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Abstract

We study dynamic random conductance models on Z2 in which the environment
evolves as a reversible Markov process that is stationary under space-time shifts. We
prove under a second moment assumption that two conditionally independent random
walks in the same environment collide infinitely often almost surely. These results
apply in particular to random walks on dynamical percolation.
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1 Introduction

A graph is said to have the infinite collisions property if two independent random
walks started at the same location collide (occupy the same location at the same time)
infinitely often almost surely. For Euclidean lattices, Polya [40] observed that the study
of collisions can be reduced to the study of returns on an auxiliary lattice, and hence that
the infinite collisions property holds if and only if the dimension is at most two. In fact,
for transitive graphs, the infinite collisions property is always equivalent to recurrence:
the number of collisions and the number of returns are geometric random variables
with the same mean. For bounded degree graphs that are not transitive, the infinite
collisions property is strictly stronger than recurrence. Indeed, while it is easy to see
that bounded degree transient graphs cannot have infinite collisions, Krishnapur and
Peres [30] showed that there exist bounded degree graphs, including the infinite comb
graph, that are recurrent but which do not have the infinite collisions property. See e.g.
[17] for further examples.
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Collisions of random walks in dynamic random environments

Despite the existence of these counterexamples, it is natural to expect that the infinite
collisions property is equivalent to recurrence for most graphs and networks arising
in applications. Indeed, it is now known that the two properties are equivalent for
many random walks in random environments that are spatially homogeneous in some
distributional sense [12, 16]. The most general such result is due to Hutchcroft and
Peres [28], who proved that every recurrent reversible random rooted network has the
infinite collisions property. An important class of examples to which these result apply
are the translation-invariant random conductance models on Zd; see [13] for background.
Note that while earlier results such as those of [12] had relied on a fine analysis of the
random walk in specific examples, the method of [28] is entirely qualitative and does not
rely on heat-kernel estimates. Further results on collisions of random walks in random
environments include [15, 19, 20, 22, 24].

In this paper we study collisions of random walks on dynamic random conductance
models (dynamic RCMs), in which the environment itself is permitted to vary over time.
Such models have recently been of burgeoning interest, with works establishing, for
example, quenched invariance principles [2, 3, 14], quenched and annealed local limit
theorems [4, 6], heat kernel estimates [18, 34], and Green kernel asymptotics [5]. We
restrict attention to the class of dynamic RCMs in which the conductances themselves
form a strongly reversible Markov process whose law is invariant under space-time shifts.
We will refer to such environments as stationary, strongly reversible Markovian
environments; see Section 2 for detailed definitions. This class includes many of the
most natural and interesting examples of dynamic RCMs appearing in the literature,
including dynamical percolation [27, 36, 37, 38], the simple symmetric exclusion process
[7, 41, 42], and dynamic RCMs in which the conductances evolve according to an
SDE such as those arising in the Helffer-Sjöstrand representation of gradient fields,
see e.g. [18, 26]. Previous works studying random walks in general (reversible and
non-reversible) Markovian environments include [8, 9, 21].

We now state our main theorem. We write Ed for the edge set of Zd, and consider our
random environments to be random locally integrable functions from R×Ed to [0,∞).
The walk in the environment η is in continuous time, and is defined formally in Section 2,
with generator given in (2.1). We say that a stationary Markovian random environment
η : R×Ed → [0,∞) is strongly reversible if the conditional distributions of η and its
reversal given the instantaneous sigma-algebra F0 are almost surely equal, where F[s,t]

is the sigma-algebra generated by the restriction of η to [s, t] and F0 :=
⋂
{F[s,t] : s ≤ 0 ≤

t, s < t}; see Section 2 for more detailed definitions.

Theorem 1.1. Let η : R×E2 → [0,∞) be a stationary random environment on Z2 and
let (Xt)t∈R and (Yt)t∈R be two doubly-infinite random walks on η, both started from the
origin at time zero, that are conditionally independent given the environment η. Suppose
that at least one of the following conditions holds:

(A1): The environment η is Markovian, strongly reversible, and satisfies the second
moment condition‖η‖22 := supa<b

1
|b−a|2E[(

∫ b
a

∑
x∼0 ηs({0, x}) ds)2] <∞.

(A2): The backwards walk (X−t)t≥0 satisfies a (quenched or annealed) invariance
principle under Brownian scaling with Brownian motion on R2 as the limiting
distribution.

Then X and Y collide infinitely often almost surely: the set {n ∈ N : Xn = Yn} has
infinite cardinality almost surely and the set {t ∈ [0,∞) : Xt = Yt} has infinite Lebesgue
measure almost surely.

Remark 1.2. Having infinitely many integer collision times implies very generally that
the Lebesgue measure of the collision times is infinite by a standard application of
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Tonelli’s Theorem as shown in Lemma 3.2.

Invariance principles are known in the ergodic setting in the non-elliptic case with
rates bounded from above (and 0 only on intervals with lengths of finite expectation)
[14], and with elliptic rates under moment conditions on the conductances and their
reciprocals [6]. Such environments need not be reversible, so there exist examples that
satisfy (A2) but not (A1). On the other hand, most examples arising in applications do
satisfy the simpler condition (A1), for which our proof is self-contained and relies on a
simpler and more general analysis than that required to establish an invariance principle.
Indeed, (A1) applies to highly non-elliptic environments for which invariance principles
do not hold, such as the random walk on the uniform spanning tree of Z2 which has
a non-Brownian scaling limit [11]. Dynamical percolation and the simple symmetric
exclusion process are covered by either hypothesis (A1) or (A2).

Both results will be deduced from the following more general theorem. Note that the
hypotheses of this theorem hold trivially under the assumption (A2) of Theorem 1.1; in
Section 2.2 we use the theory of Markov-type inequalities to prove that they also hold
under the assumption (A1).

Theorem 1.3 (A weak diffusive estimate suffices). Let η : R×E2 → R≥0 be a stationary
random environment on Z2 and let (Xt)t∈R and (Yt)t∈R be two doubly-infinite random
walks on η, both started from the origin at time zero, that are conditionally independent
given the environment η. Suppose that for every ε > 0 there exists K < ∞ and δ > 0

such that

P

(
lim sup
n→∞

min
0≤m≤n

Pη
(
‖X−m‖2 ≤ K

√
n
)
≥ δ
)
≥ 1− ε. (1.1)

Then X and Y collide infinitely often almost surely: the set {n ∈ N : Xn = Yn} has
infinite cardinality and the set {t ∈ R≥0 : Xt = Yt} has infinite Lebesgue measure almost
surely.

Under some additional non-degeneracy assumptions, we are able to prove similar
infinite-collision theorems in which the two walks X and Y are not required to start
at the same location. We say a random environment η is irreducible if for each two
vertices x and y there exist times s < t such that the conditional transition probability
P ηs,t(x, y) is positive with positive probability. We say that a stationary environment η is
time-ergodic if it has probability either zero or one to belong to any time-shift-invariant
measurable subset of Ω. (Note that being time-ergodic is a stronger condition than being
space-time ergodic.)

Corollary 1.4. Let η : R×E2 → [0,∞) be a irreducible, time-ergodic, stationary random
environment on Z2 and let (Xt)t∈R and (Yt)t∈R be two doubly-infinite random walks on η,
started at two vertices x and y at time zero, that are conditionally independent given the
environment η. If η satisfies the hypotheses of either Theorem 1.1 or Theorem 1.3 then
X and Y collide infinitely often almost surely: the set {n ∈ N : Xn = Yn} has infinite
cardinality and the set {t ∈ [0,∞) : Xt = Yt} has infinite Lebesgue measure almost
surely.

Corollaries for the voter model. Let us now briefly describe a corollary of our
results for the voter model in two-dimensional dynamic random environments. Roughly
speaking, the voter model in the environment η : R×Ed → R is the interacting particle
system on Zd in which each vertex has an opinion belonging to [0, 1], and the opinion of x
changes to match the opinion of y at rate ηt({x, y}). Since this model is tangential to the
main results of this paper, we omit the precise definition of the model and refer the reader
to [32] for background. The following is an immediate consequence of Corollary 1.4 and
the standard duality between the voter model and coalescing random walk described in
[32, §5] and [1, §14], which readily generalises to the dynamic case.
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Corollary 1.5. Let η : R×E2 → R≥0 be a stationary random environment on Z2. If the
reversal of η satisfies the hypotheses of Corollary 1.4, then the only ergodic stationary
measures for the voter model in η are the constant (a.k.a. consensus) measures.

One-dimensional models. Our methods can also be used to prove that one-dimensional
stationary random environments have the infinite collision property under a first moment
condition. This is much simpler than the two-dimensional case. Once this proposition is
proven, one can also formulate and prove one-dimensional analogues of Corollaries 1.4
and 1.5 similarly to the two-dimensional case; we omit the details.

Proposition 1.6. Let η be a stationary random environment on Z with ‖η‖1 <∞. Then
η has the infinite collisions property almost surely: If X and Y are two random walks on
η, both started from the origin at time zero, that are conditionally independent given η,
then the set {n ∈ N : Xn = Yn} has infinite cardinality and the set {t ∈ [0,∞) : Xt = Yt}
has infinite Lebesgue measure almost surely.

About the proof and organisation. This remainder of this paper will be divided into
two sections. In Section 2 we define necessary terminology, before establishing moment
bounds on the number of jumps the random walk takes in a given interval, as well
as non-explosivity in Proposition 2.1. Then, in Corollary 2.6, we use the Markov-Type
inequality, along with the previously derived moment bounds, to prove a diffusive upper
bound on the displacement of the random walk on the environment.

In Section 3, we will use these results to complete the proof of the theorem. In
Proposition 3.1, we extend to the time-varying setting an argument of Hutchcroft and
Peres [28] to give a sufficient condition for dynamic environments to satisfy the infinite
collisions property. Namely, we prove, utilizing the Mass-transport Principle, that if the
expected number of collisions of the backwards walks conditioned on the environment
is infinite almost surely, then the number of collisions is infinite almost surely. Then, in
Theorems 1.1 and 1.3, we complete the proof by demonstrating that in two dimensions,
the diffusive bound on displacement implies the previously derived sufficient condition
on the conditional expectations. We finish by proving Corollary 1.4.

2 Stationary random environments

Fix d ≥ 1. We work on the d-dimensional Euclidean lattice (Zd, Ed), where Ed =

{{x, y} ∈ Zd×Zd : ‖x− y‖1 = 1}. We write x ∼ y if {x, y} ∈ Ed, and B(x, r) for the l1

ball centred at x with radius r. For each e = {x, y} ∈ Ed and z ∈ Zd, we write e − z
for the edge {x− z, y − z}. We define an environment to be a non-negative element of
the space L1

loc(Ed ×R) of locally integrable, measurable functions Ed ×R→ R modulo
a.e. equivalence, where we recall that f : Ed ×R→ R is said to be locally integrable
if
∫ b
a
|ft(e)|dt < ∞ for every a < b and every edge e ∈ Ed. (Here and elsewhere we

follow the usual convention of writing the time variable as a subscript.) We recall that
L1

loc(Ed ×R) can be endowed with a unique topology, called the local L1 topology, with

the property that fn converges to f if and only if
∫ b
a
|fnt (e)− ft(e)|dt→ 0 as n→∞ for

every a < b and e ∈ Ed. We write Ω = {η ∈ L1
loc(Ed × R) : ηt(e) ≥ 0 for every e ∈ Ed

and a.e. t ∈ R} for the space of environments, which we equip with the associated
subspace topology and Borel σ-algebra. For each environment η ∈ Ω and x ∈ Zd we
write ηt(x) =

∑
y∼x ηt({x, y}).

We refer to a random variable taking values in Ω as a random environment. For
each x ∈ Zd and t ∈ R we write τx,t : Ω → Ω for the space-time shift defined by
τx,tηs(e) = ηs−t(e−x) and say that a random environment η is stationary if τx,t(η) has the
same distribution as η for every x ∈ Zd and t ∈ R. Similarly, we define the time-reversal
map R : Ω→ Ω by R(η)t(e) = η−t(e) and say that a random environment η is reversible if
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R(η) has the same distribution as η. For each a < b, let F[a,b] be the σ-algebra generated
by the restriction of η to [a, b]. We say that η is a Markovian random environment
if F[a1,a2] and F[c1,c2] are conditionally independent given F[b1,b2] whenever a2 < b2 and
c1 > b1 (that is, if the past and the future are conditionally independent given the present).
For each t ∈ R, we define the instantaneous sigma-algebra Ft =

⋂
{F[a,b] : a < t < b},

and say that η is strongly reversible if the conditional distributions of η and R(η) given
F0 are the same almost surely. For example, if θ is a uniform random element of [0, 2π],
then the environment η defined by ηt(e) = (sin(t+ θ))t∈R for every e ∈ Ed and t ∈ R is a
stationary reversible Markovian environment that is not strongly reversible.

Let Zd∞ = Zd ∪{∞} be the one-point compactification of Zd and let D(R,Zd∞) be
the space of Zd∞-valued càdlàg functions on R, which we equip with the Skorohod
topology and associated Borel σ-algebra. The point at infinity is included to deal with
the possibility of an explosion. For each starting space-time location (u, s) ∈ Zd×R and
environment η ∈ Ω, there exists a unique probability measure Pηu,s on D(R,Zd∞) under
which the coordinate process (Xt)t∈R is an inhomogeneous continuous time Markov
Chain on Zd starting at u at time s and with self-adjoint time-dependent generator
(Lηt )t∈R defined by

Lηt f(x) =
∑
y∼x

ηt({x, y})(f(y)− f(x)). (2.1)

We denote the transition probabilities of this Markov chain by P ηt1,t2(u, v) = P
η
u,t1(Xt2 = v)

for each t1, t2 and u, v ∈ Zd. We say that an environment η is non-explosive if Pηu,s is
supported on paths that make at most finitely many jumps in any bounded interval of
time for every u ∈ V and s ∈ R.

A Poissonian reformulation. As usual, one can equivalently define the random
walk in the environment η using Poisson processes rather than generators. We first
briefly recall how point processes in Ed ×R can be used to define walks. Let D be the
set of subsets U ⊂ R×Ed that are discrete (i.e. consist only of isolated points), and
for which U ∩ (Ed × {t}) contains at most one point for each t ∈ R. For each U ∈ D,
let J = J(U) be the set of space-time points (u, t) ∈ Zd×R such that ({u, v}, t) ∈ U

for some neighbour v of u. Given U ∈ D and a space-time coordinate (u, t) /∈ J(U), we
define the induced cádlág path Fu,t(U) = (Fu,t(U)s)s∈R ∈ D(R,Zd) which starts with
Fu,t(U) = u and follows the points of U forwards and backwards in time, traversing an
edge e = {x, y} at time s ≥ t if limε↓0 Fu,t(U)s−ε ∈ {x, y} and (e, s) ∈ U and, similarly,
traversing an edge e = {x, y} at time s ≤ t if limε↓0 Fu,t(U)s+ε ∈ {x, y} and (e, s) ∈ U . We
define T∞+ and T−∞ to be the forward and backward explosion times of Fu,t(U), and set
Fu,t(U)s =∞ for all s ≥ T+

∞ and s ≤ T−∞.

Translation and reflection equivariance. An important property of this construc-
tion is that for any U ∈ D and any two space-time points (u, s), (v, t) ∈ (Zd×R) \ J(U)

we have that

Fu,s(U)t = v ⇐⇒ Fv,t(U)s = u ⇐⇒ Fu,s(U) = Fv,t(U), (2.2)

where the final equality is an equality of functions. Indeed, if we start a particle at (u, s)

then follow the points of U forwards in time until we hit v at time t ≥ s, then if we instead
start at v at time t and follow the points of U backwards in time until time s, we will end
up at u. A further important property of the map F : D ×Zd×R is that it is equivariant
with respect to space-time shifts and time-reversals. That is, if we define the space-time
shifts

τx,t : D −→ D τx,t : D(R,Zd∞) −→ D(R,Zd∞)

U 7−→
{

(e− x, s− t) : (e, s) ∈ U
}

(ζs)s∈R 7−→ (ζs−t − x)s∈R
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for each x ∈ Zd and t ∈ R and the time-reversal maps

R : D −→ D R : D(R,Zd∞) −→ D(R,Zd∞)

U 7−→
{

(e,−s) : (e, s) ∈ U
}

(ζs)s∈R 7−→
(

lim
ε↓0

ζ−s+ε

)
s∈R

then we have that

τx,t(Fu,s(U)) = Fu−x,s−t(τx,t(U)) and R(Fu,s(U)) = Fu,−s(R(U))

for every (x, t) ∈ Zd×R, U ∈ D, and (u, s) ∈ (Zd×R) \ J(U).
Given an environment η, we may take U to be the inhomogeneous Poisson process on

Ed ×R with intensity η, which belongs to D almost surely since η is locally integrable. It
is a standard and easily verified fact that the resulting process Fu,t(U) then has law P

η
u,t

for each u ∈ Zd and t ∈ R. Fixing η and taking expectations over U in (2.2) therefore
yield the detailed-balance equations

P ηs,t(u, v) = P ηt,s(v, u), (2.3)

which also follow directly by self-adjointness of the generators. Moreover, if U is a
Poisson process with intensity η, then R(U) is a Poisson process with intensity R(η),

and it follows that if X = (Xt)t∈R has law Pηu,s, then R(X) has law P
R(η)
u,−s. It follows in

particular that if η is a stationary reversible random environment and X = (Xt)t∈R is
the associated random walk started at (u, s), then X and R(X) have the same marginal
distribution (the conditional distributions of these processes given η need not be the
same).

2.1 Moment conditions

Let d ≥ 1 and let η ∈ Ω be a stationary random environment on Zd. Recall that we
write ηt(x) :=

∑
y∼x ηt({x, y}) for the total conductance of all edges incident to x at time

t. For each p ≥ 1 we define the infinitesimal p-norm ‖η‖p of η to be

‖η‖p := sup
[a,b]⊂R

1

b− a
E

[(∫ b

a

ηs(0) ds
)p]1/p

= lim sup
ε↓0

1

ε
E

[(∫
[0,ε]

ηs(0) ds
)p]1/p

,

where the equivalence of these two quantities follows by stationarity and Minkowski’s
inequality. Note that ‖η‖p is increasing in p ≥ 1 and that if η is, say, bounded and a.s.
cádlág, so that ηt(x) is well-defined pointwise, then ‖η‖p = ‖ηt(x)‖p for every x ∈ Zd and
t ∈ R.

The next proposition shows that first and second moment bounds on the total conduc-
tance at a fixed vertex imply first and second moment bounds on the number of times
the walk jumps. We will deduce in particular that ‖η‖1 <∞ is a sufficient condition for
non-explosivity, recovering [3, Lemma 4.1]. For each two integers p ≥ 1 and 1 ≤ ` ≤ p, we
write

{
p
`

}
for the Stirling numbers of the second kind, which are defined to be the unique

non-negative integers such that xp =
∑p
`=1

{
p
`

}
`!
(
x
`

)
for every x ∈ R. (Equivalently,

{
p
`

}
is the number of ways to partition a set of size p into ` non-empty subsets.)

Proposition 2.1. Let d ≥ 1, let η be a stationary random environment on Zd, let
(u, s) ∈ Zd×R be a space-time location, and let X = (Xt)t∈R be the associated random
walk started at the origin at time zero. For each 0 ≤ a < b let N [a, b] denote the
cardinality of the set of jump times {t ∈ [a, b] : Xt− 6= Xt}. Then

E
[
N [a, b]p

]
≤

p∑
`=1

{
p

`

}
`!|a− b|`‖η‖``

for every integer p ≥ 1. In particular, if ‖η‖1 <∞, then η is non-explosive almost surely.
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The most important consequence of this theorem is the statement that if ‖η‖p <∞
for some integer p ≥ 1, then E

[
N [a, b]p

]
<∞ for every a < b. We will only use the cases

p = 1, 2 of this proposition, but prove the general case for possible future applications
since it is not much more work.

The proof of Proposition 2.1 will rely on the construction of the censored random walk
in finite volume, which we now introduce. Let η be a stationary random environment on
Zd, let U be a Poisson process with intensity η, and let X = F0,0(U) be the associated
random walk in η started at (0, 0). Consider the sequence of l1 boxes Bk = B(0, k) ∩Zd
for k ≥ 1, and let Ed,k be the set of edges of Zd with both endpoints in Bk. For each
k ≥ 1, let Sk be a uniform random element of Bk independent of η and U , and let
Xk = FSk,0(U) be a random walk in η started at (Sk, 0). Stationarity of η implies that
Xk − Sk = (Xk

t − Sk)t∈R and X have the same distribution for every k ≥ 1.
For each k ≥ 1, let Uk = U ∩ (Ed,k × R), and define the censored random walk

Zk = (Zkt )t∈R = FSk,0(Uk). In other words, the censored random walk Zk is coupled
with the random walk Xk by setting Zk0 = Xk

0 , and then letting Zk follow the same
Poisson point process U as Xk, forwards and backwards in time, but ignoring the edges
which lead out of Bk. Thus, Zk is guaranteed to equal to Xk up until the first time Xk

leaves the ball Bk. Observe that censored random walks cannot explode since the rate
of transition of the walk at any time is bounded above by the total conductance of all the
edges contained within the box, which is finite by assumption.

Note that if η is a stationary Markovian random environment and k ≥ 1, then both
(η,X) and (η, Zk) are Markov processes in the sense that the future and the past are
conditionally independent given the present; see Section 2.2 for details. However,
the censored random walk has the advantage that the associated Markov process
admits a stationary probability measure. Indeed, we will argue more generally that
if η is a stationary random environment then (η, Zk) is time-stationary in the sense
τ0,t(η, Z

k) := (τ0,t(η), τ0,t(Z
k)) has the same distribution as (η, Zk) for every k ≥ 1 and

t ∈ R.

Lemma 2.2. Let d ≥ 1 and let η be a stationary random environment. Then the processes
(ηt, Z

k
t )t∈R are stationary for each k ≥ 1.

Proof. Fix k ≥ 1. Let U be a Poisson process with intensity η and let Uk be defined as
above. We have by (2.2) that if (u, s), (v, t) /∈ J(U), then

Fu,s(U
k)t = v ⇐⇒ Fv,t(U

k)s = u ⇐⇒ Fu,s(U
k) = Fv,t(U

k). (2.4)

One implication of this is that for any s, t ∈ R, the function σs,t : Bk → Bk given by
σs,t(u) = [Fs,u(Uk)]t is almost surely a bijection with the property that

Fs,u(Uk) = Ft,σs,t(u)(U
k)

for every u ∈ Bk. Letting Sk be a uniform random element of Bk independent of η and U ,
we deduce that Sk and σs,t(Sk) have the same conditional distribution given η and U and
hence that

τ0,t

(
η, F0,Sk

(
Uk
))

= τ0,t

(
η, Ft,σ0,t(Sk)

(
Uk
))
∼ τ0,t

(
η, Ft,Sk

(
Uk
))
∼
(
η, F0,Sk

(
Uk
))

for every t ∈ R, where we used stationarity of η and shift-equivariance of F in the final
equality in distribution. This completes the proof of stationarity.

We will deduce Proposition 2.1 from the following analogous statement for the
censored random walk.
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Lemma 2.3. Let d ≥ 1, let η be a stationary random environment on Zd, let k ≥ 1, and
let Zk be the censored random walk in η. For each 0 ≤ a < b let Nk[a, b] denote the
cardinality of the set of jump times {t ∈ [a, b] : Zkt− 6= Zkt }. Then

E
[
Nk[a, b]p

]
≤

p∑
`=1

{
p

`

}
`!|a− b|`‖η‖``

for every integer p ≥ 1.

Proof. By stationarity, we can without loss of generality assume that a = 0. We fix b ≥ 0

and k ≥ 1, and write N = Nk, and Z = Zk. For each n ∈ N and i ∈ Z, define

Ai,n = 1

(
N

[
(i− 1)b

n
,
ib

n

]
> 0

)
and Σn =

n∑
i=1

Ai,n.

Since N = limn→∞Σn almost surely and (Σ2n) is a monotone increasing sequence, the
monotone convergence theorem implies that E [Np] = limn→∞E

[
Σp2n

]
for every p ≥ 0.

Since E
[
Σp2n

]
=
∑p
`=1

{
p
`

}
`!E
(

Σ2n

`

)
it therefore suffices to prove that

E

(
Σn
`

)
=

∑
1≤i1<···<iq≤n

E
[∏̀
j=1

Aij ,n

]
≤ b`‖η‖``

for every ` ≥ 1. Writing Eη for expectations conditional on the environment η and the
uniform starting point Sk = Zk0 ∈ Bk, we will prove by induction on ` that the stronger
inequality

E

Eη[∏̀
j=1

Aij ,n

]q ≤ (b‖η‖q`
n

)q`
(2.5)

holds for every n ≥ 1, ` ≥ 0, q ≥ 1, and every increasing sequence i1 < i2 < . . . < i` in
R, where we take the empty product to be 1. (Note that we do not assume that q is an
integer.)

The ` = 0 case holds vacuously. Assume that the claim holds for some ` ≥ 0 and
let i0 < . . . < i` be an increasing sequence of times. Then we have by stationarity
(Lemma 2.2) and the fact that (Zkt )t≤0 and (Zkt )t≥0 are conditionally independent given η
and Sk that

E

Eη[∏̀
j=0

Aij ,n

]q = E

Eη[∏̀
j=0

Aij−i0,n

]q ≤ E
Eη[A0,n]q ·Eη

[∏̀
j=1

Aij ,n

]q .
Applying Hölder’s inequality and the induction hypothesis yields that

E

Eη[∏̀
j=0

Aij ,n

]q ≤ E[Eη[A0,n]q(`+1)
]1/(`+1)

E

Eη[∏̀
j=1

Aij ,n

]q(`+1)/`

`/(`+1)

≤

(
b‖η‖q(`+1)

n

)q`
E
[
Eη[A0,n]q(`+1)

]1/(`+1)

. (2.6)

Conditioned on η and Z0 = Sk, the indicator random variable A0,n is equal to 1 if and
only if at least one of the Poisson clocks attached to an edge incident to Z0 rings in the
interval [−b/n, 0], so that

Eη
[
A0,n

]
= 1− exp

[
−
∫ 0

−b/n
ηt(Z0) dt

]
≤
∫ 0

−b/n
ηt(Z0) dt
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and hence by stationarity of η that

E
[
Eη[A0,n]q(`+1)

]
≤ E

(∫ 0

−b/n
ηt(Z0) dt

)q(`+1)
 ≤ (b‖η‖q(`+1)

n

)q(`+1)

.

Substituting this estimate into (2.6) completes the induction step and hence the proof of
(2.5).

Proof of Proposition 2.1. Fix b > 0. Lemma 2.3 implies that the first moment of
max0≤t≤b d(Zkt , Sk) ≤ Nk[0, b] is bounded above uniformly in k. We also note that for any
fixed distance l > 0 the probability that the distance between Sk and the boundary of Bk
is less than l decreases to zero as k tends to infinity. Combining these two observations,
the probability that Zk − Sk hits the boundary of Bk − Sk before time b tends to zero
as k →∞. Since Zk and Xk are equal up to the first time the boundary is hit, and, by
stationarity, the law of (Xk

t − Sk)0≤t≤b is equal to the law of (Xt)0≤t≤b, it follows that
(Zkt − Sk)0≤t≤b converges in distribution to (Xt)0≤t≤b as k →∞. It follows that the law
of (Nk[a, b])0≤a≤b converges weakly to the law of (N [a, b])0≤a≤b, and hence by Fatou’s
lemma that

E
[
N [a, b]p

]
≤ lim inf

k→∞
E
[
Nk[a, b]p

]
≤

p∑
`=1

{
p

`

}
`!|a− b|`‖η‖``,

where the second inequality follows by Lemma 2.3.

2.2 Diffusive upper bounds via Markov-type inequalities

In this section we use Markov-type inequalities to establish diffusive upper bounds
on the displacement of random walks in stationary reversible Markovian environments,
generalising an argument of Peres, Stauffer, Steif [38, Theorem 1.9] from the setting of
dynamical percolation. To do this, we will need a version of the Markov-type inequality
that applies to Markov processes defined on uncountable state spaces and that need
not be well-defined pointwise. The proof of this inequality is in fact very similar to the
usual discrete-time proof of Naor, Peres, and Sheffield [35] as presented in [33, Lemma
13.15]. Markov-type inequalities were first studied by Keith Ball in his work on the
Lipschitz extension problem [10], and have recently found many important applications
in probability theory including e.g. [23, 25, 31, 38, 39].

We now introduce the relevant definitions. Let X be a Polish space, and let Z =

Z(R,X) be the set of Borel-measurable functions from R toXmodulo almost-everywhere
equivalence. For each s ∈ R we define the time-shift τs : Z → Z by τsζ(t) = ζ(t − s)
for every ζ ∈ Z and t ∈ R, and define the reversal R : Z → Z by R(ζ)(t) = ζ(−t)
for every ζ ∈ Z and t ∈ R. Let Z be a random variable taking values in Z, and for
each a < b let F[a,b] be the σ-algebra generated by the restriction of Z to [a, b]. We
say that Z is a Markov process if F[a1,a2] and F[c1,c2] are conditionally independent
given F[b1,b2] whenever a2 < b2 and c1 > b1 (that is, if the past and the future are
conditionally independent given the present). We say that Z is stationary if τsZ has
the same distribution as Z for every s ∈ R, and that Z is reversible if R(Z) and Z have
the same distribution. For each t ∈ R, we define the instantaneous sigma-algebra
Ft =

⋂
{F[a,b] : a < t < b}, and say that Z is strongly reversible if the conditional

distributions of Z and R(Z) given F0 are the same almost surely.

Proposition 2.4 (Generalised maximal Markov-type inequality). Let X be a Polish space,
and let Z ∈ Z(R,X) be a stationary, strongly reversible Markov process. Let d ≥ 1 and
let f : Z → Rd be measurable with respect to the instantaneous sigma-algebra F0 and
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reversible in the sense that f(Z) = f(R(Z)) almost surely. Then we have that

E

[
max

0≤m≤n
‖f(τ2mtZ)− f(Z)‖22

]
≤ 25nE

[
‖f(τtZ)− f(Z)‖22

]
. (2.7)

for every n ≥ 1 and t > 0 and hence that

E

[
ess sup
0≤s≤t

‖f(τsZ)− f(Z)‖22

]
≤ 25t

2
lim sup
ε↓0

1

ε
E
[
‖f(τεZ)− f(Z)‖22

]
(2.8)

for every t > 0.

Remark 2.5. If θ is a uniform random element of [0, 2π] then (Xt)t∈R = (sin(t+ θ))t∈R is
a stationary reversible Markov process X : R → R that is not strongly reversible and
does not satisfy the conclusions of the Markov-type inequality. Indeed, if we consider the
identity function f : R→ R then

E
[
‖f(Xt)− f(X0)‖22

]
=

∫ 2π

0

[
sin(t+ θ)− sin(θ)

]2
dθ = 2π

(
1− cos(t)

)
= Θ(t2) as t ↓ 0,

so that E
[
‖f(Xnt)− f(X0)‖22

]
� nE

[
‖f(Xt)− f(X0)‖22

]
when t is small and n is large.

Further processes with similar properties include e.g. piecewise deterministic Markov
processes and the integrated Ornstein-Uhlenbeck process mod 1.

Proof of Proposition 2.4. Without loss of generality we may take d = 1, the higher-
dimensional cases following by summing the inequalities (2.7) and (2.8) over the co-
ordinates of f . We may also assume that f is bounded, truncating f to [−r, r] and
using monotone convergence to take the limit as r → ∞ otherwise. Note that if θ
is a uniform random number in [1/2, 1] and N = N(θ, n) = dnt/2θe for each n ≥ 1

then max0≤m≤N ‖f(τ2mθt/nZ)− f(Z)‖22 converges in probability to ess sup0≤s≤t ‖f(τsZ)−
f(Z)‖22 as n → ∞ (this follows by e.g. the Lebesgue differentiation theorem), so that
(2.8) follows from (2.7) and Fatou’s lemma.

The main idea, taken from [35], is to write the maximum we are interested in terms
of two martingales, one going forwards in time and the other backwards in time, and
then use Doob’s L2 maximal inequality. For each t ∈ R, let G→t =

⋂
s>t F(−∞,s] and let

G←t =
⋂
s<t F[s,∞), so that Ft ⊆ G→t ∩ G←t for each r ∈ R. Since Z is a Markov process,

Fs and G→t are conditionally independent given Ft when s > t, while Fs and G←t are
conditionally independent given Ft when s < t. Fix t > 0 and n ∈ N, and for each
1 ≤ m ≤ 2n let

D→m = f(τmtZ)− E
[
f(τmtZ) | G→(m−1)t

]
= f(τmtZ)− E

[
f(τmtZ) | F(m−1)t

]
,

where the almost-sure equivalence of these two quantities follows from the assumption
that Z is a Markov-process and that f is F0-measurable. In particular, the process
(D→i )2n

m=1 is a martingale difference sequence with respect to the filtration (G→mt)nm=0.
Similarly, for each 1 ≤ m ≤ 2n we define

D←m = f(τ(2n−m)tZ)− E
[
f(τ(2n−m)tZ) | G←(2n−m+1)t

]
= f(τ(2n−m)tZ)− E

[
f(τ(2n−m)tZ) | F(2n−m+1)t

]
.

As before, the almost-sure equivalence of these quantities follows from the assumption
that Z is a Markov-process and that f is F0-measurable. In particular, the process
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(D←m )2n
m=1 is a martingale difference sequence with respect to the filtration (G←(2n−m)t)

n
m=0.

Moreover, for each 2 ≤ m ≤ 2n we have that

D→m −D←2n−m+2 = f(τmtZ)− f(τ(m−2)tZ)− E
[
f(τmtZ)− f(τ(m−2)tZ) | F(m−1)t

]
= f(τmtZ)− f(τ(m−2)tZ) (2.9)

almost surely, where we used stationarity and strong reversibility to deduce that f(τmtZ)

and f(τ(m−2)tZ) have the same conditional distribution given F(m−1)t almost surely and
hence that the central conditional expectation is almost surely zero. We obtain by algebra
that

f(τ2ktZ)− f(Z) =

k∑
m=1

D→2m −
k∑

m=1

D←n−2m+2

for every 1 ≤ k ≤ n. It follows that

max
0≤k≤n

|f(τ2ktZ)− f(Z)| ≤ max
0≤k≤n

∣∣∣∣∣∣
k∑

m=1

D→2m

∣∣∣∣∣∣+ max
0≤k≤n

∣∣∣∣∣∣
k∑

m=1

D←2n−2m+2

∣∣∣∣∣∣
≤ max

0≤k≤n

∣∣∣∣∣∣
k∑

m=1

D→2m

∣∣∣∣∣∣+ max
0≤k≤n

∣∣∣∣∣∣
k∑

m=1

D←2m

∣∣∣∣∣∣+

∣∣∣∣∣∣
n∑

m=1

D←2m

∣∣∣∣∣∣
and hence by Cauchy-Schwarz that

max
0≤k≤n

|f(τ2ktZ)− f(Z)|2 ≤ 5

2
max

0≤k≤n

∣∣∣∣∣∣
k∑

m=1

D→2m

∣∣∣∣∣∣
2

+
5

2
max

0≤k≤n

∣∣∣∣∣∣
k∑

m=1

D←2m

∣∣∣∣∣∣
2

+ 5

∣∣∣∣∣∣
n∑

m=1

D←2m

∣∣∣∣∣∣
2

.

Applying Doob’s L2 maximal inequality and the orthogonality of martingale differences,
we obtain that

E

[
max

0≤k≤n
|f(τ2ktZ)− f(Z)|2

]
≤ 10

n∑
m=1

E
[
(D→2m)

2
]

+ 15

n∑
m=1

E
[
(D←2m)

2
]
.

Using stationarity and reversibility once more, we obtain that

E

[
max

0≤k≤n
|f(τ2ktZ)− f(Z)|2

]
≤ 25nE

[(
f(τtZ)− E

[
f(τtZ) | F0

])2
]

=25nE

[(
f(τtZ)− f(Z)− E

[
f(τtZ)− f(Z) | F0

])2
]

=25nE
[
Var(f(τtZ)− f(Z) | F0)

]
≤ 25nVar(f(τtZ)− f(Z)),

which implies the claim.

Proposition 2.4 has the following corollary for random walks in reversible random
environments.

Corollary 2.6. Let d ≥ 1, let η be a stationary, strongly reversible Markovian random
environment on Zd and let X = (Xt)t∈R be the associated random walk started at the
origin at time zero. If‖η‖2 <∞, then

E

[
max
−t≤s≤t

‖Xs −X0‖22
]
≤ 25t‖η‖1

for every t ≥ 0.
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Proof. Let k ≥ 1 and let (Zkt )t∈R be the censored random walk started at a uniform
random element Sk of Bk as in Section 2.1. By Lemma 2.2, (ηt, Z

k
t ) is a stationary

Markov process. Moreover, if we consider this process to take values in the space of
measurable functions Z = Z(R,REd ×Zd) then it is strongly reversible: this follows by
time-reversal equivariance of F and the fact that, given η, the reversed Poisson process
R(U) has the same conditional distribution as a Poisson process with intensity R(η).
Thus, we may apply Proposition 2.4 to the function f : Z → Rd given by f(ω, ζ) = ζ0, to
obtain that

E

[
max

0≤s≤t
‖Zkt − Zk0 ‖22

]
≤ 25t

2
lim sup
ε↓0

1

ε
E
[
‖Zkε − Zk0 ‖22

]
for every t > 0 and k ≥ 1. Since the Euclidean displacement is trivially bounded by the
total number of jumps, we obtain that

E

[
max

0≤s≤t
‖Zkt − Zk0 ‖22

]
≤ 25t

2
lim sup
ε↓0

1

ε
E
[
Nk[0, ε]2

]
≤ 25t

2
lim sup
ε↓0

1

ε

(
ε‖η‖1 + 2ε2‖η‖22

)
=

25t

2
‖η‖1,

where the second inequality follows from Proposition 2.1. Taking the limit as k →∞, it
follows by a similar weak convergence and Fatou argument to that used in the proof of
Proposition 2.1 that

E

[
max

0≤s≤t
‖Xt −X0‖22

]
≤ 25t

2
‖η‖1

for every t ≥ 0 also. The claimed two-sided version of this inequality follows by reversibil-
ity.

Remark 2.7. It has been pointed out to us by a referee that it should be possible to prove
diffusive upper bounds using the Kipnis-Varadahn method of martingale approximation
of additive functionals of reversible Markov processes [7, 29]. We prefer to use Markov-
type inequalities as they are self-contained and more familiar to us, and hope that we
will help popularize the use of these powerful inequalities within the RWRE community.
Let us remark further that Markov-type inequalities are particularly useful for obtaining
sharp quantitative control of the limiting variance of RWRE processes, and indeed will
be used in forthcoming work of the second author to study the asymptotic diffusivity of
random walks on slightly supercritical percolation clusters.

3 Proof of the main theorem

In this section will will prove Theorem 1.1 and its corollaries. We begin with the
following general criterion for infinite collisions at integer times, from which our main
theorems will be deduced. Recall that we write Eη for conditional expectations given
the environment η.

Proposition 3.1. Let d ≥ 1, let η : R×Ed → [0,∞) be a stationary, non-explosive random
environment on Zd and let (Xt)t∈R and (Yt)t∈R be random walks in η, both started at
the origin at time zero, that are conditionally independent given η. Then we have the
implication(
Eη
∑
n≥0

1{X−n=Y−n} =∞ almost surely

)
⇒
(∑
n≥0

1{Xn=Yn} =∞ almost surely

)
. (3.1)

The proof of this proposition is adapted from the methods of [28], and relies on the
mass-transport principle for Zd. Recall that a function f : Zd×Zd → [0,∞] is said to be
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a transport function if it is diagonally invariant in the sense that f(x, y) = f(x+ z, y + z)

for every x, y, z ∈ Zd. The mass-transport principle for Zd states that∑
x∈Zd

f(0, x) =
∑
x∈Zd

f(x, 0).

for every transport function f .

Proof. Suppose that Eη
∑
n≥0 1{X−n=Y−n} = ∞ almost surely. Recall that P ηt1,t2(·, ·) de-

notes the transition probabilities of the random walk conditional on the environment
η. For each u ∈ Zd and n ∈ Z we let qηfin(u, n) denote the conditional probability given
η that two conditionally independent random walks started at the space-time location
(u, n) occupy the same position for only finitely many positive integer times m ≥ n, and
let qη0 (u, n) denote the conditional probability that the two walks started at (u, n) do
not occupy the same position at any integer time strictly greater than n. Decomposing
according to the last integer time at which the two walks occupy the same position, and
where they do so, we get that

qηfin(u, n) =
∑
v∈Zd

∑
m≥n

P ηn,m(u, v)2qη0 (v,m).

By space-shift invariance, f(u, v) =
∑
m≥0E

[
P η0,m(u, v)2qη0 (v,m)

]
is a transport function

and we can apply the mass-transport principle to get that

E
[
qηfin(0, 0)

]
= E

∑
v∈Zd

∑
m≥0

P η0,m(0, v)2qη0 (v,m)

 = E

∑
v∈Zd

∑
m≥0

P η0,m(v, 0)2qη0 (0,m)

 ,
and hence by time-shift invariance applied to each term that

E
[
qηfin(0, 0)

]
= E

∑
v∈Zd

∑
m≥0

P η−m,0(v, 0)2qη0 (0, 0)


= E

qη0 (0, 0)
∑
v∈Zd

∑
m≥0

P η0,−m(0, v)2

 = E

qη0 (0, 0)Eη

∑
n≥0

1{X−n=Y−n}


 .

(3.2)

Since qηfin(0, 0) is at most one and Eη
∑
n≥0 1{X−n=Y−n} = ∞ a.s. by assumption, we

must have that qη0 (0, 0) = 0 a.s. and hence that qηfin(0, 0) = 0 a.s. also. This implies the
claim.

Next, we note that infinite collisions at infinite times quite generally implies that the
Lebesgue measure of the set of all positive collision times is infinite almost surely.

Lemma 3.2. Let d ≥ 1, let η : R×Ed → [0,∞) be a stationary, non-explosive random
environment on Zd and let (Xt)t∈R and (Yt)t∈R be random walks in η, started at x and y
at time zero, that are conditionally independent given η. If the set {n ∈ N : Xn = Yn} has
infinite cardinality almost surely, then the set {t ∈ [0,∞) : Xt = Yt} has infinite Lebesgue
measure almost surely.

Proof. Let U1 and U2 be two conditionally independent Poisson processes with intensity
η and let Xs = F0,s(U1) and Y s = F0,s(U2) for each s ∈ R. It follows by stationarity of
η that the law of (Xs, Y s) does not depend on s. Let T be the infimal positive time at
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which either of the walks X0 or Y 0 takes a jump, so that 0 < T ≤ ∞ almost surely and
(Xs, Y s) = (X0, Y 0) for all 0 ≤ s < T . Then we have that

Leb{t ∈ [0,∞) :X0
t = Y 0

t } =

∫ 1

0

∣∣∣{n ∈ N : X0
n+s = Y 0

n+s}
∣∣∣ds

≥
∫ T∧1

0

∣∣∣{n ∈ N : X0
n+s = Y 0

n+s}
∣∣∣ds =

∫ T∧1

0

∣∣{n ∈ N : Xs
n+s = Y sn+s}

∣∣ds.
Since T > 0 almost surely and the integrand

∣∣{n ∈ N : Xs
n+s = Y sn+s}

∣∣ is almost surely
infinite for each s ≥ 0, it follows by Tonelli’s theorem that both sides are almost surely
infinite, completing the proof.

We now apply Proposition 3.1 and Lemma 3.2 to prove Theorems 1.1 and 1.3.

Proof of Theorem 1.3. For each K < ∞ and δ > 0, let AK,δ ⊆ Ω be the set of environ-
ments η such that

lim sup
n→∞

min
0≤m≤n

Pη
(
‖X−m‖22 ≤ Kn

)
≥ δ.

By assumption, for every ε > 0 there exists K and δ such that P(η ∈ AK,δ) ≥ 1− ε. Thus,
in view of Proposition 3.1 and Lemma 3.2, it suffices to prove that if K <∞ and δ > 0

then
∑∞
m=1P

η(X−m = Y−m) =∞ for every environment η ∈ AK,δ.
Fix K <∞ and δ > 0 and suppose that η ∈ AK,δ holds. We can recursively define a

sequence of positive integer times n1, n2, . . ., depending on η, such that ni+1 ≥ 2(ni + 1)

for each i ≥ 1 and

min
0≤m≤ni

Pη
(
‖X−m‖22 ≤ Kni

)
≥ δ

2

for every i ≥ 1. For each r ≥ 1, let Λr ⊆ Z2 be the set of lattice points with Euclidean
norm at most r. Then there exists a constant c such that

Pη(X−m = Y−m) ≥
∑
x∈Λr

P η0,−m(0, x)2 ≥ 1

|Λr|

∑
x∈Λr

P η0,−m(0, x)

2

≥ c

r2
Pη(X−m ∈ Λr)

2

for every m, r ≥ 1 and hence that

ni+1∑
m=ni+1

Pη(X−m = Y−m) ≥ c

Kni+1

ni+1∑
m=ni+1

Pη(‖X−m‖22 ≤ Kni+1)2

≥ c

2K
min

1≤m≤ni+1

Pη
(
‖X−m‖22 ≤ Kni+1

)2

≥ cδ2

8K

for every i ≥ 1. Summing over i ≥ 1, it follows that
∑∞
m=1P

η(X−m = Y−m) = ∞ as
claimed.

Proof of Theorem 1.1. It suffices to prove that the conditions (A1) and (A2) each imply
the weak diffusive estimate on the backwards process (1.1) needed to apply Theorem 1.3.
This is obvious in the case (A2) that the backwards process satisfies a (quenched or
annealed) invariance principle with Brownian scaling. (It is not a problem if the limiting
covariance is random.) In the case (A1) that the environment is strongly reversible and
Markovian, we have by Markov’s inequality and Corollary 2.6 that

P

(
min
m≤n

Pη
(
‖X−m‖22 ≤ Kn

)
≤ δ
)
≤ P

(
Pη
(

max
m≤n

‖X−m‖22 > Kn

)
≥ 1− δ

)

≤ P

(
Eη
[
max
m≤n

‖X−m‖22
]
≥ K(1− δ)n

)
≤ 25

K(1− δ)
‖η‖1
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for every K <∞, δ > 0, and n ≥ 1, and hence by Fatou’s lemma that

P

(
lim sup
n→∞

min
m≤n

Pη
(
‖X−m‖22 ≤ Kn

)
≤ δ
)
≤ 25

K(1− δ)
‖η‖1

for every K <∞ and δ > 0. This implies the claim.

We next prove Proposition 1.6, which concerns the one-dimensional case.

Proof of Proposition 1.6. Bounding the total displacement by the number of jumps,
Proposition 2.1 implies that Emax0≤m≤n ‖X−m‖ ≤ EN [−n, 0] ≤ n‖η‖1 for every n ≥
1. In the one dimensional case, this linear bound is sufficient to guarantee that
Eη
∑
n≥0 1(X−n = Y−n) = ∞ almost surely; the details are very similar to the proof

of Theorem 1.3 and are omitted.

It remains only to prove Corollary 1.4, which concerns the case that the two walks do
not start at the same vertex, and will be deduced from Theorems 1.1 and 1.3 together
with the following general lemma.

Lemma 3.3. Let d ≥ 1 and let η : R×Ed → [0,∞) be an irreducible, time-ergodic,
stationary random environment on Zd. Let (Xt)t∈R, (X ′t)t∈R, (Yt)t∈R, and (Zt)t∈R be
random walks in η, started at some vertices x, x, y, and z at time zero respectively, that
are conditionally independent given η. If {n ∈ N : Xn = X ′n} is infinite almost surely,
then {n ∈ N : Yn = Zn} is infinite almost surely.

Proof of Lemma 3.3. By stationarity, we can without loss of generality assume that
x = y = 0. For each z ∈ Zd and t ∈ R we define Az,t to be the set of environments η
for which P ηt (0, z) > 0. We will first use irreducibility and time-ergodicity of η to prove
that P(Az,t)→ 1 as t→∞ for each fixed z ∈ Zd. Irreducibility give us that there exists
some t0 > 0 such that η ∈ Az,t0 with positive probability. We deduce by stationarity and
time-ergodicity that τnη ∈ Az,t0 for infinitely many positive integers almost surely, and
hence that P(there exists m ≤ t such that τmη ∈ Az,t0) → 1 as t → ∞. Since the walk
always has a positive conditional probability not to move in any given time interval, we
have that

τtη ∈ Az,t0 ⇐⇒ P ηt,t+t0(0, z) > 0⇒ P η0,t+t0(0, z) > 0 ⇐⇒ η ∈ Az,t+t0

for every t ≥ 0, and hence that

P(η ∈ Az,t+t0) ≥ P(there exists m ≤ t such that τmη ∈ Az,t0)→ 1

as t→∞ as claimed.
For each n ∈ N and η ∈ Az,n, the event Bu,n = {Xn = 0, X ′n = z} has positive

conditional probability. Let Y ′ and Z ′ be random walks on η, started at (0, n) and
(z, n), that are conditionally independent of each other and of (X,X ′) given η, so that
(τnY

′, τnZ
′) has the same marginal distribution as (Y,Z). We have by the Markov

property that

Pη

∑
m≥0

1{Y ′m=Z′m} =∞

 = Pη

∑
m≥n

1{Xm=Ym} =∞
∣∣Bu,n

 = 1

almost surely on the event Az,n, and hence by stationarity that

P

∑
m≥0

1{Ym=Zm} =∞

 = P

∑
m≥0

1{Y ′m=Z′m} =∞

 ≥ P(Az,n)

for every n ≥ 1. The claim follows since the right hand side tends to 1 as n→∞.
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