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Abstract

In this paper we consider an infinite time horizon risk-sensitive optimal stopping
problem for a Feller–Markov process with an unbounded terminal cost function. We
show that in the unbounded case an associated Bellman equation may have multiple
solutions and we give a probabilistic interpretation for the minimal and the maximal
one. Also, we show how to approximate them using finite time horizon problems.
The analysis, covering both discrete and continuous time case, is supported with
illustrative examples.
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1 Introduction

Many practical optimal control problems could be expressed in terms of optimal
stopping. This includes examples in mathematical finance (American options theory,
optimal asset liquidation), statistics (sequential testing), operations research, ecology;
see e.g. [25, 5, 8, 4] for details.

Typically, a characterisation of the optimal stopping time is obtained through the
study of the corresponding Snell envelope of the value process; see e.g. [11] for details
and [18] for a more recent contribution. Also, in the Markovian case this could be done
with the help of a specific optimality Wald–Bellman equation; see e.g. [25] for a classical
contribution. The existence of a solution to this equation could be obtained e.g. by value
iteration argument or penalty approach, see [26]. Also, it may result from the use of
viscosity techniques applied to variational inequalities; see e.g. [5, 9].

Risk-sensitive problems constitute a special class of general stochastic control prob-
lems (in particular, optimal stopping problems). In this case, a decision-maker tries
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Risk-sensitive optimal stopping

to optimise the certainty equivalent of the exponential utility function; see [15, 27].
This criterion may be seen as a non-linear extension of the mean-variance (Markowitz)
approach which facilitates more robust control strategies; see e.g. [6] for a comprehen-
sive overview. However, using risk-sensitive criterion results in multiplicative control
problems that are usually more difficult to solve than their classic risk-neutral (additive)
counterparts; see [20, 3].

In this paper we consider the infinite time horizon risk-sensitive optimal stopping
problems

u(x) := inf
τ

lnEx

[
exp

(∫ τ

0

g(Xs)ds+G(Xτ )

)]
, x ∈ E; (1.1)

w(x) := inf
τ

lim inf
T→∞

lnEx

[
exp

(∫ τ∧T

0

g(Xs)ds+G(Xτ∧T )

)]
, x ∈ E, (1.2)

where X is a standard Feller-Markov process starting at x from the state space E, while g
and G are continuous and non-negative running cost function and terminal cost function,
respectively. The function g is assumed to be bounded while G may be unbounded from
above.

The map u describes the value of a standard risk-sensitive optimal stopping problem.
As we show in this paper, the map w emerges naturally as a limit of finite horizon
optimal stopping value functions. Also, the map w may be seen as a version of u, when a
decision-maker is allowed to choose only bounded stopping times. Arguably, the main
contribution of this paper is the proof that both functions u and w are solutions to the
associated optimal stopping Bellman equation. In fact, we show that u and w are minimal
and maximal solutions to this equation, respectively, and in general we do not have an
equality between u and w.

This paper extends the results from [17], where the function G is assumed to be
bounded. In that case, it can be shown that the Bellman equation admits a unique
solution, which can be used to prove continuity of the function u ≡ w. This result was
one of the main building blocks used in [16], where the long-run impulse control problem
was analysed. In the present paper we show a more general sufficient condition for the
identity u ≡ w. This may be used to generalise the results from [16] to the unbounded
case.

In the literature, regularity properties of the optimal stopping value function were
mostly studied in the context of risk-neutral (additive) stopping problems; see e.g. [2].
In particular, this applies to non-uniqueness of a solution to the Bellman equation; see
Section 2.11 in [25] and Theorem 1.13 in [22] for classic contributions. However, the
risk-sensitive case is mostly unexplored; see [20, 17]. Also, it should be noted that many
approximative solutions to optimal stopping problems are based on numerical solutions
to the Bellman equation; see e.g. [19] for a comprehensive overview. Thus, the study on
regularity properties of the optimality equation is important both from theoretical and
practical point of view.

The structure of this paper is as follows. In Section 2 we introduce notation and
assumptions used throughout this paper. Next, in Section 3 we study discrete time
version of the problem. The main contribution of this part is Theorem 3.3, where we link
the discrete time Bellman equation with the limits of suitable finite horizon stopping
value functions. In Section 4 we study a continuous time version of the problem. This is
used in Section 5, where we give a characterisation of solutions to the continuous time
Bellman equation; see Theorem 5.2 for details. Also, in Theorem 5.9 we show a condition
for the uniqueness of a solution to the Bellman equation. Our results are illustrated by
the examples presented in Section 6. In particular, in Example 6.4 and Example 6.7 we
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Risk-sensitive optimal stopping

show explicit formulae for distinct solutions to the Bellman equation. Finally, in Section 7
we present some additional results and deferred proofs.

2 Preliminaries

Let X = (Xt)t≥0 be a time-homogeneous continuous time standard Markov process
on a filtered measurable space (Ω,F , (Ft)) with values in a locally compact separable
metric space E. With any x ∈ E we associate a probability measure Px describing the
dynamics of the process starting from X0 = x; see Definition 4 in [25, Section 1.4] for
details. We assume that X satisfies the C0-Feller property, i.e.

PtC0(E) ⊆ C0(E), t ≥ 0,

where Pt is the corresponding transition semigroup and C0(E) denotes the family of
real-valued continuous functions defined on E, vanishing at infinity. This is a standard
assumption in the stochastic control theory. In particular, it is satisfied by Lévy processes
and solutions to stochastic differential equations driven by Lévy processes; see Theorem
3.1.9 and Theorem 6.7.2 in [1] for details.

In addition to the C0-Feller property of the Markov process, we assume several
properties of the cost functions. To ease the notation, for any T ≥ 0, let us define
ζT := supt∈[0,T ] e

G(Xt). Throughout this paper we make the following Assumptions:

(A1) (Cost functions constraints). The map G : E → [0,∞) is continuous and the map
g : E → [0,∞) is continuous and bounded. Also, the map g is bounded away from
zero, i.e. for some c > 0 we have g(·) ≥ c > 0.

(A2) (Integrability). For any T ≥ 0 and x ∈ E we have

Ex [ζT ] <∞.

(A3) (Continuity). For any T ≥ 0 and a continuous function h satisfying 0 ≤ h(·) ≤ G(·),
we have that the map

x 7→ Ex

[
exp

(∫ T

0

g(Xs)ds+ h(XT )

)]
is continuous.

Let us now comment on these conditions.
Assumption (A1) requires several regularity properties for the cost functions. First, it

should be highlighted that while g is assumed to be bounded, we allowG to be unbounded
from above. Also, note that the non-negativity assumption for G is merely a technical
normalisation. Indeed, for a generic continuous map G̃ : E → R which is bounded from
below, we may subtract the quantity infy∈E G̃(y) from the both sides of (1.1) and (1.2)
and set G(·) := G̃(·)− infy∈E G̃(y). Finally, note that the assumption g(·) ≥ c > 0 could be
used to show that stopping at infinity cannot be optimal for our problems as this leads to
infinite cost.

Assumption (A2) requires integrability in the finite time horizon setting and is a
standard condition in the optimal stopping literature.

Assumption (A3) requires continuity of the specific semigroup for unbounded func-
tions h. Note that from the Feller property and monotone convergence theorem we get

that x 7→ Ex

[
exp

(∫ T
0
f(Xs)ds+ h(XT )

)]
is lower semicontinuous for any T ≥ 0 and a

continuous function h : E → [0,∞); see Lemma 4 in [14, Section II.5] for details. Thus,
in Assumption (A3) we additionally require upper semicontinuity.

EJP 27 (2022), paper 4.
Page 3/30

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP736
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Risk-sensitive optimal stopping

Further comments on Assumptions (A2) and (A3) could be found in Section 6.1. More
specifically, we show that Assumptions (A2) and (A3) could be deduced from a more
general condition related to the integrability of the tail of ζT , T ≥ 0; see (B1) and the
following discussion for details.

Now, let us comment on the specific forms of (1.1) and (1.2). Setting

Zt := exp

(∫ t

0

g(Xs)ds+G(Xt)

)
, t ≥ 0,

from quasi-left continuity of Z and Fatou Lemma, for any x ∈ E and Px-almost surely
finite stopping time τ , we get

Ex [Zτ ] = Ex

[
lim inf
T→∞

Zτ∧T

]
≤ lim inf

T→∞
Ex [Zτ∧T ] . (2.1)

Some of the results in this paper are related to the situation when there is an equality
in (2.1). Let us now provide a useful characterisation of this property.

Lemma 2.1. Let x ∈ E and let τ be a stopping time satisfying

Ex

[
exp

(∫ τ

0

g(Xs)ds+G(Xτ )

)]
<∞.

Then, the following are equivalent

1. We get

lim inf
T→∞

Ex [Zτ∧T ] = Ex

[
lim inf
T→∞

Zτ∧T

]
.

2. The family {Zτ∧T }, T ≥ 0, is Px-uniformly integrable, i.e.

lim
n→∞

sup
T≥0

Ex
[
1{Zτ∧T≥n}Zτ∧T

]
= 0.

3. We get
lim inf
T→∞

Ex
[
1{τ>T}ZT

]
= 0.

Proof. Note that the equivalence of 1. and 2. follows from the standard result; see e.g.
Theorem 16.14 in [7] for details. Thus, it is enough to show that 1. is equivalent to 3.
Using the identity

Ex [Zτ∧T ] = Ex
[
1{τ≤T}Zτ

]
+ Ex

[
1{τ>T}ZT

]
, T ≥ 0, (2.2)

and noting that T 7→ 1{τ≤T}Zτ is increasing, by monotone convergence theorem and
quasi-left continuity of (Zt) we get

lim
T→∞

Ex
[
1{τ≤T}Zτ

]
= Ex [Zτ ] = Ex

[
lim
T→∞

Zτ∧T

]
<∞;

note that Px[τ < ∞] = 1 as by the assumptions Ex [ecτ ] ≤ Ex
[
e
∫ τ
0
g(Xs)ds+G(Xτ )

]
< ∞.

Thus, letting T →∞ in (2.2), we conclude the proof.

Now, observe that from (2.1), for any x ∈ E, we get

u(x) ≤ w(x), (2.3)

where u and w are given by (1.1) and (1.2), respectively. In the following lemma we show
that w may be seen as a value of the optimal stopping problem with infimum over the
family of bounded stopping times. This provides an additional explanation for (2.3).

EJP 27 (2022), paper 4.
Page 4/30

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP736
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Risk-sensitive optimal stopping

Lemma 2.2. Let w be given by (1.2) and let Tb denote the family of bounded stopping
times. Then, we get

w(x) = inf
τ∈Tb

lnEx

[
exp

(∫ τ

0

g(Xs)ds+G(Xτ )

)]
.

Proof. First, note that using boundedness of τ ∈ Tb, we get

w(x) ≤ inf
τ∈Tb

lim inf
T→∞

lnEx

[
e
∫ τ∧T
0

g(Xs)ds+G(Xτ∧T )
]

= inf
τ∈Tb

lnEx

[
e
∫ τ
0
g(Xs)ds+G(Xτ )

]
, x ∈ E.

Second, let x ∈ E, ε > 0, and τε be an ε-optimal stopping time for w(x). Then, there
exists a sequence (Tn) ⊂ R+ such that Tn →∞ as n→∞ and

inf
τ∈Tb

lnEx

[
e
∫ τ
0
g(Xs)ds+G(Xτ )

]
≤ lim
n→∞

lnEx

[
e
∫ τε∧Tn
0

g(Xs)ds+G(Xτε∧Tn )
]

= lim inf
T→∞

lnEx

[
e
∫ τε∧T
0

g(Xs)ds+G(Xτε∧T )
]

≤ w(x) + ε.

Thus, letting ε→ 0 we get infτ∈Tb lnEx

[
e
∫ τ
0
g(Xs)ds+G(Xτ )

]
≤ w(x), which concludes the

proof.

3 Discrete time optimal stopping

In this section we consider a discrete-time version of the problems (1.1) and (1.2). By
X we denote a standard discrete-time Markov process with values in E and for simplicity
we write X = (Xn)n∈N, where N := {0, 1, 2, . . .} denotes the set of non-negative integers.
It should be noted that the results in this section do not require continuity assumptions
from Section 2.

By analogy to (1.1) and (1.2), we define

u(x) := inf
τ∈T0

lnEx

[
exp

(
τ−1∑
i=0

g(Xi) +G(Xτ )

)]
, x ∈ E; (3.1)

w(x) := inf
τ∈T0

lim inf
n→∞

lnEx

[
exp

(
τ∧n−1∑
i=0

g(Xi) +G(Xτ∧n)

)]
, x ∈ E, (3.2)

where T0 denotes the family of stopping times with values in N and we follow the
convention

∑−1
i=0(·) = 0. Also, let us define the Bellman operator

Sh(x) := eG(x) ∧ eg(x)Ex[h(X1)], x ∈ E,

where h : E → R+ is a non-negative measurable function. In this section we characterise
solutions to the Bellman equation, i.e. measurable functions v : E → R+ satisfying

ev(x) = Sev(x), x ∈ E. (3.3)

More explicitly, in Theorem 3.3 we show that u and w are minimal and maximal solutions
to (3.3), respectively.

We start with finding the minimal and maximal solutions to (3.3). Recalling non-
negativity of the functions g and G and (2.3), we get

0 ≤ u(x) ≤ w(x) ≤ G(x), x ∈ E.
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Based on these inequalities, to get the extremal solutions to (3.3), we iterate the lower
and upper bounds for u and w. Thus, we define recursively the families of functions

w0(x) := 0, wn+1(x) := lnSewn(x), n ∈ N, x ∈ E; (3.4)

w0(x) := G(x), wn+1(x) := lnSewn(x), n ∈ N, x ∈ E. (3.5)

In the following proposition we show the probabilistic characterisation of the sequences
(wn) and (wn). The proof is similar to the proof of Proposition 3 from [17], where G is
assumed to be bounded from above, and therefore is omitted for brevity.

Proposition 3.1. Let the sequences of functions (wn) and (wn) be given by (3.4)
and (3.5), respectively. Then,

1. For any x ∈ E, the sequence (wn(x)) is non-decreasing. Moreover, we get

wn(x) = inf
τ≤n

lnEx

[
e
∑τ−1
i=0 g(Xi)+1{τ<n}G(Xτ )

]
, n ∈ N, x ∈ E,

and the optimal stopping time for wn is given by

τn := min
{
i ≥ 0 : wn−i(Xi) = G(Xi)

}
∧ n. (3.6)

2. For any x ∈ E, the sequence (wn(x)) is non-increasing. Moreover we get

wn(x) = inf
τ≤n

lnEx

[
e
∑τ−1
i=0 g(Xi)+G(Xτ )

]
, n ∈ N, x ∈ E,

and the optimal stopping time for wn is given by

τn := min {i ≥ 0 : wn−i(Xi) = G(Xi)} . (3.7)

Based on Proposition 3.1 we may define

w(x) := lim
n→∞

wn(x), and w(x) := lim
n→∞

wn(x), x ∈ E. (3.8)

Also, letting n→∞ in (3.4) and (3.5), and using monotone convergence theorem, we get
that both w and w satisfy the Bellman equation (3.3). Also, for any measurable function
v solving (3.3) and satisfying 0 ≤ v(x) ≤ G(x), we iteratively get wn(x) ≤ v(x) ≤ wn(x),
x ∈ E, and consequently

w(x) ≤ v(x) ≤ w(x), x ∈ E. (3.9)

Thus, the maps w and w are minimal and maximal solutions to the Bellman equation (3.3),
respectively. For bounded G one may show that w ≡ w; see Proposition 5 and Corollary 6
in [17] for details. However, for unboundedG this may no longer be true; see Example 6.4.
Thus, it is interesting to characterise the structure of solutions to (3.3). We start with
the following lemma giving a martingale characterisation of solutions to the Bellman
equation.

Lemma 3.2. Let v be a non-negative measurable solution to (3.3) and let τv := inf{n ∈
N : v(Xn) ≥ G(Xn)}. Define the process

zv(n) := exp

(
n−1∑
i=0

g(Xi) + v(Xn)

)
, n ∈ N. (3.10)

Then, for any stopping time τ we get that the process (zv(τ ∧ n)), n ∈ N, is a submartin-
gale. Also, (zv(τv ∧ n)), n ∈ N, is a martingale.
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Proof. First, using the inequality eg(x)Ex
[
ev(X1)

]
≥ ev(x), x ∈ E, and Markov property,

for any x ∈ E and n ∈ N, we get

Ex [zv(n+ 1)|Fn] = e
∑n−1
i=0 g(Xi)eg(Xn)EXn

[
ev(X1)

]
≥ zv(n)

and the process (zv(n)), n ∈ N, is a submartingale. Thus, using Doob optional stopping
theorem, we get that for any stopping time τ , the process (zv(τ ∧ n)), n ∈ N, is also a
submartingale.

Second, note that on the set {τv > n}, we get ev(Xn) = eg(Xn)EXn
[
ev(X1)

]
. Thus, for

any x ∈ E and n ∈ N, we get

Ex [zv(τv ∧ (n+ 1))|Fn] = 1{τv≤n}zv(τv) + 1{τv>n}e
∑n
i=0 g(Xi)Ex

[
ev(Xn+1)|Fn

]
= 1{τv≤n}zv(τv) + 1{τv>n}e

∑τv∧n
i=0 g(Xi)EXn

[
ev(X1)

]
= 1{τv≤n}zv(τv ∧ n) + 1{τv>n}e

∑τv∧n−1
i=0 g(Xi)ev(Xτv∧n)

= zv(τv ∧ n),

which concludes the proof.

Now we show that the minimal and maximal solutions to the Bellman equation (3.3)
coincide with the value functions given by (3.1) and (3.2).

Theorem 3.3. Let the maps u and w be given by (3.1) and (3.2), respectively. Then,

1. We get u ≡ w and w ≡ w, where the maps w and w are given by (3.8);

2. The functions u and w are solutions to (3.3);

3. For any measurable solution v to the Bellman equation (3.3) satisfying 0 ≤ v(·) ≤
G(·), we get u(·) ≤ v(·) ≤ w(·).

Proof. Recalling (3.9) and the successive discussion we get that 2. and 3. follow directly
from 1. Thus, it is enough to show 1. For transparency, we split the rest of the proof into
two steps: (1) proof of u ≡ w; (2) proof of w ≡ w.

Step 1. We show that u ≡ w. Recalling wn from (3.4) and Proposition 3.1, for any n ∈ N
and x ∈ E, we get

ewn(x) = inf
τ∈T0

Ex

[
e
∑τ∧n−1
i=0 g(Xi)+1{τ<n}G(Xτ )

]
≤ inf
τ∈T0

Ex

[
e
∑τ−1
i=0 g(Xi)+G(Xτ )

]
= eu(x),

where the inequality follows from non-negativity of g and G. Letting n → ∞ we get
w ≤ u. Now, let us define

z(n) := exp

(
n−1∑
i=0

g(Xi) + w(Xn)

)
, n ∈ N; (3.11)

τ := inf{n ∈ N : w(Xn) ≥ G(Xn)}; (3.12)

and note that by Lemma 3.2 the process (z(τ ∧n)), n ∈ N, is a martingale. Also, recalling
that g(·) ≥ c > 0 and w(·) ≥ 0, and using Fatou Lemma, for any x ∈ E, we get

Ex [eτc] = Ex

[
lim inf
n→∞

e(τ∧n)c
]

≤ lim inf
n→∞

Ex

[
e
∑τ∧n−1
i=0 g(Xi)+w(Xτ∧n)

]
= Ex [z(0)] = ew(x) ≤ eG(x) <∞.
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In particular, we get Px[τ <∞] = 1, x ∈ E. Thus, noting that w(Xτ ) = G(Xτ ), we get

eu(x) ≤ Ex
[
e
∑τ−1
i=0 g(Xi)+G(Xτ )

]
= Ex

[
e
∑τ−1
i=0 g(Xi)+w(Xτ )

]
= Ex

[
lim inf
n→∞

e
∑τ∧n−1
i=0 g(Xi)+w(Xτ∧n)

]
≤ lim inf

n→∞
Ex

[
e
∑τ∧n−1
i=0 g(Xi)+w(Xτ∧n)

]
= Ex [z(0)] = ew(x), (3.13)

hence u ≡ w, which concludes the proof of this part.

Step 2. We show that w ≡ w. Recalling Proposition 3.1 and the maps wk from (3.5), for
any k ∈ N and x ∈ E, we get

ew(x) ≤ inf
τ≤k

lim inf
n→∞

Ex

[
e
∑τ∧n−1
i=0 g(Xi)+G(Xτ∧n)

]
= inf
τ≤k

Ex

[
e
∑τ−1
i=0 g(Xi)+G(Xτ )

]
= ewk(x).

Thus, letting k →∞, we get w ≤ w. Also, for any n ∈ N and τ̂ ∈ T0 we get

inf
τ≤n

Ex

[
e
∑τ−1
i=0 g(Xi)+G(Xτ )

]
≤ Ex

[
e
∑τ̂∧n−1
i=0 g(Xi)+G(Xτ̂∧n)

]
.

Thus, letting n→∞ and taking infimum over τ̂ ∈ T0, we get w ≤ w, which concludes the
proof.

Remark 3.4. From Theorem 3.3 we deduce that, in the unbounded case, the family of
finite time horizon stopping problems may not converge to their infinite horizon version.
More specifically, from Proposition 3.1 we get that the function wn may be seen as a
finite horizon counterpart of u, with stopping times bounded by n ∈ N. Thus, one might
conjecture that wn converges to u as n→∞. However, from Theorem 3.3 we get wn → w

as n→∞ and from Examples 6.3 and 6.4 we see that in general u 6= w. Also, note that
Theorem 3.3 provides a finite horizon approximation scheme for u; this can be done with
the help of the family wn.

From the proof of Theorem 3.3 we get a useful corollary about an optimal stopping
time for u.

Corollary 3.5. Let u be given by (3.1). Then, the stopping time

τ = inf{n ∈ N : w(Xn) ≥ G(Xn)} (3.14)

is optimal for u. Also, the process (z(n∧ τ)), n ∈ N, with z given by (3.11), is a uniformly
integrable martingale.

Proof. Optimality of τ follows directly from (3.13). Also, martingale property of (z(n∧τ)),
n ∈ N, follows from Lemma 3.2. Finally, uniform integrability follows from (3.13).

Now we formulate a sufficient condition for the identity u ≡ w. To ease the notation,
we define the process

Zn := exp

(
n−1∑
i=0

g(Xi) +G(Xn)

)
, n ∈ N.

Theorem 3.6. Let u and w be given by (3.1) and (3.2), respectively. Also, let τ = inf{t ≥
0 : w(Xt) ≥ G(Xt)}. If the process (Zn∧τ ), n ≥ 0, is uniformly integrable, then we get
u ≡ w.
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Proof. Recall that by Corollary 3.5 the stopping time τ is optimal for u. Thus, using
uniform integrability of (Zn∧τ ), n ≥ 0, for any x ∈ E, we get

ew(x) ≤ lim
n→∞

Ex

[
e
∑τ∧n−1
i=0 g(Xi)+G(Xτ∧n)

]
= Ex

[
e
∑τ−1
i=0 g(Xi)+G(Xτ )

]
= eu(x).

Recalling that we always get u ≤ w, we conclude the proof.

Remark 3.7. By analogy to (3.14), let us define τ := inf{t ≥ 0 : w(Xt) ≥ G(Xt)}. Based
on the condition from Theorem 3.6, one may ask if uniform integrability of (Zτ∧n) is also
sufficient for u ≡ w. However, as discussed in Remark 6.5, this is not the case.

4 Continuous time optimal stopping

In this section, by analogy to (3.1) and (3.2), we consider the continuous time optimal
stopping problems

u(x) := inf
τ

lnEx

[
exp

(∫ τ

0

g(Xs)ds+G(Xτ )

)]
, x ∈ E; (4.1)

w(x) := inf
τ

lim inf
T→∞

lnEx

[
exp

(∫ τ∧T

0

g(Xs)ds+G(Xτ∧T )

)]
, x ∈ E. (4.2)

Assuming (A1)–(A3), we prove several regularity properties of the maps u and w. Also,
we show various approximation results, including finite time horizon limits. These results
extend the analysis from [17] to the case when G is unbounded from above.

First, by analogy to Proposition 3.1, we consider the finite time horizon optimal
stopping problems. For any T ≥ 0, let us define

wT (x) := inf
τ≤T

lnEx

[
e
∫ τ
0
g(Xs)ds+1{τ<T}G(Xτ )

]
, x ∈ E, (4.3)

wT (x) := inf
τ≤T

lnEx

[
e
∫ τ
0
g(Xs)ds+G(Xτ )

]
, x ∈ E. (4.4)

In Proposition 4.1 we summarise the properties of the maps (T, x) 7→ wT (x) and (T, x) 7→
wT (x). The proof is deferred to Section 7.

Proposition 4.1. Let the maps (wT ) and (wT ) be given by (4.3) and (4.4), respectively.
Then,

1. The map (T, x) 7→ wT (x) is jointly continuous and, for any x ∈ E, the map T 7→
wT (x) is non-decreasing. Also, for any T ≥ 0, an optimal stopping time for wT is
given by

τT := inf
{
t ≥ 0 : wT−t(Xt) = G(Xt)

}
∧ T. (4.5)

Moreover, the process

zT (t) := e
∫ t∧T
0

g(Xs)ds+wT−t∧T (Xt∧T ), t ≥ 0,

is a submartingale and (zT (t ∧ τT )), t ≥ 0, is a martingale.

2. The map (T, x) 7→ wT (x) is jointly continuous and, for any x ∈ E, the map T 7→
wT (x) is non-increasing. Also, for any T ≥ 0, an optimal stopping time for wT is
given by

τT := inf {t ≥ 0 : wT−t(Xt) = G(Xt)} . (4.6)

Moreover, the process

zT (t) := e
∫ t∧T
0

g(Xs)ds+wT−t∧T (Xt∧T ), t ≥ 0,

is a submartingale and (zT (t ∧ τT )), t ≥ 0, is a martingale.
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Based on Proposition 4.1 we may define the limits

w(x) := lim
T→∞

wT (x) and w(x) := lim
T→∞

wT (x), x ∈ E. (4.7)

Let us now link the functions w and w with (4.1) and (4.2).

Theorem 4.2. Let the functions u and w be given by (4.1) and (4.2), respectively. Also,
let w and w be given by (4.7). Then we get u ≡ w and w ≡ w. Also, u is lower
semicontinuous and w is upper semicontinuous.

Proof. The proof for w ≡ w follows the lines of the second step of the proof of Theo-
rem 3.3 and is omitted for brevity. Now we show that u ≡ w. The proof is partially based
on Theorem 15 in [17]. For transparency, we present it in detail.

First, recalling non-negativity of g and G, for any T ≥ 0 and x ∈ E, we get

ewT (x) = inf
τ
Ex

[
e
∫ τ∧T
0

g(Xs)ds+1{τ<T}G(Xτ )
]

≤ inf
τ
Ex

[
e
∫ τ
0
g(Xs)ds+G(Xτ )

]
= eu(x).

Thus, letting T →∞, we get w ≤ u. Let us now show the reverse inequality.
For any T > 0, let τT be an optimal stopping time for wT , given by the formula (4.5).

Define

τ̂T := inf
{
t ≥ 0 : wT−t(Xt) ≥ G(Xt)

}
(4.8)

and observe that τT = τ̂T ∧ T . By monotonicity of the sequence (wn(x))n∈N, we get
τ̂n+1 ≤ τ̂n. Thus, for any n ∈ N, on the set {τn < n}, we get τ̂n = τn, thus τ̂n+1 = τn+1,
and consequently τn+1 ≤ τn. Moreover, recalling that g(·) ≥ c > 0 and G(·) ≥ 0, for any
x ∈ E and T ≥ 0, we get

eG(x) ≥ ewT (x) = Ex

[
e
∫ τT
0 g(Xs)ds+1{τT<T}G(XτT )

]
≥ Ex

[
1{τT=T}

]
ecT .

Consequently, for any x ∈ E, we get
∑∞
n=1Px [τn = n] ≤

∑∞
n=1

eG(x)

ecn < ∞. Hence, by
Borel-Cantelli Lemma, for any x ∈ E, we get Px [

⋃∞
n=1{τn < n}] = 1, and consequently

the stopping time

τ̂ := lim
n→∞

τn (4.9)

is well defined. Also, we get that Px[τ̂ <∞] = 1, x ∈ E. This follows from the fact that
for Px almost all ω ∈ Ω, starting from some n (depending on ω), the sequence (τn(ω)) is
non-increasing. Thus, using right continuity of (Xt) and Fatou Lemma, for any x ∈ E, we
get

eu(x) ≤ Ex
[
e
∫ τ̂
0
g(Xs)ds+G(Xτ̂ )

]
= Ex

[
lim
n→∞

(
e
∫ τn
0 g(Xs)ds+1{τn<n}G(Xτn )

)]
≤ lim inf

n→∞
ewn(x) = ew(x), (4.10)

which concludes the proof of u ≡ w.
Finally, recalling that by Proposition 4.1 the map u is an increasing limit of continuous

functions, we get that u is lower semicontinuous. Using similar argument for w we get
upper semicontinuity.

Remark 4.3. From the proof of Theorem 4.2 we get that the stopping time τ̂ given
by (4.9) is optimal for u ≡ w; see (4.10). Also, note that in the proof we showed that
Px[τ̂ <∞] = 1, x ∈ E; see the discussion following (4.9).
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In Theorem 4.2 we showed that the function u given by (1.1) may be seen as a limit of
finite horizon stopping problems wT . Let us now show that u may also be approximated
by stopping problems with truncated terminal cost function. More explicitly, for any
n ∈ N, we define

un(x) := inf
τ

lnEx

[
exp

(∫ τ

0

g(Xs)ds+G(Xτ ) ∧ n
)]

, x ∈ E. (4.11)

Clearly, we have un(x) ≤ un+1(x) ≤ u(x) for any x ∈ E and n ∈ N. In Theorem 4.4 we
link the functions u and un.

Theorem 4.4. Let the functions u and un be given by (4.1) and (4.11), respectively.
Then, for any x ∈ E, we get u(x) = limn→∞ un(x).

Proof. Let us define the sequence of events An := {G(Xτn) ≤ n}, n ∈ N, where

τn := inf{t ≥ 0 : un(Xt) ≥ G(Xt) ∧ n}.

Using Theorem 15 from [17] we get that τn is an optimal stopping time for un(x), x ∈ E,
n ∈ N. Also, recalling that g(·) ≥ 0, for any x ∈ E and k ∈ N, we get

eG(x) ≥ euk(x) = Ex

[
e
∫ τk
0 g(Xs)ds+G(Xτk )∧k

]
≥ Ex

[
1Acke

∫ τk
0 g(Xs)ds+G(Xτk )∧k

]
≥ Px [Ack] ek.

Thus Px [Ack] ≤ eG(x)

ek
and

∑∞
k=1Px [Ack] <∞. Hence, from Borel-Cantelli Lemma, for any

x ∈ E, we get
Px [∪∞n=1 ∩∞k=n Ak] = 1. (4.12)

Let us fix n ∈ N and note that on the event ∩∞k=nAk, for any j ≥ 0, we get

un+j+1(Xτn+j
) ≥ un+j(Xτn+j

) ≥ G(Xτn+j
) ∧ (n+ j)

= G(Xτn+j
) ≥ G(Xτn+j

) ∧ (n+ j + 1).

Thus, on the event ∩∞k=nAk, for any j ≥ 0, we get τn+j+1 ≤ τn+j . Combining this
with (4.12), we may define the stopping time τ̃ := limn→∞ τn. Moreover, we get that τ̃ is
almost surely finite since, for any n ∈ N, the stopping time τn is almost surely finite; see
Remark 16 in [17] for details. Thus, using right continuity of X and Fatou Lemma, for
any x ∈ E, we get

eu(x) ≤ Ex
[
e
∫ τ̃
0
g(Xs)ds+G(Xτ̃ )

]
= Ex

[
lim
n→∞

e
∫ τn
0

g(Xs)ds+G(Xτn )∧n
]

≤ lim
n→∞

Ex

[
e
∫ τn
0

g(Xs)ds+G(Xτn )∧n
]

= lim
n→∞

eun(x) ≤ eu(x)

and consequently limn→∞ un(x) = u(x), x ∈ E.

Remark 4.5. By analogy to Theorem 4.4 one could try to approximate the function w

from (4.2) by the family

wn(x) := inf
τ

lim inf
T→∞

lnEx

[
exp

(∫ τ∧T

0

g(Xs)ds+G(Xτ∧T ) ∧ n

)]
, n ∈ N, x ∈ E.

However, since for any n ∈ N the map G(·) ∧ n is bounded, using Theorem 15 from [17]
we get un ≡ wn and by Theorem 4.4 we get wn → u. In fact, the identity un ≡ wn may
also be deduced from Corollary 5.11 in this paper.
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5 Continuous time Bellman equation

In this section we extend the results from Section 3 to the continuous time case. We
consider the continuous time Bellman equation which takes the form of optimal stopping
dynamic programming principle

ev(x) = inf
τ
Ex

[
e
∫ τ∧t
0

g(Xs)ds+1{τ<t}G(Xτ )+1{τ≥t}v(Xt)
]
, t ≥ 0, x ∈ E. (5.1)

By analogy to Section 3 we show that the maps u and w are minimal and maximal
solutions to this equation, respectively.

First, note that (5.1) may be expressed in the operator form as

Φtv(x) = v(x), t ≥ 0, x ∈ E,

where, for any t ≥ 0, the operator Φt is given by

Φth(x) := inf
τ

lnEx

[
e
∫ τ∧t
0

g(Xs)ds+1{τ<t}G(Xτ )+1{τ≥t}h(Xt)
]
, x ∈ E, (5.2)

and h : E → R+ is a non-negative measurable function. To characterise the solutions
to (5.1), for any t ≥ 0, let us define recursively

vt0(x) = 0, vtn+1(x) = Φtv
t
n(x), n ∈ N, x ∈ E; (5.3)

vt0(x) = G(x), vtn+1(x) = Φtv
t
n(x), n ∈ N, x ∈ E. (5.4)

We start with linking vtn and vtn with the functions wT and wT .

Proposition 5.1. For any t ≥ 0 and n ∈ N, let the maps vtn and vtn be given by (5.3)
and (5.4), respectively. Then,

1. For any t ≥ 0 and n ∈ N, we get vtn ≡ wnt and vtn ≡ wnt, where the functions wT
and wT are given by (4.3) and (4.4), respectively.

2. For any x ∈ E and t ≥ 0, we get

lim
n→∞

vtn(x) = u(x) and lim
n→∞

vtn(x) = w(x),

where the functions u and w be given by (4.1) and (4.2), respectively. In particular,
the limits limn→∞ vtn(x) and limn→∞ vtn(x) are well-defined and independent of
t ≥ 0.

Proof. For transparency, we prove the claims point by point.

Proof of 1. We present the proof only for vtn; the argument for vtn is similar and is omitted
for brevity. Also, for the notational convenience we set t = 1; the general case follows
the same logic.

We proceed by induction. The claim for n = 0 follows directly from the definition.
Let us assume that for some n ∈ N we get v1

n ≡ wn. Define the process zn+1(t) :=

e
∫ t∧(n+1)
0 g(Xs)ds+wn+1−t∧(n+1)(Xt∧(n+1)), t ≥ 0. Using Proposition 4.1 and Doob optional

stopping theorem, for any stopping time τ we get that the process (zn+1(τ ∧ t)), t ≥ 0, is
a submartingale. In particular, for any x ∈ E, we get Ex[zn+1(0)] ≤ infτ Ex

[
zn+1(τ ∧ 1)

]
.

Then, recalling that wT (x) ≤ G(x) for any x ∈ E and T ≥ 0, we get

ewn+1(x) = Ex[zn+1(0)] ≤ inf
τ
E
[
e
∫ τ∧1
0

g(Xs)ds+wn+1−τ∧1(Xτ∧1)
]

≤ inf
τ
E
[
e
∫ τ∧1
0

g(Xs)ds+1{τ<1}G(Xτ )+1{τ≥1}wn(X1)
]
. (5.5)
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Recall that by Proposition 4.1 the process (zn+1(τn+1 ∧ t)), t ≥ 0, is a martingale, where
τn+1 := inf{t ≥ 0 : wn+1−t(Xt) = G(Xt)} ∧ (n+ 1). Also, on the event {τn+1 < n+ 1} we
get wn+1−τn+1

(Xτn+1
) = G(Xτn+1

). Thus, for any x ∈ E, we get

ewn+1(x) = E

[
e
∫ τn+1∧1
0 g(Xs)ds+1{τn+1<1}G(Xτn+1

)+1{τn+1≥1}wn(X1)

]
.

Combining this with (5.5) and using induction assumption, for any x ∈ E, we get

ewn+1(x) = inf
τ
E
[
e
∫ τ∧1
0

g(Xs)ds+1{τ<1}G(Xτ )+1{τ≥1}wn(X1)
]

= eΦ1wn(x) = eΦ1v
1
n(x) = ev

1
n+1(x),

which concludes the proof of this point.

Proof of 2. Recalling 1. and Theorem 4.2, for any x ∈ E and t ≥ 0, we get

lim
n→∞

vtn(x) = lim
n→∞

wnt(x) = w(x) = u(x).

Using similar argument we get limn→∞ vtn(x) = w(x), t ≥ 0, x ∈ E, which concludes the
proof.

In the following theorem we characterise the solutions to the Bellman equation (5.1).
In particular, we get that u and w are minimal and maximal solutions to (5.1), respectively.
This may be seen as a continuous time version of Theorem 3.3.

Theorem 5.2. Let the functions u and w be given by (4.1) and (4.2), respectively. Then,

1. The functions u and w are solutions to (5.1).

2. For any measurable solution v to the Bellman equation (5.1) satisfying 0 ≤ v(·) ≤
G(·), we get u(·) ≤ v(·) ≤ w(·).

Proof. For transparency, we prove the claims point by point.

Proof of 1. First, we prove that u satisfies (5.1). Let us define the process

z(t) := e
∫ t
0
g(Xs)ds+w(Xt), t ≥ 0, (5.6)

where w is given by (4.7). We show that (z(t)), t ≥ 0, is a submartingale. From
Proposition 4.1, using submartingale property of zT , for any T, t, h ≥ 0 and x ∈ E, we get

e
∫ t∧T
0

g(Xs)ds+wT−t∧T (Xt∧T ) ≤ Ex
[
e
∫ (t+h)∧T
0 g(Xs)ds+wT−(t+h)∧T (X(t+h)∧T )|Ft

]
.

Thus, recalling monotonicity of T 7→ wT (x), x ∈ E, and letting T → ∞, for any t, h ≥ 0

and x ∈ E, we get

z(t) = e
∫ t
0
g(Xs)ds+w(Xt) ≤ Ex

[
e
∫ t+h
0

g(Xs)ds+w(Xt+h)|Ft
]

= Ex [z(t+ h)|Ft] , (5.7)

which concludes the proof of submartingale property of (z(t)), t ≥ 0.
Next, using submartingale property of (z(t)), t ≥ 0, Doob optional stopping theorem,

and the fact that w ≤ G, for any t ≥ 0 and x ∈ E, we get

ew(x) = Ex [z(0)] ≤ inf
τ
Ex [z(τ ∧ t)] ≤ inf

τ
Ex

[
e
∫ τ∧t
0

g(Xs)ds+1{τ<t}G(Xτ )+1{τ≥t}w(Xt)
]
. (5.8)

To conclude the proof we show that for any t ≥ 0 and x ∈ E, we get

ew(x) = Ex

[
e
∫ τ̂∧t
0

g(Xs)ds+1{τ̂<t}G(Xτ̂ )+1{τ̂≥t}w(Xt)
]
, (5.9)
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where the stopping time τ̂ is given by (4.9). From Proposition 4.1, using martingale
property of (zT (t ∧ τT )), for any t ≥ 0, T ≥ t, and x ∈ E, we get

ewT (x) = Ex[zT (0)] = Ex

[
e
∫ τT∧t
0 g(Xs)ds+wT−τT∧t

(XτT∧t)
]

= Ex

[
e
∫ τT∧t
0 g(Xs)ds+1{τT<t}G(XτT )+1{τT≥t}wT−t(Xt)

]
.

Thus, using right-continuity of X, recalling Assumption (A2), and letting T → ∞, we
get (5.9). Combining this with (5.8), for any t ≥ 0 and x ∈ E, we get

ew(x) = inf
τ
Ex

[
e
∫ τ∧t
0

g(Xs)ds+1{τ<t}G(Xτ )+1{τ≥t}w(Xt)
]
.

Recalling that by Theorem 4.2 we get u ≡ w, we conclude the proof that u satisfies (5.1).
Second, we prove that w is also a solution to (5.1). Noting that for any x ∈ E the

sequence (vtn(x))n∈N is non-increasing, using Proposition 5.1 and monotone convergence
theorem, for any t ≥ 0 and x ∈ E, we get

ew(x) = inf
n∈N

ev
t
n+1(x)

= inf
τ

inf
n∈N

Ex

[
e
∫ τ∧t
0

g(Xs)ds+1{τ<t}G(Xτ )+1{τ≥t}v
t
n(X1)

]
= inf

τ
Ex

[
e
∫ τ∧t
0

g(Xs)ds+1{τ<t}G(Xτ )+1{τ≥t}w(Xt)
]

= eΦtw(x),

thus w is a solution to (5.1).

Proof of 2. Recall that if v is a solution to (5.1), then Φtv = v, for any t ≥ 0. Thus,
recalling (5.3) and (5.4), inductively we get vtn(x) ≤ v(x) ≤ vtn(x) for any t ≥ 0, n ∈ N,
and x ∈ E. Hence, letting n→∞ and using Proposition 5.1 we get 2.

Remark 5.3. It should be noted that combining Theorem 4.2 with Theorem 5.2 we get a
possible numerical approximation scheme for extremal solutions to the Bellman equation.
More specifically, we get that the map u, which is the minimal solution to (5.1), could
be approximated by finite horizon optimal stopping value functions wT as T →∞. Also,
note that in the Step 2 of the proof of Proposition 4.1 we discuss a possible iterative
procedure to approximate wT . Similar relations hold for the map w, which could be
approximated by wT as T →∞.

Based on Theorem 5.2 we get the following corollary.

Corollary 5.4. Let u and w be given by (4.1) and (4.2), respectively. Then, the following
are equivalent

1. We get u ≡ w;

2. There is a unique solution to the Bellman equation (5.1) in the class of measurable
functions v satisfying 0 ≤ v(·) ≤ G(·).

In the next proposition we study the properties of continuous solutions to the Bellman
equation (5.1). This may be seen as a continuous time analogue of Lemma 3.2. Note
that, in contrast to the discrete time case, here we additionally require continuity of v.

Proposition 5.5. Let v be a continuous solution to (5.1) satisfying 0 ≤ v(·) ≤ G(·). Also,
let us define

τv := inf{t ≥ 0 : v(Xt) ≥ G(Xt)}.
Then, the infimum in (5.1) is attained for the stopping time τv, i.e. for any x ∈ E and
T ≥ 0 we get

ev(x) = Ex

[
exp

(∫ τv∧T

0

g(Xs)ds+ 1{τv<T}G(Xτv ) + 1{τv≥T}v(XT )

)]
. (5.10)
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Moreover, the process

zv(t) := exp

(∫ t

0

g(Xs)ds+ v(Xt)

)
, t ≥ 0, (5.11)

is a submartingale and zv(t ∧ τv), t ≥ 0, is a martingale.

Proof. For any T ≥ 0, let us define

evT (x) = inf
τ≤T

Ex

[
e
∫ τ
0
g(Xs)ds+1{τ<T}G(Xτ )+1{τ=T}v(XT )

]
and note that by (5.1) in fact we have vT ≡ v for any T ≥ 0. In particular, we get that the
map (T, x) 7→ vT (x) is continuous. Hence, using Lemma 7.3, we get that the stopping
time

τT := inf{t ≥ 0 : vT−t(Xt) ≥ G(Xt)} ∧ T = τv ∧ T (5.12)

is optimal for evT . Thus, for any x ∈ E and T ≥ 0, we get

ev(x) = evT (x) = Ex

[
e
∫ τT
0 g(Xs)ds+1{τT<T}G(XτT )+1{τT=T}v(XT )

]
= Ex

[
e
∫ τv∧T
0

g(Xs)ds+1{τv<T}G(Xτv )+1{τv≥T}v(XT )
]

and (5.10) holds. Finally, using Lemma 7.3 again we also get the submartingale property
of zv(t), t ≥ 0, and the martingale property of zv(t ∧ τv), t ≥ 0.

In the following lemma we show when a continuous solution to the Bellman equation
may be expressed as an expectation of the stopped value process.

Lemma 5.6. Let v be a continuous solution to (5.1) such that 0 ≤ v(·) ≤ G(·). Also, let
τv be as in Proposition 5.5. Then, we get

ev(x) = Ex

[
e
∫ τv
0

g(Xs)ds+G(Xτv )
]
, x ∈ E

if and only if

lim
T→∞

Ex

[
1{τv≥T}e

∫ T
0
g(Xs)ds+v(XT )

]
= 0, x ∈ E.

Proof. Let v be a continuous solution to the Bellman equation (5.1) satisfying 0 ≤ v(·) ≤
G(·). Using Proposition 5.5, for any x ∈ E and T ≥ 0, we get

ev(x) = Ex

[
e
∫ τv∧T
0

g(Xs)ds+1{τv<T}G(Xτv )+1{τv≥T}v(XT )
]

= Ex

[
1{τv<T}e

∫ τv∧T
0

g(Xs)ds+G(Xτv ) + 1{τv≥T}e
∫ τv∧T
0

g(Xs)ds+v(XT )
]
. (5.13)

Thus, recalling that g(·) ≥ c > 0 and using Fatou Lemma, we get

Ex [eτvc] ≤ Ex
[
lim inf
T→∞

e(τv∧T )c
]
≤ Ex

[
lim inf
T→∞

e
∫ τv∧T
0

g(Xs)ds
]
≤ ev(x) <∞, (5.14)

and, in particular, we get Px[τv <∞] = 1. Thus, letting T →∞ in (5.13), we get

ev(x) = lim
T→∞

Ex

[
1{τv<T}e

∫ τv
0

g(Xs)ds+G(Xτv ) + 1{τv≥T}e
∫ T
0
g(Xs)ds+v(XT )

]
= Ex

[
e
∫ τv
0

g(Xs)ds+G(Xτv )
]

+ lim
T→∞

Ex

[
1{τv≥T}e

∫ T
0
g(Xs)ds+v(XT )

]
,

where the second equality follows from monotone convergence theorem. This concludes
the proof.

EJP 27 (2022), paper 4.
Page 15/30

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP736
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Risk-sensitive optimal stopping

Using Proposition 5.5 we get the closed-form formula for an optimal stopping time
for the function u under the continuity assumption.

Proposition 5.7. Let the function u be given by (4.1). Assume that u is continuous.
Then the stopping time

τu := inf{t ≥ 0 : u(Xt) ≥ G(Xt)} (5.15)

is optimal for u.

Proof. By Theorem 5.2 we know that u satisfies the Bellman equation (5.1). Also, as
in (5.14), we may show that Px[τu <∞] = 1 for any x ∈ E. Thus, using Proposition 5.5,
continuity of u, Fatou Lemma, and martingale property of the process (zu(t∧ τu)), we get

eu(x) ≤ Ex
[
e
∫ τu
0

g(Xs)ds+G(Xτu )
]

= Ex

[
e
∫ τu
0

g(Xs)ds+u(Xτu )
]

≤ lim inf
t→∞

Ex

[
e
∫ τu∧t
0

g(Xs)ds+u(Xτu∧t)
]

= Ex [zu(0)] = eu(x), x ∈ E,

which concludes the proof.

Remark 5.8. Recall that by Remark 4.3 we get that τ̂ from (4.9) is also optimal for
u. However, the stopping time τu from (5.15) is smaller than τ̂ . Indeed, noting that
u ≡ w ≥ wT for any T ≥ 0, we get τu ≤ τ̂ .

Now, let us define the process

Z(t) := exp

(∫ t

0

g(Xs)ds+G(Xt)

)
, t ≥ 0. (5.16)

By analogy to Theorem 3.6 we may formulate a sufficient condition for the identity u ≡ w.
In particular, this gives uniqueness of a solution to (5.1).

Theorem 5.9. Let u and w be given by (4.1) and (4.2), respectively. Also, let τ̂ be
given by (4.9). Assume that the process (Z(t ∧ τ̂)), t ≥ 0, given by (5.16), is uniformly
integrable. Then,

1. We get u ≡ w and this function is continuous.

2. The stopping time

τu := inf{t ≥ 0 : u(Xt) ≥ G(Xt)} (5.17)

is optimal for u. Also, we get τu = limT→∞ τT , where τT is given by (4.6).

3. The stopping time τu given by (5.17) is also optimal for w, i.e. we get

w(x) = lim inf
T→∞

lnEx

[
e
∫ τu∧T
0

g(Xs)ds+G(Xτu∧T )
]
, x ∈ E. (5.18)

Proof. For transparency, we prove the claims point by point.

Proof of 1. Recalling that by Remark 4.3 the stopping time τ̂ given by (4.9) is optimal for
u and using uniform integrability of (Z(t ∧ τ̂)), t ≥ 0, for any x ∈ E, we get

ew(x) ≤ lim
T→∞

Ex

[
e
∫ τ̂∧T
0

g(Xs)ds+G(Xτ̂∧T )
]

= Ex

[
e
∫ τ̂
0
g(Xs)ds+G(Xτ̂ )

]
= eu(x).

Recalling that we always get u ≤ w, we conclude the proof of u ≡ w. Continuity follows
from lower semicontinuity of u and upper semicontinuity of w; see Theorem 4.2 for
details.
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Proof of 2. Note that optimality of τu follows from Proposition 5.7 and the fact that u ≡ w.
Let us now show that

τu = lim
T→∞

τT , (5.19)

Recalling Proposition 4.1, we get that the map T 7→ τT is increasing, hence the limit
τ := limT→∞ τT is well-defined. Also, recalling that from (5.14) we get Px [τu <∞] = 1

and using the fact that u ≡ w ≡ w ≤ wT for any T ≥ 0, on the event {τu ≤ T} we get

wT−τu(Xτu) ≥ u(Xτu) ≥ G(Xτu).

Thus, we get τT ≤ τu ∧ T , hence, letting T → ∞, we get τ ≤ τu. In particular, we get
Px [τ <∞] = 1, x ∈ E. Also, recalling joint continuity of (T, x) 7→ wT (x), we get

wT−τT (XτT ) = G(XτT ). (5.20)

We show that this implies u(Xτ ) = G(Xτ ) and consequently τu ≤ τ . First, note that from
a.s. finiteness of τ , we get (T − τT )→∞ as T →∞. Second, note that for any Tn →∞
and xn → x, we get

|wTn(xn)− w(x)| ≤ |wTn(xn)− w(xn)|+ |w(xn)− w(x)| → 0, n→∞;

this follows from Dini’s theorem combined with the fact that (wTn) is a sequence of
continuous functions converging monotonically to the continuous function w. Thus,
letting T → ∞ in (5.20), we get w(Xτ ) = G(Xτ ), which combined with the fact that
u ≡ w ≡ w concludes the proof of this part.

Proof of 3. To show (5.18) it is enough to prove uniform integrability of (Z(t ∧ τu)),
t ≥ 0, and use 2. Recalling that w ≥ wT for any T ≥ 0, on the set {τT < T}, we get
w(XτT

) ≥ wT−τT (XτT
) ≥ G(XτT

). Thus, letting T →∞, using continuity of w ≡ u, and
recalling that w ≤ G, we get w(Xτ̂ ) = G(Xτ̂ ) and consequently

τu ≤ τ̂ . (5.21)

From Lemma 2.1 and uniform integrability of (Z(t ∧ τ̂)), t ≥ 0, for any x ∈ E, we
get lim infT→∞Ex

[
1{τ̂>T}ZT

]
= 0. Hence, using (5.21), for any x ∈ E, we also get

lim infT→∞Ex
[
1{τ>T}ZT

]
= 0 and, again by Lemma 2.1, we conclude the proof of

uniform integrability of Z(t ∧ τu), t ≥ 0. Thus, recalling 1. and 2., for any x ∈ E, we get

ew(x) = eu(x) = Ex

[
e
∫ τu
0

g(Xs)ds+G(Xτu )
]

= lim
T→∞

Ex

[
e
∫ τu∧T
0

g(Xs)ds+G(Xτu∧T )
]
,

which concludes the proof.

Remark 5.10. In Theorem 5.9, continuity of u was a consequence of the identity u ≡ w.
However, if we know in advance that u is continuous, we may obtain the results of
Theorem 5.9 under weaker conditions. Namely, following the proof of Theorem 5.9, we
can see that, assuming continuity of u, one may replace uniform integrability of Z(t ∧ τ̂),
t ≥ 0, by uniform integrability of Z(t ∧ τu), t ≥ 0, where τu := inf{t ≥ 0 : u(Xt) ≥ G(Xt)}.
Note that by Remark 5.8 the latter condition is less restrictive as τu ≤ τ̂ .

If the function G is bounded, using Theorem 5.9 we may recover the results from [17];
see Theorem 15 therein.

Corollary 5.11. If G is bounded, then u ≡ w and this function is continuous.

Proof. Recalling (4.9) and the following discussion, for any x ∈ E, we get that for Px
almost all ω ∈ Ω, starting from some n ∈ N (depending on ω), the sequence (τn(ω)) is non-
increasing. Thus, using right-continuity of X, we get G(Xτ̂ ) = limn→∞ 1{τn<n}G(Xτn

).
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Consequently, recalling non-negativity of G, Proposition 4.1, and using Fatou Lemma,
for any x ∈ E, we get

Ex

[
e
∫ τ̂
0
g(Xs)ds

]
≤ Ex

[
e
∫ τ̂
0
g(Xs)ds+G(Xτ̂ )

]
= Ex

[
lim
n→∞

e
∫ τn
0 g(Xs)ds+1{τn<n}G(Xτn )

]
≤ lim
n→∞

Ex

[
e
∫ τn
0 g(Xs)ds+1{τn<n}G(Xτn )

]
= lim
n→∞

ewn(x) ≤ eG(x) <∞.

Combining this with the inequality Z(t ∧ τ̂) ≤ e
∫ τ̂
0
g(Xs)dse‖G‖, t ≥ 0, we get that by

bounded convergence theorem, the process (Z(t ∧ τ̂)), t ≥ 0, is uniformly integrable.
Consequently, using Theorem 5.9, we conclude the proof.

6 Reference examples

In this section we provide a series of examples illustrating our assumptions and
results. In particular, we provide a more general criterion for Assumptions (A2)–(A3).
Also, we show explicit formulae for multiple solutions to the Bellman equation.

6.1 Examples for Assumptions (A2)–(A3)

In this section we comment on Assumptions (A2) and (A3). We show that they may
be deduced from a more general condition:

(B1) For any T ≥ 0 and a compact set K ⊆ E we get

lim
m→∞

sup
x∈K

Ex
[
ζT 1{ζT≥m}

]
= 0,

where ζT = supt∈[0,T ] e
G(Xt).

Condition (B1) may be seen as a stronger form of integrability for ζT . Namely, it requires
that the tail of ζT is Px-integrable uniformly in x from compact set. Exemplary dynamics
satisfying (B1) is shown in Example 6.2.

Let us now show that (B1) implies (A2) and (A3).

Lemma 6.1. Assume (B1). Then (A2) and (A3) hold.

Proof. For (A2), it is enough to note that for any T ≥ 0, x ∈ E, and sufficiently large
m ∈ N, we get

Ex [ζT ] = Ex
[
ζT 1{ζT<m}

]
+ Ex

[
ζT 1{ζT≥m}

]
≤ m+ 1 <∞.

For (A3), let T ≥ 0, x ∈ E, (xn) → x, and h : E → R+ be continuous and such that
h(·) ≤ G(·). Let Γ ⊆ E be a compact set satisfying x ∈ Γ and (xn) ⊂ Γ. We get∣∣∣Ex [e∫ T0 g(Xs)ds+h(XT )

]
− Exn

[
e
∫ T
0
g(Xs)ds+h(XT )

]∣∣∣
≤
∣∣∣Ex [e∫ T0 g(Xs)ds+h(XT )∧m

]
− Exn

[
e
∫ T
0
g(Xs)ds+h(XT )∧m

]∣∣∣
+ 2 sup

y∈Γ

∣∣∣Ey [e∫ T0 g(Xs)ds+h(XT )
]
− Ey

[
e
∫ T
0
g(Xs)ds+h(XT )∧m

]∣∣∣ .
Also, combining Lemma 4 from [14, Section II.5] and Corollary 2.2 from [21], we get

that the map x 7→ Ex

[
e
∫ T
0
g(Xs)+h(XT )∧m

]
is continuous for any m ∈ N. Thus, to conclude

the proof it is enough to show that

sup
y∈Γ

∣∣∣Ey [e∫ T0 g(Xs)ds+h(XT )
]
− Ey

[
e
∫ T
0
g(Xs)ds+h(XT )∧m

]∣∣∣→ 0, m→∞. (6.1)
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Using (B1), for any ε > 0 and sufficiently big m ∈ N, we get

sup
y∈Γ

Ey

[
e
∫ T
0
g(Xs)ds

∣∣∣eh(XT ) − eh(XT )∧m
∣∣∣] ≤ 2 sup

y∈Γ
Ey

[
e
∫ T
0
g(Xs)dseh(XT )1{h(XT )≥m}

]
≤ 2eT‖g‖ sup

y∈Γ
Ey
[
ζT 1{ζT≥m}

]
≤ ε.

Thus, we get (6.1), which concludes the proof.

Let us now show the exemplary dynamics satisfying Condition (B1).

Example 6.2. Let E = R, G(x) = |x|, and the process (Xt) be a Brownian motion.
Also, let K ⊆ E be a compact set and LK := supx∈K |x|. Note that under Px we get
Xt = x+Wt, where W is a standard Brownian motion (starting from 0). For the notational
convenience, for any T ≥ 0, we set ζT := supt∈[0,T ] e

|Xt| and ST := supt∈[0,T ] |Wt|, T ≥ 0.
We show that for any T ≥ 0 we get

lim
n→∞

sup
x∈K

Ex
[
ζT 1{ζT≥en}

]
= 0. (6.2)

Note that, for any x ∈ E and n ∈ N, we get

sup
x∈K

Ex
[
ζT 1{ζT≥en}

]
= sup
x∈K

Ex

[
sup
t∈[0,T ]

e|x+Wt|1{supt∈[0,T ] |x+Wt|≥n}

]
≤ sup
x∈K

e|x|Ex
[
eST 1{ST≥n−LK}

]
. (6.3)

Moreover, we get that Ex
[
eST 1{ST≥n−LK}

]
is independent of x ∈ E. Thus, noting that

supx∈K e
|x| <∞, to conclude the proof of (6.2), it is enough to show

E0

[
eST
]
<∞. (6.4)

Indeed, noting that E0

[
eST 1{ST<n−LK}

]
converges increasingly to E0

[
eST
]

as n → ∞,
and

E0

[
eST
]

= E0

[
eST 1{ST<n−LK}

]
+ E0

[
eST 1{ST≥n−LK}

]
,

from (6.4) we get limn→∞E0

[
eST 1{ST≥n−LK}

]
= 0, which combined with (6.3) im-

plies (6.2).
Let us now show (6.4). Recalling that (−W ) is also a Brownian motion, we get

E0

[
eST
]
≤ E0

[
emax(supt∈[0,T ]Wt,supt∈[0,T ](−Wt))

]
≤ 2E0

[
esupt∈[0,T ]Wt

]
.

Recall that by reflection principle the distribution of supt∈[0,T ]Wt is equal to the dis-
tribution of |WT |; see e.g. Proposition 3.7 in [23, Chapter III] for details. Thus, we
get

E0

[
eST
]
≤ 2E0

[
e|WT |

]
<∞,

which concludes the proof.

6.2 Examples for the Bellman equation

In this section we provide a series of computable examples related to the Bellman
equation. In particular, we show a dynamics with a non-unique solution to this equation.

First, we show an example, where there is a strict inequality between the maps u and
w given by (3.1) and (3.2). Recall that we already showed u ≤ w.
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Example 6.3. Let E = {1, 2, 3, . . .}, g ≡ c > 0 and G(x) = x, x ∈ E. Let (Xn)n∈N be an
i.i.d. sequence of discrete Pareto random variables, i.e.

P[Xn = k] =
1

Ck2
, n ∈ N, k ∈ E,

where C :=
∑∞
k=1

1
k2 = π2

6 is a normalizing constant. Recalling (3.2) and (3.1), let us
consider

u(x) := inf
τ∈T0

lnEx
[
ecτ+Xτ

]
, x ∈ E;

w(x) := inf
τ∈T0

lim inf
n→∞

lnEx

[
ec(τ∧n)+Xτ∧n

]
, x ∈ E.

Recalling (2.3), we get u(x) ≤ w(x), x ∈ E. Let us show that this inequality may be strict.
First, we show that w(x) = x, x ∈ E. Recalling Theorem 3.3, we get

w(x) = lim
n→∞

wn(x),

where wn(x) := infτ≤n lnEx
[
ecτ+Xτ

]
, x ∈ E. Also, using Proposition 3.1, for any n ∈ N

and x ∈ E, we get ewn+1(x) = Sewn(x), where the operator S is given by Sh(x) :=

ex ∧ ecEx[h(X1)] and w0(x) = x. Noting that Ex[eX1 ] = +∞, x ∈ E, inductively we get
wn(x) = x, x ∈ E, and consequently w(x) = x, x ∈ E.

Second, note that for x ∈ E \ {1}, τ1 := inf{n ≥ 0 : Xn = 1}, p1 := P[X1 = 1], and
c > 0 satisfying c < − ln(1− p1) ≈ 0.94, we get

eu(x) ≤ Ex
[
ecτ1+Xτ1

]
= eEx [ecτ1 ] = e

∞∑
k=1

ekcp1(1− p1)k−1

= p1e
c+1 1

1− ec(1− p1)
=: B <∞.

Consequently, for x > lnB, we get

u(x) ≤ lnB < x = w(x),

thus, there is a strict inequality between u and w.
To better explain this situation, we directly show that the process

ZT∧τ1 := ecτ1∧T+Xτ1∧T , T ∈ N

is not uniformly integrable, cf. Lemma 2.1. It is enough to show that

L := lim
n→∞

sup
T∈N

E
[
ecτ1∧T+Xτ1∧T 1{ecτ1∧T+Xτ1∧T≥en}

]
= +∞.

Note that

L ≥ lim
n→∞

sup
T∈N

enP [cτ1 ∧ T +Xτ1∧T ≥ n]

= lim
n→∞

sup
T∈N

en (P [τ1 ≤ T, cτ1 +Xτ1 ≥ n] + P [τ1 > T, cT +XT ≥ n])

≥ lim
n→∞

sup
T∈N

enP [τ1 > T,XT ≥ n− cT ] .

Thus, setting A := {1} ⊆ E and for any n ∈ N setting T = [0.5n], where [x] stands for the
integer part of x ∈ R, we get

L ≥ lim
n→∞

enP
[
τ1 > [0.5n], X[0.5n] ≥ n− c[0.5n]

]
≥ lim
n→∞

enP
[
X1 ∈ Ac, . . . , X[0.5n]−1 ∈ Ac, X[0.5n] = [n− c[0.5n]] + 1

]
= lim
n→∞

en(1− p1)[0.5n]−1 1

C([n− c[0.5n]] + 1)2
.
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Let an := en(1 − p1)[0.5n]−1 1
C([n−c[0.5n]]+1)2 , n ∈ N, and note that for bn := en(1 −

p1)0.5n−1 1
Cn2(1−0.5c)2 , n ∈ N, we get limn→∞

an
bn

= 1. Also, we get

lim
n→∞

bn+1

bn
= lim
n→∞

e(1− p1)0.5 n2

(n+ 1)2
= e(1− p1)0.5.

Thus, noting that e(1 − p1)0.5 ≈ 1.7 > 1, we get bn → ∞, hence an → ∞ and L = +∞.
Consequently, the process (ZT∧τ1), T ∈ N, is not uniformly integrable.

In the next example we show explicit formulae for distinct solutions to the Bellman
equation in the discrete time setting.

Example 6.4. Let E = [0,+∞) ⊂ R, g ≡ c > 0 and G(x) = x, x ∈ E. Let α ∈ [0, 1] and
(Xn)n∈N be a time-homogeneous Markov process with a transition probability

Px[X1 = 0] = α, Px[X1 = x+ 1] = 1− α, x ∈ E.

Recalling (3.1) and (3.2), let us consider

u(x) := inf
τ∈T0

lnEx
[
ecτ+Xτ

]
, x ∈ E;

w(x) := inf
τ∈T0

lim inf
n→∞

lnEx

[
ec(τ∧n)+Xτ∧n

]
, x ∈ E.

Also, let K := ln
(

αec

1−(1−α)ec

)
; note that this constant is well-defined if (1− α)ec < 1. We

show that within this model

• If α ∈ [0, 1− e−c], then u(x) = x = w(x), x ∈ E;

• If α ∈ (1− e−c, 1− e−c−1], then u(x) = x ∧K and w(x) = x, x ∈ E;

• If α ∈ (1− e−c−1, 1], then u(x) = x ∧K = w(x), x ∈ E.

In particular, recalling Theorem 3.3, for α ∈ (1 − e−c, 1 − e−c−1] we get two distinct
solutions to the Bellman equation

ev(x) = ex ∧ ec
(
αev(0) + (1− α)ev(x+1)

)
, x ∈ E. (6.5)

Namely, we get that both u and w satisfy (6.5), but u(x) < w(x) for x > K. In fact, in this
case we may construct infinitely many solutions to (6.5); see Remark 6.6. Also, it should
be noted that for α ∈ (1− e−c−1, 1] both functions u and w are bounded despite the fact
that G is unbounded from above.

Note that u(x) = x corresponds to the situation when instantaneous stopping is
optimal; similar relation holds for w. Thus, we can see that for α small enough (relative
to c), immediate stopping is optimal. However, for sufficiently big α it is optimal to wait
until the process returns to zero; see the argument below for details.

For transparency, we split the argument into four steps: (1) proof of u(x) = x ∧K,
x ∈ E, for α ∈ (1 − e−c, 1]; (2) proof of u(x) = x, x ∈ E, for α ∈ [0, 1 − e−c]; (3) proof of
w(x) = x, x ∈ E for α ∈ [0, 1−e−c−1]; (4) proof of w(x) = x∧K, x ∈ E for α ∈ (1−e−c−1, 1].

Step 1. We show that u(x) = x ∧K, x ∈ E, for α ∈ (1− e−c, 1]. Recalling Theorem 3.3 it
is enough to show that limn→∞ wn(x) = x ∧K, x ∈ E, where the sequence (wn)n∈N is
recursively defined as

w0(x) := 0, ewn+1(x) := ex ∧ ec(αewn(0) + (1− α)ewn(x+1)), n ∈ N, x ∈ E.
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Recalling Proposition 3.1, for any n ∈ N and x ∈ E, we get wn(x) ≥ w0(x) = 0. Thus,
noting that ec(αewn(0) + (1 − α)ewn(1)) ≥ ec > 1, we get wn(0) = 0 for any n ∈ N, and
consequently

ewn+1(x) = ex ∧ ec(α+ (1− α)ewn(x+1)), n ∈ N, x ∈ E.

Let us now show that
ewn+1(x) = ex ∧ ecn+1 , n ∈ N, x ∈ E, (6.6)

where

ecn :=

n−1∑
k=1

α(1− α)k−1ekc + (1− α)n−1ecn, n = 1, 2, . . . (6.7)

First, note that by direct calculation we get ecn+1 ≥ ecn and recalling that (1− α)ec < 1,
we get ecn → eK as n→∞. To show (6.6), we proceed by induction. For n = 1, we get

ew1(x) = ex ∧ ec = ex ∧ ec1 , x ∈ E.

Let us now assume that the claim holds for some n ≥ 1. Then, for x+ 1 ≥ cn, by direct
calculation, we get

ewn+1(x) = ex ∧ ec(α+ (1− α)ecn) = ex ∧ ecn+1 , x ∈ E.

Also, for x < cn − 1 ≤ cn+1 − 1 ≤ K − 1, we get

ewn+1(x) = ex ∧ ec(α+ (1− α)ex).

Thus, to conclude the proof it is enough to show ec(α+ (1− α)ex) ≥ ex for x ∈ [0,K − 1].
Let us define h(x) := ec(α+(1−α)ex+1)−ex, x ∈ E. Noting that h′(x) = ex(ec+1(1−α)−1),
we get that h is monotonic. This together with the estimates

h(0) = ecα+ ec(1− α)e− 1 ≥ ec(α+ (1− α))− 1 = ec − 1 > 0;

h(K − 1) = ecα+ ec(1− α)eK − eK−1 =
αec

1− (1− α)ec
(1− e−1) > 0

shows h(x) ≥ 0 for x ∈ [0,K − 1]. Thus, for x < cn − 1 ≤ K − 1, we get

ewn+1(x) = ex ∧ ec(α+ (1− α)ex) = ex = ex ∧ ecn+1 ,

which concludes the proof of (6.6). Letting n→∞ in (6.6) and recalling Theorem 3.3 we
get u(x) = x ∧K.

Step 2. We show that u(x) = x, x ∈ E, for α ∈ [0, 1− e−c]. Noting that (1− α)ec ≥ 1 and
recalling (6.7), we get that cn →∞ as n→∞. Thus, to conclude the proof it is enough to
show wn+1(x) := x ∧ cn+1, n ∈ N, x ∈ E. As previously, for x+ 1 ≥ cn, the claim follows
from direct calculation. For x + 1 < cn let us define h(x) := ec(α + (1 − α)ex+1) − ex,
x ∈ E and note that

h′(x) = ex(ec+1(1− α)− 1) ≥ 0, x ∈ E,

as ec+1(1−α) > ec(1−α) ≥ 1. This, together with the inequality h(0) > 0 shows h(x) ≥ 0,
x ∈ E. Consequently, we get wn+1(x) := x ∧ cn+1, thus letting n→∞, we get u(x) = x,
x ∈ E.

Step 3. We show that w(x) = x, x ∈ E, for α ∈ [0, 1 − e−c−1]. Recalling Theorem 3.3 it
is enough to show limn→∞ wn(x) = x, x ∈ E, where the sequence (wn) is recursively
defined as

w0(x) := x, ewn+1(x) := ex ∧ ec(αewn(0) + (1− α)ewn(x+1)), n ∈ N, x ∈ E.
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Noting that α ∈ [0, 1− e−c−1] implies (ec+1(1− α)− 1) ≥ 0, we get

ex(ec+1(1− α)− 1) ≥ −αec, x ∈ E.

This inequality is equivalent to ec(α+ (1− α)ex+1) ≥ ex, x ∈ E, which implies

ex ∧ ec(αe0 + (1− α)ex+1) = ex, x ∈ E. (6.8)

Using (6.8), inductively we get wn(x) = x for any n ∈ N and x ∈ E. Thus limn→∞ wn(x) =

x, x ∈ E, and recalling Theorem 3.3 we get w(x) = x, x ∈ E.

Step 4. We show that w(x) = x ∧K, x ∈ E, for α ∈ (1− e−c−1, 1]. Recalling that in this
case u(x) = x ∧K and u(x) ≤ w(x), x ∈ E, it is enough to show

lim inf
n→∞

Ex
[
ecτK∧n+XτK∧n

]
= ex∧K , x ∈ E, (6.9)

where τK = inf{n ≥ 0 : Xn ∈ [0,K]}. For x ∈ [0,K] we get Px[τK = 0] = 1 and
consequently Ex

[
ecτK+XτK

]
= ex. For x > K we get

Px[τK = inf{n ≥ 0 : Xn = 0}] = 1.

Thus, for x > K and n ≥ 1, we get

Ex
[
ecτK∧n+XτK∧n

]
=

n∑
k=1

Ex
[
1{τK=k}e

ck+Xk
]

+

∞∑
k=n+1

Ex
[
1{τK=k}e

cn+Xn
]

=

n∑
k=1

α(1− α)k−1eck +

∞∑
k=n+1

α(1− α)k−1ecn+x+n.

Noting that
∑∞
k=n+1 α(1− α)k−1 = (1− α)n and (1− α)nen(c+1) → 0 as n→∞, we get

lim inf
n→∞

Ex
[
ecτK∧n+XτK∧n

]
= lim
n→∞

n∑
k=1

α(1− α)k−1eck = eK , x > K,

which concludes the proof of (6.9).

Remark 6.5. Let τ := inf{n ∈ N : u(Xn) = G(Xn)} and let Zn := ecn+Xn , n ∈ N. Using
the argument leading to (6.9) we may show that the process (Zn∧τ ), n ∈ N, is uniformly
integrable if and only if α ∈ [0, 1− e−c] ∪ (1− e−c−1, 1]. Thus, in this case the condition
from Theorem 3.6 is also necessary for the equality u ≡ w.

Next, let τ := inf{n ∈ N : w(Xn) = G(Xn)}. One may show that the process (Zn∧τ ),
n ∈ N, is uniformly integrable for any α ∈ [0, 1]. In particular, for α ∈ (1− e−c, 1− e−c−1],
we get that uniform integrability of (Zn∧τ ), n ∈ N, does not imply the equality of u and
w; see Remark 3.7.

Remark 6.6. Let us focus on the model from Example 6.4 with α ∈ (1− e−c, 1− e−c−1].
Define the function v : E → R by

v(x) :=

{
x, x ∈ [0,K] ∪N,
K, otherwise.

We show that v is also a solution to the Bellman equation (6.5). Indeed, noting that
v(x) = w(x) for x ∈ N, where w(x) := x, x ∈ E, and recalling that w is a solution to (6.5),
we get

ev(x) = ew(x) = ex ∧ ec
(
αew(0) + (1− α)ew(x+1)

)
= ex ∧ ec

(
αev(0) + (1− α)ev(x+1)

)
, x ∈ N.

EJP 27 (2022), paper 4.
Page 23/30

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP736
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Risk-sensitive optimal stopping

Similarly, noting that v(x) = u(x) for x ∈ E \N, where u(x) := x ∧K, x ∈ E, we get

ev(x) = ex ∧ ec
(
αev(0) + (1− α)ev(x+1)

)
, x ∈ E \N.

Consequently, v is a solution to (6.5) and it is different from u and w; cf. Theorem 3.3.
Also, note that v is discontinuous. In fact, using similar logic we may construct infinitely
many (discontinuous) solutions to (6.5).

We conclude this section with the example for the non-uniqueness of a solution to the
continuous time Bellman equation.

Example 6.7. In this example we use the dynamics from Example 6.4 to get a piecewise
deterministic (piecewise constant) continuous time Markov process X on the state space
E := [0,+∞). In a nutshell, under the measure Px, the process X starts at x ∈ E and
stays at this state up to the exponentially distributed time τ1. At τ1, the process is subject
to the immediate jump, with after jump state equals to 0 with probability α and equals to
x+ 1 with probability (1− α). Then, the process stays at the new state with independent
exponentially distributed time and the procedure repeats.

Let us now provide more details on the process construction. First, let (Yn) be a
discrete time Markov process with dynamics studied in Example 6.4, i.e.

Px[Y1 = 0] = α, Px[Y1 = x+ 1] = 1− α, x ∈ E,

for some α ∈ [0, 1]. Also, let (τn)∞n=1 be an increasing sequence of non-negative random
variables. We assume that under any Px, x ∈ E, the increments (τn+1 − τn), n ∈ N, are
exponentially distributed with (common) parameter λ > 0; note that here we follow
the convention τ0 ≡ 0. Also, we assume that under any Px, x ∈ E, jump times (τn) are
independent of (Yn). Finally, we define the process X as Xt := Yn for t ∈ [τn, τn+1).
We refer to [10] for a more detailed discussion on the piecewise deterministic Markov
processes.

By analogy to Example 6.4, we set g ≡ d with d ∈ (0, λ) and G(x) = x, x ∈ E. Also, we
consider the continuous time optimal stopping problems

u(x) := inf
τ

lnEx[edτ+Xτ ], x ∈ E. (6.10)

w(x) := inf
τ

lim inf
T→∞

lnEx[ed(τ∧T )+Xτ∧T ], x ∈ E. (6.11)

Due to the non-negativity of d, it is optimal to stop only at the times when the process is
subject to a jump. Thus, the problem may be embedded in the discrete-time setting with
the corresponding Bellman equation of the form

ev(x) = ex ∧ Ex
[
edτ1+v(Xτ1 )

]
, x ∈ E. (6.12)

Using independence of (Yn) and (τn) and the fact that τ1 is exponentially distributed, for
any x ∈ E, we get

Ex

[
edτ1+v(Xτ1 )

]
= Ex

[
edτ1+v(Y1)

]
=

∫ ∞
0

λe−t(λ−d)dt
(
αev(0) + (1− α)ev(x+1)

)
.

Thus, Equation (6.12) could be rewritten as

ev(x) = ex ∧ λ

λ− d

(
αev(0) + (1− α)ev(x+1)

)
, x ∈ E.

Note that setting c := lnλ− ln(λ− d), we get

ev(x) = ex ∧ ec
(
αev(0) + (1− α)ev(x+1)

)
, x ∈ E, (6.13)
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which coincides with (6.5). Thus, recalling the discussion in Example 6.4, we get the
continuous time dynamics with multiple solutions to the corresponding Bellman equation.
More specifically, using a suitable embedding, it can be shown that solutions to (6.13)
satisfy

ev(x) = inf
τ
Ex

[
e(τ∧t)d+1{τ<t}Xτ+1{τ≥t}v(Xt)

]
, t ≥ 0, x ∈ E, (6.14)

which is a version of (5.1) corresponding to (6.10) and (6.11). Since by Example 6.4 we
get multiple solutions to (6.13), we also get multiple solutions to (6.14).

7 Additional results and deferred proofs

In this section we present the proof of Proposition 4.1. This is an extension of the
results from [17], where the function G is assumed to be bounded from above; see
Propositions 10 and 11 therein. Throughout this section we assume (A1)–(A3).

For any n ∈ N and T ≥ 0, let us define bounded versions of (4.3) and (4.4) by

vnT (x) := inf
τ≤T

lnEx

[
e
∫ τ
0
g(Xs)ds+1{τ<T}G(Xτ )∧n

]
, T ≥ 0, x ∈ E, (7.1)

vnT (x) := inf
τ≤T

lnEx

[
e
∫ τ
0
g(Xs)ds+G(Xτ )∧n

]
, T ≥ 0, x ∈ E. (7.2)

We summarise the properties of vnT and vnT in the following lemma. For the proof, see
Proposition 11 and Remark 12 from [17].

Lemma 7.1. Let n ∈ N and let the functions vnT and vnT be given by (7.1) and (7.2),
respectively. Then

1. The function (T, x) 7→ vnT (x) is jointly continuous. Moreover,

τnT = inf{t ≥ 0 : vnT−t(Xt) ≥ G(Xt) ∧ n} ∧ T (7.3)

is an optimal stopping time for vnT .

2. The function (T, x) 7→ vnT (x) is jointly continuous. Moreover,

τnT = inf{t ≥ 0 : vnT−t(Xt) ≥ G(Xt) ∧ n} (7.4)

is an optimal stopping time for vnT .

Let us now link the functions vnT and vnT with wT and wT .

Lemma 7.2. Let the functions wT and wT be given by (4.3) and (4.4), respectively. Also,
let the sequences (vnT ) and (vnT ) be given by (7.1) and (7.2), respectively. Then, for any
x ∈ E and T ≥ 0, we get

wT (x) = lim
n→∞

vnT (x) and wT (x) = lim
n→∞

vnT (x).

Proof. We present the proof only for wT ; the proof for wT is analogous and omitted for
brevity.

Let us fix T ≥ 0 and x ∈ E. Also, let us define the family of events An :=

{supt∈[0,T ]G(Xt) ≤ n}, n ∈ N. For any n ∈ N we get An ⊂ An+1. Moreover, using
càdlàg property of X, continuity of G, and the fact that T <∞, we get Px [∪∞n=1An] = 1.

Recalling Lemma 7.1 and using right continuity of X, on the event {τnT < T}, we get
vnT−τnT

(XτnT
) ≥ G(XτnT

) ∧ n. Thus, on the event An ∩ {τnT < T} we get

vn+1
T−τnT

(XτnT
) ≥ vnT−τnT (XτnT

) ≥ G(XτnT
) ∧ n = G(XτnT

) ≥ G(XτnT
) ∧ (n+ 1),
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hence τn+1
T ≤ τnT on An ∩ {τnT < T}. In fact, we get τn+1

T ≤ τnT on An; this follows from
the fact that on An ∩ {τnT = T} directly from (7.3) we get τn+1

T ≤ T = τnT . Thus, acting
inductively, for any k ≥ 0 we get τn+k+1

T ≤ τn+k
T on An. Thus, the limit τ̂T := limn→∞ τnT

is well defined. Then, using right continuity of X and Fatou Lemma, we get

ewT (x) ≤ Ex
[
e
∫ τ̂T
0 g(Xs)ds+1{τ̂T <T}G(Xτ̂T )

]
= Ex

[
lim
n→∞

e
∫ τnT
0 g(Xs)ds+1{τn

T
<T}G(Xτn

T
)∧n
]

≤ lim inf
n→∞

Ex

[
e
∫ τnT
0 g(Xs)ds+1{τn

T
<T}G(Xτn

T
)∧n
]

= lim
n→∞

ev
n
T (x) ≤ ewT (x),

which concludes the proof.

Let us now show a useful result characterising an optimal stopping time for the finite
horizon stopping problem with possible discontinuity at the terminal point.

Lemma 7.3. Let h : E → R+ be a continuous function satisfying h(·) ≤ G(·). Also, for
any T ≥ 0, let us define

vT (x) := inf
τ≤T

lnEx

[
e
∫ τ
0
g(Xs)ds+1{τ<T}G(Xτ )+1{τ=T}h(XT )

]
, x ∈ E.

Assume that the map (T, x) 7→ vT (x) is jointly continuous. Then, for any T ≥ 0 the
stopping time

τT := inf{t ≥ 0 : vT−t(Xt) ≥ G(Xt)} ∧ T

is optimal for vT (x), x ∈ E. Moreover, for any T ≥ 0 and x ∈ E, the process

zT (t) := e
∫ t∧T
0

g(Xs)ds+vT−t∧T (Xt∧T ), t ≥ 0

is a Px-submartingale and (zT (t ∧ τT )), t ≥ 0, is a Px-martingale.

Proof. The argument is partially based on the third step of the proof of Proposition 11
in [17]. For transparency, we present it in detail.

We start with showing optimality of τT . For t ∈ [0, T ], let us define

yT (t) := e
∫ t
0
g(Xs)ds+1{t<T}G(Xt)+1{t=T}h(XT ).

Using argument from [13] one can show that zT is the Snell envelope of yT . In particular,
from Theorem 2 from [12], we get that (zT (t)), t ≥ 0, is a submartingale. Also, using
Theorem 4 from [12], we get that

τεT := inf {t ≥ 0 : zT (t) ≥ −ε+ yT (t)}

is an ε-optimal stopping time for evT (x), for any ε > 0, T ≥ 0, and x ∈ E. Thus, setting

τ̂εT := inf
{
t ≥ 0 : evT−t(Xt) ≥ (−ε) · e−

∫ t
0
g(Xs)ds + eG(Xt)

}
, (7.5)

we get τεT = τ̂εT ∧ T . Now, noting that τ̂ε1T ≥ τ̂
ε2
T , whenever 0 ≤ ε1 ≤ ε2, we may define

τ̂T := lim
ε↓0

τ̂εT ∧ T = lim
ε↓0

τεT .

Let us now show that τ̂T = τT . For any ε > 0, on the event {τ̂εT < T}, recalling (7.5),
continuity of (T, x) 7→ vT (x) and x 7→ G(x), and right-continuity of (Xt), we get

e
vT−τ̂ε

T

(
Xτ̂ε

T

)
≥ (−ε) · e−

∫ τ̂εT
0 g(Xs)ds + e

G(Xτ̂ε
T

)
. (7.6)
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Thus, on the set {τ̂T < T}, letting ε ↓ 0 in (7.6), we get evT−τ̂T (Xτ̂T ) ≥ eG(Xτ̂T ). Since
vT (x) ≤ G(x), for any x ∈ E and T ≥ 0, on the event {τ̂T < T}, we also get vT−τ̂T (Xτ̂T ) =

G(Xτ̂T ). Recalling definition of τT , we get τT ≤ τ̂T . Noting that τεT ≤ τT , for any ε > 0,
and letting ε→ 0, we get τT = τ̂T .

Now we show that τT = τ̂T is optimal for vT . Using Fatou Lemma we get

lim
ε→0

(evT (x) + ε) ≥ lim inf
ε→0

Ex

[
e
∫ τεT
0 g(Xs)ds+1{τε

T
<T}G(Xτε

T
)+1{τε

T
=T}h(XT )

]
≥ Ex

[
lim inf
ε→0

e
∫ τεT
0 g(Xs)ds+1{τε

T
<T}G(Xτε

T
)+1{τε

T
=T}h(XT )

]
. (7.7)

Note that
∫ τεT

0
g(Xs)ds→

∫ τ̂T
0

g(Xs)ds as ε ↓ 0. Also, recalling monotonicity of ε 7→ τεT , on
the event A := {∃ε : τεT = T}, we get

lim
ε→0

(
1{τεT<T}G(XτεT

) + 1{τεT=T}h(XT )
)

= lim
ε→0

1{τεT=T}h(XT ) = 1{τ̂T=T}h(XT )

= 1{τ̂T<T}G(Xτ̂T ) + 1{τ̂T=T}h(XT ).

Similarly, using quasi-left continuity of X and recalling that G ≥ h, on the event Ac =

{∀ε : τεT < T}, we get

lim
ε→0

(
1{τεT<T}G(XτεT

) + 1{τεT=T}h(XT )
)

= lim
ε→0

G(XτεT
) = G(Xτ̂T )

≥ 1{τ̂T<T}G(Xτ̂T ) + 1{τ̂=T}h(XT ).

Thus, from (7.7), we get

lim
ε→0

(evT (x) + ε) ≥ Ex
[
e
∫ τ̂T
0 g(Xs)ds+1{τ̂T <T}G(Xτ̂T )+1{τ̂T=T}h(XT )

]
≥ evT (x)

and τT = τ̂T is optimal for vT .
Finally, let us show martingale property of (zT (t ∧ τT )), t ≥ 0. Noting that for any

t ≥ 0 we get zT (t ∧ τT ) ≤ eT‖g‖ supt∈[0,T ] e
G(Xt) and using (A2), we get that the process

(zT (t ∧ τT )), t ≥ 0, is uniformly integrable. In particular, recalling that τT is optimal for
vT (x), x ∈ E, we get

Ex[zT (0)] = evT (x) = Ex

[
e
∫ τT
0 g(Xs)ds+1{τT<T}G(XτT )+1{τT=T}h(XT )

]
= Ex

[
e
∫ τT
0 g(Xs)ds+vT−τT (XτT )

]
= Ex

[
lim
t→∞

e
∫ τT∧t
0 g(Xs)ds+vT−τT∧t(XτT∧t)

]
= lim
t→∞

Ex [zT (t ∧ τT )] . (7.8)

Also, using submartingale property of (zT (t)), t ≥ 0, and Doob optional stopping theorem,
for any t, h ≥ 0 and x ∈ E, we get

zT (t ∧ τT ) ≤ Ex [zT ((t+ h) ∧ τT )|Ft] . (7.9)

Thus, we get Ex [zT (t ∧ τT )] ≤ Ex [zT ((t+ h) ∧ τT )], which combined with (7.8) shows
Ex [zT (t ∧ τT )] = Ex [zT ((t+ h) ∧ τT )] for any t, h ≥ 0. Thus, we have equality in (7.9),
which concludes the proof.
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Now we are ready to show the proof of Proposition 4.1.

Proof of Proposition 4.1. We present the proof only for wT (x); the argument for wT (x)

is similar and is omitted for brevity. For transparency, we split the argument into three
steps: (1) proof of monotonicity and continuity of T 7→ wT (x) for fixed x ∈ E; (2) proof of
continuity of x 7→ wT (x) for fixed T ≥ 0; (3) proof of joint continuity of (T, x) 7→ wT (x),
optimality of τT and martingale characterisation.

Step 1. Monotonicity and continuity of T 7→ wT (x) for fixed x ∈ E. First, we prove
monotonicity property of T 7→ wT (x). Let T, u ≥ 0 and let τε ≤ T be an ε-optimal stopping
time for ewT (x). Then, using the fact that g,G ≥ 0, we get

ewT−u(x) ≤ Ex
[
e
∫ τε∧(T−u)
0 g(Xs)ds+1{τε<T−u}G(Xτε )

]
≤ Ex

[
e
∫ τε
0

g(Xs)ds+1{τε<T}G(Xτε )
]
≤ ewT (x) + ε. (7.10)

Letting ε→ 0, we conclude that T 7→ wT (x) is non-decreasing.
Second, we show continuity of T 7→ wT (x). Recalling that by Lemma 7.1 and

Lemma 7.2, for any x ∈ E, the function T 7→ wT (x) is an increasing limit of continuous
functions T 7→ vnT (x), we get that T 7→ wT (x) is lower semicontinuous. This, together
with the fact that T 7→ wT (x) is non-decreasing, shows left continuity of T 7→ wT (x).
For the right continuity, let τε ≤ T be an ε-optimal stopping time for ewT (x). Using
monotonicity of wT , boundedness of g and (A2), we get

ewT (x) ≤ lim
u↓0

ewT+u(x) ≤ lim
u↓0
Ex

[
e
∫ τε+u
0

g(Xs)ds+1{τε+u<T+u}G(Xτε+u)
]

= Ex

[
e
∫ τε
0

g(Xs)ds+1{τε<T}G(Xτε )
]
≤ ewT (x) + ε; (7.11)

note in the second line we used bounded convergence theorem and the fact that (Xt) is
right continuous. Letting ε→ 0 we get right continuity of T → wT (x), for any x ∈ E.

Step 2. Continuity of x 7→ wT (x) for fixed T ≥ 0. As in the first step, recalling Lemma 7.1
and Lemma 7.2, we get that, for any T ≥ 0, the function x 7→ wT (x) is lower semicontin-
uous. To show upper semicontinuity we use dyadic approximation of wT . For any m ∈ N
and T ≥ 0, we set

wmT (x) := inf
τ∈TmT

lnEx

[
e
∫ τ
0
g(Xs)ds+1{τ<T}G(Xτ )

]
, x ∈ E, (7.12)

where T mT is the family of stopping times taking values in
[
0, T2m ,

2T
2m , . . . , T

]
. We show

that, for any T ≥ 0 and m ∈ N, the map x 7→ wmT (x) is continuous. Let us fix T ≥ 0,
m ∈ N, and define recursively the sequence of functions

w̃0
T (x) := 0,

ew̃
j
T (x) := Ex

[
e
∫ T

2m
0 g(Xs)ds+w̃

j−1
T (X T

2m
)

]
∧ eG(x), j = 1, . . . , 2m.

By (A3), the function x 7→ w̃jT (x) is continuous, for j = 1, . . . , 2m. Also, using standard
iteration arguments (see e.g. Section 2.2 in [25]) one can show that wmT = w̃2m

T , which
implies continuity of x 7→ wmT (x).

We now show that limm→∞ wmT (x) = wT (x) for any x ∈ E and T ≥ 0. This together
with continuity of x 7→ wmT (x) and the fact that (wmT (x))m∈N is monotonically decreasing,
shows upper semicontinuity of x 7→ wT (x). Let ε > 0 and τε ≤ T be an ε-optimal stopping
time for ewT (x). For any m ∈ N, we set

τmε := inf{τ ∈ T mT : τ ≥ τε} =
∑2m

j=1 1{ T
2m (j−1)<τε≤ T

2m j}
T

2m j.
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Noting that τmε ≤ T , for any x ∈ E, we get

0 ≤ ew
m
T (x) − ewT (x)

≤ Ex
[
e
∫ τmε
0 g(Xs)ds+1{τmε <T}G(Xτmε )

]
− Ex

[
e
∫ τε
0

g(Xs)ds+1{τε<T}G(Xτε )
]

+ ε

= Ex

[
e
∫ τmε
0 g(Xs)ds

(
e1{τmε <T}G(Xτmε ) − e1{τε<T}G(Xτε )

)]
+ Ex

[
e
∫ τε
0

g(Xs)ds
(
e
∫ τmε
τε

g(Xs)ds − 1
)
e1{τε<T}G(Xτε )

]
+ ε

≤ Ex
[
e
∫ τmε
0 g(Xs)ds

(
e1{τmε <T}G(Xτmε ) − e1{τε<T}G(Xτε )

)]
+
(
ewT (x) + ε

)(
e
T

2m ‖g‖ − 1
)

+ ε. (7.13)

For any T ≥ 0 and x ∈ E, we get
(
ewT (x) + ε

) (
e
T

2m ‖g‖ − 1
)
→ 0 as m→∞. Also, noting

that τmε ↓ τε and using (A2), we get

Ex

[
e
∫ τmε
0 g(Xs)ds

(
e1{τmε <T}G(Xτmε ) − e1{τε<T}G(Xτε )

)]
≤ Ex

[
e
∫ τmε
0 g(Xs)ds

(
e1{τε<T}G(Xτmε ) − e1{τε<T}G(Xτε )

)]
≤ eT‖g‖Ex

∣∣∣eG(Xτmε ) − eG(Xτε )
∣∣∣→ 0, m→∞. (7.14)

Consequently, letting ε→ 0 in (7.13), we conclude the proof of this step.

Step 3. Continuity of (T, x) 7→ wT (x), optimality of (4.5), and martingale characterisation.
Let the sequence (Tn) ⊂ R+ be monotone and such that Tn → T , and (xn) ⊂ E be such
that xn → x ∈ E. Using continuity of x 7→ wT (x) and monotonicity of T 7→ wT (x), from
Dini’s theorem we get that the convergence of wTn(x) to wT (x) is uniform in x from
compact sets; see Theorem 7.13 in [24] for details. Thus, we get

|wTn(xn)− wT (x)| → 0, n→∞, (7.15)

which shows continuity of the map (T, x) 7→ wT (x). Thus, using Lemma 7.3 we get that,
for any T ≥ 0 and x ∈ E, the stopping time τT is optimal for wT (x), the process zT (t) is
a Px-submartingale and zT (t ∧ τT ) is a Px-martingale, which concludes the proof.
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