supν→∞ |fν |/gν < ∞. Note that fν � gν
implies fν = Θ(gν), which in turn implies fν = O(gν). The inverses are not in
general true.

B.2.1. High concentration approximation

When the concentration parameter κ in vMFp(μ, κ) is large, the vMF density
is very similar to the spherical normal distribution with variance 1/κ (Kent,
1978). Similar to this result, the geodesic-projected vMF density fPvM can be
approximated by a vM density.
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As κ → ∞, both vMFp(μ, κ) and fPvM(p, κ) degenerates to their respective
mode. In the following, we compare the density of

√
κSγ(x) with that of

√
κθ,

for θ ∼ vM(κ). Denoting the density functions of
√
κSγ(x) and

√
κθ by fκ(s)

and gκ(s), respectively, we derive the following result on the similarity of fκ(s)
to gκ(s).

Theorem B.1. For all p ≥ 3, and for any s ∈ R,

fκ(s) = gκ(s) + Θ(κ−1),

as κ → ∞.

Proof of Theorem B.1. The scaled PvM density is fκ(s) = C(p, κ)/
√
κ · (1 +

h(s/
√
κ)), where the definition of h(t) is given in Theorem 3.2. The scaled vM

density is decomposed into gκ(s) = g1(κ) · g2(s;κ), where, for u = (p− 1)/2,

g1(κ) =
1

2
√
κπI0(κ)

(κ2 )
u− 1

2

Γ(u+ 1
2 )

, g2(s;κ) =
Γ(u+ 1

2 )

(κ2 )
u− 1

2

eκ cos(s/
√
κ).

Using the above factorization of density functions, |fκ(s)−gκ(s)| ≤ A(s;κ)+
B(s;κ), where

A(s;κ) = |C(p, κ)/{
√
κg1(κ)} − 1| · g1(κ)|1 + h(s/

√
κ)|,

B(s;κ) = g1(κ)|1 + h(s/
√
κ)− g2(s;κ)|.

It is sufficient to show that A(s;κ) = O(κ−1) and B(s;κ) = Θ(κ−1) as
κ → ∞. We record the following for multiple use. Applying Hankel’s large κ
approximation of I0(κ) given in (A.7), we have, as κ → ∞,

g1(κ) = Θ(κu− 1
2 e−κ). (B.7)

(i) A bound on A(s;κ). Since fPvM is symmetric and has the unique mode at
0, the maximum of 1 + h(s/

√
κ) is attained at s = 0. That is, |1 + h(s/

√
κ)| ≤

1 + h(0). To analyze

g1(κ){1 + h(0)} = g1(κ) +
1√
2π

Mu(κ)

I0(κ)
+

2√
2π

Iu(κ)

I0(κ)
,

we use (B.7) and the asymptotic expressions of the ratios of the modified Bessel
and Struve functions, derived in Lemma A.2 (i) and (iii). We get:

g1(κ) sup
s

|1 + h(s/
√
κ)| � 2√

2π

{
1− u2

2κ
+O(κ−2)

}
. (B.8)

We also observe that, by Lemma A.2 (i),

κ− 1
2C(p, κ)

g1(κ)
− 1 =

I0(κ)

Iν(κ)
− 1 � ν2

2κ
+O(κ−2), (B.9)
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where ν = (p − 1)/2. Combining (B.8) and (B.9) shows that for any s ∈ R,
A(s;κ) = O(κ−1) as κ → ∞.

(ii) A bound on B(s;κ). Choose κ large enough to satisfy κ > (2s/π)2 so
that |s|/√κ < π/2. Then, h(s/

√
κ) has two terms (see the first line of (3.3)),

and we write h(s/
√
κ) = hM (x) + hI(x), where x = cos(s/

√
κ) ∈ (0, 1],

hM (x) =

√
πΓ(u+ 1

2 )

(κx2 )u−1
Mu(κx), hI(x) =

√
πΓ(u+ 1

2 )

(κx2 )u−1
2Iu(κx).

Define gI to be the function satisfying gI(x) = g2(s;κ) for x = cos(s/
√
κ). Then,

|1 + h(s/
√
κ)− g2(s;κ)|

= |1 + hM (x) + hI(x)− gI(x)|
≤ sup

x∈(0,1]

|1 + hM (x)|+ |hI(x)− gI(x)|. (B.10)

The first term of (B.10) is bounded:

sup
x∈(0,1]

|1 + hM (x;κ)| ≤ 1 +
√
πΓ

(
u+

1

2

)
sup

x∈(0,1)

∣∣∣∣Mu(kx)

(κx2 )u

∣∣∣∣ κ2
= 1 +

Γ( 12 )Γ(u+ 1
2 )

Γ(u+ 1)

κ

2
. (B.11)

Here, we used the fact that Mu(z)
( z
2 )

u is strictly negative and increasing on z ≥ 0,

shown in Lemma A.3. Thus,

sup
x∈(0,1]

∣∣∣∣Mu(kx)

(κx2 )u

∣∣∣∣ = lim
x→0

∣∣∣∣Mu(kx)

(κx2 )u

∣∣∣∣ = 1

Γ(u+ 1)
. (B.12)

Note that the limit in (B.12) is easily obtained by replacing Mu(z) with its
power series representation (A.4).

For the second term of (B.10), we use the exact Hankel’s expansion of I1(κ)
in (A.8) and write

|hI(x)− gI(x)| =
Γ(u+ 1

2 )

(κ2 )
u− 1

2

|
√
2πκIu(κx)− exp(κx)|

=
Γ(u+ 1

2 )

(κ2 )
u− 1

2

∣∣∣∣√2πκ
eκx√
2πκx

{
1 +

4u2 − 1

8κx
+O(κ−2)

}
− exp(κx)

∣∣∣∣
=

Γ(u+ 1
2 )

(κ2 )
u− 1

2

eκx√
x

(
1−

√
x+

4u2 − 1

8κ
+O(κ−2)

)

= Θ(κ−u− 1
2 eκ). (B.13)

In the last asymptotic equality, we used x = cos(s/
√
κ) → 1 as κ → ∞.
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Combining (B.7), (B.10), (B.11) and (B.13) gives

B(s;κ) = g1(κ)|1 + h(κ− 1
2 s)− g2(s;κ)|

= Θ
{
(κu− 1

2 e−κ)κ−u− 1
2 eκ

}
= Θ(κ−1),

as desired.

The next lemma is on the approximation of vM distributions by the normal
distribution when κ → ∞. Let φ(s) be the density function of the standard
normal distribution.

Lemma B.2. For any s ∈ R, as κ → ∞,

gκ(s) = φ(s) + Θ(κ−1).

Proof of Lemma B.2. Using the Hankel’s expansion (A.8), and taking the power
series representation of cos(t) and exp(z), we have

gκ(s)− φ(s) =
eκ cos(s/

√
κ)

2πI0(κ)
− 1√

2π
e−

s2

2

=
e−

s2

2

√
2π

[
exp{κ(1− s2

2κ + s4

4!κ2 +O(κ−3))− s2

2 }
eκ

(
1− 1

8κ +O(κ−2)
) − 1

]

=
e−

s2

2

√
2π

{(
1

8
+

s4

4!

)
1

κ
+O(κ−2)

}
.

B.2.2. Low concentration approximation

We first give the statement and an independent proof on the similarity of the
vM distribution and Cardioid distribution when κ is small.

Lemma B.3. For any t ∈ (−π, π), as κ → 0,

fvM(t;κ) = fCardioid(t;κ/2) + Θ(κ2).

Proof of Lemma B.3. By using the standard power series representation for the
modified Bessel function (A.1), we write

fvM(t;κ)− fCardioid(t;κ/2) =
1

2π

{
eκ cos t

I0(κ)
− (1 + κ cos t)

}

=
1

2π

{
1 + κ cos t+ (κ cos t)2

2 +O(κ3)

1 + (κ2 )
2 +O(κ4)

− (1 + κ cos t)

}

=
1

2π

{
2 cos2 t− 1

4
κ2 +O(κ3)

}
= Θ(κ2).

Our main result for the low-concentration case follows:
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Theorem B.4. Let κ̃ = κ̃(κ) = B(p2 ,
1
2 )κ/2. For all p ≥ 3, and for any t ∈

(−π, π], as κ → 0,

fPvM(t; p, κ) = fvM(t; κ̃) + Θ(κ2).

Proof of Theorem B.4. Recall that fvM(t; κ̃) = c2(κ̃) exp(κ̃ cos t), where c2(κ̃) =
{2πI0(κ̃)}−1. Write

|fPvM(t; p, κ)−fvM(t; κ̃)| ≤ |C(p, κ)− c2(κ̃)|(1 + h(t))

+ c2(κ̃)|1 + h(t)− exp(κ̃ cos t)|. (B.14)

By using the standard power series representation for the modified Bessel
function in (A.1), we get limκ→0 c2(κ̃) = 1/(2π) and |C(p, κ)/c2(κ̃) − 1| =
|{1 + κ̃2/4 +O(κ4)} − 1|, leading to

C(p, κ)− c2(κ̃) �
1

8π
κ̃2 +O(κ4). (B.15)

Since fPvM is symmetric and has the unique mode at 0,

1 ≤ 1 + h(t) ≤ 1 + h(0), (B.16)

which is bounded below and above uniformly for κ ∈ (0, 1]. (The case κ > 1 is
not considered as κ → 0.)

For evaluation of m(t) := 1 + h(t) − exp(κ̃ cos t), we inspect three separate
cases depending on the sign of cos t. First, if cos t = 0, m(t) = 0. Second, if
cos t > 0, then using (A.1) and (A.2),

1 + h(t) =

∞∑
j=1

Γ( 12 )Γ(
p
2 )

Γ( 12 + j
2 )Γ(

p
2 + j

2 )

(
κ cos t

2

)j

= 1 +B(p2 ,
1
2 )

κ cos t

2
+

Γ( 12 )Γ(
p
2 )

Γ( 12 + 1)Γ(p2 + 1)

(
κ cos t

2

)2

+O(κ3),

and

m(t) = 1 + h(t)−
∞∑
j=0

(κ̃ cos t)j

j!

=

[
4

p
− 1

2
{B(p2 ,

1
2 )}

2

](
κ cos t

2

)2

+O(κ3). (B.17)

For the case cos t < 0, a similar derivation as above using the power series
representation for Mu(z) in (A.4) shows that m(t) is of order κ2 as well.

The proof is completed by combining (B.14)–(B.17).
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B.2.3. High dimensional approximation

Theorem B.5. For any given κ > 0 and t ∈ (−π, π], as p → ∞,

fPvM(t; p, κ) = fCardioid(t; ρ) + Θ(p−1),

where ρ = 1
2

√
π

2(p−1)κ.

Proof of Theorem B.5. We analyze

fPvM(t; p, κ)− fCardioid(t; ρ) = C(p, κ){1 + h(t)} − 1

2π
(1 + 2ρ cos t)

=
1

2π
[{1− 2πC(p, κ)}{1 + h(t)}+ {h(t)− 2ρ cos t}] .

Utilizing the Poincaré expansion of the gamma function (A.12) and the large-
order asymptotic expression for Iu in (A.9), we get 1− 2πC(p, κ) � − 1

6(p−2) +

O(p−2). Thus, it is sufficient to show that h(t) → 0 and h(t)−2ρ cos t = Θ(p−
3
2 )

as p → ∞. Since the latter implies the former, it remains to show h(t)−2ρ cos t =

Θ(p−
3
2 ).

Let u = (p − 1)/2. For |t| > π/2, h(t) is expanded using (A.12) and the
large-order asymptotic expression for Mu in (A.9)–(A.10). We have for u → ∞,

h(t) =

√
πΓ(u+ 1

2 )(
|κ cos t|

2

)u−1Mu(|κ cos t|)

� −
√
π

(
1 +

1

2u

)u

e−
1
2
|κ cos t|
2
√
u

{
1 +

1

12u
+O(ν−2)

}

�
√
πκ

2
√
u
cos t+

√
πκ cos t

24
u− 3

2 +O(u−5/2). (B.18)

In (B.18), we used the fact limu→∞(1 + 1
2u )

u = e1/2 and that cos t < 0 for
|t| ∈ (π/2, π). For |t| < π/2, a similar derivation done for (B.18), but using
(A.9) and (A.11), gives the same asymptotic result. Thus, for t �= ±π/2, h(t)−
2ρ cos t = Θ(p−

3
2 ). Observing that h(t) = 2ρ cos t = 0 for t = ±π/2 completes

the proof.

B.2.4. Approximation along high dimension and high concentration

We consider κ = λu, where u = (p− 1)/2, for a fixed λ > 0 and u → ∞. Recall
that for T ∼ PvM(p, κ) and θ ∼ vM(w), we denote the density functions of√
κSγ(x) and

√
κθ by fκ(s) and gκ(s), respectively. Here, κ > 0 and w > 0 need

not be the same.

Theorem B.6. Let u = (p − 1)/2 and κ = λu for a fixed λ ∈ (0,∞). Let

w = λ2u
1+

√
1+λ2

. Then, for any s ∈ R,

fκ(s; p, κ) = gκ(s;w) + Θ(u−1)

as u → ∞.
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Remark 3. The statement of Theorem B.6 holds when u = (p−1)/2 is replaced
by ν = (p− 2)/2 or p/2.

Proof of Theorem B.6. Note that fκ(s) = κ−1/2C(p, κ){1 + h(s/
√
κ)} and

gk(s) = κ−1/2{2πI0(w)}−1 exp{w cos(s/
√
κ)}. Let

ν = (p− 2)/2 = u− 1

2
.

As u → ∞, κ = λu → ∞ and ν → ∞ as well.

We first show that κ−1/2C(p, κ) degenerates to 0 in the limit. Using the
Poincaré expansion of the gamma function (A.12) and the uniform expansion
of the modified Bessel function (A.13), we obtain

κ−1/2C(p, κ) � 1

2π

(√
1 + λ2

λ

e

ν

) 1
2

exp{−νξ(λ, ν)},

where e = exp(1) and using aν = (1 + 1
2ν )

2,

ξ(λ, ν) =
√

1 + aνλ2 + log aν − log
(
1 +

√
1 + aνλ2

)
− 1 + log 2.

Checking ξ(0, ν) = log(2) > 0 and ∂
∂λξ(λ, ν) = aνλ

1+
√
1+aνλ2 > 0 confirms that

ξ(λ, ν) > 0 for any λ and ν. In particular,

lim
ν→∞

ξ(λ, ν) =
√
1 + λ2 − 1 + log 2− log(1 +

√
1 + λ2) > 0

for any λ > 0. As ν → ∞,

κ−1/2C(p, κ) = Θ(e−νν−
1
2 ) (B.19)

converges to 0 exponentially fast.

We now analyze fκ(s) for a given s ∈ R. Since s/
√
κ < π/2 for sufficiently

large κ, it is sufficient to inspect fκ(s) = κ−1/2C(p, κ)(1 + h1(s/
√
κ)), where

h1 is the expression in the first line of (3.3) in Theorem 3.2. By (B.19) and
ν = u− 1

2 , we have

fκ(s) = κ−1/2C(p, κ)h1(s/
√
κ) + Θ(e−νν−

1
2 )

=
1√
2π

Iu(uλ)

Iu− 1
2
(uλ)

Iu{uλ cos(s/
√
uλ)}

Iu(uλ){cos(s/
√
uλ)}u−1

+Θ(e−νν−
1
2 ). (B.20)

To compare gk(s;w) with (B.20), we write an alternative limiting form of
gk(s;w). Using Hankel’s expansion for the modified Bessel function in (A.8),
and the power series representation of cos(t), we have, as both u and w tend to
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infinity,

gk(s;w) = (λu)−1/2{2πI0(w)}−1ew cos(s/
√
λu)

=
1√
λu2π

√
2πw

ew
e
w
(
1− s2

2λu

)
+Θ(u−1)

=
1√
2π

√
w

λu
e−

w
2λu s2 +Θ(u−1).

The proof is completed if the following holds:

Iu(uλ)

Iu− 1
2
(uλ)

�
√

w

λu
+Θ(u−1), (B.21)

Iu{uλ cos(s/
√
uλ)}

Iu(uλ){cos(s/
√
uλ)}u−1

� e−
w

2λu s2 +Θ(u−1), (B.22)

where w = λ2u
1+

√
1+λ2

. While the uniform expansion of Iu(uλ) is the main tool

in verifying (B.21) and (B.22), care is needed for (B.21). In particular, we write
Iu− 1

2
(uλ) = Iu− 1

2
{(u− 1

2 )(
u

u− 1
2

λ)} to make sure the order u− 1
2 of the modified

Bessel function appears exactly in the argument.
For (B.21), applying the uniform expansion to both Bessel functions gives

Iu(uλ)

Iu− 1
2
(uλ)

=
Iu(uλ)

Iu− 1
2
{(u− 1

2 )(
u

u− 1
2

λ)}

=
euη(λ)√

2πu(1 + λ2)1/4

√
2π(u− 1

2 )(1 + a2uλ
2)1/4

e(u−
1
2 )η(auλ)

+Θ(u−1)

� eu{η(λ)−η(auλ)}+ 1
2η(auλ). (B.23)

where au = u/(u− 1
2 ) = 1 + 1/(2u− 1). A calculation involving Laurant series

of the exponent of (B.23) at u = ∞ leads that

eu(η(λ)−η(auλ))+
1
2η(auλ) �

(
λ

1 +
√
1 + λ2

) 1
2

, (B.24)

which shows (B.21). Finally, a similar derivation used for (B.21) can be used to
show (B.22).

For completeness, we provide our proofs for the claims (B.24) and (B.22).

A proof of (B.24), as mentioned in the proof of Theorem B.6. Recall that

η(λ) =
√

1 + λ2 + log λ− log(1 +
√

1 + λ2),

and that au = 1+1/(2u− 1). Also note that for any constant a > 0, as x → ∞,√
a+ 1

x +O(x−2) =
√
a + (2

√
ax)−1 + O(x−2) and x log{1 + a

x + O(x−2)} =
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a+O(x−1). Then as u → ∞, we have

√
1 + a2uλ

2 =
√
1 + λ2 +

λ2

√
1 + λ2

1

2u− 1
+O(u−2),

u log(1 +
1

2u− 1
) =

1

2
+O(u−1),

u log

(
1 +

√
1 + a2uλ

2

1 +
√
1 + λ2

)
=

λ2

2
√
1 + λ2(1 +

√
1 + λ2)

+O(u−1).

Combining the above with limu→∞ η(auλ) = η(λ),

exp

{
u(η(λ)− η(auλ)) +

1

2
η(auλ)

}

� exp

{
− λ2

2
√
1 + λ2

− 1

2
+

λ2

2
√
1 + λ2(1 +

√
1 + λ2)

+
1

2
η(λ)

}

= exp

{
1

2
log

(
λ

1 +
√
1 + λ2

)}
,

as desired.

A proof of (B.22), as mentioned in the proof of Theorem B.6. Continuing the
proof of Theorem B.6, we treat s ∈ R as fixed. Let ru(s) = cos(s/

√
uλ). Use the

uniform expansion of the modified Bessel function as u → ∞ to write

Iu{uλru(s)}
ru−1
u (s)Iu(uλ)

= exp (u[η{λru(s)} − η(λ) + log ru]) ru(s)

(
1 + λ2

1 + λ2r2u(s)

) 1
4

+Θ(u−1)

� exp (u[η{λru(s)} − η(λ) + log ru]) + Θ(u−1),

where the second asymptotic equality is given by limu→∞ ru(s) = 1.
We shall use the following large u approximations: As u → ∞,

√
1 + λ2r2u(s) =

√
1 + λ2 − λ

2
√
1 + λ2

s2

u
+O(u−2),

u log ru(s) = − s2

2λ
− s4

4!λ2u
+O(u−2).

Then,

exp (u[η{λru(s)} − η(λ) + log ru])

= exp

{
− λ

2
√
1 + λ2

s2 +
λ

2
√
1 + λ2(1 +

√
1 + λ2)

s2 +O(u−1)

}

� exp

{
− λ

2(1 +
√
1 + λ2)

s2
}
,

as needed.
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B.3. Proofs and technical details for Section 4.2

B.3.1. Low concentration approximation

Proof of Theorem 4.2. We begin with the expression

fPvM(t; p, κ, δ) =

∫ 1

0

fR(r)fvM(t;κ cos(δ)r)dr

given in (3.2). Since I∗ν (κ) is increasing, fR(r) is bounded by

f
(−)
R (r) =

2

I∗ν (κ)
I∗0 (0)r(1− r2)ν−1I∗ν−1(0) =

2

I∗ν (κ)Γ(ν)
r(1− r2)ν−1

and

f
(+)
R (r) =

2

I∗ν (κ)
I∗0{κ cos(δ)}r(1− r2)ν−1I∗ν−1{κ sin(δ)}.

That is, uniformly over r ∈ [0, 1], f
(−)
R (r) ≤ fR(r) ≤ f

(+)
R (r). Furthermore,

as I0(z) is also an increasing function, for any given t, fvM(t;κ cos(δ)r) =
[2πI0{κ cos(δ)r}]−1 exp{κ cos(δ) cos(t)r} is bounded by

eκ cos(δ) cos(t)r

2πI0(κ cos δ)
≤ fvM(t;κ cos(δ)r) ≤ eκ cos(δ) cos(t)r

2πI0(0)
,

uniformly over r ∈ [0, 1].
Write

f (+)(t) =

∫ 1

0

f
(+)
R (r)

eκ cos(δ) cos(t)r

2πI0(0)
dr,

f (−)(t) =

∫ 1

0

f
(−)
R (r)

eκ cos(δ) cos(t)r

2πI0(κ cos(δ))
dr.

We then have for any t ∈ (−π, π],

f (−)(t) ≤ fPvM(t) ≤ f (+)(t). (B.25)

Rewriting f (+)(t), f (+)(t) = U(ν, κ, δ)h0(t; ν, κ cos δ), where

U(ν, κ, δ) =
2I∗0 (κ cos δ)I

∗
ν−1(κ sin δ)

2πI∗ν (κ)I0(0) · 2ν
,

h0(t; ν, κ cos δ) = 2ν

∫ 1

0

r(1− r2)ν−1eκ cos(δ) cos(t)rdr.

Using the standard power series representation of Iν (A.1), as κ → 0,

U(ν, κ, δ) = 1/(2π) +O(κ2).
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Integration by parts gives that h0(t; ν, κ cos δ) = 1 + 2νg(t), where

g(t) =
κ cos(δ) cos(t)

2ν

∫ 1

0

eκ cos(δ) cos(t)r(1− r2)νdr,

which is exactly the expression (B.6) in the proof of Theorem 3.2 with κ replaced
by κ cos(δ). Following the lines of the proof of Theorem 3.2, we have

h0(t; ν, κ cos δ) = 1 + h(t; δ),

where h(t; δ) is the function h(t) in (3.3) in the statement of Theorem 3.2 with
κ replaced by κ cos(δ).

Calculation similar to above leads that f (−)(t) = L(ν, κ, δ)h0(t; ν, κ cos δ),
where

L(ν, κ, δ) =
2

2πI∗ν (κ)Γ(ν)I0(κ cos δ) · 2ν
= 1/(2π) +O(κ2). (B.26)

Summarizing the arguments from (B.25) to (B.26), and the fact that
h0(t; ν, κ cos δ) is uniformly bounded below and above on t ∈ [−π, π],

fPvM(t; ν, κ, δ) =
1

2π
(1 + h(t; δ)) +O(κ2).

The proof is completed by observing

1 + h(t; δ)− exp(κ̃ cos t) =

[
4

p
− 1

2
{B(p2 ,

1
2 )}

2

](
κ cos δ cos t

2

)2

+O(κ3),

for any t ∈ (−π, π] as done in (B.17) in the proof of Theorem B.4.

B.3.2. High dimensional approximations

We give a proof of (4.1), which states that for fixed κ > 0 and δ = ρ(γ,μ) ∈
[0, π/2], if x ∼ vMFp(μ, κ), then (

√
pR, Sγ(x)) ⇒ (X,U), as p → ∞, where

X ∼ Rayleigh(1) and U ∼ Uniform(−π, π) are independent.

Proof of (4.1). Let ν = (p − 2)/2 and Yν =
√
νR. For T = Sγ(x), it is enough

to show that (Yν , T ) ⇒ (Y, U) as ν → ∞, where Y ∼ Rayleigh(1/2) and U ∼
Uniform(−π, π) are independent.

From (B.4) in the proof of Theorem 3.1, (Yν , T ) has the density function

f(y, t) = ϑ(κ, ν, d, y) exp{κ cos(d) cos(t)y/√ν} y
ν

(
1− y2

ν

)ν−1

, where for z =

κ sin(d)
√

1− y2/ν,

ϑ(κ, ν, d, y) = cp(κ)S2ν−1Iν−1(z)Γ(ν)
(z
2

)−(ν−1)

=
1

π

Iν−1(z)

Iν(κ)

κ

2
z−(ν−1).
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By applying (A.9), we have ϑ(κ, ν, d, y) � ν/π as ν → ∞. Combining this

with limν→∞ exp{κ cos(d) cos(t)y/√ν} = 1 and y
ν

(
1− y2

ν

)ν−1

� y
ν e

−s2 , we

have, for any given y > 0, t ∈ (−π, π), limν→∞ f(y, t) = 2ye−y2 · 1
2π . By Scheffe’s

Lemma (Durrett, 2019, p. 117), the assertion follows.

The next two lemmas are used in the proof of Theorem 4.3.

Lemma B.7. Let u = p/2 − 2 for p ≥ 5. Suppose both u and κ increase while
λ = κ/u ∈ (0,∞) is fixed. Suppose that x ∼ vMFp(μ, κ), and δ = ρ(μ, γ) is
fixed and δ ∈ [0, π/2). Then for (R,Sγ(x)) as in Theorem 3.1, and

r0 =
λ cos δ

1 +
√
1 + λ2

,

√
p(R− r0) is asymptotically normally distributed with mean 0, as u → ∞.

Proof of Lemma B.7. Write κ = uλ and

ω(r) = λ sin(δ)
√

1− r2.

By Theorem 3.2,

fR(r) = c1I0{uλ cos(δ)r}r(1− r2)u
Iu{uω(r)}
{ω(r)}u .

Throughout, c1, c2, c3, . . . denote the appropriate normalizing constants.
Using the Hankel’s expansion for I0 in (A.8), we write

I0{uλ cos(d)r}r(1− r2)u = exp
[
u{λ cos(d)r + log(1− r2)}

]
M1(r),

where M1(r) = r{2πλ cos(d)r}−1/2(1 + O(u−1)). Likewise, using the uniform
expansion of the modified Bessel function in (A.13),

Iu{uω(r)}
{ω(r)}u = exp [uη{ω(r)} − u log{ω(r)}]M2(r),

where η is defined in (A.14) and M2(r) = {2πω(r)}−1/2{1 − ω2(r)}−1/4{1 +
O(u−1)}. Combining the above we have

fR(r) = c2 exp{−uβ(r)}M(r),

where M(r) = M1(r)M2(r) and

β(r) = −λ cos(d)r −
√

1 + ω2(r) + log{1 +
√

1 + ω2(r)} − log(1− r2). (B.27)

In Lemma B.8, stated below, we confirm that β is a convex function with a
unique minimum at r0 = cos(d)(

√
λ2 + 1− 1)/λ ∈ [0, 1).

Let Yu =
√
u(R− r0). The density function of Yu is fu(y) = c3 exp{−uβ(r0+

y/
√
u)}M(r0 + y/

√
u). Since δ < π/2, cos δ > 0, thus r0 > 0. Using this
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fact, it can be shown that limu→∞ M(r0 + y/
√
u) is a non-zero constant. Since

β(1)(r0) = 0, a Taylor series expansion of β(r) at r = r0 gives, as u → ∞,

fu(y) � c4 exp{−β(2)(r0)
y2

2
}.

Thus, fu(y) converges pointwise to φ(y/σr0)/σr0 , σ
2
r0 = {β(2)(r0)}−1, as u → ∞,

and we have

Yu ⇒ N(0, σ2
r0).

Lemma B.8. For δ ∈ [0, π/2) and λ > 0, let β : [0, 1] → R be the func-
tion defined in (B.27). Then, β is convex and has a unique minimum at r0 =
cos δ(

√
λ2 + 1 − 1)/λ ∈ (0, 1). Moreover, the second derivative of β is strictly

positive for all r ∈ (0, 1).

Proof of Lemma B.8. Calculations show that the first two derivatives of β are

β(1)(r) = −λ cos δ +
r

1− r2
{1 +

√
1 + λ2(sin δ)2(1− r2)},

β(2)(r) =
{1 +

√
1 + λ2(sin δ)2(1− r2)}(1 + r2) + λ2(sin δ)2(1− r2)

(1− r2)2
√

1 + λ2(sin δ)2(1− r2)
.

It is easy to confirm that β(2)(r) > 0 for all r ∈ [0, 1), and thus β is convex.
Moreover, the algebraic equalities

1 + λ2(sin δ)2(1− r20) = {(sin δ)2
√
1 + λ2 + (cos δ)2}2,

1 +
√
1 + λ2(sin δ)2(1− r20) = 2 + (sin δ)2(

√
1 + λ2 + 1),

r0
1− r20

=
λ cos δ

2 + (sin δ)2(
√
1 + λ2 + 1)

lead that β(1)(r0) = 0. Since β is convex, r0 is the unique minimum of β. Finally,
since (

√
λ2 + 1− 1)/λ ∈ (0, 1) for all λ > 0, we confirm that r0 ∈ (0, 1).

Proof of Theorem 4.3. Let T = Sγ(x) and R be as given in Theorem 3.1 so that
given R = r, T ∼ vM(κ cos(δ)r).

Suppose cos(δ) = 0. Then for any p, κ, T ∼ vM(0), which is Uniform(−π, π).
Assume cos(δ) > 0 hereafter. By Lemma B.2, we have for any r ∈ (0, 1),√

κ cos(δ)rT | (R = r) ⇒ N(0, 1), (B.28)

as κ → ∞.
Note that κ̃ = uλ cos(δ)r0. Let S =

√
κ̃T =

√
uλ cos(δ)r0T . Then, for any

x ∈ R,

Pr(S ≤ x) = E{Pr(
√
uλ cos(δ)r0T ≤ x | R)}

= E[Pr{(uλ cos(δ)R)1/2T ≤ x
√

R/r0 | R}].
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For the given x, let Xu(R) = Pr{(uλ cos(d)R)1/2T ≤ x
√

R/r0 | R}. Due to

(B.28), limu→∞ Xu(r) = Φ(x
√

r/r0) for any r ∈ (0, 1). As shown in Lemma B.7,

R → r0 in probability as u → ∞, and we have that Xu(R) → Φ(x
√

r0/r0) =
Φ(x) in probability.

Since the sequence of random variables {Xu(R)} (indexed by u) is uniformly
integrable (as 0 ≤ Xu(R) ≤ 1), and Xu(R) → Φ(x) in probability, we have
E|Xu(R)| − E|Φ(x)| → 0 as u → ∞, by, e.g., Theorem 5.5.2 of Durrett (2019).
Since both terms are nonnegative, we have, for any x ∈ R, Pr(S ≤ x) → Φ(x),
that is, S =

√
κ̃T ⇒ N(0, 1) as u → ∞.

Proof of Theorem 4.4. Let (X1,p, X2,p) = (X1, X2) = (q′xp,v
′xp). In this proof

the subscript p is sometimes omitted if the context is clear. Using the intermedi-
ate result (B.3) in the proof of Theorem 3.1, the conditional density of (X1, X2)
given (q,v) is

f(x1, x2 | (q,v)) = cp(
√
pλ)Sp−3e

√
pλ cosΔpx1(1− x2

1 − x2
2)

ν−1I∗ν−1(x)Γ(ν),

for x2
1 +x2

2 ≤ 1, where ν = (p− 2)/2, x =
√
pλ sinΔp

√
1− x2

1 − x2
2 and I∗ν (z) =

( z2 )
−νIν(z). Notice that the dependence on (X1, X2) of (q,v) is only through

Δp = cos−1(q′μp). Thus, f(x1, x2 | (q,v)) = f(x1, x2 | Δp).
Fix any δ0 ∈ [0, π/2]. The conditional density of (Z1, Z2) :=

√
p(X1, X2)

given Δp = δ0 is then

f(z1, z2 | δ0) = ζ1(z1, z2; p, λ, δ0) · ζ2(z1, z2; p, λ, δ0),

where

ζ1(z1, z2; p, λ, δ0) = eλ cos δ0z1
(
1− z2

1+z2
2

p

) p
2−2

,

and

ζ2(z1, z2; p, λ, δ0) = cp(
√
pλ)Sp−3I

∗
ν−1

(
λ sin δ0

√
1− z2

1+z2
2

p

)
Γ(ν)p−1.

Then for any (z1, z2) ∈ R
2,

lim
p→∞

ζ1(z1, z2; p, λ, δ0) = eλ cos δ0z1e−
1
2 (z

2
1+z2

2)

= e−
1
2{(z1−λ cos δ0)

2+z2
2}e

1
2 (λ

2 cos2 δ0),

and limp→∞ ζ2(z1, z2; p, λ, δ0)e
1
2 (λ

2 cos2 δ0) = (2π)−1 can be shown using the uni-
form expansion of the modified Bessel function (A.13) and the Poincaré expan-
sion of the gamma function (A.12). By Scheffe’s Lemma, limp→∞ f(z1, z2 | δ0) =
1
2π e

− 1
2{(z1−λ cos δ0)

2+z2
2} for any z1, z2 leads that as p → ∞,

L(Z1, Z2 | Δp = δ0) ⇒ N2((λ cos δ0, 0)
′, I2), (B.29)

where L(X | Y = y) means the law of X conditioned on Y = y.
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For each p, write the joint distribution function of (Z1, Z2) by Fp(z1, z2).
Recall that Δp → δ in probability as p → ∞ and that δ is deterministic. Then
for any z1, z2,

Fp(z1, z2) = E{Pr(Z1 ≤ z2, Z2 ≤ z2 | Δp)}
= E{Yp(Δp)},

where Yp(Δp) = Fp(z1, z2 | Δp).
Let Φ(z1, z2 | δ0) be the distribution function of N2((λ cos δ0, 0)

′, I2). By
(B.29), limp→∞ Yp(δ0) = Φ(z1, z2 | δ0). Since Δp → δ in probability, we have

Yp(Δp) → Φ(z1, z2 | δ) in probability.

The sequence Yp(Δp) is uniformly bounded by 1, thus uniformly integrable.
Since the convergence in probability of a uniformly integrable sequence implies
the convergence in L1 (Theorem 5.5.2, Durrett, 2019), we have Fp(z1, z2) =
E{Yp(Δp)} → Φ(z1, z2 | δ) as p → ∞, i.e.,

(Z1, Z2) ⇒ N2((λ cos δ, 0)
′, I2), (B.30)

as p → ∞.
Recall that T = Sγ(xp) is the polar angle of (Z1, Z2). The mapping (Z1, Z2) �→

T is continuous except at (Z1, Z2) = 0, which is a measure zero set with respect
to the limiting distribution of (B.30). Then, the continuous mapping theorem
gives Sγ(xp) ⇒ PN2((λ cos δ, 0)

′, I2) as p → ∞.

Proof of Lemma 4.5. (i) The high concentration case. Note that

fλ(s) =
1

2π
λ−1e−

λ2

2

{
1 +

Φ{λ cos( sλ )}
φ{λ cos( sλ )}

λ cos( sλ )

}
.

Since for any α > 0, λαe−λ2/2 → 0 as λ → ∞, we have

λ2{fλ(s)− φ(s)} = o(1) + λ2

[
1

2π
e−

λ2

2
Φ{λ cos( sλ )}
φ{λ cos( sλ )}

cos( sλ )− φ(s)

]
. (B.31)

By replacing cos(s/λ) with 1− s2

2λ2 + s4

4!λ4 +O(λ−6), the second term of (B.31)
becomes

λ2

√
2π

e−
s2

2

[
e

s4

3λ2 +O(λ−4)Φ{λ+O(λ−1)}
{
1− s2

2λ2
+O(λ−4)

}
− 1

]
. (B.32)

By using the normal tail bound, Φ(λ+O(λ−1)) = 1−O(λ−1e−λ2/2) (as λ → ∞)
and the power series representation of the exponential, (B.32) is

λ2

√
2π

e−
s2

2

[{
1 +

s4

3λ2
− s2

2λ2
+O(λ−4)

}
− 1

]

=
1√
2π

e−
s2

2

{
s4

3
− s2

2
+O(λ−2)

}
,
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which, when plugged in to (B.31), shows fλ(s) − φ(s) = Θ(λ−2). The proof is
completed by noting that Lemma B.2 gives gλ(s;λ

2) = φ(s) + Θ(λ−2).

(ii) The low concentration case. Let η(t;λ) = Φ(λ cos t)
φ(λ cos t)λ cos t. As λ → 0, for

cos t > 0,

η(t;λ) =
1
2 +

∫ λ cos t

0
1− x2

2 +O(x4)dx

1√
2π

e−
λ2 cos2 t

2

λ cos t

=

√
π

2
λ cos t+

√
2πλ2 cos2 t+O(λ3). (B.33)

It can be checked that (B.33) holds for cos t ≤ 0 as well. Let λ̃ =
√

π
2λ. Then

λ−2{fPN(t;λ)− fCardioid(t; λ̃/2)} =
λ−2

2π

[
e−

λ2

2 {1 + h(t;λ)} − (1 + λ̃ cos t)
]

=
λ−2

2π

[
(e−

λ2

2 − 1){1 + h(t;λ)}+ (h(t;λ)− λ̃ cos t)
]

=
λ−2

2π

{
−λ2

2
(1 + λ̃ cos t) +O(λ4) +

√
2πλ2 cos2 t+O(λ3)

}
.

Thus, fPN(t;λ) = fCardioid(t; λ̃/2) + Θ(λ2). Applying Lemma B.3, we get

fCardioid(t; λ̃/2) = fvM(t; λ̃) + Θ(λ2)

and fPN(t;λ) = fvM(t; λ̃) + Θ(λ2) as required.

B.4. Proof of Corollary 5.1

Proof of Corollary 5.1. Introduce a latent variable W , with Pr(W = 1) = π1 =
1 − Pr(W = 2), such that xp given W = w follows vMFp(μw, κp) for w = 1, 2.
The location parameters μw = μw(p) are unit vectors in R

p. The sequences
{μw(p) : p = 1, 2, . . . , } for w = 1, 2 are deterministic.

(i) For i = 1, 2, let yi ∼ i.i.d. Np(0, Ip). Write

P = [q,v] = [y1,y2]

(
y′
1y1 y′

1y2

y′
2y1 y′

2y2

)− 1
2

.

Then, P follows the uniform distribution on V2,p (Chikuse, 2012). For the
geodesic γ = γ(q,v), Δp(w) = ρ(μw, γ) = cos−1(‖P′μw‖). Note that q is
not in general the closest point to μw on γ. Since

‖P′μw‖ =

∥∥∥∥∥
{

1
p

(
y′
1y1 y′

1y2

y′
2y1 y′

2y2

)}− 1
2
(
y′
1μw/

√
p

y′
2μw/

√
p

)∥∥∥∥∥ → 0,

in probability as p → ∞, Δp(w) → π/2 in probability for w = 1, 2. Then by
Theorem 4.4, conditional to W = w, Sγ(xp) ⇒ PN2(0, I2) as p → ∞, where
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PN2(0, I2) is the uniform distribution on (−π, π]. Since the limiting conditional
distributions are equal for both w = 1, 2, the assertion follows.

(ii) Assume without losing generality, μ = e1 and {μ1,μ2,μ} are contained in
the span of e1, e2. Let dp = ρ(μ,μ1) = ρ(μ,μ2) ∈ [0, π/2]. Again without losing
generality, we write μ1 = cos(dp)e1+sin(dp)e2 and μ2 = cos(dp)e1− sin(dp)e2.
Note that limp→∞ dp = d.

With the convention μ = e1, the random vector v is represented by

v = y/
√
y′y, y = (0, Y1, . . . , Yp−1)

′,

where Yi ∼ i.i.d. N(0, 1). Then for w = 1, 2,

P′μw =

(
μ′μw

y′μw/
√
y′y

)
→

(
cos d
0

)

and Δp(w) = cos−1(‖P′μw‖) → d in probability as p → ∞, Theorem 4.4
leads that conditional to W = w, Sγ(xp) ⇒ PN2((λ cos d, 0)

′, I2) in probability
as p → ∞ for both w = 1, 2. Since the limiting conditional distributions are
PN2((λ cos d, 0)

′, I2) for both W = 1, 2, the assertion follows.

Appendix C: An extended comparison of approximated vM
distributions

As referenced in Section 4.3, the qualities of the vM approximations in Section
4 are further inspected in this appendix.

For each triple (p, κ, δ), there are five approximations summarized in Table 1.
For notational simplicity, we denote f(i) for the approximated density under the
ith scenario of Table 1. The same order is used in the legends of Figs. 6 and
C.1. For example, f(1) refers to the “large κ” approximation, shown in the first
row of Table 1.

The quality of approximation f(i), measured by the Hellinger distance to f :=
fPvM(p, κ, δ), is inspected separately over two regions of interest. In Fig. C.1,
for each choice of δ ∈ {0◦, 30◦, 60◦, 80◦}, regions “A” and “B” of (κ, p) represent
regions in which the f(5) (and f(4), respectively) approximations appear to work
best. These regions are numerically obtained, but roughly, region A corresponds
to the cases κ < 2p, and region B to κ > 2p. For region A, the projected normal
approximation f(5) is chosen as a reference, and we evaluate the difference of
the quality by

D(i‖reference) := H(f, f(reference))−H(f, f(i)),

over a fine grid of (κ, p) ∈ A and for all four choices of δ. If D(i‖reference) > 0,
then the approximation of f(i) is better than that of f(reference) (and vice versa).
The higher D(i‖reference), the better approximation of f(i) over f(reference). In
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Fig C.1. Extension of Fig. 6. Regions A and B of (κ, p) are split by the white dashed curve.

Fig. C.2, left column, the histograms of D(i‖reference) values over region A are
shown for the five approximations (i = 1, . . . , 5). The right column of the figure
is similarly obtained for region B, with f(4) (high p, high κ) as the reference.
We observe the following:

• For region A (κ < 2p), approximations given by f(2), f(3) and f(5) are of
similar quality. (Differences in Hellinger distance are at most 0.059.)

• For region B (κ > 2p), the approximation by f(4) (high p, high κ) shows
the best quality. The projected normal approximation by f(5) is among
the worst.

• Overall, f(4) provides the best approximation.

The histograms in Figure C.2 are obtained for all choices of δ. For complete-
ness, Table C.1 records the minimum, median and maximum of D(i‖reference)
for each choice of δ and for all choices combined. The patterns are similar across
different values of δ.
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Fig C.2. The quality of approximations compared to the reference. Shown are the histograms
of D(i‖reference). The ith row of the figure corresponds to the ith approximation. For region
A, f(2), f(3) and f(5) are of similar quality. For region B, the quality of f(4) approximation
stands out.

Table C.1

(Minimum, median, maximum) of 100×D(i‖reference) over (κ, p) ∈ A or B.

δ Scenario Region A Region B

0◦

(1) ( -16.8 , -10.8 , 0 ) ( -8.3 , -2.7 , 0.6 )
(2) ( -5.9 , -1.4 , 1.1 ) ( -12.9 , -9.4 , 1.8 )
(3) ( -5.9 , -1.4 , 1.0 ) ( -12.9 , -9.3 , 1.8 )
(4) ( -4.3 , -1.5 , 0.4 ) ( 0 , 0 , 0 )
(5) ( 0 , 0 , 0 ) ( -23.7 , -7.2 , 0 )

30◦

(1) ( -16.8 , -11.1 , 0 ) ( -8.8 , -4.0 , 0.8 )
(2) ( -4.9 , -1.2 , 0.3 ) ( -11.7 , -8.0 , 3.3 )
(3) ( -4.9 , -1.1 , 0.3 ) ( -11.6 , -7.9 , 2.1 )
(4) ( -4.4 , -1.4 , 0.5 ) ( 0 , 0 , 0 )
(5) ( 0 , 0 , 0 ) ( -24.2 , -7.3 , 2.3 )

60◦

(1) ( -16.8 , -12.5 , 0.1 ) ( -11.9 , -8.4 , -5.0 )
(2) ( -1.0 , -0.2 , 2.7 ) ( -5.7 , -2.0 , 0.3 )
(3) ( -1.4 , -0.2 , 1.9 ) ( -5.6 , -2.1 , 0.2 )
(4) ( -4.1 , -2.1 , 4.6 ) ( 0 , 0 , 0 )
(5) ( 0 , 0 , 0 ) ( -23.8 , -6.6 , 0.1 )

80◦

(1) ( -16.7 , -13.2 , 0 ) ( -15.9 , -14.3 , -2.6 )
(2) ( -0.4 , 0.1 , 1.7 ) ( -12.9 , -2.8 , 0 )
(3) ( -1.4 , 0 , 1.7 ) ( -13.4 , -3.0 , -0.1 )
(4) ( -3.3 , -1.9 , 1.7 ) ( 0 , 0 , 0 )
(5) ( 0 , 0 , 0 ) ( -22.4 , -5.9 , 0 )

overall

(1) ( -16.8 , -12.3 , 0.1 ) ( -15.9 , -5.9 , 0.8 )
(2) ( -5.9 , -0.0 , 2.7 ) ( -12.9 , -5.6 , 3.3 )
(3) ( -5.8 , -0.1 , 1.9 ) ( -13.4 , -5.5 , 2.1 )
(4) ( -4.4 , -1.7 , 4.6 ) ( 0 , 0 , 0 )
(5) ( 0 , 0 , 0 ) ( -24.2 , -6.9 , 2.3 )
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