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Abstract: In this paper, we develop an asymptotic χ2 test for detecting
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are drawn from the underlying continuous stochastic processes for each
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1. Introduction

Functional data refers to data drawn from continuous underlying processes. Ex-
amples include time series, image data, and tracing data such as hand-writings.
Statistical methods for this type of data, called functional data analysis (FDA),
have been under rapid development in recent decades. In FDA, there are two
typical types of data: dense functional data, where a large number of regularly-
observed measurements for each subject are attainable; and sparse functional
data, where only a few irregularly-spaced measurements are available for each
subject. Dense functional data is common when automated instruments are
utilized to record the data. Sparse functional data arise frequently in many real-
world applications as well, such as longitudinal studies (e.g., the AIDS Clinical
Trial Study in Section 4.2) and eBay online auctions in Section 4.3. These two
types of functional data often require different sets of techniques to model.
The book [33] offers a comprehensive perspective of FDA methods for densely-
observed functional data, and the paper [26] provides a nice review for sparse
functional data analysis.

There is substantial literature on modeling and estimation for functional data.
In this paper, we focus on the mean function inference problem. Let Xg(t) ∈
L2(T ), g = 1, 2, denote the g-th random process, with a mean function μg(t) and
a covariance function Gg(s, t), s, t ∈ T . Both μg(t) and Gg(s, t) are unknown.
X1(t) and X2(t) are assumed to be independent. The two-sample mean function
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testing problem can be stated as testing μ1(t) = μ2(t) for all t ∈ T against
the general alternative that the two mean functions are not equal at some time
points within the time range T . The statistical framework of one-way functional
ANOVA is analogous.

For dense functional data, where a large number of regularly-observed mea-
surements for each subject are attainable, some well-developed methods for
the two-sample mean function testing problem exist, including the pointwise
t-test [33], the L2-norm-based test and the F-type test [41, 9, 42, 43], the
Hotelling’s T 2 test with permutation [31], tests involving basis representations
[1, 16, 15, 17, 21, 36], and the pseudo-likelihood ratio test [37]. Extensions to
multiple functional samples are discussed in [35, 8, 6, 27]. Besides, tests aiming
at detecting differences in functional distributions [32, 13] are also applicable
to functional mean testing problems under further assumptions. Recently, [12]
developed a method for test of the equivalence for functional data. For a re-
lated purpose, [4] developed simultaneous confidence bands for mean functions.
The point-wise F-test and a simultaneous test based on the permutation dis-
tribution of the supremum of the point-wise F-test are proposed to test the
parameter functions in function-on-scalar regressions [33, 34]. When defining
the scalar-valued predictor as a dummy variable that indicates the group label
of functional response, the tests for the parameter function being 0 is equiv-
alent to the two-sample mean function inference problem in the paper. It is
noteworthy that the F-type tests in function-on-scalar regressions, under these
circumstances, are the same as the F-type mean function tests in [41, 9, 42, 43].

When it comes to sparse functional data, where only a few irregularly-observed
measurements are available for each subject, the testing problem is more chal-
lenging and complicated. Most of the aforementioned methods assume one can
fully observe the individual functions, such that the regular sample mean and
sample covariance functions are attainable. In practice, these tests require the in-
dividual curves from each subject being observed at the same dense regular grid.
When observing times are not the same for all the subjects or observed data are
seriously contaminated with measurement errors, pre-smoothing for each curve
is used [13]. However, pre-smoothing techniques based on individual curves are
no longer reliable for sparse functional data, considering the limited amount of
data for each subject. In the simulation studies, we implement the PACEmethod
proposed [40] to jointly use data from all curves to conduct curve recovery. But
note that the curves recovered this way are not consistent to the true curves;
therefore the tests either have inflated type I errors or very low powers. There is
some recent work regarding one-sample inference for sparse functional data [25].
These methods cannot be easily generalized to two or more functional samples.

To our best knowledge, the pseudo likelihood ratio test [37] and the nonpara-
metric distribution test [32] are the only two tests that are also applicable to
sparsely sampled functional data. In [37], they proposed an extension to sparse
data with some details, but the numerical studies focused on the experiments for
dense data, and the most sparse case in simulations has 10 data points on each
curve. We found that the test has inflated type I error in very sparse cases. [32]
proposed to apply the Anderson-Darling test on FPC scores to test the equality
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of two distributions. When the data are sparsely observed, they extended the
FPC scores in [40] to pooled data of two groups and used the so-called marginal
FPC scores in the distribution test, but they only briefly discussed that this re-
placement will still lead to “close” test results. All their numerical experiments
are for dense data.

In this paper, we propose a test procedure specially designed for the sparse
functional mean testing problem and theoretically derive its asymptotic null
distribution and large sample consistency. We propose a Hotelling’s T 2 type
statistic based on a shrinkage eigen-projection score vector. This is an alter-
native way of extending the sparse FPC in [40] to multiple groups of sparse
functional data, in addition to the marginal FPC in [32]. Unlike the regular
eigen-projection score vector, the distribution of the individual shrinkage score
depends on its specific design, i.e., the observing time points. We notice that if
we account for the randomness of designs, the distribution of the shrinkage score
is still i.i.d across all the subjects. Based on the distribution of the estimated
shrinkage score, we propose an asymptotic χ2 test statistic. The development
of the asymptotic null distribution is nontrivial since we need to consider the
estimation error of the shrinkage score for each curve and control the overall
error uniformly across all subjects.

The proposed statistic can be roughly viewed as a Hotelling’s T 2 type statistic
applied on the estimated shrinkage scores, with a new variance estimator. [31]
proposed a functional Hotelling’s T 2 statistic for fully observed functional data,
which is based on the sample mean and sample covariance of the data. When the
data are observed on a discrete but dense grid, one can use smoothing methods
to recover the underlying function, and then the Hotelling’s T 2 statistic can
be empirically computed by truncating at the first p eigen components, and
they proposed to use a permutation distribution for the statistic. For sparsely
observed functional data, one can consider the permutation test constructed
on the recovered curve, which can still control type I error, but our numerical
results show that it has low power.

The remainder of this paper is organized as follows. The main results for
the two-sample mean testing problem for sparse functional data, including the
problem settings, the proposed test procedure, the corresponding asymptotic
results, and an extension to common principal component cases, are stated in
Sections 2 and 3. The performance of our test procedure is illustrated by three
simulation studies and applications to a CD4 count data set and an eBay online
auction data set are described in Section 4. The paper is concluded in Section
5. All the proofs are in Appendix B. An extension to the one-way functional
ANOVA problem is briefly described in Appendix C.

2. Proposed two-sample test procedure

2.1. Problem settings

The model we consider is

Ygij = Xgi(Tgij) + εgij , (2.1)
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where Ygij denotes the j-th observation of the i-th subject in group g, for g =
1, 2; i = 1, .., ng; j = 1, .., Ngi. The random samples Xgi(t) are realizations of
two independent stochastic processes with homogeneous covariance structures
in a bounded time domain T . Without loss of generality, let’s assume T = [0, 1],
and then Xgi are random samples from Xg ∼ SP (μg, G). Here εgij ∼ N(0, σ2)
are i.i.d measurement errors. The number of observations for the i-th subject in
group g is denoted as Ngi, and we focus on sparse scenarios where Ngi is finite.
Given Ngi, random observing times Tgi1, ..., TgiNgi are i.i.d with a bounded
density function within the time domain T . It is also assumed that Xgi(t), Ngi

and εgij are mutually independent. The hypothesis testing of interest is

H0 : μ1(t) = μ2(t), t ∈ T V S Ha : ∃ t ∈ T , μ1(t) �= μ2(t). (2.2)

2.2. Proposed test procedure based on shrinkage estimator

Let μpool(t) denote the mean function of the mixture process of X1(t) and X2(t).
We first achieve a centered model by deducting μpool(t) from both sides of model
in Eq. (2.1). Let Y c

gij = Ygij − μpool(Tgij) and Xc
gi(t) = Xgi(t) − μpool(t), then

model in Eq. (2.1) becomes

Y c
gij = Xc

gi(Tgij) + εgij , (2.3)

where Xc
gi ∼ SP (μg − μpool, G).

Let {φk(t), k = 1, 2, ...,∞} be orthonormal eigenfunctions of G(s, t), corre-
sponding to the non-increasing eigenvalue sequence {λk, k = 1, 2, ...,∞}. We
define the projection score of μg(t)− μpool(t) onto the k-th eigenfunction φk(t)
as θcgk, which is the inner product of μg(t)− μpool(t) and φk(t), i.e,

θcgk = 〈μg − μpool, φk〉, g = 1, 2; k ≥ 1. (2.4)

Given the fact that μg(t)−μpool(t) =
∑∞

k=1 θ
c
gkφk(t), it can be seen that testing

defined in Eq. (2.2) is equivalent to testing

H0 : {θc1k}∞k=1 = {θc2k}∞k=1 V S Ha : {θc1k}∞k=1 �= {θc2k}∞k=1. (2.5)

Given the following projection of Xc
gi(t),

Xc
gi(t) =

∞∑
k=1

〈Xc
gi, φk〉φk(t)

def
=

∞∑
k=1

rcgikφk(t), (2.6)

and the fact that testing Eq. (2.5) is equivalent to testing

H0 : {E[rc1ik]}∞k=1 = {E[rc2ik]}∞k=1 V S Ha : {E[rc1ik]}∞k=1 �= {E[rc2ik]}∞k=1,
(2.7)

under dense data settings, projection-based tests truncate at the first p dimen-
sions and construct test statistics based on rcgik, g = 1, 2; i = 1, .., ng; k = 1, .., p.
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For dense functional data, to obtain a consistent estimate of the projection
score rcgik, one can utilize the estimator

∫
t∈T Xc

gi(t)φ̂k(t) dt. However, for sparse
functional data, we do not have the functions Xc

gi(t). We propose to consider

the best linear unbiased predictor, E[rcgik|Yc
gi], where Yc

gi = (Y c
gi1, ..., Y

c
giNgi

)T

is the vector contains observations of the corresponding subject. E[rcgik|Yc
gi] is

a rational choice. This is because given

E[E[rcgik|Yc
gi]] = E[rcgik], (2.8)

the expectation of random quantity E[rcgik|Yc
gi] equals to the expectation of the

projection score rcgik, when taking the randomness of design points under sparse
data cases into account.

Under the null hypothesis of the testing problem in Eq. (2.2), we have μg(t) =
μpool(t) and θc

g = (θcg1, ..., θ
c
gp)

T = 0, so we propose to construct a test statistic

based on the shrinked first p best linear predictors E[rcgi|Yc
gi]

def
= r̃cgi. When the

projection scores rcgi is Gaussian (i.e., the random processes X1(t) and X2(t)
are Gaussian processes) and are jointly Gaussian distributed with random errors
εgij , the explicit formula of r̃cgi under H0 is

r̃cgi
H0= diag(λ)ΦT

giΣ
−1
Yc

gi
(Ygi − μpool,gi), (2.9)

where rcgi = (rcgi1, . . . , r
c
gip)

T ,Ygi = (Ygi1, ..., YgiNgi)
T , μpool,gi = (μpool(Tgi1), ...,

μpool(TgiNgi))
T , λ = (λ1, ..., λp)

T , Φgi = (φgi1, ...,φgip) is a Ngi by p matrix

with the kth column being φgik = (φk(Tgi1), ..., φk(TgiNgi))
T , and ΣYc

gi
is the

covariance matrix of Yc
gi, whose (j, j

′) element equals to G(Tgij , Tgij′)+σ21(j =
j′). This is referred as shrinkage score in the rest of the paper.

The shrinkage score in Eq. (2.9) is not the same as the original score rcgi in
Eq. (2.6), but it gets closer to rcgi when the number of observations on each
curve goes large and the measurement error gets small. Best linear predictors
have been first proposed in [40] for principal component analysis for one-sample
i.i.d sparse functional data. Our proposed shrinkage score for multiple groups
of sparse data is different from the marginal FPC score predictor in [32]. The
eigenfunctions and eigenvalues in our proposed shrinkage score correspond to the
covariance matrix G(s, t) instead of the mixture covariance matrix Gmix(s, t) =
G(s, t)+ν(1−ν)(μ1(s)−μ2(s))(μ1(t)−μ2(t)), where ν ∈ [0, 1] and 1−ν ∈ [0, 1]
are respectively the probability of random samples of the mixture process coming
from X1(t) and X2(t).

To construct a test statistic based on the shrinkage score vector r̃cgi, let’s
first calculate its mean vector and covariance matrix through the following two
steps. First, conditional on the observing times T gi = (Tgi1, ..., TgiNgi)

T , the
conditional mean and variance of r̃cgi are

E[r̃cgi|Tgi] = diag(λ)ΦT
giΣ

−1
Yc

gi
(μgi − μpool,gi)

cov[r̃cgi|Tgi] = diag(λ)ΦT
giΣ

−1
Yc

gi
Φgidiag(λ).

(2.10)
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Next, by taking the randomness of T gi into account, we have the mean and
variance of r̃cgi are

E[r̃cgi] = Et[diag(λ)Φ
T
giΣ

−1
Yc

gi
(μgi − μpool,gi)]

cov[r̃cgi] = Et[diag(λ)Φ
T
giΣ

−1
Yc

gi
Φgidiag(λ)] + covt(diag(λ)Φ

T
giΣ

−1
Yc

gi
(μgi − μpool,gi)).

(2.11)
Here μgi = (μg(Tgi1), ..., μg(TgiNgi))

T . Note that the second term in cov[r̃cgi] is
zero under the null hypothesis. All the quantities involved in estimating r̃cgi and
cov[r̃cgi] can be obtained from data Ygij , g = 1, 2; i = 1, .., ng; j = 1, .., Ngi, with
details included in the next subsection. Let’s denote the estimated quantities as
Ĝ, λ̂k, φ̂k(t), μ̂pool(t), and σ̂. Under the null hypothesis, we have the following
empirical estimators

ˆ̃r
c

gi = diag(λ̂)Φ̂
T

gi[Ĝgi + σ̂2I]−1(Ygi − μ̂pool;gi)

ˆcov[r̃cgi] =
1

n1 + n2

2∑
g=1

ng∑
i=1

diag(λ̂)Φ̂
T

gi[Ĝgi + σ̂2I]−1Φ̂gidiag(λ̂)

def
= V̂,

(2.12)

where Ĝgi is the estimated covariance function evaluated at timestamps Tgi =
(Tgi1, ..., TgiNgi)

T .
Given all these arguments, we propose the following test statistic for the

hypothesis testing problem in Eq. (2.2),

Tp,N = [
¯̂
r̃
c

1· −
¯̂
r̃
c

2·]
T [(

1

n1
+

1

n2
)V̂]−1[

¯̂
r̃
c

1· −
¯̂
r̃
c

2·], (2.13)

where
¯̂
r̃
c

g· =
∑ng

i=1
ˆ̃r
c

gi/ng, g = 1, 2.
It is noteworthy that, even though the proposed test statistic Tp,N is moti-

vated from joint Gaussian situations, we later derive that the asymptotic dis-
tribution of this statistic under H0 is a χ2

p distribution, regardless of whether
the random functions are Gaussian or not. For a specific significance level α, we
reject H0, if Tp,N > χ2

p(1 − α), where χ2
p(1 − α) is the upper α quantile of χ2

p.
The derivation of the asymptotic distribution is given in Section 3. Finite sam-
ple performances are demonstrated by three simulation studies and real data
analyses in Section 4.

For modeling and testing procedures based on basis projections, one needs
to specify the number p in practice. Popular approaches in functional data
analysis literature include the cross-validation approach, the percentage of vari-
ance explained method, and other penalty criteria such as AIC and BIC. These
approaches have been adopted in two-sample tests for dense functional data
[1, 16, 15, 17, 21, 36, 31]. In the context of functional linear regression, [14]
and [22] have proposed to combine P -values from p ∈ (pmin, pmax), where pmin

and pmax grow slowly with n. Since we used the restricted maximum likelihood
method [30] to estimate the eigenfunctions, the default method in our package
is to choose p by cross-validation, which is described in the next subsection.
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2.3. Estimation of model components

In this subsection, we discuss the estimation procedures for μpool(t), G, λk,
φk(t), and σ. We propose an effective procedure to extend the restricted maxi-
mum likelihood covariance function estimation method [30] to multiple groups
of sparse functional data scenarios.

Estimations of the pooled mean function μpool(t) are performed by a local
linear smoothing technique, which has been used in various studies [7, 40, 30].
To be more specific, we define the local linear smoother of the pooled mean
function μpool(t) by minimizing

2∑
g=1

ng∑
i=1

Ngi∑
j=1

K(
Tgij − t

hμpool

)[Ygij − β0 − β1(t− Tgij)]
2 (2.14)

with respect to β0 and β1, where K(·) is a smoothing kernel and hμpool
is the

bandwidth. Then μ̂pool(t) = β̂0(t).
To estimate the covariance function G(s, t), we first estimate the group-wise

mean functions μg(t), g = 1, 2. For each g, we define the local linear smoother
of the mean function μg(t) by minimizing

ng∑
i=1

Ngi∑
j=1

K(
Tgij − t

hμg

)[Ygij − β∗
g0 − β∗

g1(t− Tgij)]
2 (2.15)

with respect to β∗
g0 and β∗

g1. Then μ̂g(t) = β̂∗
g0(t). Given the mean function

estimation μ̂g(t), G(s, t) is estimated by modifying the restricted MLE method
[30] as follows. It is assumed that the eigenvalues of G(s, t) decay to zero effi-
ciently fast such that the difference between G(s, t) =

∑∞
k=1 λkφk(t)φk(s) and∑r

k=1 λkφk(t)φk(s) is small. Under some weak smoothness conditions on Xg(·),
the first r eigenfunctions {φ1(t), ..., φr(t)} can be modeled as,

φk(t) =

M∑
l=1

dlkψl(t), k = 1, ..., r, (2.16)

where functions {ψ1(t), ..., ψM (t)} ∈ L2(T ) are known. Let’s put the coefficients
in Eq. (2.16) into matrix D = (dlk)l=1,..,M ;k=1,..,r. Based on the orthonormality
of eigenfunctions, if {ψ1(t), ..., ψM (t)} are also orthonormalized, then DTD = Ir
should hold. When the random samples are Gaussian processes and the measure-
ment errors are Gaussian, conditional on time points, the negative log-likelihood
of the data is given by

− logL(D, diag(λ), σ2) ∝ 1

2
log |σ2INgi +ΨT

giDdiag(λ)DTΨgi|+

1

2

2∑
g=1

ng∑
i=1

tr[(σ2INgi +ΨT
giDdiag(λ)DTΨgi)

−1(Ygi − μ̂gi)(Ygi − μ̂gi)
T ],

(2.17)
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where Ψgi = (ψgi1, ...,ψgiM ), with ψgil = (ψl(Tgi1), ..., ψl(TgiNgi))
T for l =

1, ..,M . μ̂g(t) is estimated in Eq. (2.15) and μ̂gi = (μ̂g(Tgi1), ..., μ̂g(TgiNgi))
T .

A Newton-Raphson algorithm is utilized to achieve D̂, λ̂ and σ̂2 such that they
minimize the negative log-likelihood, subject to the constraint that DTD = Ir.
Then the corresponding eigenfunctions are estimated by φ̂k(t) =

∑M
l=1 d̂lkψl(t).

Note that this method directly targets the eigen components. In our numer-
ical studies, we found that the restricted MLE method produces more accurate
estimates for the eigen components than the local linear smoothing method
developed in [40], which first estimates the covariance and then does eigen de-
composition on the discretized covariance.

To be able to obtain consistent estimates of G(s, t), φk(t) and λk using re-
stricted MLE, one has to have large enough M and r such that the true co-
variance is well-approximated by a member of the model space M(M, r). The
model space consists of a class of covariance kernels C, which have rank r, and
whose eigenfunctions are represented in a known orthonormal basis {ψk}Mk=1

[28]. In current implementations, the values of (M, r) are chosen by leave one
curve out cross-validation [30]. Particularly, the likelihood-based cross-validation
score CV(M, r) to be maximized is

CV(M, r) =

2∑
g=1

ng∑
i=1

logL(Ygi,Tgi, D̂
−(g,i), diag(λ̂

−(g,i)
), σ̂2−(g,i)), (2.18)

where L(·) is the likelihood function of the sparse observations Ygi, and D̂−(g,i),

diag(λ̂
−(g,i)

), σ̂2−(g,i) are the estimates of D,λ, σ2 based on the data excluding
the Ygi, i.e., the i-th curve in group g.

The next step is to select the dimension of truncation p. Intuitively, we want
to identify the appropriate value such that the difference in the group mean
functions is well approximated (i.e., p is sufficiently large) and non-essential
difference that should be considered as random errors are excluded (i.e., p is
not too large). In the literature, the dimension of truncation p for mean is
often selected based on the covariance function. For instance, the percentage
of variance explained method is used in [16, 15, 17, 21, 32]. Besides, the same
number of projections for the mean and covariance are used in the mixed-effect
model in [18]. In this paper, since we used restricted MLE to estimate the eigen
components, the default method in the our package is to choose p = r, i.e., p is
selected by the leave-one-curve cross-validation method in Eq. (2.18).

Now, by plugging in all these estimates, we achieve our test statistic Tp,N as
in Eq. (2.13).

2.4. An extension to common principal component cases

Our proposed test statistic Tp,N is created based on the homogeneous covariance
function assumption. In this section, we describe how to extend the test proce-
dure to a certain type of heterogeneous covariance structure called the common
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principal component (CPC) scenarios [11, 2, 3, 5]. Under CPC, the eigenval-
ues are different across different groups, while the eigenfunctions are the same.
Mathematically, the g-th covariance function is Gg(s, t) =

∑∞
k=1 λgkφk(s)φk(t),

with φk(t) being the common eigenfunctions and λgk be the group specific eigen-
values.

The specific modifications for CPC scenarios are summarized as follows. In
the test statistic Tp,N , λ̂ should be replaced with λ̂g. The estimation procedure

also needs to be modified. In particular, φ̂k(t) is achieved by applying the re-
stricted MLE method to the pooled data. Ĝg(s, t) is calculated by using data

from group g alone. Then the group specific eigenvalues λ̂gk is obtained by the
following formula,

λ̂gk =< φ̂k, φ̂
∗
k >, with φ̂∗

k(t) =

∫
T
Ĝg(s, t)φ̂k(s)ds. (2.19)

Further extensions to cases with the general heterogeneous covariance func-
tions (i.e., eigenvalues and eigenfunctions are both different) are not easy. This
is a future topic of interest.

3. Asymptotic results

In this section, we develop the asymptotic theory of Tp,N under both H0 and
Ha in test (2.2). The shrinkage score vector r̃cgi is not observable, needing to
be estimated from data and this estimation error needs to be considered when
deriving the asymptotic results. The projection-based method for dense func-
tional data also needs to control errors in the estimated scores. What makes our
arguments more complicated than dense data cases is that we need to consider
each estimation error conditional on the individual design points and ensure
that the overall error is uniformly controlled over the random designs.

To achieve the asymptotic results, we need the following assumptions.

1. The number of measurements Ngi is bounded. The observing time Tgij for
g = 1, 2, i = 1, . . . , ng, j = 1, ..., Ngi are random design points according
to a density function f , with fl < f(t) < fu, t ∈ T for fl > 0 and fu < ∞.

2. E[ΦT
gikΣ

−1
Ygi

Φgik] < ∞, for k = 1, ..., p.
3. One can obtain consistency results,

‖μ̂pool − μpool‖F = op(1)∥∥∥Ĝ−G
∥∥∥
F
= op(1)

|λ̂k − λk| = op(1) for k = 1, . . . , p∥∥∥φ̂k − φk

∥∥∥
F
= op(1) for k = 1, . . . , p

|σ̂2 − σ2| = op(1)

(3.1)

where ‖z‖F is defined as {
∫
t∈T z(t)2dt}1/2, t ∈ T .
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4. The leave-one-curve-out estimates of the quantities in Eq. (3.1) are close
to the whole sample estimates in the sense that the difference is op(1/

√
n).

Assumption 1 is a common assumption for sparsely observed functional data.
Assumption 2 requires that the variance of the shrinkage scores are bounded.
Assumption 3 requires consistent estimates of model components. We estimate
μ̂pool(t) using local linear smoothing techniques and the consistency result holds
under some regular and mild conditions, which are discussed in [40, 23, 44].
The other quantities are estimated using the restricted MLE method [30]. The
conditions needed for the restricted MLE to provide consistent estimates are
given in Appendix A for completeness; details can be found in their original
papers [30, 28]. We note that they proved the consistency of the estimated eigen
components under the Gaussian assumption and discussed that their asymp-
totic results still hold under some relaxed conditions. Our simulation studies
in Section 4.1 also show that restricted MLE has reasonable performances un-
der non-Gaussian cases. One can use other methods to estimate the covariance,
such as the local linear smoothing in [40, 23, 44], which do not require Gaussian
assumptions. Therefore, Gaussian distribution is not an essential requirement
for the asymptotic results developed for the proposed method. Assumption 4 is
satisfied by the restricted MLE method and the local linear smoothing method,
as the leave-one-curve-out estimates will be close to the whole sample estimates
with difference Op(1/n). This assumption is needed to control the correlation
between the estimation error of model components and observations from an
individual curve.

Theorem 3.1. Assuming assumptions 1-4 are true, assuming limn1.n2→∞
n1

n =
w, with w ∈ (0, 1) and n = n1 + n2. Under H0, we have

Tp,N
D−→ χ2

p. (3.2)

Proof of Theorem 3.1 is postponed to Appendix B.

Theorem 3.2. Assuming assumptions 1-4 are true, assuming limn1.n2→∞
n1

n =

w, with w ∈ (0, 1) and n = n1+n2. Suppose that we have E[diag(λ)ΦT
giΣ

−1
Ygi

(μgi−
μpool;gi)] �= 0 and var(diag(λ)ΦT

giΣ
−1
Ygi

(μgi − μpool;gi)) < ∞, then

Tp,N
P−→ ∞. (3.3)

E[diag(λ)ΦT
giΣ

−1
Ygi

(μgi − μpool;gi)] is basically some type of projection of

μg(t)−μpool(t). Note that the only randomness here is the random design points
Tgi. When μg(t)− μpool(t) �= 0 and p is sufficiently large, it is unlikely that this
projection scores equal to 0 on all the first p directions. Theorem 3.2 ensures
that, under any alternative Ha when the difference between μg(t) and μpool(t)
is captured by some of the first p directions of such projection, the power of our
test procedure goes to 1. Proof of Theorem 3.2 is in Appendix B.
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Theorem 3.1 and Theorem 3.2 ensure that for a given p < ∞, the proposed
test procedure exhibits the desired asymptotic behaviors. In particular, it con-
trols the type I error within the pre-specified significance level and the power
of the test converges in probability to 1. Due to the smoothness of functional
data, the majority of information within data is captured by a finite number
of projection scores. In this paper, we focus on scenarios p < ∞, following the
convention in many functional data analysis literature.

4. Numerical experiments

4.1. Simulation studies

In this subsection, through three simulations we evaluate the performances of the
proposed shrinkage-score-based Hotelling’s T 2 type test, which has an asymp-
totic χ2 distribution.
Simulation I-(1): In all the simulation studies, the data are always generated
from model (2.1) Ygij = Xgi(Tgij)+εgij , with measurement error εgij ∼ N(0, 1),
and Xgi(Tgij) = μg(Tgij) +

∑∞
k=1 ξgikφk(Tgij). The number of observations

on each curves are Ngi = N for g = 1, 2; i = 1, . . . , ng. We let N takes
two values, 4 and 8. The observing time points, {Tgi1, ..., TgiN}, are uniformly
distributed within the interval [0,1]. In Simulation I, the eigenfunctions are
φk(t) =

√
2 sin(kπt) for k = 1, ...,∞. The scores ξgik ∼ N(0, λk), with λ1 =

0.4, λ2 = 0.22, λ3 = 0.10, λ4 = 0.04, and λk = 0 for k > 4. The first mean func-
tion μ1(t) =

∑4
k=1 a1kφk(t), where a1k = 2ā1k/ ‖ā1‖2, with ā1 = (ā11, ..., ā14)

T

and ā1k = (5−k)3. And the second mean function μ2(t) =
∑4

k=1 a2kφk(t), where
ā2 = ā1 − ςd, with d = (1, 0.35, 0.125, 0.005)T and ς quantifying the difference
between the two mean functions. Note that ς = 0, 0.2, 0.3, 0.4 correspond to the
null hypothesis and three alternative hypotheses. Estimations of type I error
and powers are calculated from 1000 Monte Carlo repetitions.

In this simulation study, we compare performances of the proposed asymp-
totic χ2 test Tp,N (‘Shrink Hotelling’), with the distribution test in [32] (‘Dist’),
and the pseudo likelihood ratio test in the [37] (‘pLRT-l’ for linear and ‘pLRT-c’
for cubic). The distribution test in [32] aims to test whether X1(t) and X2(t)
have the same distribution. It projects each individual curve to the eigenspace
spanned by the eigenfunctions of the mixture process ofX1(t) andX2(t), where a
similar shrinkage is employed if the functional data is sparse. The equality of dis-
tributions of the first p projection scores is tested through the Anderson-Darling
test with Bonferroni corrections. It is not a two-sample location test. Under
Gaussian assumption with equal covariance settings, this test can be used to in-
fer whether X1(t) and X2(t) have the same mean function. However, due to the
non-parametric of the nature, the test is expected to have low powers. Besides,
in [32], there are no theoretical results in terms of the size and the power of the
proposed test. For the pLRT test, the original paper focuses on the one-sample
mean function inference problem, and the generalization to two-sample mean
function testing problems is described in their paper. We were able to modify
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their package to perform the two-sample testing problem. We also compare the
performance with several dense data methods, where the individual curves are
first recovered at a dense regular grid using methods developed in [40], and then
dense data tests are applied on the recovered curves. Three different dense data
tests, including the projection-based normalized l2 test [16] (‘normalized l2’), the
Globalized-F test [42] (‘GF’), and the L2-norm-based test [41] (‘l2’). We also
consider the permutation version of the dense-recovered methods. The p-values
of the permutation based dense-recovered tests (‘normalized l2-pm’, ‘GF-pm’,
‘l2-pm’) are calculated from 5000 Monte Claro permutations. The Hotelling’s
T 2 permutation test proposed in [31] calculates a test statistic the same as the
projection based normalized l2 test and computes the p-value from the permu-
tated samples of raw functional samples. This is the same as the permutation
version of the projection-based normalized l2 test, i.e., ‘normalized l2-pm’.

We report the simulation results in Table 1 to 3, for different sample sizes
n1 = n2 = 50, 100, 200, and different number of observations on each curve
N = 4, 8. The significance level considered is α = 0.05. The cross validation
method mostly choose p to be 4 in the proposed method. Therefore, the true
number of components p = 4 is used in the proposed test, the distribution test,
and the dense-recovered projection method. We can see that our asymptotic
χ2 test, the distribution test and the permutation based dense-recovered tests
effectively control the type I error at the pre-determinted significance level.
Among these tests, our proposed χ2 test has the largest power than the other
tests under all circumstances. The pLRT tests sometimes yield inflated type
I errors, especially when the sample sizes and the number of observations on
each curve are small. The original pLRT paper include some results for sparse
data but with a relatively large number of observations on each curve, i.e., with
N = 10. As expected, the dense-recovered methods based on asymptotic null
distributions do not work, since the recovered curves from sparse functional data
converge to E[Xgi(t)|Ygi] instead ofXgi(t) [40]. The permutation based versions
of the dense data tests are capable of controlling the type I error, however, they
suffer from lower power issues.

Simulation I-(2): In this simulation study, we assume that the mean functions
are specified by a different set of basis functions other than the eigenfunctions
{φk(t) =

√
2 sin(kπt)}∞k=1. In particular, the basis functions for the mean are

{φ′
k(t) =

√
2 cos(kπt)}∞k=1. Similar to Simulation I, we also truncate at the

first 4 dimensions. The mean functions are accordingly μ1(t) =
∑4

k=1 a1kφ
′
k(t)

and μ2(t) =
∑4

k=1 a2kφ
′
k(t). The definition for a1k and a2k are the same as

Simulation I.

The testing results for the proposed test are summarized Table 4. When im-
plementing the proposed test procedure, we use the cross-validation approach
to select the number of truncation, with p being mostly 4. As shown by Table 4,
the proposed test is working reasonably in terms of size and power. The per-
formance under the null is supported by Theorem 3.1. The test has reasonable
powers is due to the fact the difference in the means on the first dimension (i.e.,
φ′
1(t)) is captured by the second and fourth projections onto the eigenfunctions
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Table 1

Simulation I-(1) (n1 = n2 = 50). The number of points per curve is N = 4, 8. Sample sizes
are n1 = n2 = 50. The significance level is α = 0.05. Consider nine tests: the proposed

asymptotic χ2 test (‘Shrink Hotelling’), the distribution test (‘Dist’), the linear and cubic
pLRT test (‘pLRT-l’, ‘pLRT-c’), the dense-recovered tests (‘normalized l2’, ‘GF’, ‘l2’), and
the dense-recovered tests based on 5000 Monte Carlo permutations (‘normalized l2-pm’,

‘GF-pm’, ‘l2-pm’). The dense-recovered tests and their permutation versions are conducted
on the recovered curves from the sparsely observed data. Highest powers among ‘Shrink

Hotelling’, ‘Dist’, ‘normalized l2-pm’, ‘GF-pm’, and ‘l2-pm’ are in bold font. Type I error
(ς = 0) and powers (ς = 0.2, 0.3, 0.4) are from 1000 repetitions.

Test
N = 4 N = 8

ς = 0 ς = 0.2 ς = 0.3 ς = 0.4 ς = 0 ς = 0.2 ς = 0.3 ς = 0.4
Shrink Hotelling 0.053 0.135 0.267 0.489 0.045 0.198 0.384 0.656

Dist 0.054 0.131 0.238 0.419 0.051 0.170 0.334 0.583
pLRT-l 0.123 0.215 0.358 0.542 0.089 0.277 0.496 0.700
pLRT-c 0.116 0.226 0.357 0.556 0.104 0.306 0.530 0.737

normalized l2 0.954 0.961 0.987 0.993 0.895 0.923 0.967 0.989
normalized l2-pm 0.053 0.062 0.122 0.159 0.052 0.073 0.087 0.203

GF 0.963 0.975 0.988 0.995 0.842 0.922 0.968 0.995
GF-pm 0.039 0.043 0.100 0.132 0.042 0.084 0.159 0.248

l2 0.909 0.949 0.969 0.989 0.590 0.789 0.910 0.980
l2-pm 0.043 0.060 0.106 0.164 0.052 0.100 0.195 0.287

(i.e., φ2(t) and φ4(t)), although the projection onto the first eigenfunction (i.e.,
φ1(t)) cannot capture it.

Simulation II: The second simulation focuses on exploring the performance of
the proposed test under non-Gaussian circumstances, and we also include the
results from the distribution test as a comparison. Simulation settings are the
same as Simulation I, except that ξgik, g = 1, 2; i = 1, .., ng; k = 1, ..., p are now
generated from a mixture of two normal distributions, i.e., they are distributed
as N(

√
λk/2, λk/2) with probability 1/2 and N(−

√
λk/2, λk/2) with probabil-

ity 1/2. In this way, we get samples from mixture Gaussian processes instead of
Gaussian processes. According to the results calculated from 1000 repetitions in
Table 5, we can see that the proposed test and the distribution test still produce
valid results for this non-Gaussian situation. The proposed χ2 test has larger
powers under all circumstances.

Simulation III: The data are generated from the same model as in simulation
I, except that we have used the first 15 components to generate the data. The
corresponding eigenvalues are 0.40, 0.22, 0.10, 4e−2, 2e−2, 8e−3, 4e−3, 1.6e−3,
4e−4, 2.4e−4, 8e−5, 3.2e−5, 1.2e−5, 2.8e−6, 4e−7. As for the mean functions, we
set μg(t) =

∑15
k=1 agkφk(t), where agk = 2āgk/ ‖āg‖2, with āg = (āg1, ..., āg15)

T .
Note that ā1k = (16 − k)3 and ā2 = ā1 − δe with δ = 0, 0.2, 0.3, 0.4, and
e = (1, 0.35, 0.125, 5e−3, 4e−3, 2e−3, 1e−3, 6e−4, 3e−4, 2e−4, 8e−5, 3e−5, 1e−5,
7e−6, 1e−6)T .

To evaluate the actual performance of the proposed method, we exploit
the two-sample restricted MLE estimate and the leave-one-curve-out cross-
validation based selection of p in Section 2.3 to construct the proposed asymp-
totic χ2 test statistic. The size and power over 1000 Monte Carlo repetitions are
summarized in Table 6. We can see our proposed procedure works well. It can
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Table 2

Simulation I-(1) (n1 = n2 = 100). The number of points per curve is N = 4, 8. Sample sizes
are n1 = n2 = 100. The significance level is α = 0.05. Consider nine tests: the proposed
asymptotic χ2 test (‘Shrink Hotelling’), the distribution test (‘Dist’), the linear and cubic
pLRT test (‘pLRT-l’, ‘pLRT-c’), the dense-recovered tests (‘normalized l2’, ‘GF’, ‘l2’), and
the dense-recovered tests based on 5000 Monte Carlo permutations (‘normalized l2-pm’,

‘GF-pm’, ‘l2-pm’). The dense-recovered tests and their permutation versions are conducted
on the recovered curves from the sparsely observed data. Highest powers among ‘Shrink

Hotelling’, ‘Dist’, ‘normalized l2-pm’, ‘GF-pm’, and ‘l2-pm’ are in bold font. Type I error
(ς = 0) and powers (ς = 0.2, 0.3, 0.4) are from 1000 repetitions.

Test
N = 4 N = 8

ς = 0 ς = 0.2 ς = 0.3 ς = 0.4 ς = 0 ς = 0.2 ς = 0.3 ς = 0.4
Shrink Hotelling 0.045 0.257 0.515 0.821 0.050 0.352 0.719 0.931

Dist 0.057 0.215 0.466 0.771 0.058 0.291 0.648 0.916
pLRT-l 0.095 0.347 0.564 0.803 0.081 0.449 0.758 0.944
pLRT-c 0.110 0.337 0.581 0.814 0.087 0.463 0.801 0.966

normalized l2 0.986 0.979 0.995 1.000 0.913 0.978 0.993 1.000
normalized l2-pm 0.051 0.065 0.096 0.199 0.055 0.079 0.148 0.276

GF 0.984 0.992 0.998 1.000 0.872 0.978 0.995 1.000
GF-pm 0.046 0.075 0.149 0.204 0.039 0.083 0.212 0.349

l2 0.918 0.968 0.993 0.999 0.602 0.907 0.988 0.999
l2-pm 0.053 0.090 0.164 0.242 0.047 0.116 0.250 0.475

control the type I error at the pre-determined significance level. The powers are
increasing with larger sample sizes and the magnitude of difference between the
two mean curves.

To study the sensitivity of the proposed test to the selection of p, we fix
p at three values p = 3, 4, 5, which respectively captures 99.1%, 99.5%, and
99.7% of the difference among the mean functions. The results are summarized
in Table 7. It can be seen that the size is well controlled at the pre-specified
significance level α = 0.05 for p = 3, 4, 5. This is expected as the asymptotic null
distribution is valid for any p, as described in Theorem 3.1. Besides, for each p,
the power of the proposed test increases with the increase of the sample size and
the magnitude of the difference between the two mean curves. This observation
adheres to the arguments in Theorem 3.2.

In Table 7, the power under different values of p is overall comparable, with
some moderate variation across different p. These results numerically justify that
the proposed test procedure is insensitive to the dimension of truncation when
the dimension p is sufficiently large. In general, the power for p = 3 is slightly
larger than the other two choices of p. Intuitively, unnecessarily large values of p
tend to introduce the non-essential signal that should be considered as random
noises into the test. The results in Table 6 is close to those with respect to p = 3
in Table 7. This is because the selected p from the cross-validation approach is
mostly 3 in this simulation study.

4.2. Application to CD4 count data

Now we apply the proposed asymptotic χ2 test to a CD4 count data set from
the AIDS Clinical Trials Group (ACTG) 193 A study, which aims at comparing
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Table 3

Simulation I-(1) (n1 = n2 = 200). The number of points per curve is N = 4, 8. Sample sizes
are n1 = n2 = 200. The significance level is α = 0.05. Consider nine tests: the proposed
asymptotic χ2 test (‘Shrink Hotelling’), the distribution test (‘Dist’), the linear and cubic
pLRT test (‘pLRT-l’, ‘pLRT-c’), the dense-recovered tests (‘normalized l2’, ‘GF’, ‘l2’), and
the dense-recovered tests based on 5000 Monte Carlo permutations (‘normalized l2-pm’,

‘GF-pm’, ‘l2-pm’). The dense-recovered tests and their permutation versions are conducted
on the recovered curves from the sparsely observed data. Highest powers among ‘Shrink

Hotelling’, ‘Dist’, ‘normalized l2-pm’, ‘GF-pm’, and ‘l2-pm’ are in bold font. Type I error
(ς = 0) and powers (ς = 0.2, 0.3, 0.4) are from 1000 repetitions.

Test
N = 4 N = 8

ς = 0 ς = 0.2 ς = 0.3 ς = 0.4 ς = 0 ς = 0.2 ς = 0.3 ς = 0.4
Shrink Hoteling 0.045 0.513 0.877 0.992 0.051 0.664 0.940 0.999

Dist 0.049 0.455 0.839 0.982 0.056 0.617 0.918 0.998
pLRT-l 0.097 0.523 0.821 0.966 0.065 0.680 0.958 0.998
pLRT-c 0.101 0.515 0.843 0.980 0.069 0.734 0.978 0.999

normalized l2 0.974 0.999 1.000 1.000 0.941 0.998 0.999 1.000
normalized l2-pm 0.048 0.079 0.178 0.351 0.073 0.115 0.270 0.584

GF 0.989 1.000 1.000 1.000 0.916 0.998 0.998 1.000
GF-pm 0.042 0.102 0.180 0.298 0.050 0.146 0.261 0.476

l2 0.929 1.000 0.999 1.000 0.594 0.973 0.984 1.000
l2-pm 0.044 0.111 0.218 0.365 0.050 0.214 0.446 0.743

Table 4

Simulation I-(2). The number of points per curve is N = 4, 8. Sample sizes are
n1 = n2 = 50, 100, 200. The significance level is α = 0.05. The number of components p is

selected by the cross-validation technique. Type I error (δ = 0) and powers (δ = 0.2, 0.3, 0.4)
of our proposed test are calculated from 1000 repetitions.

n
N = 4 N = 8

δ = 0 δ = 0.2 δ = 0.3 δ = 0.4 δ = 0 δ = 0.2 δ = 0.3 δ = 0.4
50 0.049 0.126 0.255 0.445 0.053 0.204 0.397 0.651
100 0.051 0.243 0.549 0.809 0.047 0.369 0.711 0.924
200 0.053 0.522 0.888 0.985 0.051 0.669 0.953 1.000

the effectiveness of two different therapies, 600mg of zidovudine alternating
monthly with 400mg didanosine (group A) and 600mg of zidovudine plus 400mg
didanosine (group B), for advanced AIDS patients with CD4 counts less than
or equal to 50 cells per cubic millimeter. Totally we have 655 advanced AIDS
patients, with 325 subjects in group A and 330 in group B. These patients were
followed for 40 weeks after they started to receive either of the two treatments
mentioned above. The number of observations available for each subject ranges
from 1 to 9, and the observing times are randomly distributed within the 40
weeks.

We model the data from the sparse functional data perspective. The 325
CD4 count trajectories in group A are assumed to be i.i.d random samples of
an unknown stochastic process. The 330 CD4 count trajectories in group B are
i.i.d samples of another unknown random process. Through inferring whether
the two population mean functions are significantly different within the 40-weeks
period, we can understand whether the effectiveness of these two treatments is
different over time. As suggested by previous literature [10, 39], we transform
the original CD4 count using function log(x + 1). The Spaghetti plots of the
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Table 5

Simulation II. The number of points per curve is N = 4, 8. Sample sizes are
n1 = n2 = 50, 100, 200. The significance level is α = 0.05. Consider two tests: our

asymptotic χ2 test (‘Shrink Hotelling’) and the distribution test (‘Dist’). Type I error
(ς = 0) and powers (ς = 0.2, 0.3, 0.4) are from 1000 repetitions.

n Test
N = 4 N = 8

ς = 0 ς = 0.2 ς = 0.3 ς = 0.4 ς = 0 ς = 0.2 ς = 0.3 ς = 0.4
50 Shrink Hotelling 0.054 0.144 0.256 0.483 0.053 0.220 0.401 0.657

Dist 0.049 0.120 0.203 0.421 0.042 0.171 0.315 0.569
100 Shrink Hotelling 0.048 0.254 0.531 0.806 0.051 0.353 0.701 0.933

Dist 0.038 0.209 0.485 0.757 0.065 0.281 0.620 0.899
200 Shrink Hotelling 0.044 0.473 0.862 0.969 0.051 0.660 0.972 1.000

Dist 0.049 0.431 0.808 0.970 0.059 0.580 0.929 1.000

Table 6

Simulation III (Choose p using cross-validation). The number of points per curve is
N = 4, 8. Sample sizes are n1 = n2 = 50, 100, 200. The significance level is α = 0.05. The
number of components p is selected by the cross-validation technique. Type I error (δ = 0)
and powers (δ = 0.2, 0.3, 0.4) of our proposed test are calculated from 1000 repetitions.

n
N = 4 N = 8

δ = 0 δ = 0.2 δ = 0.3 δ = 0.4 δ = 0 δ = 0.2 δ = 0.3 δ = 0.4
50 0.051 0.145 0.264 0.461 0.048 0.210 0.374 0.653
100 0.052 0.233 0.519 0.724 0.050 0.349 0.669 0.914
200 0.051 0.490 0.882 0.990 0.047 0.659 0.975 1.000

transformed data of groups A and B can be found in Figure 1. The first three
estimated functional principal components for both groups are shown on the
right panel of Figure 2. As shown by Figure 2, the estimated eigenfunctions of
the two groups, especially the first two components, are rather close to each
other. The corresponding eigenvalues are (24.868, 1.763, 0.564)T for group A
and (38.759, 1.805, 0.404)T for group B. We implement our proposed χ2 test.
The p-values using the homogeneous covariance structure under p = 2, 3, 4, 5,
are 0.0333, 0.0779, 0.0133 and 0.0270. Under the CPC structure in Section 2.4,
the corresponding p-values are 1.11e−61, 7.73e−61, 4.61e−92, 1.47e−97. We can
see that under all different values of p, the proposed test is able to detect the
discrepancy between the effectiveness of group A and group B. Note that the
selected p from cross-validation is 3, i.e., the result of the proposed test procedure
based on the cross-validation method of choosing the truncation dimension is p-
value = 0.0779 when assuming homogeneous covariance functions, and 7.73e−61
under the CPC assumption. Given the estimated mean functions provided on
the left panel of Figure 2, it can be seen that the therapy used by group B
tends to be more effective in helping advanced AIDS patients to recover. We
also implemented the permutation-based dense-recovered tests. These tests do
not detect a significant difference between the two groups. We have seen that
these tests have low power in simulations. We applied the proposed method on
different sample sizes, i.e., 25%, 50%, 75% and 100% of subjects in each group.
The proposed method can always detect the signal for 75% and 100%, and the
power is lower for 25%, and 50%.
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Table 7

Simulation III (Sensitivity study of p). The number of points per curve is N = 4, 8. Sample
sizes are n1 = n2 = 50, 100, 200. The significance level is α = 0.05. The number of

components p is fixed as 3, 4 or 5. Type I error (δ = 0) and powers (δ = 0.2, 0.3, 0.4) of our
proposed test are calculated from 1000 repetitions.

n p
N = 4 N = 8

δ = 0 δ = 0.2 δ = 0.3 δ = 0.4 δ = 0 δ = 0.2 δ = 0.3 δ = 0.4
50 3 0.044 0.149 0.275 0.460 0.045 0.214 0.350 0.644

4 0.041 0.142 0.260 0.441 0.050 0.172 0.337 0.633
5 0.057 0.153 0.282 0.458 0.056 0.204 0.327 0.624

100 3 0.052 0.226 0.491 0.707 0.044 0.340 0.653 0.906
4 0.049 0.219 0.507 0.703 0.044 0.306 0.637 0.892
5 0.044 0.235 0.473 0.688 0.048 0.294 0.637 0.872

200 3 0.046 0.481 0.866 0.984 0.051 0.643 0.964 1.000
4 0.054 0.459 0.863 0.978 0.048 0.599 0.948 1.000
5 0.052 0.460 0.844 0.978 0.044 0.583 0.948 0.998

Fig 1. Plot of group A is on the left panel; Plot of group B is on the right panel

Fig 2. Left: Mean functions of two groups (group A: black; group B: blue); Right: Estimated
eigenfunctions of two groups (group A: black; group B: blue)

4.3. Application to eBay online auction data

EBay.com is one of the largest online auction markets. The most common auc-
tions on eBay are single-item auctions, even though multiple-item auctions are
also feasible. The problem that we consider belongs to the single-item auction
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category. For this kind of auctions, eBay adopts a second-price rule to decide
the winner. To be more specific, within the pre-selected bidding period (3 days,
5 days, or 7 days), bidders can submit the maximum amounts that they are
willing to pay (WTP). The first bidder to provide the second largest WTP
within the bidding period is the winner. The WTP’s are hidden from the pub-
lic, instead, eBay’s proxy bidding system automatically increases each bidder’s
bid by a minimum increment determined by the current bidding price and cer-
tain rules set by eBay. And it displays these prices lively on the item page.
These real-time price trajectories come out of this system are often referred to
as live bid. The auction data in our problem are live bid data. More details
about the mechanism of eBay online auctions are provided by their official web-
site http://www.ebay.com/. eBay auction data for all items are appropriately
stored by eBay and are completely accessible to all registered users for up to 90
days.

As mentioned in the previous paragraph, the auctions can last for 3 days, 5
days, or 7 days. We consider the problem that whether the price trends for a
certain type of item are different for different bidding length choices. We use the
live bid for Palm M515 Personal Digital Assistant as an example. The data set
can be found at [19]. The two bidding lengths that we compare are 3 days and
7 days. In the 3 days group, there are 90 auctions of Palm M515 that happened
between March and May 2003. In the 7 days group, there are 158 auctions
of Palm M515 happened within the same period of time. The number of bids
for each item is given in Figure 3, which are not small. However, as shown in
Figure 4, where 9 randomly selected auctions in the 7 days group are visualized,
the bids are extremely irregular. There are big gaps among individual live bid
trajectories.

We use sparse functional data approaches to model this ebay online live
bid data. We assume that the 90 auctions with duration 3 days are i.i.d ran-
dom samples from an unknown population distribution and the 158 auctions
with duration 7 days are i.i.d random sample from another unknown stochastic
process. [29, 24, 38, 20] also analyze ebay online auction data from functional

Fig 3. Left: histogram of number of observation within each item in the 3 days group; Right:
histogram of number of observation within each item in the 7 days group

http://www.ebay.com/
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Fig 4. Bids for 9 randomly chosen Palm M515 in the 7 days group.

Fig 5. Left: Mean functions of two groups (3 days: blue; 7 days: black); Right: Estimated
eigenfunctions of two groups (3 days: blue; 7days: black)

perspectives. Following previous papers [29, 20], we transform live bid data into
a log-scale. We also scale the bidding time variables of both the 3 days group
and the 7 days group to [0, 1]. Now the problem of detecting differences in
average price trends becomes testing whether the population mean curves are
significantly different within some parts of [0, 1].

As indicated by the right panel of Figure 5, the estimated first three eigen-
functions of the 7 days group (black) and the 3 days group (blue) are very close.
The corresponding eigenvalues are (0.344, 0.101, 0.020)T for the 7 days group
and (0.416, 0.162, 0.011)T for the 3 days group. It is reasonable to assume that
they share the same covariance function. The proposed χ2 test is implemented
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to this mean function testing problem. We use the cross-validation method to
choose p = 5 and the p-value of our proposed test is less than 0.000001. This
means that we have enough confidence to conclude that the mean price evolu-
tion curves are different when different bidding time periods are selected. The
estimated mean functions by local linear smoothing are included on the left
panel of Figure 5. From the graph, we can see that the price of the 7 days group
(black) is larger than that of the 3 days group (blue) over the entire time do-
main. The permutation based dense-recovered tests are also implemented but
do not detect a significant difference between the two groups.

5. Conclusions and Discussions

In this paper, we developed an asymptotic χ2 test for detecting differences
among the mean functions of two independent stochastic processes with homo-
geneous covariance functions, when only a few irregularly spaced measurements
are given for each subject. The proposed test statistic is constructed based on
the shrinkage score vector, a counterpart of the one-sample PACE designed es-
pecially for multiple-sample mean testing problems. Note that as shown by the
theoretical derivations, our proposed test does not require Gaussian random
processes, although the test is motivated by Gaussian.

We described in detail the numerical implementation of the proposed test pro-
cedure. To benchmark the proposed test, we considered four baselines, including
two existing tests that apply to sparse data settings (i.e., the non-parametric
distribution test and the pseudo-likelihood ratio test), and two promising com-
binational approaches (i.e., dense tests equipped with PACE as a pre-processing
step, and the permutation dense test with PACE). The numerical experiments
demonstrated the superior performance of our proposed test, in comparison
with these methods. In particular, the pLRT test yielded inflated type I errors
when the sample size and the number of observations per curve are small. The
dense data methods with the help of PACE to recover the individual curves
did not work, since the recovered curves from sparse functional data do not
converge to the actual random curves. The non-parametric distribution test
performed reasonably, however, it had low powers due to the non-parametric
nature.

We proposed two useful extensions of the proposed test. One extension aims
to generalize the test to a certain type of heterogeneous covariance scenario
called the common principal component structure, where the eigenvalues can be
different across groups. The other extension that handles scenarios where more
than two groups are considered in the hypothesis testing problem (see Appendix
C).

The test procedure developed in the paper cannot handle cases with general
heterogeneous covariance functions, i.e. when the eigenvalues and eigenfunctions
are both different across groups. This is an important piece of future work to
study.
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Appendix A: Conditions for restricted MLE consistency

The estimators Ĝ, φ̂k, λ̂k, k = 1, . . . r, obtained from restricted MLE utilizing
model space M(M, r), are consistent when the following assumptions hold [28].

1. X1(t) and X2(t) are two independent Gaussian processes.
2. The r largest eigenvalues of G(s, t) satisfy. (i) There exists a constant

a1 < ∞, such that a1 ≥ λ1 > λ2 > ... > λr > λr+1; (ii) There exists a
constant a2 < ∞, such that max

1≤k≤r
(λk − λk+1)

−1 ≤ a2.

3. The common eigenfunctions {φk(t)}rk=1 are four times continuously dif-
ferentiable and satisfy for some 0 < A0 < ∞

max
1≤k≤r

sup
t∈T

|φ(4)
k (t)| ≤ A0. (A.1)

4. For each g, i, {Tgij , j = 1, ..., Ngi} are i.i.d samples from a distribution f
within the time domain T , where f is a bounded function and it satisfies
fl ≤ f(x) ≤ fu for all t ∈ T , where 0 < fl ≤ fu < ∞.

5. The number of measurements Ngi satisfies N ≤ Ngi ≤ N̄ with N ≥ 4 and
N̄ < ∞.

6. The following two assumptions are correct: M−1(n/ log n)1/9 = O(1), and
M = o(

√
n/ log n), where n = n1 + n2 and M is the number of orthonor-

malized cubic B-spline basis used to represent the eigenfunctions φk(t).
7. Define the approximation error for an optimal estimator in model space

M(M, r) as βn = max1≤g≤2,1≤i≤Ngi

1
Ngi

‖Σgi −Σ∗
gi‖F , where Σgi = Ggi +

σ2I, and Σ∗
gi is the best estimator in the model space M(M, r). We have

N̄βn = O(
√

M logn
n ).

Condition 1 is a working assumption. Note that the derivation of the asymp-
totic distribution of the proposed test statistic Tp,N does not need Gaussian
distribution as long as the estimates listed in Assumption 3 are consistent. Con-
ditions 2-5 are common assumptions for sparse functional data. We focus on the
sparse scenario that the number of observations on each curve is bounded; while
the proposed method also works when N̄ grows with the sample size n. If one
can achieve rate αn consistency for all the estimated quantities in Assumption
3 and have N̄2α2

n = o(1) satisfied, then the current proofs for Theorem 3.1 and
Theorem 3.2 can go through. Given that we use restricted MLE to estimate
G, λ, φ and σ and use local linear smoothing for μpool, we can at least allow
N̄ = O(n1/5) with M � (nN̄2/ logn)1/9 and an appropriately chosen band-
width in local linear smoothing. Conditions 6-7 put conditions on (M, r) such
that the true covariance can be approximated well by a member in the model
space M(M, r). The restricted MLE method developed in [30] provides an es-
timate of σ2, which we call σ̂2. They do not directly provide a theorem for the
consistency of σ̂2, but rather they note that all the consistency results for G, φ
and λ hold when σ̂2 is used.
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Appendix B: Proofs

Proof for Theorem 1:
The goal is to show that Tp,N → χ2

p in distribution, under H0. Denote T ∗
p,N =

(¯̃r
c
1·−¯̃r

c
2·)

T [( 1
n1

+ 1
n2

)V]−1(¯̃r
c
1·−¯̃r

c
2·), whereV =

∑2

g=1

∑ng

i=1
diag(λ)ΦT

giΣ
−1

Yc
gi
Φgidiag(λ)

n1+n2
.

According to the Central Limit Theorem and the Slutsky’s theorem, T ∗
p,N is asymptot-

ically χ2
p distributed under H0. Consequently, proving Theorem 3.1 is basically proving

Tp,N = T ∗
p,N + op(1).

To simplify our notations, let’s denote Sgi = diag(λ)ΦT
giΣ

−1
Yc

gi
Φgidiag(λ) and Ŝgi =

diag(λ̂)Φ̂
T

gi[Ĝgi+σ̂2
gI]

−1Φ̂gidiag(λ̂). Then we can see that V̂=
Ŝ11+...+Ŝ1n1

+Ŝ21+...+Ŝ2n2
n

and V =
S11+...+S1n1

+S21+...+S2n2
n

. The absolute value of Tp,N −T ∗
p,N can be decom-

posed as follows.

|Tp,N − T ∗
p,N |

=

∥∥∥(¯̃̂rc

1· − ¯̃̂r
c

2·)
T [(

1

n1
+

1

n2
)V̂]−1(¯̃̂r

c

1· − ¯̃̂r
c

2·)− (¯̃r
c
1· − ¯̃r

c
2·)

T [(
1

n1
+

1

n2
)V]−1(¯̃r

c
1· − ¯̃r

c
2·)

∥∥∥
2

≤
∥∥∥(¯̃rc

1· − ¯̃r
c
2·)

T [[(
1

n1
+

1

n2
)V̂]−1 − [(

1

n1
+

1

n2
)V]−1](¯̃r

c
1· − ¯̃r

c
2·)

∥∥∥
2

+
∥∥∥(¯̃̂rc

1· − ¯̃̂r
c

2· − ¯̃r
c
1· + ¯̃r

c
2·)

T [(
1

n1
+

1

n2
)V̂]−1(¯̃r

c
1· − ¯̃r

c
2·)

∥∥∥
2

+

∥∥∥(¯̃̂rc

1· − ¯̃̂r
c

2·)
T [(

1

n1
+

1

n2
)V̂]−1(¯̃̂r

c

1· − ¯̃̂r
c

2· − ¯̃r
c
1· + ¯̃r

c
2·)

∥∥∥
2

def
= A1 +A2 +A3.

(B.1)
Given Eq. (B.1), proving Theorem 3.1 can be accomplished by proving A1 = op(1),
A2 = op(1), and A3 = op(1) hold.

We start with showing A1 = op(1). Under H0, i.e., μ1(t) = μ2(t) = μpool(t), we
have

(
1

n1
+

1

n2
)−1/2(¯̃r

c
1· − ¯̃r

c
2·) ∼ Np(0, cov(r̃

c
gi)). (B.2)

So we have ∥∥∥( 1

n1
+

1

n2
)−1/2(¯̃r

c
1· − ¯̃r

c
2·)

∥∥∥
2

= Op(1). (B.3)

Under Assumption 3, we have

∥∥V̂ −V
∥∥
2
= Op(N̄{

p∑
k=1

|λ̂k − λk|+
p∑

k=1

‖φ̂k − φk‖F + ‖Ĝ−G‖F + |σ̂2 − σ2|})

= op(1).

(B.4)

Combine Eq. (B.3) and (B.4) together, we have

A1 ≤
∥∥∥( 1

n1
+

1

n2
)−1/2(¯̃r

c
1· − ¯̃r

c
2·)

∥∥∥2

2

∥∥∥V̂−1 −V−1
∥∥∥
2

≤ Op(1)×
∥∥V−1

∥∥
2

[‖V−1‖2
∥∥V̂ −V

∥∥
2
]−1 − 1

= op(1).

(B.5)
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Next, we start to show that A2 = op(1). Note that

A2 ≤
∥∥∥( 1

n1
+

1

n2
)−1/2(¯̃r

c
1· − ¯̃r

c
2·)

∥∥∥
2

∥∥∥V̂−1
∥∥∥
2

∥∥∥( 1

n1
+

1

n2
)−1/2(¯̃̂r

c

1· − ¯̃̂r
c

2· − ¯̃r
c
1· + ¯̃r

c
2·)

∥∥∥
2

≤ Op(1)Op(1)
∥∥∥( 1

n1
+

1

n2
)−1/2(¯̃̂r

c

1· − ¯̃̂r
c

2· − ¯̃r
c
1· + ¯̃r

c
2·)

∥∥∥
2

.

(B.6)

In order to prove A2 = op(1), we need to show

∥∥∥( 1
n1

+ 1
n2

)−1/2(¯̃̂r
c

1·− ¯̃̂r
c

2·− ¯̃r
c
1·+ ¯̃r

c
2·)

∥∥∥
2
=

op(1). We want to write out the explicit formula of ¯̃̂r
c

g· − ¯̃r
c
g·:

ˆ̃r
c

gi = diag(λ̂)Φ̂
T

giΣ̂
−1

Ygi
(Ygi − μ̂pool;gi)

def
= diag(λ̂)Q̂gi(Ygi − μ̂pool;gi)

= r̃c
gi + (diag(λ̂)− diag(λ))Qgik(Ygi − μpool;gi) + diag(λ̂)(Q̂gik −Qgik)(Ygi − μpool;gi)

+ diag(λ̂)Q̂gik(μpool;gi − μ̂pool;gi),

(B.7)
i.e.,

(
1

n1
+

1

n2
)−1/2(¯̃̂r

c

g· − ¯̃r
c
g·) = (

1

n1
+

1

n2
)−1/2(diag(λ̂)− diag(λ))

1

ng

ng∑
i=1

Qgi(Ygi − μpool;gi)

+ (
1

n1
+

1

n2
)−1/2diag(λ̂)

1

ng

ng∑
i=1

(Q̂gi −Qgi)(Ygi − μpool;gi)

+ (
1

n1
+

1

n2
)−1/2diag(λ̂)

1

ng

ng∑
i=1

Q̂gi(μpool;gi − μ̂pool;gi)

def
= Bg1 +Bg2 +Bg3.

(B.8)

According to Eq. (B.8), in order to ensure that
∥∥∥( 1

n1
+ 1

n2
)−1/2(¯̃̂r

c

1·− ¯̃̂r
c

2·− ¯̃r
c
1·+ ¯̃r

c
2·)

∥∥∥
2
=

op(1), we need to examine B11 − B21, B12 − B22, and B13 − B23. Let’s start with
B11 −B21, for each g,

‖Bg1‖2 ≤ (
1

n1
+

1

n2
)−1/2

∥∥diag(λ̂)− diag(λ)
∥∥
2

∥∥∥∥∥
1

ng

ng∑
i=1

Qgi(Ygi − μpool;gi)

∥∥∥∥∥
2

= (
1

n1
+

1

n2
)−1/2op(1)

√√√√ p∑
k=1

(
1

ng

ng∑
i=1

Qgik(Ygi − μpool;gi))
2

= (
1

n1
+

1

n2
)−1/2op(1)

√
OP (

1

ng
) = oP (1),

(B.9)

where Central Limit Theorem is used to bound the second norm term. Under H0, we
have E[Qgik(Ygi − μpool;gi)|t] = 0, Var[Qgik(Ygi − μpool;gi)|t] = QgikΣYgiQ

T
gik =

ΦT
gikΣ

−1
Ygi

Φgik. As a result, we have



1418 Q. Wang

E[Qgik(Ygi − μpool;gi)]=E[E[Qgik(Ygi − μpool;gi)|t]] = 0

Var[Qgik(Ygi − μpool;gi)]=Var[E[Qgik(Ygi − μpool;gi)|t]] + E[Var[Qgik(Ygi − μpool;gi)|t]]

=0 + E[ΦT
gikΣ

−1
Ygi

Φgik].

So as long as we have E[ΦT
gikΣ

−1
Ygi

Φgik] < ∞, based on the Central Limit Theorem,

we have 1
ng

∑ng

i=1
Qgik(Ygi − μpool;gi) = OP (

1√
ng

). From Eq. (B.9), we have

‖B11 −B21‖2 ≤ ‖B11‖2 + ‖B21‖2 = op(1). (B.10)

Now let’s consider B12 −B22. Using Assumption 4, we have

‖Bg2‖2 ≤ (
1

n1
+

1

n2
)−1/2

∥∥diag(λ̂)∥∥
2

∥∥∥∥∥
1

ng

ng∑
i=1

(Q̂
(−i)

gi −Qgi)(Ygi − μpool;gi) + op(1/
√
ng)

∥∥∥∥∥
2

= (
1

n1
+

1

n2
)−1/2Op(1)op(1/

√
ng) = op(1),

(B.11)

where Q̂
(−i)

gi is the leave i-th curve out estimates. The reason is that E[(Q̂
(−i)

gi −
Qgi)(Ygi − μpool;gi)] = E[(Q̂

(−i)

gi − Qgi)]E[(Ygi − μpool;gi)] = 0, and for each k =

1, ..., p, V ar[(Q̂
(−i)

gik −Qgik)(Ygi − μpool;gi)] = op(1).
Based on Eq. (B.11), we have

‖B12 −B22‖2 ≤ ‖B12‖2 + ‖B22‖2 = op(1). (B.12)

Note that our simulation study demonstrates good performances of our proposed test
statistic, without sample splitting.

For the last term in Eq. (B.8), B13−B23. Note that the randomness of Q̂gi(μpool;gi−
μ̂pool;gi) come from random design, which are the same for group 1 and group 2.

Consequently, we know that Et[Q̂1i(μpool;1i − μ̂pool;1i)] = Et[Q̂2i(μpool;2i − μ̂pool;g2)].

Let’s denote Et[Q̂gi(μpool;gi − μ̂pool;gi)] as Eg, and we know E1 = E2, then

‖B31 −B32‖2

≤ (
1

n1
+

1

n2
)−1/2

∥∥diag(λ̂)∥∥
2

∥∥∥∥∥
1

n1

n1∑
i=1

Q̂1i(μpool;1i − μ̂pool;1i)−
1

n2

n2∑
i=1

Q̂2i(μpool;2i − μ̂pool;2i)

∥∥∥∥∥
2

≤ (
1

n1
+

1

n2
)−1/2Op(1)

∥∥∥∥∥
1

n1

n1∑
i=1

[Q̂1i(μpool;1i − μ̂pool;1i)−E1]−
1

n2

n2∑
i=1

[Q̂2i(μpool;2i − μ̂pool;2i)−E2]

∥∥∥∥∥
2

= (
1

n1
+

1

n2
)−1/2Op(1)op(1/

√
n1 + 1/

√
n2) = op(1).

(B.13)
Combine Eq. (B.10), (B.12), and (B.13), we have

∥∥∥( 1

n1
+

1

n2
)−1/2(¯̃̂r

c

1· − ¯̃̂r
c

2· − ¯̃r
c
1· + ¯̃r

c
2·)

∥∥∥
2

≤ op(1) + op(1) + op(1) = op(1). (B.14)

Therefore,

A2 ≤ Op(1)Op(1)

∥∥∥( 1

n1
+

1

n2
)−1/2(¯̃̂r

c

1· − ¯̃̂r
c

2· − ¯̃r
c
1· + ¯̃r

c
2·)

∥∥∥
2

= Op(1)Op(1)op(1) = op(1).

(B.15)
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Similarly, we have

A3 = op(1). (B.16)

Put Eq. (B.5), (B.15) and (B.16) together, we have

Tp,N
D−→ χ2

p. (B.17)

Proof for Theorem 2:
When Et[diag(λ)Φ

T
giΣ

−1
Ygi

(μgi − μpool;gi)] �= 0, without loss of generality, let’s as-

sume Et[diag(λ)Φ
T
1iΣ

−1
Y1i

(μ1i − μpool;1i)] = c > 0. Then Et[diag(λ)Φ
T
2iΣ

−1
Y2i

(μ2i −
μpool;2i)] = − ω

1−ω
c < 0.

Define ¯̃r∗
g· = 1

ng

∑ng

i=1
r̃∗
gi, with r̃∗

gi = diag(λ)ΦT
giΣ

−1
Ygi

(μgi − μpool;gi). We have

¯̃r∗
1· − ¯̃r∗

2·
p→ 1

1−ω
c > 0. Here we need V ar[r̃∗

gi] < ∞, i.e., the variance is bounded.
Next, we want to show that

(¯̃̂r
c

1· − ¯̃̂r
c

2·)
T V̂

−1
(¯̃̂r

c

1· − ¯̃̂r
c

2·)
P−→ (¯̃r∗

1· − ¯̃r∗
2·)

TV−1(¯̃r∗
1· − ¯̃r∗

2·). (B.18)

Note that we have the following decomposition

|(¯̃̂r
c

1· − ¯̃̂r
c

2·)
T V̂

−1
(¯̃̂r

c

1· − ¯̃̂r
c

2·)− (¯̃r∗
1· − ¯̃r∗

2·)
TV−1(¯̃r∗

1· − ¯̃r∗
2·)|

≤
∥∥∥(¯̃r∗

1· − ¯̃r∗
2·)

T [V̂
−1 −V−1]( ¯̃r∗

1· − ¯̃r∗
2·)

∥∥∥
2
+

∥∥∥(¯̃̂rc

1· − ¯̃̂r
c

2· − ¯̃r∗
1· + ¯̃r∗

2·)
T V̂

−1
(¯̃r∗

1· − ¯̃r∗
2·)

∥∥∥
2

+

∥∥∥(¯̃̂rc

1· − ¯̃̂r
c

2·)
T V̂

−1
(¯̃̂r

c

1· − ¯̃̂r
c

2· − ¯̃r∗
1· + ¯̃r∗

2·)

∥∥∥
2

def
= C1 + C2 + C3.

(B.19)
As we have V̂ −V = op(1), then

C1 ≤
∥∥(¯̃r∗

1· − ¯̃r∗
2·)

∥∥2

2
op(1) = op(1). (B.20)

For C2, we have,

¯̂
r̃
c

g· − ¯̃r∗
g· =

¯̂
r̃
c

g· − ¯̃r
c
g. + diag(λ)

1

ng

ng∑
i=1

Qgi(Ygi − μgi) = op(1). (B.21)

Then we have

C2 ≤
∥∥∥¯̃̂rc

1· − ¯̃r∗
1· − ¯̃̂r

c

2· + ¯̃r∗
2·

∥∥∥
2

∥∥∥V̂−1
∥∥∥
2

∥∥(¯̃r∗
1· − ¯̃r∗

2·)
∥∥
2

≤ op(1)Op(1)
∥∥ ¯̃r∗

1· − ¯̃r∗
2·
∥∥
2
= op(1).

(B.22)

Similarly, we have

C3 = op(1). (B.23)

Combining Eq. (B.20), (B.22) and (B.23), and together with Eq. (B.19), we have

(¯̃̂r
c

1· − ¯̃̂r
c

2·)
T V̂

−1
(¯̃̂r

c

1· − ¯̃̂r
c

2·)
p−→ (¯̃r∗

1· − ¯̃r∗
2·)

TV−1(¯̃r∗
1· − ¯̃r∗

2·)
P−→ c1 > 0. (B.24)

Thus, Tp,N → ∞
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Appendix C: An extension to the one-way functional ANOVA problem

Note that our proposed test statistic Tp,N can be straightforwardly generalized to the
one-way functional ANVOA problem. Suppose that the number of groups is G > 2.
The hypothesis testing of interest is

H0 : μ1(t) = μ2(t) = ... = μG(t), t ∈ T (C.1)

against the general alternative that at least two mean functions are not equal. Analo-
gous to Tp,N , we propose to use

TGp,N =

G∑
g=1

(¯̃̂r
c

g· − ¯̃̂r
c

··)
T (

V̂2

ng
)−1(¯̃̂r

c

g· − ¯̃̂r
c

··)
D−→ χ2

(G−1)p under H0, (C.2)

with V̂2 = 1
n1+n2+...+nG

∑G

g=1

∑ng

i=1
diag(λ̂)Φ̂

T

gi[Ĝgi + σ̂2I]−1Φ̂gidiag(λ̂).
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