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1. Introduction

Recent advancements in experimental technology have enabled us to achieve
numerous destinations in clinical studies that seemed impossible before. Most
notably, availability of high-dimensional medical data, where the number of vari-
ables p is substantially greater than sample size n, introduces new opportunities
in modern healthcare research but its high dimensionality characteristic poses
tremendous challenges to classical statistical analysis methodologies. Luckily,
the true regression model generally possesses the sparsity property, which means
only a small number of nonzero components are attributable. Taking gene ex-
pression data as an example, which often involves tens of thousands of potential
covariates, however, merely a handful of them are indeed related to the devel-
opment of a particular disease. Variable selection techniques are effective tools
in reducing dimensionality, cherry-picking the few covariates with significant
contribution to the outcome at a certain threshold, resulting a simpler model
for interpretation and more efficient parameter estimates. One particular type
of variable selection methods frequently adopted to handle high-dimensional
data is the regularization approach, achieving dimension reduction by adding
a penalty function to the loss function. Moreover, the advantage associated
with these methods includes its capability to simultaneously identify important
variables and provide parameter estimates. Commonly used penalties include
the least absolute shrinkage and selection operator (LASSO) [22], the smoothly
clipped absolute deviation (SCAD) penalty [7], the adaptive LASSO [32], and
the minimum concave penalty (MCP) [28], among others.
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Furthermore, variable selection becomes especially challenging when the data-
set exhibits group structure. Some examples include: multilevel categorical co-
variates in a regression model expressed by a group of dummy variables; a con-
tinuous covariate represented by a set of basis functions; genetic markers from
the same gene considered as a group in genetic association studies; and in gene
expression analysis, genes with the same biological pathway forming a natural
group. Among others, [26, 13, 27, 21] considered penalty-based group selection
methods. [12] implemented a group bridge penalty to achieve bi-selection, simul-
taneously selecting important groups and important variables within selected
groups. To complement this methodology, [3] subsequently proposed the local
coordinate descent (LCD) algorithm to calculate the bi-level selection estimates
in generalized linear models.

While most survival data involves censorship casting additional complexity
to data structure and difficulty in regression modeling, there has been a large
class of literature proposing various approaches to specifically address variable
selection at the individual and group level based on the Cox models. For in-
stance, [23, 29, 8] extended the LASSO, the adaptive LASSO, and nonconcave
penalized likelihood approach to the Cox model for picking statistically signif-
icant individual variables. Building on that, [19] applied the supervised group
LASSO penalization to the Cox model to select important variable groups. Sub-
sequently, [11] further discussed the capability of group bridge approach to si-
multaneously selecting important variables at both the individual and group
levels in the framework of the Cox model. Furthermore, [4] studied the issue
of identifying regression structure under the Cox model by a penalized group
selection method with concave penalties.

Alternative to the popular Cox model, [5, 15] considered an additive haz-
ards model, which relaxes the proportional hazard assumption by regressing
the risk difference. Variable selection in the additive hazards model has drawn
much attention recently. Under a fixed dimensional setting, [14] introduced a
weighted LASSO approach; [20] discussed several regularization schemes in-
cluding the LASSO, adaptive LASSO and Dantzig selector. On the contrary,
under a high-dimensional setting, [31] developed tests for coefficients; [30] stud-
ied the properties of the weighted LASSO; [16, 25] explored implications of
implementing regularized least squares and penalized empirical likelihood for
sparse models, respectively. Under the framework of additive hazards model for
high-dimensional data, we propose a novel approach that caputures group struc-
ture while retaining sparsity of covariates, such that it simultaneously selects
important variables at the individual and group levels, at the same time pro-
viding parameter estimates. This is achieved by combining a composite penalty
and the pseudoscore method, where the number of covariates p is allowed to
grow nonpolynomially with a sample size n. The asymptotic properties of the
proposed estimators include both group selection oracle property and variable
selection oracle property, which means important groups and important vari-
ables within selected groups are consistently identified, and the resulting estima-
tors are asymptotically normal under some regularity conditions. Furthermore,
we incorporate the local coordinate descent algorithm first proposed by [3], and
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demonstrate its effectiveness through simulation studies and real data analy-
sis.

The remainder of the paper is organized as follows. In Section 2, we describe
the penalized pseudoscore inference procedure, explore suitable penalty func-
tions, and introduce the local coordinate descent algorithm. Theoretical proper-
ties of the estimators are studied in Section 3. We conduct simulation studies to
evaluate the performance of the proposed method in Section 4, and in Section 5,
we show an application of the proposed method to the breast cancer dataset.
We draw some concluding remarks in Section 6 and relegate proofs of the key
results to the Appendix.

2. Estimation procedure

2.1. Model setting and penalized procedure

Suppose that the failure time TU satisfies the following additive hazards model:

λ(t|Z) = λ0(t) + βT
0 Z(t), (2.1)

where λ0(t) is the unspecified baseline function, Z(t) = (Z1(t), . . . , Zp(t))
T is

a p-dimensional vector of covariates which is split into K groups, and β0 =
(β01, . . . , β0p)

T is the true value of regression coefficient of covariate Z(t). Let
Ak = {k1, . . . , kJk

} be the subset of {1, . . . , p} representing the k-th known
group, and (βk1 , . . . , βkJk

)T be a Jk-dimensional vector of regression coefficients

in the kth group. Let C be a censoring time, T = TU∧C be the observed survival
time, and Δ = I(TU ≤ C) where I(·) is an indicator function. We assume that
the failure time TU and the censoring time C are independent given covariate
Z(·). Then the observed data consist of (Ti,Δi,Zi(·)) for subject i = 1, 2, . . . , n.

Define the observed failure counting process as Ni(t) = I(Ti ≤ t,Δi = 1)
and the at-risk indicator Yi(t) = I(Ti ≥ t). Following Lin and Ying (1994),
the regression coefficients can be estimated by solving the following pseudoscore
estimating equation

U(β) =
1

n

n∑
i=1

∫ τ

0

(Zi(t)−Z(t))
(
dNi(t)− Yi(t)β

TZi(t)dt
)
= 0,

where Z(t) =
n∑

i=1

Yi(t)Zi(t)/
n∑

i=1

Yi(t), and τ is the maximum follow-up time.

This equation can be rewritten as

b− V β = 0,

where

b =
1

n

n∑
i=1

∫ τ

0

(Zi(t)−Z(t))dNi(t),

V =
1

n

n∑
i=1

∫ τ

0

Yi(t)(Zi(t)−Z(t))⊗2dt
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with v⊗2 meaning vvT for a vector v. While V is positive semidefinite, inte-
grating −U(β) with respect to β produces the least-squares-type loss function
below

L(β) =
1

2
βTV β − bTβ.

In order to simultaneously select important groups and individual variables, we
propose to obtain the estimator β̂ by minimizing the following objective function
with composite penalty

Q(β) = L(β) + λn

K∑
k=1

f
(k)
O

( Jk∑
j=1

f
(j)
I (|βkj |;λn);λn

)
, (2.2)

where the functions f
(k)
O and f

(j)
I are penalty functions, and λn is a tuning

parameter. Variables can enter the model either by having a strong individual
signal or by being a member of a group with strong collective signal. Intuitively,

the outer penalty function f
(k)
O shrinks the kth unimportant group effect to

zero, and the inner penalty function f
(j)
I excludes the unimportant variable

effect within the groups at the same time. Hence the composite penalty function
could achieve the bi-selective goal, simultaneously selecting important groups
and important variables within the selected groups.

For simplicity, we omit the dependence of the penalty functions f
(k)
O and f

(j)
I

on the tuning parameter λn, and assume that they are independent of k and
j, which means that we can apply the same penalty functions across different
variables and different groups. Subsequently, the subscript n in λn is also omitted
and we rewrite the penalty part as

K∑
k=1

fO

( Jk∑
j=1

fI(|βkj |)
)
= ρλ(|β|),

where |β| = (|β1|, . . . , |βp|)T .

2.2. Penalty functions

[18] studied a variety of penalty functions under the framework of generalized
linear models. To determine the functional form of fO and fI , we mainly consider
the following types of penalty fλ(·).

(i) The smoothly clipped absolute deviation (SCAD) penalty [6, 7] given by
the derivative

f ′
λ(θ) = I(θ ≤ λ) +

(aλ− θ)+
(a− 1)λ

I(θ > λ), θ ≥ 0,

where a > 2 is a shape parameter.
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(ii) The minimax concave penalty (MCP) proposed by [28] with the derivative

f ′
λ(θ) =

(aλ− θ)+
aλ

, θ ≥ 0,

where a > 1 is a shape parameter.
(iii) The smooth integration of counting and absolute deviation (SICA) penalty

[18] with

fλ(θ) =
(a+ 1)θ

a+ θ
, θ ≥ 0,

where a > 0 is a shape parameter.

[3] set both fO and fI as the MCP penalty, and suggested the shape param-
eters in fI and fO to be a = 3 and Jkaλ/2, respectively. The authors named
this penalty the “composite MCP (CMCP) penalty”. In this paper, we construct
several new composite penalties, including composite SCAD (CSCAD) and com-
posite SICA (CSICA) with both fO and fI as SCAD penalty and SICA penalty,
respectively. Additionally, we construct another composite MSICA penalty by
taking fO as the MCP penalty and fI as the SICA penalty. In subsequent
simulation studies and real data analysis, we compare the performance of these
composite penalties paired with three variable selectors, MCP, SCAD and SICA.

2.3. Local coordinate descent algorithm

[22] proposed to accomplish parameter shrinkage and selection for a linear re-
gression model by minimizing the following squared loss function with LASSO
penalty

1

2n
‖y −Xβ‖22 + λ

p∑
j=1

|βj |,

whereX = (X1, · · · , Xp)
T , β = (β1, · · · , βp)

T , and ‖v‖2 represents the L2-norm
for a vector v. At the jth iteration step in the coordinate decent algorithm, the
solution of βj can be updated as

β̃j =
S( 1nX

T
j r + 1

nX
T
j Xjβj , λ)

1
nX

T
j Xj

,

where r = y −Xβ and

S(z, c) =

⎧⎨
⎩

z − c, if z > c,
0, if |z| ≤ c,
z + c, if z < −c.

Motivated by the above results, [3] developed a fast and stable local coordinate
decent (LCD) algorithm for bi-level variable selectors that approximates the
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penalty proportional to λ̃kj |βkj | by taking its first order Taylor series about
βkj , where

λ̃kj = λf ′
O

( Jk∑
j=1

fI(|βkj |)
)
f ′
I(|βkj |) (2.3)

for each kj ∈ Ak. Subsequently, the coefficient βkj is updated as

β̃kj =
S( 1nX

T
kj
r + 1

nX
T
kj
Xkjβkj , λ̃kj )

1
nX

T
kj
Xkj

, (2.4)

where r = y−Xβ. To minimize Q(β) in (2.2), we apply the LCD algorithm to
calculate the estimates through the following steps:

Step 1. Choose an initial estimate β(0);
Step 2. Let X = V 1/2 and y = X−1b. Update λ̃kj and β̃kj cyclically according

to (2.3) and (2.4) for each kj ∈ Ak, k = 1, · · · ,K;
Step 3. Repeat Step 2 until convergence.

The choice of the initial estimate is critical to the proposed algorithm. Un-
der the high-dimensional case, the ridge solution of the least-squares-type loss
function L(β) is an ideal choice of β(0) since it is easy to calculate and it could
be close enough to the true parameter for some suitable tuning parameter. In
our simulations, we set β(0) = (V + λ∗I)b with the tuning parameter λ∗ = 0.1,
where I is the identity matrix.

The local coordinate descent (LCD) algorithm adopted here can be considered
as an application of the algorithm developed in [17], and thus achieves optimal
statistical rates.

3. Asymptotic results

According to the sparsity of the parameter, we split the true parameter as
β0 = (βT

0B,β
T
0C)

T , where B = {j|β0j = 0,β0Ak
�= 0, j ∈ Ak for some k =

1, . . . ,K} and C = {j|β0Ak
= 0, j ∈ Ak, k = 1, . . . ,K}. Let A = {j|β0j �= 0},

D = Ac, s = |A|, with |A| denoting the cardinality of A and s as the number of
important variables. Note that both the number of covariates p and the number
of important variables s are allowed to depend on sample size n throughout
the paper, thus we omit the subscript n to simplify notations. We use Λmin(·)
to denote the minimum eigenvalue of a matrix, and use the subscript A for
a vector or a matrix to denote the sub-vector or sub-matrix containing them.
For example, xA means the |A|-dimensional vector consisting of components
{xj , j ∈ A} for the vector x, and VAA means the |A|-dimensional squared
matrix with entries vij , i ∈ A, j ∈ A for the matrix V = (vij). In addition, we
denote that |βj |j∈A = (|βj | : j ∈ A)T .

We first state the following lemma, which plays an important role in estab-
lishing the selection consistency of the estimators.
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Lemma 3.1. β̂ ∈ R
p is a strict local minimizer of Q(β) if the following condi-

tions hold

UÂ(β̂)− λ
∂ρλ(|β̂|)
∂|βj |j∈Â

◦ sgn(β̂Â) = 0, (3.1)

‖UD̂(β̂)‖∞ ≤ λmin
j∈D̂

∂ρλ(|β̂|)
∂|βj |

, (3.2)

Λmin(VÂÂ) > λκ(ρλ, β̂Â), (3.3)

where ◦ is the Hadamard (entrymise) product, ‖v‖∞ represents the L∞-norm
of the vector v, and

κ(ρλ,βA) = max
j∈A

{
∂2ρλ(|β|)
∂|βj |2

}
.

(3.1) and (3.3) in Lemma 3.1 imply that β̂ is a strict minimizer of Q(β) in the

subspace B = {β ∈ R
p|β̂D̂ = 0}. Condition (3.2) ensures that Q(β1) ≥ Q(β2)

for any β1 ∈ R
p/ B in a sufficiently small neighborhood of β̂, and for any

β2 which is the projection of β1 onto the subspace B. Thus, β̂ satisfying the
conditions in Lemma 3.1 is indeed a strict local minimizer of Q(β) on the whole
space R

p.
To present our main results, we define for k = 0, 1, 2,

s(k)(t) = E[Y (t)Z(t)⊗k],

e(t) = s(1)(t)/s(0)(t),

D = E
[ ∫ τ

0

Y (t){Z(t)− e(t)}⊗2dt
]
,

Σ = E
[ ∫ τ

0

{Z(t)− e(t)}⊗2dN(t)
]

where v⊗0 = 1, v⊗1 = v and v⊗2 = vvT for a vector v. Let φ = ‖D−1
AA‖∞,

d = 1
2 min

j∈A
|β0j |, κ0 = sup{κ(ρ,θ) : ‖θ−β0A‖∞ ≤ d}, and μ = Λmin(DAA)−λκ0.

Assume that c∗n = max
j

∑
k:Ak�j

I(j ∈ A) is bounded by a constant c1. We suppose

that fI(0) = 0 and write ρ′λ(0+) = f ′
O(0+)f ′

I(0+) and ρ′λ(d) = f ′
O(fI(d))f

′
I(d).

To establish the asymptotic properties of the proposed estimators, we need
the following regularity conditions.

Condition 1. The function ρλ(θ) is increasing and concave on each component θj
of θ = (θ1, . . . , θp) ∈ [0,∞]p, and has continuous partial derivatives ∂ρλ(θ)/∂θj
on θj ∈ (0,∞) for j = 1, . . . , p. In addition, ρ′λ(θ) is increasing on tuning
parameter λ, and ρ′λ(0+) = ρ′(0+) > 0 independent of λ.

Condition 2. (i)
∫ τ

0
λ0(t)dt < ∞; (ii) P (Y (τ) = 1) > 0; (iii) There exist con-

stants M,K, r > 0 such that

P

(
sup

t∈[0,τ ]

|Zj(t)| > x

)
≤ M exp(−Kxr)
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for all x > 0 and j = 1, . . . , p; (iv) The sample paths of Zj(·), j = 1, . . . , p are
of uniformly bounded variation.

Condition 3. There exist constants α ∈ (0, 1], γ ∈ [0, 1/2], and c > 0 such that

‖DDAD
−1
AA‖∞ ≤

{
(1− α)

ρ′(0+)

c∗nρ
′
λ(d)

}
∧ (cnγ).

Condition 1 is a very mild requirement that can be easily met with some
commonly used penalties. Indeed, many penalties, such as the LASSO penalty,
SCAD penalty, MCP penalty, and SICA penalty, satisfy the relation fI(0) = 0
if we take them as the function fI . Moreover, it is easy to see that the composite
penalties listed in Section 2.2 satisfy Condition 1. Conditions 2 and 3 are similar
to those in [16], where Condition 2 is a commonly used condition for survival
models and Condition 3 is the key condition for verifying the selection consis-
tency, such that the empirical counterparts of the matrices, such as DDAD

−1
AA,

D−1
AA and DAA, are close to them in some sense.
We now present the conclusions regarding the group selection consistency of

the proposed estimators.

Theorem 3.2 (Consistency of group selection). Suppose that Conditions 1–3
hold. Also assume that

n(ρ′λ(d)
−1 ∧ nγ)2

φ2s2(log p)r1
→ ∞,

n(φ−1 ∧ μ)2

s2(log s)r1
→ ∞,

nλ2

(log p)r1
→ ∞,

n1−2γλ2

(log s)r1
→ ∞, d ≥ c1φλρ

′(0+),

(3.4)

where μ > 0, r1 = (r + 4)/r, and c1 = 2 + 1/(4c). Then for some constant
M,K > 0, with probability at least

1−M exp
[
−Kn1/r1

{ (φ−1 ∧ μ)2

s2
∧ 1

}1/r1]
−M exp

[
−Kn1/r1

{ λ2

n2γ
∧ 1

}1/r1]
→ 1,

we have
(a) (Sparisty) β̂C = 0;

(b) (L∞-loss) ‖β̂A − β0A‖∞ ≤ c1φλρ
′(0+).

Part (a) in Theorem 3.2 shows that the unimportant groups can be excluded
with high probability; part (b) provides the convergence rate of the estimated
regression coefficients of important variables in L∞-norm.

To explain the intuition for the conditions in Theorem 3.2, we consider some
simplified cases. For the concave and composite penalties listed in Section 2.2,
we have ρ′λ(d) ≤ ρ′(0+). Thus, the first two conditions in (3.4) are satisfied if

n

φ2s2(log p)r1
→ ∞ (3.5)
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when Λmin(DAA) is bounded away from zero. In particular, if φ is a constant,
then (3.5) is ensured by the condition that n � s2(log p)r1 . This means that
the dimension of the covariates is allowed to increase nonpolynomially with
the sample size as large as log p = o(n1/r1), where the dimension of the true
sparse model s = o(n1/2). Furthermore, for the bounded covariates, the third
and the forth conditions in (3.4) reflect the requirement for the order of the
regularization parameter λ as

λ �
√

log p

n
∨
√

log s

n1−2γ
.

The last inequality in (3.4) implies that the minimum signal d must satisfy

d � φ

(√
log p

n
∨
√

log s

n1−2γ

)
.

The conditions in Theorem 3.2 are different from those in the existing litera-
ture. For example, [9, 2] demanded that s = O(nα) and log p = O(nδ) with
α, δ ∈ (0, 1). As pointed out by [16], besides the difference in model assump-
tions, the critical difference is that they imposed a condition on a large empirical
covariance matrix [see e.g., Condition 2 in [9] and Condition 8 in [2]]. As the em-
pirical covariance matrix involves the outcome variables in survival models, the
more nature idea is to provide a nonrandom condition on the population covari-
ance matrix, as shown in Condition 3 of this paper. This population assumption
can be viewed as high-dimensional extensions of the classical asymptotic regu-
larity conditions in the low-dimensional setting.

To state the asymptotic normality of β̂A, we define Λ1 = Λmin(DAA), Λ2 =
Λmin(ΣAA), and Λ3 = Λmin(D

−1
AAΣAAD

−1
AA).

First, we present the oracle properties of the proposed estimator in the ideal
case where the variables within each group are either all important or all unim-
portant.

Theorem 3.3. Suppose that the conditions of Theorem 3.2 hold. Also assume
that

nΛ2
1

s2(log s)r1
→ ∞,

nΛ2
2

s2
→ ∞,

nΛ4
1Λ3

s3
→ ∞,

nsλ2

Λ2
1Λ3

ρ′λ(d) → 0, (3.6)

where r1 = (r + 4)/r, and

ρ′(0+) ≤ min
j∈D

∂ρλ(|β̂|)
∂|βj |

. (3.7)

Then for some constant M,K > 0, with probability at least

1−M exp
[
−Kn1/r1

( (φ−1 ∧ μ ∧ Λ1)
2

s2
∧ 1

)1/r1]
−M exp

[
−Kn1/r1

( λ2

n2γ
∧ 1

)1/r1]
→ 1,
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we have

(a) (Sparsity) β̂D = 0;

(b) (Asymptotic normality) For every u ∈ R
s with ‖u‖2 = 1,

√
nuTΣ

−1/2
AA

DAA(β̂A − β0A) is asymptotically distributed as standard normal.

The first three conditions in (3.6) require the true model dimension s bounded
by both sample size n and eigenvalues of the matricesDAA,ΣAA, andD−1

AAΣAA
D−1

AA. A special case of these conditions is s = o(n1/3) when the eigenvalues of
these matrices are bounded away from zero. The last condition in (3.6) is sat-
isfied for all penalties listed in Section 2.2. It is also worth to mention that
the condition in (3.7) holds if the variables within each group are either all
important or all unimportant, which may not be true in practice.

To remove such strong condition and identify the important variables within
selected groups, we propose to estimate β by minimizing Qω(β) defined as

Qω(β) = L(β) + λρλ(|βω|),

where βω = (ω1β1, . . . , ωpβp) and ωj is a weight of βj . Then the weighted esti-

mator β̂ω obtained by minimizing Qω(β) satisfies the variable selection oracle
property.

Theorem 3.4 (Variable selection oracle property). Let ωD
min = min{|ωj | : j ∈

D}. Suppose that Conditions 1–3, (3.4) and (3.6) hold. If f ′
O(θ) is upper bounded

by a constant c for all θ and λ and ωD
min → ∞, then there exists a root-n

consistent local minimizer β̂ω of Qω(β) such that

(a) P (β̂ω
D = 0) → 1;

(b)
√
nuTΣ

−1/2
AA DAA(β̂

ω
A − β0A) is asymptotically distributed as standard

normal for every u ∈ R
s with ‖u‖2 = 1.

Corollary 3.5. Let β̃ be an nα-consistent estimator, i.e., ‖β̃−β0‖2 = Op(n
−α)

with 0 < α ≤ 1/2 and ωkj = 1/|β̃kj |r where r > 0. Then under the conditions of

Theorem 3.4, there exists the local minimizer β̂ω of Qω(β) such that P (β̂ω
D =

0) → 1 and
√
nuTΣ

−1/2
AA DAA(β̂

ω
A − β0A) → N(0, 1) in distribution for every

u ∈ R
s with ‖u‖2 = 1.

The boundedness condition for f ′
O is trivial, as it is satisfied for most penal-

ties, such as LASSO, SCAD, MCP and SICA. Theorems 3.2 and 3.4 indicate that
the weighted estimators possess both the group selection oracle property and
the variable selection oracle property, i.e., both of the important groups and
important variables within selected groups can be identified with sufficiently
high probability. Moreover, Corollary 3.5 provides a possible way for choosing
weights that meet the requirements in Theorem 3.4. For example, we could use
the LASSO estimator as the weight since the LASSO penalty is convex and its
solution is globally optimal.
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4. Simulation studies

In this section, we conducted simulation studies to evaluate the finite-sample
properties of the proposed method. To this end, we generated survival data from
the following additive hazards regression model

λ(t|Z) = λ0(t) + βT
0 Z(t),

where β = (β1, . . . , βp)
T , and Z = (Z1, . . . , Zp)

T were subjected to λ0(t) +
βT
0 Z(t) > 0. To generate the covariate Z(t), we first simulated R1, . . . , Rp

independently from the standard normal distribution, and M1, . . . ,MK from an
AR(1) model with the initial standard normal distribution and Cov(Mj1 ,Mj2) =
0.5|j1−j2| for j1, j2 = 1, . . . ,K. In the following examples, we considered two
cases for generating covariates Zj ’s.

Case 1: Covariates Zj ’s are independent of time t and they were generated
by

Zj = (Mgj +Rj)/4 (j = 1, . . . , p),

where gj is the group number that Zj belonged to. In this case, we set λ0(t) = 1.

Case 2: Covariates Zj ’s are dependent on time t. We first generated

ηj = (Mgj +Rj)/4 (j = 1, . . . , p),

where gj is the same as that in Case 1. Then we set Zj(t) = ηjt and let λ0(t) =
2t.

We assumed Uniform(τ/2, τ) for censoring time C, where the value of τ
was chosen such that the censoring rate reached at 25%. We set sampling size
n = 250 in Case 1 and n = 600 in Case 2.

Example 1. We considered p = 50 such that the dimensionality of the covariates
is comparable to sampling size but smaller. The true coefficient β0 had values
(vT ,vT ,vT ,0T )T with v = (1, 0,−1, 0, 0, )T . The covariates were divided into
10 groups with equal size of five in each group. Thus, the sparsity dimension
was s = 6 and there were 3 important groups.

Example 2. We considered p = 500 to compare the performance of various
methods when p is larger than n. Similar to Example 1, the true coefficient β0

had values (vT ,vT ,vT ,0T )T , and the variables were divided into 100 groups
with equal size of five in each group. In this example, there were 6 important
variables and 3 important groups.

Example 3. We use this example to further demonstrate robustness of the pro-
posed method with respect to the sparsity assumption. Similar to the setup in
Example 2, we considered p = 500 and divided the variables into 100 groups
with equal size of five in each group. Next, we set the first 18 elements of β0 to
(vT ,vT ,vT )T and randomly chose 24 elements from positions 19 to 400 to have
values {1,−1, . . . , 1,−1}, such that the number of important groups reached 12
with a total of 30 important variables.
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Table 1

Simulation results for Example 1: CMCP: composite MCP penalty; CSICA: composite
SICA penalty; CSCAD: composite SCAD penalty; MSICA: MCP SCIA penalty; GTPR:
group selection true positive rate; GFPR: group selection false positive rate; TPR: true

positive rate for variable selection; FPR: false positive rate for variable selection; L2-loss:
‖β̂ − β0‖2; estimated standard errors are summarized in parentheses.

Penalty GTPR GFPR TPR FPR L2-loss
Case 1

CMCP 0.977(0.092) 0.046(0.096) 0.963(0.104) 0.013(0.022) 6.557
CSICA 0.967(0.106) 0.014(0.045) 0.953(0.112) 0.012(0.019) 6.003
CSCAD 0.967(0.111) 0.048(0.096) 0.950(0.120) 0.014(0.024) 6.499
MSICA 0.982(0.083) 0.064(0.113) 0.963(0.102) 0.016(0.024) 6.569

MCP 0.980(0.086) 0.056(0.103) 0.960(0.105) 0.014(0.023) 6.535
SICA 0.978(0.082) 0.081(0.109) 0.947(0.112) 0.017(0.020) 5.720
SCAD 0.980(0.086) 0.055(0.103) 0.960(0.105) 0.014(0.022) 6.534

Case 2
CMCP 0.958(0.115) 0.218(0.163) 0.924(0.138) 0.068(0.052) 1.375
CSICA 0.927(0.157) 0.151(0.154) 0.895(0.168) 0.084(0.061) 1.293
CSCAD 0.963(0.110) 0.298(0.192) 0.914(0.136) 0.068(0.048) 1.361
MSICA 0.972(0.099) 0.275(0.173) 0.927(0.133) 0.069(0.047) 1.396

MCP 0.972(0.099) 0.289(0.201) 0.898(0.140) 0.067(0.050) 1.340
SICA 0.962(0.111) 0.320(0.192) 0.912(0.139) 0.071(0.047) 1.213
SCAD 0.973(0.097) 0.276(0.195) 0.908(0.135) 0.066(0.049) 1.346
True model 1 0 1 0 0

Table 2

Simulation results for Example 2: CMCP: composite MCP penalty; CSICA: composite
SICA penalty; CSCAD: composite SCAD penalty; MSICA: MCP SCIA penalty; GTPR:
group selection true positive rate; GFPR: group selection false positive rate; TPR: true

positive rate for variable selection; FPR: false positive rate for variable selection; L2-loss:
‖β̂ − β0‖2; estimated standard errors are summarized in parentheses.

Penalty GTPR GFPR TPR FPR L2-loss
Case 1

CMCP 0.965(0.102) 0.165(0.080) 0.945(0.121) 0.042(0.022) 7.366
CSICA 0.935(0.137) 0.053(0.039) 0.919(0.146) 0.018(0.013) 3.108
CSCAD 0.913(0.165) 0.189(0.120) 0.855(0.204) 0.041(0.028) 5.440
MSICA 0.970(0.096) 0.219(0.102) 0.934(0.134) 0.049(0.025) 8.083

MCP 0.935(0.144) 0.067(0.053) 0.806(0.185) 0.014(0.011) 2.923
SICA 0.947(0.134) 0.207(0.115) 0.903(0.169) 0.044(0.026) 5.109
SCAD 0.930(0.148) 0.072(0.058) 0.801(0.190) 0.015(0.012) 3.000

Case 2
CMCP 0.945(0.128) 0.198(0.051) 0.902(0.148) 0.045(0.012) 3.537
CSICA 0.900(0.164) 0.106(0.043) 0.881(0.171) 0.031(0.014) 2.347
CSCAD 0.922(0.149) 0.231(0.063) 0.830(0.181) 0.048(0.013) 3.423
MSICA 0.943(0.134) 0.171(0.053) 0.841(0.178) 0.039(0.012) 3.102

MCP 0.947(0.123) 0.189(0.058) 0.800(0.184) 0.040(0.013) 3.111
SICA 0.930(0.144) 0.215(0.061) 0.812(0.186) 0.044(0.013) 2.358
SCAD 0.950(0.119) 0.190(0.060) 0.798(0.184) 0.041(0.013) 3.109
True model 1 0 1 0 0
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Table 3

Simulation results for Example 3: CMCP: composite MCP penalty; CSICA: composite
SICA penalty; CSCAD: composite SCAD penalty; MSICA: MCP SCIA penalty; GTPR:
group selection true positive rate; GFPR: group selection false positive rate; TPR: true

positive rate for variable selection; FPR: false positive rate for variable selection; L2-loss:
‖β̂ − β0‖2; estimated standard errors are summarized in parentheses.

Penalty GTPR GFPR TPR FPR L2-loss
Case 1

CMCP 0.539(0.131) 0.136(0.094) 0.271(0.021) 0.021(0.013) 8.422
CSICA 0.446(0.093) 0.061(0.048) 0.240(0.015) 0.015(0.008) 5.924
CSCAD 0.524(0.162) 0.162(0.134) 0.231(0.022) 0.022(0.014) 6.813
MSICA 0.558(0.112) 0.146(0.112) 0.262(0.024) 0.024(0.013) 8.719

MCP 0.505(0.142) 0.078(0.066) 0.284(0.091) 0.013(0.008) 5.807
SICA 0.547(0.132) 0.141(0.102) 0.257(0.085) 0.019(0.012) 6.399
SCAD 0.526(0.157) 0.092(0.079) 0.297(0.099) 0.015(0.011) 6.185
True model 1 0 1 0 0

Case 2
CMCP 0.539(0.123) 0.454(0.099) 0.118(0.074) 0.071(0.018) 8.151
CSICA 0.247(0.087) 0.156(0.058) 0.049(0.057) 0.036(0.018) 6.498
CSCAD 0.606(0.112) 0.491(0.093) 0.126(0.066) 0.072(0.016) 8.403
MSICA 0.470(0.134) 0.323(0.086) 0.098(0.062) 0.066(0.022) 7.716

MCP 0.476(0.144) 0.391(0.106) 0.076(0.076) 0.058(0.018) 7.282
SICA 0.630(0.114) 0.499(0.090) 0.125(0.125) 0.072(0.016) 7.586
SCAD 0.469(0.145) 0.383(0.107) 0.074(0.074) 0.057(0.018) 7.250
True model 1 0 1 0 0

The simulation results based on 200 replicates are summarized in Tables 1–3.
We compared four types of composite penalties and three types of variable
selection penalties, i.e., composite MCP (CMCP), composite SICA (CSICA),
composite SCAD (CSCAD), MCP SICA (MSICA), MCP, SICA and SCAD
penalties. The tuning parameter was chosen using the 5-fold cross-validation
principle. In the tables, we report the rates of correctly identifying the im-
portant groups (GTPR), the rates of incorrectly selecting unimportant groups
(GFPR), the rates of correctly identifying the important variables (TPR), the
rates of incorrectly selecting unimportant variables (FPR), and the L2-loss for
estimation accuracy for two cases. Table 1 indicates that all methods for two
cases perform well for the number of selected important groups and variables
when p < n. Table 2 shows that when the model is sparse enough but p > n,
CSICA performs better than others correctly excluding unimportant groups. In
addition, the computed L2-loss results indicate that CSICA is more efficient
in group selection with higher correction rate, thus providing higher accuracy.
Table 3 provides further evidence showing that CSICA tends to select a sparser
model than other selectors as the number of important variables or important
groups increases.

Assuming the true sparse model is known, to compare the performance of
the best model that ever exists on the solution path, we recorded the maximum
number of correctly selected variables among all models on the solution path and
averaged it over all replicates. The performance results from Cases 1 and 2 are
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Fig 1. Variable selection performance of various methods for two cases in Example 1. The
vertical lines indicate the true sparsity dimension.

presented in Figures 1–3. Figures 1 and 2 show that under the sparsity model,
all of the proposed selectors perform well since they can identify all important
variables immediately after the model size reaches the true sparsity dimension.
On the contrary, when p > n and s is large, Figure 3 shows that the proposed
bi-selection method is comparable to the variable selection method in Case 1
and performs better than it in Case 2.

5. An application

We apply the proposed method to analyze the breast cancer data set containing
the metastasis-free survival time. In the study of [24], 295 patients with primary
breast carcinomas were classified as having a gene-expression signature associ-
ated with either a poor or a good prognosis. We focus on 144 patients having
lymph node positive disease with censor rate at 66%. The data set is available
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Fig 2. Variable selection performance of various methods for two cases in Example 2. The
vertical lines indicate the true sparsity dimension.

in the R package “penalized”. The primary objective of this study is to iden-
tify key risk factors impacting the survival time of breast cancer patients. We
consider 5 clinical risk factors and 70 gene expression measurements, including
diameter of the tumor (1 for >= 2 cm and 0 for < 2 cm), number of affected
lymph nodes (1 for 1–3 and 0 for >= 4), estrogen receptor status (1 for positive
and 0 for negative), grade of the tumor (1 for Well diff and 0 otherwise), age
of the patient at diagnosis, and gene expression measurements of 70 prognostic
genes.

Huang et al. [11] analyzed this dataset using the group bridge penalty and
considered the multiplicative effects of covariates on the survival time. Suppose
the survival time follows the additive hazards model (2.1). We conduct the
group selection and variable selection procedures by minimizing the penalized
psudoscore function (2.2) with composite penalties (CMCP, CSCAD, CSICA,
MSICA) and variable selectors (MCP, SICA and SCAD).
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Fig 3. Variable selection performance of various methods for two cases in Example 3. The
vertical lines indicate the true sparsity dimension.

We begin the statistical analysis by first reducing the model dimension to
50 through screening out the 25 most unimportant variables, and then group
the remaining 25 relatively important variables into 8 distinct categories using
dynamic clustering. In Figure 4, we show the selection results in panels (a)
and (b), where the optimal tuning parameter is chosen by the 10-fold cross-
validation. For comparison, in panel (c), we display the results using group
bridge, adaptive lasso, and group lasso with the AIC principle in Huang et
al. [11], where each block represents a group. The following findings are easily
observed from these figures: (i) the selectors identify more important variables
in the multiplicative hazards model than the additive hazards model; (ii) under
the additive hazards model, all selectors identify genes GNAZ and SCUBE2 as
important variables; (iii) most of the selectors can identify 4 important groups
in the additive hazards model compared to 8 important groups in the Cox
model; (iv) the proposed method with the CSICA selects sparser model than
others.
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Fig 4. Plots of variable and group selection in the breast cancer data by using composite
selectors and variable selectors compared with the selection results in Cox model. gbridge rep-
resents the group bridge penalty, alasso represents the adaptive lasso penalty, glasso represents
the group lasso penalty.
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6. Concluding remarks

In this article, we studied a class of regularized regression methods under the
additive hazards model. The proposed approach can consistently identify both
important groups and important variables within selected groups. Furthermore,
we established the asymptotic properties of the proposed estimators for high-
dimensional data. To efficiently compute the penalized estimator, we developed
the local coordinate descent (LCD) algorithm through approximating the penal-
ties by its first order linear part. The cross validation principle was adopted to
determine the optimal tuning parameter. The numerical studies demonstrated
that the proposed penalized approaches and the LCD algorithm work well.

The assumption of covariates exhibiting solely linear effects may be unrealis-
tic. The true covariate effects may be in fact more complex, hence it is important
to consider potential nonlinearity, especially when continuous covariates are in-
volved. [10, 4] studied a partially linear Cox model including linear and nonlinear
components. Under the additive hazards model, a further study is to consider
the partially linear additive hazards model conditional on covariates Z and X:

λ(t|Z,X) = λ0(t) + βTZ(t) + φ1(X1(t)) + . . .+ φd(Xd(t)),

where λ0 is an unspecified baseline hazard function, β is a p-dimensional re-
gression parameter, and φ1, . . . , φd are unknown smooth functions with d much
smaller than p. A future research opportunity is to extend the approach proposed
in this paper to a model with covariates exhibiting both linear and nonlinear
effects, attaining the goal of simultaneously selecting both important groups
and important variables.

Appendix A: Proofs of asymptotic results

A.1. Proof of Lemma 3.1

We first consider the |Â|-dimensional subspace B = {β ∈ R
p|βD̂ = 0}. In-

equality (3.3) ensures that Q(β) is strictly convex in a neighborhood of β̂ in B.

Equation (3.1) implies that β̂ is a stationary point and therefore it is a strict
local minimizer of Q(β) in B. Similar to the proof of Lemma A.1 in [16], we
then only need to show that for any β1 ∈ R

p\B that lies in a sufficiently small

neighborhood of β̂, and β2 which is the projection of β1 onto the subspace B,
we have Q(β1) ≥ Q(β2). Note that

Q(β1)−Q(β2) =
∑

j∈D̂:β1j �=0

∂Q(β∗)

∂βj
β1j

=
∑

j∈D̂:β1j �=0

{−Uj(β
∗) + λ

∂ρλ(|β∗|)
∂|βj |

sgn(β∗
j )}β1j ,
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where β∗ = (β∗
1 , . . . , β

∗
p)

T is a point on the line segment between β1 and β2.
Using (3.2) and the fact that sgn(β∗

j ) = sgn(β1j), the desired conclusion is
drawn.

A.2. Proof of Theorem 3.2

To check conditions (3.1) and (3.3) in Lemma 3.1, we determine β̂ on the sub-
space B = {β ∈ R

p|βD̂ = 0}. Since U(β) = b− V β, we have

UA(β̂) = UA(β0)− VAA(β̂A − β0A).

Substituting this equation into (3.1) gives that

β̂A − β0A = V −1
AA

{
UA(β0)− λ

∂ρλ(|β̂|)
∂|βj |j∈A

◦ sgn(β̂A)

}
. (A.1)

According to the proof of Theorem 1 in Lin and Lv [16], the following inequalities
hold with large enough probability:

‖UA(β0)‖∞ <
1

2cnγ

α

4
λρ′(0+), ‖UC(β0)‖∞ <

α

4
λρ′(0+),

‖V −1
AA‖∞ < 2φ, ‖VCAV

−1
AA‖∞ <

{
(1− α

2
)
ρ′(0+)

c∗nρ
′
λ(d)

}
∧ (2cnγ),

Λmin(VAA) > λκ0.

(A.2)

The subsequent steps are proceeded based on these inequalities.
Define function f : Rs → R

s by

f(θ) = β0A + V −1
AA{UA(β0)− p(|θ|) ◦ sgn(θ)},

where

p(|θ|) = λ
∂ρλ(|β|)
∂|βj |j∈A

with β = (θT , 0, . . . , 0)T . Let

K = {θ ∈ R
s| ‖θ − β0A‖∞ ≤ c1φλρ

′(0+)}

for some constant c1. Then for θ ∈ K,

‖f(θ)− β0A‖∞ ≤ ‖V −1
AA‖∞{‖UA(β0)‖∞ + ‖p(θ)‖∞}

≤ 2φλρ′(0+)
{ 1

2cnγ

α

4
+ c∗n

}
≤ c1φλρ

′(0+).

So we have f(K) ⊂ K, where f is a continuous function on the convex compact

hypercube K, which yields that (A.1) has a solution β̂A ∈ K by using Brouwer’s
fixed point theorem. Furthermore, from the definition of K and (3.4) that d ≥
c1φλρ

′(0+), we have ‖β̂A − β0A‖∞ ≤ d. This shows that sgn(β̂A) = sgn(β0A).
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Therefore, we get an estimator β̂ satisfying (3.1). In addition, since ‖β̂A −
β0A‖∞ ≤ d, it follows from Λmin(VAA) ≥ λκ0 that Λmin(VAA) ≥ λκ(ρλ; β̂A),
and then (3.3) holds. Therefore, A ⊂ Â, and then B ⊂ B̂. To conclude the group
selection consistency, it remains to check (3.2) by taking A and D in Lemma 3.1
as B and C respectively. Since

UC(β̂) = UC(β0)− VCA(β̂A − β0A),

using inequalities (A.2) we can get that

‖UC(β̂)‖∞

≤‖UC(β0)‖∞ + ‖VCAV
−1
AA‖∞

{
‖UA(β0)‖∞ + λ

∣∣∣∣∣∣ ∂ρλ(|β̂|)
∂|βj |j∈A

∣∣∣∣∣∣
∞

}

≤α

4
λρ′(0+) + 2cnγ · 1

2cnγ
· α
4
λρ′(0+) + (1− α

2
)λ

ρ′(0+)

c∗nρ
′
λ(d)

c∗nρ
′
λ(d)

≤λρ′(0+),

which means that B̂ ⊂ B. Theorem 1 is concluded.

A.3. Proof of Theorem 3.3

Since we have verified (3.1) and (3.3) in the proof of Theorem 3.2, so it suffices
to check (3.2) by Lemma 3.1. Similar to (A.2), we note that

‖UD(β0)‖∞ <
α

4
λρ′(0+), ‖V −1

AA‖∞ < 2φ.

Since

UD(β̂) = UD(β0)− VDA(β̂A − β0A),

we have

‖UD(β̂)‖∞

≤‖UD(β0)‖∞ + ‖VDAV
−1
AA‖∞

{
‖UA(β0)‖∞ + λ

∣∣∣∣∣∣∂ρλ(|β̂|)
∂|βj |j∈A

∣∣∣∣∣∣
∞

}

≤α

4
λρ′(0+) + 2cnγ · 1

2cnγ
· α
4
λρ′(0+) + (1− α

2
)λ

ρ′(0+)

c∗nρ
′
λ(d)

c∗nρ
′
λ(d)

≤λρ′(0+).

This relation yields (3.2) by (3.7). So we can draw the conclusion of variable
selection consistency.
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For the asymptotic normality, we note that

√
nuTΣ

− 1
2

AADAA(β̂A − β0A)

=
√
nuTΣ

−1/2
AA UA(β0)

+
√
nuTΣ

−1/2
AA DAA(V

−1
AA −D−1

AA)UA(β0)

−
√
nuTΣ

−1/2
AA DAAV

−1
AAλ

∂ρλ(|β̂|)
∂|βj |j∈A

◦ sgn(β̂A)

=̂T1 + T2 + T3.

We consider term T1. It is obviously that

uTΣ
−1/2
AA WAAΣ

−1/2
AA u = 1 + uTΣ

−1/2
AA (WAA −ΣAA)Σ

−1/2
AA u,

where

W =
1

n

n∑
i=1

∫ τ

0

(Zi(t)−Z(t))⊗2dNi(t).

By Lemma A.5 in [16], the second term of the above expression is bounded by

‖Σ−1/2
AA ‖2‖WAA −ΣAA‖2‖Σ−1/2

AA ‖2
=Λ

−1/2
2 sOp(n

−1/2)Λ
−1/2
2 =

s

Λ2
Op(n

−1/2) = op(1).

Thus, T1 is asymptotically standard normal by using the martingale central
limit theorem [1].

We then consider term T2. Let ΩL represent the event that max
j

sup
t∈[0,τ ]

|Zj(t)|≤

L for L > 0. Since

P (Λmin(VAA) ≤ Λ1/2|ΩL)) =P (|Λmin(VAA)− Λ1| ≥ Λ1/2|ΩL))

≤s2M exp
{
−K

n

L4

(Λ2
1

s2
∧ 1

)}
,

it follows that Λmin(VAA) > Λ1/2 with probability at least

1− s2M exp
{
−K

n

L4

(Λ2
1

s2
∧ 1

)}
− pM exp(−KLr),

and then

‖V −1
AA‖2 =

1

Λmin(VAA)
<

2

Λ1
. (A.3)

Moreover, by Lemma A.3 and Lemma A.4 in [16], we obtain that
‖VAA−DAA‖2 = sOp(n

−1/2) and ‖UA(β0)‖2 =
√
sOp(n

−1/2). Thus, it follows

from ‖Σ−1/2
AA DAA‖2 = Λ

−1/2
3 and ‖D−1

AA‖2 = 1/Λ1 that

|T2| ≤
√
n‖Σ−1/2

AA DAA‖2‖D−1
AA‖2‖VAA −DAA‖2‖V −1

AA‖2‖UA(β0)‖2
≤

√
nΛ

−1/2
3 Λ−1

1 sOp(n
−1/2)2Λ−1

1

√
sOp(n

−1/2)

=
2s3/2

Λ2
1Λ

1/2
3

Op(n
−1/2) = op(1).
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Thus, by (A.3) and (3.6), we have

|T3| ≤
√
n‖Σ−1/2

AA DAA‖2 · ‖V −1
AA‖2 · λc∗n

√
sρ′λ(d) ≤

2
√
nsc∗nλρ

′
λ(d)

Λ1Λ
1/2
3

→ 0.

Theorem 3.3 is concluded by choosing the optimal L.

A.4. Proof of Theorem 3.4

Since

∂ρλ(|βω|)
∂|βj |

∣∣∣∣
βj=0

=
∑

k:Ak�j

f ′
O(

K∑
i=1

fI(|ωkiβki |))f ′
I(|ωjβj |)

∣∣∣
βj=0

· |ωj |

= f ′
I(0+)|ωj |

∑
k:Ak�j

f ′
O(

∑
i:βki

�=0

fI(|ωkiβkj |)),

we have

min
j∈D

∂ρλ(|βω|)
∂|βj |

≥ cf ′
I(0+)f ′

O(0+)ωD
min = cρ′(0+)ωD

min

by using the upper bound of f ′
O(·), where c is a constant. Hence condition

ωD
min → ∞ implies that (3.7) holds. Theorem 3.4 is concluded from Theorem 3.3.
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