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Abstract

We consider the asymmetric simple exclusion process (ASEP) on Z started from step
initial data and obtain the exact Lyapunov exponents for H0(t), the integrated current
of ASEP. As a corollary, we derive an explicit formula for the upper-tail large deviation
rate function for −H0(t). Our result matches with the rate function for the integrated
current of the totally asymmetric simple exclusion process (TASEP) obtained in [40].
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1 Introduction

1.1 The ASEP and main results

In this paper, we study the upper-tail Large Deviation Principle (LDP) of the asymmet-
ric simple exclusion process (ASEP) with step initial data. The ASEP is a continuous-time
Markov chain on particle configurations x = (x1 > x2 > · · · ) in Z. The process can be
described as follows. Each site i ∈ Z can be occupied by at most one particle, which has
an independent exponential clock with exponential waiting time of mean 1. When the
clock rings, the particle jumps to the right with probability q or to the left with probability
p = 1 − q. However, the jump is only permissible when the target site is unoccupied.
For our purposes, it suffices to consider configurations with a rightmost particle. At
any time t ∈ R>0, the process has the configuration x(t) = (x1(t) > x2(t) > · · · ) in Z,
where xj(t) denotes the location of the j-th rightmost particle at this time. Appearing
first in the biology work of Macdonald, Gibbs, and Pipkin [56] and introduced to the
mathematics community two years later by [65], the ASEP has since become the “default
stochastic model to study transport phenomena”, including mass transport, traffic flow,
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Upper-tail LDP for ASEP

queueing behavior, driven lattices and turbulence. We refer to [13, 52, 53, 66] for the
mathematical study of and related to the ASEP.

When q = 1, we obtain the totally asymmetric simple exclusion process (TASEP),
which allows jumps only to the right. It connects to several other physical systems
such as the exponential last-passage percolation, zero-temperature directed polymer in
a random environment, the corner growth process and is known to possess complete
determinantal structure (free-fermionicity). We refer the readers to [40, 52, 53, 58] and
the references therein for more thorough treatises of the TASEP.

The dynamics of ASEP are uniquely determined once we specify its initial state. In
the present paper, we restrict our attention to the ASEP started from the step initial
configuration, i.e. xj(0) = −j, j = 1, 2, . . .. We set γ = q − p and assume q > 1

2 , i.e., ASEP
has a drift to the right. An observable of interest in ASEP is H0(t), the integrated current
through 0 which is defined as:

H0(t) := the number of particles to the right of zero at time t. (1.1)

H0(t) can also be interpreted as the one-dimensional height function of the interface
growth of the ASEP and thus carries significance in the broader context of the Kardar-
Parisi-Zhang (KPZ) universality class. We will elaborate on the connection to KPZ
universality class later in Section 1.3. As a well-known random growth model itself, the
large-time behaviors of ASEP with step initial conditions have been well-studied. Indeed,
it is known [52, Chapter VIII, Theorem 5.12] that the current satisfies the following
strong law of large numbers:

1
tH0

(
t
γ

)
→ 1

4 , almost surely as t→∞.

The strong law has been later complemented by fluctuation results in the seminal
works by Tracy and Widom. In a series of papers [69], [70] [71], Tracy and Widom exploit
the integrability of ASEP with step initial data and establish via contour analysis that
H0(t) when centered by t

4 has typical deviations of the order t1/3 and has the following
asymptotic fluctuations:

1
t1/3

24/3
(
−H0

(
t
γ

)
+ t

4

)
=⇒ ξGUE, (1.2)

where ξGUE is the GUE Tracy-Widom distribution [68]. When q = 1, (1.2) recovers the
same result on TASEP, which has been proved earlier by [40].

Given the existing fluctuation results on the ASEP with step initial data, it is natural to
inquire into its Large Deviation Principle (LDP). Namely, we seek to find the probability
of when the event −H0( tγ ) + t

4 has deviations of order t. Intriguingly, one expects the
lower- and upper-tail LDPs to have different speeds: the upper-tail deviation is expected
to occur at speed t whereas the lower-tail has speed t2:

P
(
−H0

(
t
γ

)
+ t

4 < −
t
4y
)
≈ e−t

2Φ−(y); (Lower Tail)

P
(
−H0

(
t
γ

)
+ t

4 > + t
4y
)
≈ e−tΦ+(y). (Upper Tail)

Thus, the upper tail corresponds to ASEP being “too slow” while the lower tail cor-
responds to ASEP being “too fast”. Heuristically, we can make sense of such speed
differentials. Because of the nature of the exclusion process, when a single particle is
moving slower than the usual, it forces all the particles on the left of it to be automati-
cally slower. Hence ASEP becomes slow if only one particle is moving slow. This event
has probability of the order exp(−O(t)). However, in order to ensure that there are many
particles on the right side of origin (this corresponds to ASEP being fast), it requires a
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Upper-tail LDP for ASEP

large number of particles to move fast simulatenously. This event is much more unlikely
and happens with probability exp(−O(t2)).

In this article, we focus on the upper-tail deviations of the ASEP with step initial
data and present the first proof of the ASEP upper-tail LDP on the complete real line.
Consider ASEP with q ∈ ( 1

2 , 1) and set p = 1− q and τ = p/q ∈ (0, 1). Our first theorem
computes the sth-Lyapunov exponent of τH0(t), which is the limit of the logarithm of
E[τsH0(t)] scaled by time:

Theorem 1.1. For s ∈ (0,∞) we have

lim
t→∞

1

t
logE[τsH0(t)] = −hq(s) =: −(q − p)1− τ s2

1 + τ
s
2
. (1.3)

It is well known (see Proposition 1.12 in [36] for example) that the upper-tail large
deviation principle of the stochastic process log τH0(t) is the Legendre-Fenchel dual of
the Lyapunov exponent in (1.3). Since τ < 1, as a corollary, we obtain the following
upper-tail large deviation rate function for −H0(t).

Theorem 1.2. For any y ∈ (0, 1) we have

lim
t→∞

1

t
logP

(
−H0

(
t
γ

)
+ t

4 >
t
4y
)

= −[
√
y − (1− y) tanh−1(

√
y)] =: −Φ+(y), (1.4)

where γ = 2q − 1. Furthermore, we have the following asymptotics near zero:

lim
y→0+

y−3/2Φ+(y) = 2
3 . (1.5)

Figure 1: The figure on the left is the plot of Φ+(y). The right one is the plot of Φ̃+(y).

Remark 1.3. Note that our large deviation result is restricted to y ∈ (0, 1) as P(−H0

(
t
γ

)
+

t
4 >

t
4y) = 0 for y ≥ 1. Furthermore, although Theorem 1.2 makes sense when q = 1, one

cannot recover it from Theorem 1.1, which only makes sense for τ = (1− q)/q ∈ (0, 1).
However, as mentioned before, [40] has already settled the q = 1 TASEP case and
obtained the upper-tail rate function in a variational form. We will later show in Appendix
A that [40] variational formula for TASEP matches with our rate function in (1.4).

Remark 1.4. Recently, the work [25] has obtained a one-sided large deviation bound for
the upper tail of the ASEP. In particular, they showed

P
(
−H0

(
t
γ

)
+ t

4 >
t
4y
)
≤ Ce−tΦ̃+(y), y ∈ (0, 1). (1.6)
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The function Φ̃+ coincides with the correct rate function Φ+ defined in (1.4) only for

y ≤ y0 :=
1−2
√
q(1−q)

1+2
√
q(1−q)

, as captured by Figure 1. We will further compare and contrast our

results and method with [25] later in Section 1.3.

Remark 1.5. For y small enough, following (1.2) and upper tail decay of GUE Tracy-
Widom distribution [32], one expects

P
(
−H0

(
t
γ

)
+ t

4 >
t
4y
)
≈ P(ξGUE > 2−2/3yt2/3) ≈ e− 2

3y
3/2t

Thus the asymptotics in (1.5) shows that Φ+(y) indeed recovers the expected GUE
Tracy-Widom tails as y → 0+.

1.2 Sketch of proof

In this section we present a sketch of the proof of our main results. As explained
before, Theorem 1.2 can be obtained from Theorem 1.1 by standard Legendre-Fenchel
transform technique. So here we only give a brief account of the proof idea of Theorem
1.1. A more detailed overview of the proofs of our main results can be found in Section
2.

The main component of our proof is the following τ -Laplace transform formula for
H0(t) that appears in Theorem 5.3 in [13]:

Theorem 1.6 (Theorem 5.3 in [13]). Fix any δ ∈ (0, 1). For ζ > 0 we have

E
[
Fq(ζτ

H0(t))
]

= det(I +Kζ,t), Fq(ζ) :=

∞∏
n=0

1

1 + ζτn
. (1.7)

Here det(I + Kζ,t) is the Fredholm determinant of Kζ,t : L2(C(τ1− δ2 )) → L2(C(τ1− δ2 )),

and C(τ1− δ2 ) denotes a positively-oriented circular contour centered at 0 with radius
τ1− δ2 . The operator Kζ,t is defined through the integral kernel

Kζ,t(w,w
′) :=

1

2πi

∫ δ+i∞

δ−i∞
Γ(−u)Γ(1 + u)ζu

gt(w)

gt(τuw)

du

w′ − τuw
, (1.8)

for gt(z) = exp
(

(q−p)t
1+ z

τ

)
.

Remark 1.7. The original statement of the above theorem in [13] appears in a much
more general setup with general conditions on the contours. We will explain the choice
of our contours stated above in Section 3 and check that it satisfies the general criterion
for contours as stated in Theorem 5.3 in [13].

We next recall that the Fredholm determinant is defined as a series as follows.

det(I +Kζ,t) := 1 +

∞∑
L=1

tr(K∧Lζ,t ) (1.9)

:= 1 +

∞∑
L=1

1

L!

∫
C(τ1− δ

2 )

· · ·
∫
C(τ1− δ

2 )

det(Kζ,t(wi, wj))
L
i,j=1

L∏
i=1

dwi. (1.10)

The notation K∧Lζ,t comes from the exterior algebra definition, which we refer to [64] for
more details. As a clarifying remark, we use this exterior algebra notation only for the
simplicity of its expression and rely essentially on the definition in (1.10) throughout the
rest of the paper.

To extract information on the fractional moments of τH0(t), we combine the formula
in (1.7) with the following elementary identity, which is a generalized version of Lemma
1.4 in [27].
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Lemma 1.8. Fix n ∈ Z>0 and α ∈ [0, 1). Let U be a nonnegative random variable with
finite n-th moment. Let F : [0,∞)→ [0, 1] be a n-times differentiable function such that∫∞

0
ζ−αF (n)(ζ)dζ is finite. Assume further that ‖F (k)‖∞ <∞ for all 1 ≤ k ≤ n. Then the

(n− 1 + α)-th moment of U is given by

E[Un−1+α] =

∞∫
0

ζ−αE[UnF (n)(ζU)]dζ

∞∫
0

ζ−αF (n)(ζ)dζ

=

∞∫
0

ζ−α dn

dζnE[F (ζU)]dζ

∞∫
0

ζ−αF (n)(ζ)dζ

.

The proof of this lemma follows by an interchange of measure justified by Fubini’s
theorem and the dominated convergence theorem, as E[Un] and ‖F (k)‖∞ < ∞ for all
1 ≤ k ≤ n.

For s > 0, we apply this lemma with U = τH0(t), n = bsc+ 1 and α = s− bsc. We take
F (x) = Fq(x) defined in (1.7) which is shown to be satisfy the hypothesis of Lemma 1.8
(see Proposition 2.2). As a result, we transform the computation of E[τsH0(t)] into that of∫ ∞

0

ζ−α
dn

dζn
E[Fq(ζτ

H0(t))]dζ. (1.11)

Utilizing the exact formula from (1.7) and the definition of Fredholm determinant from
(1.10), we can write the above expression as a series where we identify the leading term
(corresponding to L = 1 term of the series) and a higher-order term (corresponding to
L ≥ 2 terms of the series). We eventually show that the asymptotics of the leading term
matches with the exact asymptotics in (1.3) while the higher-order term decays much
faster. This leads to the proof of Theorem 1.1.

The above description of our method is in line with the Lyapunov moment approach
adopted in the works of [27], [36] and [54] to obtain upper-tail large deviation results
of other integrable models, such as the KPZ equation. Namely, we extract fractional
moments from the (τ -)Laplace transform such as (1.7) according to Lemma 1.8. In
particular, our work draws from those of [27] and [54], which studied the fractional
moments of the Stochastic Heat Equation (SHE) and the half-line Stochastic Heat
Equation, respectively. We will further contextualize the connections of our work to [27],
[36] and [54] in Section 1.3. In the following text, however, we emphasize a few key
differences and technical challenges unique to the ASEP that we have encountered and
resolved in our proof.

First, unlike SHE or half-line SHE, the usual Laplace transform is not available in
case of the ASEP. Instead, we only have the τ -Laplace transform for our observable
of interest. As a result, we have formulated Lemma 1.8 in our paper, which is more
generalized than its prototype in [27, Lemma 1.4], to feed in the τ -Laplace transform.
Consequently, we have worked with τ -exponential functions in our analysis.

Another key difference is that the kernel Kζ,t in (1.8) in our model is much more
intricate than its counterpart in the KPZ model and leads to much more involved analysis
of the leading term. Indeed, Kζ,t is asymmetric and as u varies in (δ − i∞, δ + i∞), the

function gt(w)
gt(τuw) appearing in the kernel Kζ,t, exhibits a periodic behavior, whereas the

kernel in the KPZ models involves Airy functions in its integrand which have a unique
maximum and are much easier to analyze. Furthermore, our model exhibits exponentially
decaying moments of τH0(t) as opposed to the exponentially increasing ones of the KPZ
models in [27] and [54] and this demands a more precise understanding of the trace
term of our Fredholm determinant expansion. For instance in Section 3, to obtain the
precise asymptotics for our leading term, we have performed steepest descent analysis
on the kernel Kζ,t, where the periodic nature of gt(w)

gt(τuw) results in infinitely many critical
points. A major technical challenge in our proof is to argue how the contribution from
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only one of the critical points dominates the those from the rest and this is accomplished
in the proof of Proposition 2.4. Similarly, the asymmetry of the kernel in the ASEP model
has led us to opt for the Hadamard’s inequality approach as exemplified in Section 4 of
[54], instead of the operator theory argument in [27], to obtain a sufficient upper bound
for the higher-order terms in our paper in Section 4.

1.3 Comparison to Previous Works

In a broader context, our main result on the Lyapunov exponent for the ASEP with
step initial data and its upper-tail large deviation belongs to the undertakings of studying
the intermittency phenomenon and large deviation problems of integrable models in
the KPZ universality class. As we have previously alluded to, the KPZ universality
class contains a collection of random growth models that are characterized by scaling
exponent of 1/3 and certain universal non-Gaussian large time fluctuations. We refer to
[2, 21, 67] and the references therein for more details. The ASEP is one of the standard
one-dimensional models of the KPZ universality class and bears connection to several
other integrable models in this class, such as the stochastic six-vertex model [12, 1, 22],
KPZ equation [15, 30, 62, 2, 21], and q-TASEP [13].

On the other hand, the intermittency property is a universal phenomenon that cap-
tures high population concentrations on small spatial islands over large time. Mathemat-
ically, the intermittency of a random field is defined in terms of its Lyapunov exponents.
In particular, the connection between integer Lyapunov moments and intermittency
has long been an active area of study in the SPDE community in last few decades
[35, 16, 7, 34, 38, 20, 17, 4]. For the KPZ equation, [41] predicted the integer Lyapunov
exponents for the SHE using replica Bethe anstaz techniques. This result was later first
rigorously attempted in [7] and correctly proven in [18]. Similar formulas were shown
for the moments of the parabolic Anderson model, semi-discrete directed polymers,
q-Whittaker process (see [10] and [11]). For the ASEP, integer moments formula for
τH0(t) were obtained in [13] using nested contour integral ansatz.

From the perspective of tail events, by studying the asymptotics of integer Lyapunov
exponents formulas, one can extract one-sided bounds on the upper tails of integrable
models. However, these integer Lyapunov exponents alone are not sufficient to provide
the exact large deviation rate function.

Recently, a stream of effort has been devoted to studying large deviations for some
KPZ class models by explicitly computing the fractional Lyapunov exponents. The work
of [27] set this series of effort in motion by solving the KPZ upper-tail large deviation
principle through the fractional Lyapunov exponents of the SHE with delta initial data.
[36] soon extended the same result for the SHE for a large class of initial data, including
any random bounded positive initial data and the stationary initial data. An exact way
to compute every positive Lyapunov exponent of the half-line SHE was also uncovered
in [54]. In lieu of these developments, our main result for the ASEP with step initial
data and its upper-tail large deviation fits into this broader endeavor of studying large
deviation problems of integrable models with the Lyapunov exponent appproach.

Meanwhile, in the direction of the ASEP, as mentioned before, [25] has produced a
one-sided large deviation bound for the upper-tail probability appearing in (1.4) which

coincides with the correct rate function Φ+ defined in (1.4) for y ≤ y0 :=
1−2
√
q(1−q)

1+2
√
q(1−q)

.

This result was sufficient for their purpose of establishing a near-exponential fixation
time for the coarsening model on Z2 and [25] obtained it via steepest descent analysis
on the exact formula for the probability of H0(t/γ). More specially, they worked with the
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following result from [71, Lemma 4] as input:

P
(
−H0

(
t
γ

)
+ t

4 >
t
4y
)

=
1

2πi

∫
|µ|=R

(µ; τ)∞ det(1 + µJ
(µ)
m,t)

dµ

µ
, (1.12)

where m = b 1
4 t(1 − y)c, R ∈ (τ,∞) \ {1, τ−1, τ−2, . . .} is fixed, (µ; τ)∞ := (1 − µ)(1 −

µτ)(1 − µτ2) . . . is the infinite τ -Pochhammer symbol and J
(µ)
m,t is the kernel defined in

Equation (3.4) of [25]. Analyzing the exact pre-limit Fredholm determinant det(1+µJ
(µ)
m,t),

[25] chose appropriate contours for the kernel J (µ)
m,t that pass through its critical points

and performed a steepest descent analysis. However, their choice of contours was
unattainable beyond the threshold y0. Namely, if we attempted to deform the same
contours for y > y0, we would inevitably cross poles, which rendered the steepest
descent analysis much trickier. By adopting the Lyapunov moment approach, we have
avoided this problem when looking for the precise large deviation rate function.

In addition to the relavence of our upper-tail LDP result, it is also worthy to remark
on the difficulty of obtaining a lower-tail LDP of the ASEP with step initial data. As
explained before, the lower-tail P(−H0

(
t
γ

)
+ t

4 < − t
4y) is expected to go to zero at a

much faster rate of exp(−t2Φ−(y)). The existence of the lower-tail rate function has so
far only been shown in the case of TASEP in [40] through its connection to continuous
log-gases. The functional LDPs for TASEP for both tails have been studied in [39], [73],
[60] (upper tail), and [57] (lower-tail). Large deviations for open systems with boundaries
in contact with stochastic reservoirs has also been studied in physics literature. We
mention [29], [28], [8] and the references therein for works in these directions.

More broadly for integrable models in the KPZ universality class, lower tail of the KPZ
equation has been extensively studied in both mathematics and physics communities. In
the physics literature, [50] provided the first prediction of the large deviation tails of the
KPZ equation for narrow wedge initial data. For the upper tail, their analysis also yields
subdominant corrections ([51, Supp. Mat.]). Furthermore, the physics work of [63] first
predicted lower-tail rate function of the KPZ equation for narrow wedge initial data in an
analytical form, followed by the derivations in [24] and [46] via different methods. The
asymptotics of deep lower tail of KPZ equation was later obtained in [45] for a wide class
of initial data. From the mathematics front, the work [23] provided detailed, rigorous tail
bounds for the lower tail of the KPZ equation for narrow wedge initial data. The precise
rate function of its lower-tail LDP was later proved in [72] and [14], which confirmed
the prediction of existing physics literature. The four different routes of deriving the
lower-tail LDP in [63], [24], [46] and [72] were later shown to be closely related in [44].
A new route has also been recently obtained in the physics work of [48] (see also [59]).

In the short time regime, large deviations for the KPZ equation has been studied
extensively in physics literature (see [49], [43], [42] and the references therein for a
review). Recently, [55] rigorously derived the large deviation rate function of the KPZ
equation in the short-time regime in a variational form and recovered deep lower-tail
asymptotics, confirming existing physics predictions. For non-integrable models, large
deviations of first-passage percolation were studied in [19] and more recently [5]. For
last-passage percolation with general weights, recently, geometry of polymers under
lower tail large deviation regime has been studied in [6].

Notation

Throughout the rest of the paper, we use C = C(a, b, c, . . .) > 0 to denote a generic
deterministic positive finite constant that is dependent on the designated variables
a, b, c, . . .. However, its particular content may change from line to line. We also use the
notation C(r) to denote a positively oriented circle with center at origin and radius r > 0.
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Outline

The rest of this article is organized as follows. In Section 2, we introduce the main
ingredients for the proofs of Theorem 1.1 and 1.2. In particular, we reduce the proof of
our main results to Proposition 2.4 (asymptotics of the leading order) and Proposition
2.5 (estimates for the higher order), which are proved in Sections 3 and 4 respectively.
Finally, in Appendix A we compare our rate function Φ+(y), defined in (1.4), to that of
TASEP.

2 Proof of main results

In this section, we give a detailed outline of the proofs of Theorems 1.1 and 1.2. In
Section 2.1 we collect some useful properties of hq and Fq functions defined in (1.4)
and (1.7) respectively. In Section 2.2 we complete the proof of Theorems 1.1 and 1.2
assuming technical estimates on the leading order term (Proposition 2.4) and higher
order term (Proposition 2.5).

Throughout this paper, we fix s > 0 and set n = bsc+ 1 ≥ 1 and α = s− bsc so that
s = n− 1 + α. We also fix q ∈ ( 1

2 , 1) and set p = 1− q and τ = p/q ∈ (0, 1) for the rest of
the article.

2.1 Properties of hq(x) and Fq(x)

Recall the Lyapunov exponent hq(x) defined in (1.3) and the Fq(x) function defined
in (1.7). The following two propositions investigates various properties of these two
functions which are necessary for our later proofs.

Proposition 2.1 (Properties of hq). Consider the function hq : (0,∞) → R defined by

hq(x) = (q − p) 1−τ
x
2

1+τ
x
2

. Then, the following properties hold true:

(a) Bq(x) :=
hq(x)
x is strictly positive and strictly decreasing with

lim
x→0+

Bq(x) = 1
4 (p− q) log τ > 0.

(b) hq is strictly subadditive in the sense that for any x, y ∈ (0,∞) we have

hq(x+ y) < hq(x) + hq(y).

(c) hq is related to Φ+ defined in (1.4) via the following Legendre-Fenchel type transfor-
mation:

Φ+(y) = sup
s∈R>0

{
s

1− y
4

log τ +
1

q − p
hq(s)

}
, y ∈ (0, 1).

Proof. For (a), first, the positivity of Bq(x) follows from the positivity of hq(x). To see its
growth, taking the derivative of Bq(x) we obtain

B′q(x) =
(q − p)(−xτ x2 log τ − 1 + τx)

(1 + τ
x
2 )2x2

. (2.1)

Note that the numerator on the r.h.s of (2.1) is 0 when x = 0 and its derivative against
x is τ

x
2 log τ(τ

x
2 − x

2 log τ − 1) < 0 for x > 0. Thus B′q(x) is strictly negative when x > 0

and Bq(x) is strictly decreasing for x > 0. L’Hôpital’s rule yields that limx→0+ Bq(x) =

h′q(0) = 1
4 (q − p) log τ .
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For (b), direct computation yields

hq(x+ y)− hq(x)− hq(y) = −(q − p) (1− τ
y
2 )(1− τ x2 )(1− τ

x+y
2 )

(1 + τ
x+y
2 )(1 + τ

x
2 )(1 + τ

y
2 )

< 0. (2.2)

Lastly, for part (c), we fix y ∈ (0, 1) and define

gy(s) := s
1− y

4
log τ +

1

q − p
hq(s), s > 0.

Direct computation yields g′y(s) = ( 1−y
4 −

τ
s
2

(1+τ
s
2 )2

) log τ and g′′y (s) = τ
s
2 (τ

s
2−1) log2 τ

2(1+τ
s
2 )3

< 0.

Thus gy(s) is concave on (0,∞) and hence attains its unique maxima when g′y(s) = 0 or

equivalently 1−y
4 = τ

s
2

(1+τ
s
2 )2

. The last equation has s = 2 logτ (
1−√y
1+
√
y ) as the only positive

solution and hence it defines the unique maximum. Substituting this s back into gy(s)

generates the final result as Φ+(y).

Proposition 2.2 (Properties of Fq(ζ)). Consider the function Fq : [0,∞)→ [0, 1] defined
by Fq(ζ) :=

∏∞
n=0(1 + ζτn)−1. Then, the following properties hold true:

(a) Fq is an infinitely differentiable function with (−1)nF
(n)
q (ζ) ≥ 0 for all x > 0. Further-

more, ‖F (n)
q ‖∞ <∞ for each n.

(b) For each n ∈ Z>0, and α ∈ [0, 1), (−1)n
∫∞

0
ζ−αF

(n)
q (ζ)dζ is positive and finite.

(c) All the derivatives of Fq have superpolynomial decay. In other words for any m,n ∈
Z≥0 we have

sup
ζ>0
|ζmF (n)

q (ζ)| <∞.

Proof. (a) Note that Fq(ζ) =
∏∞
n=0(1 + ζτn)−1 = (−ζ; τ)−1

∞ where we recall that (−ζ; τ)∞
is the τ -Pochhammer symbol. As (−ζ; τ)∞ is analytic [3, Corollary A.1.6.] and nonzero
for ζ ∈ [0,∞), its inverse Fq(ζ) is analytic.

We next rewrite Fq(ζ) =
∏∞
n=0 fn(ζ), where fn(ζ) = (1 + ζτn)−1. Denote H(ζ) :=

logFq(ζ). Since each fn(ζ) ∈ (0, 1) is analytic for ζ ∈ [0,∞) and the product
∏∞
n=0 fn(ζ) ∈

(0, 1) converges locally and uniformly, H(ζ) is well-defined and H(ζ) =
∑∞
n=0 log fn(ζ).

Given that |
∑∞
n=0

1
fn(ζ)f

′
n(ζ)| =

∑∞
n=0

τn

(1+ζτn) <
1

1−τ , we have

H ′(ζ) =
F ′q(ζ)

Fq(ζ)
=

∞∑
n=1

f ′n(ζ)

fn(ζ)
=: G(ζ). (2.3)

Note thatG(ζ) = −
∑∞
j=1 τ

jfj(ζ) and |G(ζ)| <∞. For eachm ∈ Z>0, let us setG(m)(ζ) :=

−
∑∞
j=1 τ

jf
(m)
j (ζ). As f (m)

j (ζ) = (−1)mm! τmj

(1+ξτj)m+1 , we obtain |G(m)(ζ)| ≤ m!
1−τm+1 <

∞ converges locally and uniformly. Induction on m gives us that G(ζ) is infinitely
differentiable and the m-th derivative of G is G(m). It follows that Fq(ζ) is infinitely
differentiable too. In particular, for any finite n ∈ Z≥0, by Leibniz’s rule on the relation
(2.3) we obtain

F (n+1)
q (ζ) =

n∑
k=0

(
n

k

)
F (n−k)
q (ζ)G(k)(ζ). (2.4)

Observe that (−1)k+1G(k) is positive and finite. As Fq is positive and finite, using (2.4),

induction gives us that (−1)nF
(n)
q is also positive and finite. As ‖G(m)‖∞ and ‖Fq‖∞ are

finite, using (2.4), induction gives us that ‖F (n)
q ‖∞ is finite for any n ∈ Z≥0.
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(b) For α ∈ [0, 1), positivity of the integral (−1)n
∫∞

0
ζ−αF

(n)
q (ζ)dζ follows from part

(a). To check the integrability, we first verify the n = 0 case. Since ζ ≥ 0 and τ ∈ (0, 1),

0 <

∫ ∞
0

ζ−αFq(ζ)dζ =

∫ ∞
0

ζ−α
∞∏
m=0

1

1 + ζτm
dζ <

∫ ∞
0

ζ−α
1

1 + ζ
dζ

=

∫ 1

0

ζ−α
1

1 + ζ
dζ +

∫ ∞
1

dζ

ζα(1 + ζ)
<

∫ 1

0

ζ−αdζ +

∫ ∞
1

dζ

ζα+1
<∞.

When n > 0, using (2.4) and the fact the |G(m)(ζ)| < m!
1−τm+1 , by induction we deduce the

finiteness of (−1)n
∫∞

0
ζ−αF

(n)
q (ζ)dζ.

(c) Clearly for each m we have Fq(ζ) ≤ 1
(1+ζτm)m+1 forcing superpolynomial decay

of Fq. The superpolynomial decay of higher order derivative now follows via induction
using (2.4).

2.2 Proof of Theorem 1.1 and Theorem 1.2

Recall H0(t) from (1.1). As explained in Section 1.2, the main idea is to use Lemma
1.8 with U = τH0(t) and F = Fq defined in (1.7). Observe that Proposition 2.2 guarantees
F = Fq can be chosen in Lemma 1.8. In the following proposition, we show that limiting
behavior of E[τsH0(t)] is governed by the integral in (1.11) restricted to [1,∞).

Proposition 2.3. For any s > 0, we have

lim
t→∞

1

t
logE[τsH0(t)] = lim

t→∞

1

t
log

[
(−1)n

∫ ∞
1

ζ−α
dn

dζn
E[Fq(ζτ

H0(t))]dζ

]
, (2.5)

where n = bsc+ 1 ≥ 1 and α = s− bsc so that s = n− 1 + α.

Proof. Let U = τH0(t). In this proof, we find an upper and a lower bound of E[Us]

and show that as t → ∞, after taking logarithm of E[Us] and dividing by t, the two
bounds give matching results. Note that as τ ∈ (0, 1) and H0(t) ≥ 0 for any n ∈ Z≥0

and t > 0, U has finite n-th moment. By Proposition 2.2, Fq is n-times differentiable and

|
∫∞

0
x−αF

(n)
q (x)dx| <∞. Denoting dPU (u) as the measure corresponding to the random

variable U we have

(−1)n
∫ ∞

1

ζ−α
dn

dζn
E[Fq(ζτ

H0(t))]dζ = (−1)n
∫ ∞

1

ζ−α
∫ ∞

0

unF (n)
q (ζu)dPU (u)dζ. (2.6)

The (−1)n factor ensures that the above quantities are nonnegative via Proposition 2.2

(a). By the finiteness of the n-th moment of U , ‖F (n)
q ‖∞ <∞ (by Proposition 2.2 (a)), and

Fubini’s theorem, we can interchange the integrals and obtain

r.h.s of (2.6) = (−1)n
∫ ∞

0

un−1+α

∫ ∞
1

(ζu)−αF (n)
q (ζu)d(uζ)dPU (u)

= (−1)n
∫ ∞

0

un−1+α

∫ ∞
u

x−αF (n)
q (x)dx dPU (u). (2.7)

Since the random variable U ∈ [0, 1], we can lower bound the inner integral on the
r.h.s. of (2.7) by restricting the x-integral to [1,∞). Recalling that s = n− 1 + α we have

r.h.s. of (2.6) ≥ (−1)n
(∫ ∞

1

x−αF (n)
q (x)dx

)
E[τsH0(t)]. (2.8)
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As for the upper bound for r.h.s. of (2.6), we may extend the range of integration to
[0,∞). Apply Lemma 1.8 with F 7→ Fq and U 7→ τsH0(t) to get

r.h.s. of (2.6) ≤ (−1)n
∫ ∞

0

ζ−α
dn

dζn
E [Fq(ζU)] dζ

=

[
(−1)n

∫ ∞
0

ζ−αF (n)
q (ζ)dζ

]
E[τsH0(t)].

(2.9)

Note that both the prefactors of E[τsH0(t)] in (2.8) and (2.9) are positive and free of t.
Taking logarithms and dividing by t, we get the desired result.

Next we truncate the integral in r.h.s. of (2.5) further. Recall the function Bq(x)

defined in Proposition 2.1 (a). We separate the range of integration [1,∞) into [1, etBq(s/2)]

and (etBq(s/2),∞) and make use of the Fredholm determinant formula for E[Fq(ζτ
H0(t))]

from Theorem 1.6 to write the integral in r.h.s. of (2.5) as follows.

(−1)n
∫ ∞

1

ζ−α
dn

dζn
E[Fq(ζτ

H0(t))]dζ = (−1)n
∫ etBq(

s
2
)

1

ζ−α
dn

dζn
E[Fq(ζτ

H0(t))]dζ +Rs(t)

= (−1)n
∫ etBq(

s
2
)

1

ζ−α
dn

dζn
det(I +Kζ,t)dζ +Rs(t),

(2.10)

where

Rs(t) := (−1)n
∫ ∞
etBq(

s
2
)
ζ−α

dn

dζn
E[Fq(ζτ

H0(t))]dζ (2.11)

Recall the definition of Fredholm determinant from (1.10). Assuming tr(Kζ,t) to be
differentiable for a moment we may split the first term in (2.10) into two parts and write

(−1)n
∫ etBq(

s
2
)

1

ζ−α
dn

dζn
det(I +Kζ,t)dζ = As(t) + Bs(t) (2.12)

where

As(t) := (−1)n
∫ etBq(

s
2
)

1

ζ−α
dn

dζn
tr(Kζ,t) dζ, (2.13)

Bs(t) := (−1)n
∫ etBq(

s
2
)

1

ζ−α
dn

dζn
[det(I +Kζ,t)− tr(Kζ,t)] dζ. (2.14)

The next two propositions verify that both As(t) and Bs(t) are well-defined and we
defer their proofs to Sections 3 and 4, respectively. The first one guarantees that tr(Kζ,t)

is indeed infinitely differentiable and provides the asymptotics for Re[As(t)].
Proposition 2.4. For each ζ > 0, the function ζ 7→ tr(Kζ,t) is infinitely differentiable
and thus As(t) in (2.13) is well defined. Furthermore, for any s > 0, we have

lim
t→∞

log (Re[As(t)]) = −hq(s). (2.15)

From (2.10), we know that the Fredholm determinant det(I +Kζ,t) is infinitely differ-
entiable. Thus, proposition 2.4 renders (det(I +Kζ,t)− tr(Kζ,t)) infinitely differentiable
as well. Hence Bs(t) is well-defined. In fact, we have the following asymptotics for Bs(t).
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Proposition 2.5. Fix any s > 0 so that s−bsc > 0. Recall Bs(t) from (2.14). There exists
a constant C = C(q, s) > 0 such that for all t > 0, we have

|Bs(t)| ≤ C exp(−thq(s)− 1
C t), (2.16)

where hq(s) is defined in (1.3).

Note that Proposition 2.5 in its current form does not cover integer s. We later
explain in Section 4 why s− bsc > 0 is necessary for our proof. However, this does not
effect our main results as one can deduce Theorem 1.1 for integer s as well via a simple
continuity argument, which we present below. Assuming Propositions 2.4 and 2.5, we
now complete the proof of Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1. Fix s > 0 so that s − bsc > 0. Appealing to Proposition 2.3 and
(2.10) and (2.12) we see that

lim
t→∞

1

t
logE[τsH0(t)] = lim

t→∞

1

t
log [As(t) + Bs(t) +Rs(t)] ,

where As(t), Bs(t), and Rs(t) are defined in (2.13), (2.14) and (2.11) respectively. For
Rs(t), setting V = ζτH0(t) and noting s = n− 1 + α, we see that

|Rs(t)| =
∫ ∞
etBq(

s
2
)
ζ−α−nE

[
|V nF (n)

q (V ) |
]

dζ ≤
[
sup
v>0
|vnF (n)

q (v)|
]
s−1 exp(−tsBq( s2 )).

The fact that supv>0 |vnF
(n)
q (v)| is finite follows from Proposition 2.2 (c). Note that sBq(

s
2 )

is strictly bigger than hq(s) = sBq(s) > 0 via Proposition 2.1 (a). By Proposition 2.4,
when t is large, we see that Re[As(t)] grows like exp(−thq(s)) > exp(−tsBq( s2 )). Similarly,
Proposition 2.5 shows that Re[Bs(t)] is bounded from above by C exp(−thq(s)− 1

C t) for
some constant C = C(q, s), which is strictly less than exp(−thq(s)) for large enough t.
Indeed for all large enough t, we have

1

2
Re[As(t)] ≤ Re[As(t) + Bs(t) +Rs(t)] ≤

3

2
Re[As(t)].

Taking logarithms and dividing by t, and noting that As(t) + Bs(t) +Rs(t) is always real,
we get (1.3) for any noninteger positive s.

To prove (1.3) for positive integer s, we fix s ∈ Z>0. For any K > 2, observe that as
H0(t) is a non-negative random variable (recall the definition from (1.1)) we have

τ (s−K−1)H0(t) ≥ τsH0(t) ≥ τ (s+K−1)H0(t).

Taking expectations, then logarithms and dividing by t, in view of noninteger version of
(1.3) we have

−hq(s−K−1) ≥ lim sup
t→∞

1

t
logE[τsH0(t)] ≥ lim inf

t→∞

1

t
logE[τsH0(t)] ≥ −hq(s+K−1).

Taking K →∞ we get the desired result for integer s.

Proof of Theorem 1.2. For the large deviation result, applying Proposition 1.12 in [36],
with X(t) = H0(t/γ) · log τ , and noting the Legendre-Fenchel type identity for Φ+(y) from
Proposition 2.1 (c), we arrive at (1.4). To prove (1.5), applying L-Hôpital rule a couple of
times we get

lim
y→0+

Φ+(y)

y3/2
= lim
y→0+

2

3

Φ′+(y)
√
y

= lim
x→0+

2

3

tanh−1(x)

x
= lim
x→0+

2

3
· 1

1− x2
=

2

3
.

This completes the proof of the theorem.
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3 Asymptotics of the leading term

The goal of this section is to obtain exact asymptotics of Re[As(t)] defined in (2.13)
as t → ∞. Recall the definition of the kernel Kζ,t from (1.8). We employ a standard
idea that the asymptotic behavior of the kernel Kζ,t and its ‘derivative’ (see (3.8)) and
subsequently that of Re[As(t)] can be derived by the steepest descent method.

Towards this end, we first collect all the technical estimates related to the kernel
Kζ,t in Section 3.1 and go on to complete the proof of Proposition 2.4 in Section 3.2.

3.1 Technical estimates of the kernel

In this section, we analyze the kernel Kζ,t. Much of our subsequent analysis boils
down to understanding the function gt(z), defined in (1.8), that appears in the kernel
Kζ,t. Towards this end, we consider

f(u, z) :=
(q − p)
1 + z

τ

− (q − p)
1 + τuz

τ

, (3.1)

so that the ratio gt(z)
gt(τuz)

that appears in the kernel Kζ,t defined in (1.8) equals to

exp (tf(u, z)). Below we collect some useful properties of this function f(u, z). First
note that ∂zf(u, z) = 0 has two solutions z = ±τ1−u2 , and

∂2
zf(u, z)

∣∣
z=−τ1−u

2
= −2(q − p)τ

3u
2 −2 + τ2u−2

(1− τ u2 )3
,

∂2
zf(u, z)

∣∣
z=τ1−u

2
= 2(q − p)τ

3u
2 −2 − τ2u−2

(1 + τ
u
2 )3

.

(3.2)

The following lemma tells us how the maximum of Re[f(u, z)] behaves.

Lemma 3.1. Fix ρ > 0. For any u ∈ C, with Re[u] = ρ and z ∈ C(τ1− ρ2 ), we have

Re[f(u, z)] ≤ f(ρ, τ1− ρ2 ) = −hq(ρ) (3.3)

where hq(ρ) is defined in (1.3) and C(τ1− ρ2 ) is the circle with center at the origin and

radius τ
1− ρ

2 . Equality in (3.3) holds if and only if τ i Imu = 1, and z = τ1− ρ2 simultaneously.
Furthermore, for the same range of u and z, we have the following inequality:

f(ρ, τ1− ρ2 )− Re[f(u, z)] ≥ (q − p)(1− τ
ρ
2 )τ

ρ
2

4(1 + τ
ρ
2 )2

(2τ
ρ
2−1|z − τ1− ρ2 |+ |τ i Imu − 1|). (3.4)

Proof. Set u = ρ+ iy and z = τ1− ρ2 eiθ with y ∈ R and θ ∈ [0, 2π]. Note that f(ρ, τ1− ρ2 ) =

−hq(ρ), where hq(x) is defined in (1.3). Direct computation yields

Re[f(u, z)] =
(q − p)(τρ − 1)(|1 + τ

ρ
2 e−iθ|2 + |1 + τ

ρ
2 +iyeiθ|2)

2|1 + τ
ρ
2 e−iθ|2|1 + τ

ρ
2 +iyeiθ|2

. (3.5)

Since τ < 1, applying the inequality |1 + τ
ρ
2 e−iθ|2 + |1 + τ

ρ
2 +iyeiθ|2 ≥ 2|1 + τ

ρ
2 e−iθ||1 +

τ
ρ
2 +iyeiθ|, and then noting that |1+τ

ρ
2 e−iθ||1+τ

ρ
2 +iyeiθ| ≤ (1+τ

ρ
2 )2, we see (r.h.s. of (3.5))

≤ −(q − p) 1−τ
ρ
2

1+τ
ρ
2

. Clearly equality holds if and only if θ = 0 and τ iy = 1 simultaneously.

Furthermore, following the above inequalities, we have Re[f(ρ+iy, z)] ≤ −(q−p) 1−τ
ρ
2

|1+τ
ρ
2 eiθ|

and Re[f(ρ+ iy, z)] ≤ −(q − p) 1−τ
ρ
2

|1+τ
ρ
2
+iyeiθ|

. This yields

f(ρ, τ1− ρ2 )− Re[f(ρ+ iy, z)] ≥ (q − p)
[

1− τ
ρ
2

|1 + τ
ρ
2 eiθ|

− 1− τ
ρ
2

1 + τ
ρ
2

]
≥ (q − p)(τ

ρ
2 − τρ)|eiθ − 1|

(1 + τ
ρ
2 )2

(3.6)
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and

f(ρ, τ1− ρ2 )− Re[f(ρ+ iy, z)] ≥ (q − p)
[

1− τ
ρ
2

|1 + τ
ρ
2 +iyeiθ|

− 1− τ
ρ
2

1 + τ
ρ
2

]
≥ (q − p)(1− τ

ρ
2 )τ

ρ
2 |τ iyeiθ − 1|

(1 + τ
ρ
2 )2

.

Adding the above two inequalities we have f(ρ, τ1− ρ2 )−Re[f(ρ+iy, z)]≥(q−p)(1−τ
ρ
2 )τ

ρ
2 |τ iy−1|

2(1+τ
ρ
2 )2

.

Combining this with (3.6) and the substitution τ1− ρ2 eiθ = z we get (3.4). This completes
the proof.

Using the above technical lemma we can now explain the proof of Theorem 1.6.

Proof of Theorem 1.6. Due to Theorem 5.3 in [13], the only thing that we need to verify
is

inf
w,w′∈C(τ1− δ

2 )
u∈δ+iR

|w′ − τuw| > 0 and sup
w,w′∈C(τ1− δ

2 )
u∈δ+iR

∣∣∣∣ gt(w)

gt(τuw)

∣∣∣∣ > 0. (3.7)

Indeed, for every u ∈ δ + iR and w,w′ ∈ C(τ1− δ2 ), we have |w′ − τuw| ≥ |w′| − |τuw| =

τ1− δ2 − τ1+ δ
2 > 0. Recall f(u, z) from (3.1). Applying Lemma 3.1 with ρ 7→ δ yields∣∣∣∣ gt(w)

gt(τuw)

∣∣∣∣ = | exp(tf(u,w))| = exp(tRe[f(u,w)]) ≤ exp(tf(δ, τ1− δ2 )) = exp(−thq(δ)),

where hq is defined in (1.3). This verifies (3.7) and completes the proof.

Remark 3.2. We now explain our choice of the contour Kζ,t defined in (1.8), which
comes from the method of steepest descent. Suppose Re[u] = δ. As noted before, directly
taking derivative of f(u, z) = exp( gt(z)

gt(τuz)
), with respect to z suggests that critical points

are at z = ±τ1−u2 , and thus we take our contour to be C(τ1− δ2 ), so that it passes through
the critical points.

Next we turn to the case of differentiability of tr(Kζ,t) where Kζ,t is defined in (1.8).
Using the function f defined in (3.1), we rewrite the kernel as follows.

Kζ,t(w,w
′) =

1

2πi

∫ δ+i∞

δ−i∞
Γ(−u)Γ(1 + u)ζuetf(u,w) du

w′ − τuw
.

Differentiating the integrand inside the integral in Kζ,t(w.w
′) n-times defines a

sequence of kernel {K(n)
ζ,t }n≥1 : L2(C(τ1− δ2 ))→ L2(C(τ1− δ2 )) given by the kernel:

K
(n)
ζ,t (w,w′) :=

1

2πi

∫ δ+i∞

δ−i∞
Γ(−u)Γ(1 + u)(u)nζ

u−netf(u,w) du

w′ − τuw
, (3.8)

where (a)n :=
∏n−1
i=0 (a − i) for n ∈ Z>0 and (a)0 = 1 is the Pochhammmer symbol and

δ ∈ (0, 1). We also set K(0)
ζ,t := Kζ,t.

Remark 3.3. We remark that unlike Lemma 3.1 in [27], we do not aim to show that Kζ,t

is differentiable as an operator, or its higher order derivatives are equal to the operator
K

(n)
ζ,t . Indeed, showing convergence in the trace class norm is more involved because of

the lack of symmetry and positivity of the operator Kζ,t. However, since we are dealing
with the Fredholm determinant series only, for our analysis it is enough to investigate
how each term of the series are differentiable and how their derivatives are related to
K

(n)
ζ,t .
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Remark 3.4. Note that when viewing K
(n)
ζ,t as a complex integral, we can deform its

u-contour to ρ + iR for any ρ ∈ (0, n ∨ 1). This is due to the analytic continuity of the
integrand as the factor (u)n removes the poles at 1, . . . , n− 1 of Γ(−u).

The following lemma provides estimates of K(n)
ζ,t that is useful for the subsequent

analysis in Sections 3 and 4.

Lemma 3.5. Fix n ∈ Z≥0, t > 0, δ, ρ ∈ (0, n∨1), and consider any borel set A ⊂ R. Recall

hq(x) and Bq(x) from Proposition 2.1 and K
(n)
ζ,t from (3.8). For any w ∈ C(τ1− δ2 ) and

w′ ∈ C and ζ ∈ [1, etBq(
s
2 )], there exists a constant C = C(n, δ, q) > 0 such that whenever

|w′| 6= τ1+ δ
2 we have∫

A

∣∣∣∣ (δ + iy)nζ
ρ−n+iy

sin(−π(δ + iy))
etf(δ+iy,w)

∣∣∣∣ dy

|w′ − τ δ+iyw|
≤ Cζρ−n

||w′| − τ1+ δ
2 |
et·supy∈A Re[f(δ+iy,w)]

≤ Cζρ−n

||w′| − τ1+ δ
2 |
e−thq(δ).

(3.9)

In particular when w′ ∈ C(τ1− δ2 ) we have

|K(n)
ζ,t (w,w′)| ≤ Cζδ−n exp(−thq(δ)). (3.10)

Consequently, K(n)
ζ,t (w,w′) is continuous in the ζ-variable.

Proof. Fix n ∈ Z≥0, t > 0, δ, ρ ∈ (0, n ∨ 1) and w ∈ C(τ1− δ2 ) and w′ ∈ C such that
|w′| 6= τ1+ δ

2 . Throughout the proof the constant C > 0 depends on n, δ, and q – we will
not mention it further.

Consider the integral on the r.h.s. of (3.9). Observe that when δ /∈ Z, |(δ+iy)n| ≤ C|y|n
and 1

| sin(−π(δ+iy))| ≤ Ce−|y|/C. For n ≥ 2, and δ ∈ Z>0∩(0, n), we observe that the product

(δ + iy)n contains the term iy. Hence | iy
sin(−π(δ+iy)) | = | iy

sin(−π(iy)) | ≤ Ce−|y|/C for such

an integer δ. Whereas, | δ+iy
iy | ≤ C|y|n−1 for such an integer δ. Finally, |w′ − τ δ+iyw| ≥

||w′| − |τ δw|| = ||w′| − τ1+ δ
2 |. Combining the aforementioned estimates, we obtain that

r.h.s. of (3.9) ≤
∫
A

C|y|ne−|y|/Cζρ−n|etf(δ+iy,w)| dy

||w′| − τ1+ δ
2 |
.

Since
∫
R
|y|ne−|y|/Cdy converges applying |etf(δ+iy,w)| ≤ etRe[f(δ+iy,w)] we arrive at the

first inequality in (3.9). The second inequality follows by observing Re[f(δ + iy, w)] ≤
−hq(δ) by Lemma 3.1.

Recall K(n)
ζ,t from (3.8). Recall from Remark 3.4 that the δ appearing in (3.8) can be

chosen in (0, n ∨ 1). Pushing the absolute value sign inside the explicit formula in (3.8)
and applying Euler’s reflection principle with change of variables u = δ + iy yield

|K(n)
ζ,t (w,w′)| ≤ 1

2π

∫
R

∣∣∣∣ (δ + iy)nζ
δ−n+iy

sin(−π(δ + iy))
etf(δ+iy,w)

∣∣∣∣ dy

|w′ − τ δ+iyw|
.

(3.10) now follows from (3.9) by taking ρ = δ. To see the continuity of K(n)
ζ,t (w,w′) in ζ,

we fix ζ1 < ζ2 < ζ1 + 1. By repeating the same set of arguments as above we arrive at

|K(n)
ζ2,t

(w,w′)−K(n)
ζ1,t

(w,w′)| ≤ C|ζδ−n2 − ζδ−n1 | exp(−thq(δ)) (3.11)

with the same constant C in (3.10). Clearly l.h.s. of (3.11) converges to 0 when ζ2 → ζ1,
which confirms the kernel’s ζ-continuity.
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3.2 Proof of Proposition 2.4

The goal of this section is to prove Proposition 2.4. Before diving into the proof, we
first settle the infinite differentiability separately in the next proposition.

Proposition 3.6. For any n ∈ Z≥0 and t > 0, the operator K(n)
ζ,t defined in (3.8) is a

trace-class operator with

tr(K
(n)
ζ,t ) =

1

2πi

∫
C(τ1− δ

2 )

K
(n)
ζ,t (w,w)dw. (3.12)

Furthermore, tr(K
(n)
ζ,t ) is differentiable in ζ at each ζ > 0 and we have ∂ζtr(K

(n)
ζ,t ) =

tr(K
(n+1)
ζ,t ).

Proof. Fix n ∈ Z≥0, t > 0, and ζ > 0. K(n)
ζ,t (w,w′) is simultaneously continuous in both

w and w′ and ∂w′K
(n)
ζ,t (w,w′) is continuous in w′. By Lemma 3.2.7 in [10] (also see [47,

page 345] or [9]) we see that K(n)
ζ,t is indeed trace-class, and thus (3.12) follows from

Theorem 12 in [47, Chapter 30]. To show differentiability of tr(K
(n)
ζ,t ) in variable ζ, we fix

ζ1, ζ2 > 0. Without loss of generality we may assume ζ1 + 1 > ζ2 > ζ1. Let us define

Dζ1,ζ2 :=
tr(K

(n)
ζ2,t

)− tr(K
(n)
ζ1,t

)

ζ2 − ζ1
− tr(K

(n+1)
ζ1,t

)

=
1

(2πi)2

∫
C(τ1− δ

2 )

∫ δ+i∞

δ−i∞
Γ(−u)Γ(1 + u)Rζ1,ζ2;n(u)etf(u,w) du

w − τuw
dw,

where

Rζ1,ζ2;n(u) := (u)n

[
ζu−n2 − ζu−n1

ζ2 − ζ1
− (u− n)ζu−n−1

1

]
=

∫ ζ2

ζ1

(ζ2 − σ)

ζ2 − ζ1
(u)n+2σ

u−n−2dσ.

(3.13)

Taking absolute value and appealing to Euler’s reflection principle, we obtain

|Dζ1,ζ2 | ≤

∣∣∣∣∣ 1

(2πi)2

∫
C(τ1− δ

2 )

∫ δ+i∞

δ−i∞

∫ ζ2

ζ1

(u)n+2

sin(−πu)

(ζ2 − σ)

ζ2 − ζ1
σu−n−2etf(u,w) dσdu

w − τuw
dw

∣∣∣∣∣
(3.14)

≤ τ1− δ2

2π

∫ ζ2

ζ1

|σδ+iy−n−2|dσ · max
w∈C(τ1− δ

2 )

∫
R

(δ + iy)n+2

sin(−π(δ + iy))
|etf(δ+iy,w)| dy

|w − τ δ+iyw|
.

Note that Lemma 3.5 ((3.9) specifically) we see that the above maximum is bounded by
C exp(−thq(δ)) where the constant C is same as in (3.9). Since |σu−n−2| = |σδ−n−2| ≤
|ζδ−n−2

1 | over the interval [ζ1, ζ2] for δ ∈ (0, n ∨ 1), we obtain

|Dζ1,ζ2 | ≤ C exp(−hq(δ))
∫ ζ2

ζ1

|σu−n−2|dσ ≤ C exp(−thq(δ))(ζ2 − ζ1)|ζδ−n−2
1 |.

Thus, taking the limit as ζ2 − ζ1 → 0 yields |Dζ1,ζ2 | → 0 and completes the proof.

Remark 3.7. We prove a higher order version of Proposition 3.6 later in Section 4 as
Proposition 4.1 which includes the statement of the above Proposition when L = 1.
However, we keep the above simple version for reader’s convenience, which will serve
as a guide in proving Proposition 4.1.

EJP 27 (2022), paper 11.
Page 16/34

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP730
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Upper-tail LDP for ASEP

With the above results in place, we can now turn towards the main technical compo-
nent of the proof of Proposition 2.4.

Proof of Proposition 2.4. Before proceeding with the proof, we fix some notations. Fix
s > 0, and set n = bsc+ 1 ≥ 1 and α = s− bsc ∈ [0, 1) so that s = n− 1 + α. Throughout
the proof, we will denote C to be positive constant depending only on s, q – we will
not mention this further. We will also use the big O notation. For two complex-valued
functions f1(t) and f2(t) and β ∈ R, the equations f1(t) = (1 + O(tβ))f2(t) and f1(t) =

f2(t) +O(tβ) have the following meaning: there exists a constant C > 0 such that for all
large enough t, ∣∣∣∣f1(t)

f2(t)
− 1

∣∣∣∣ ≤ C · tβ , and |f1(t)− f2(t)| ≤ C · tβ ,

respectively. The constant C > 0 value may change from line to line.

For clarity we divide the proof into seven steps. In Steps 1 and 2, we provide the
upper and lower bounds for |As(t)| and Re[As(t)] respectively and complete the proof of
(2.15); in Steps 3–7, we verify the technical estimates assumed in the previous steps.

Step 1. Recall As(t) from (2.13). The goal of this step is to provide a different expression
for As(t), which will be much more amenable to our analysis, as well as an upper bound

for |As(t)|. By Proposition 3.6, we have dn

dζn tr(Kζ,t) = tr(K
(n)
ζ,t ) and consequently using

the expression in (3.8) we have

As(t) := (−1)n
∫ etBq(

s
2
)

1

ζ−α

(2πi)2

∫
C(τ1− δ

2 )

∫ δ+i∞

δ−i∞
Γ(−u)Γ(1 + u)(u)nζ

u−n e
tf(u,w)du

w − τuw
dwdζ.

where δ ∈ (0, 1) is chosen to be less than s. We now proceed to deform the u-contour
and w-contour sequentially. As we explained in Remark 3.4, the integrand has no poles
when u = 1, 2, . . . , n − 1. Hence u-contour can be deformed to (s − i∞, s + i∞) as
s = n− 1 + α ∈ (0, n).

Next, for the w-contour, we wish to deform it from C(τ1− δ2 ) to C(τ1− s2 ). In order to
do so, we need to ensure that we do not cross any poles. We observe that the potential
sources of poles lie in the exponent f(u,w) := (q−p)

1+wτ−1 − (q−p)
1+τu−1w (recalled from (3.1))

and in the denominator w − τuw. Since for any w ∈ C(τ1− δ′2 ), where δ′ ∈ (δ, s), and
u ∈ (s− i∞, s+ i∞), we have

|w − τuw| ≥ |w| − |τuw| = τ1− δ′2 (1− τs) > 0, |1 + wτ−1| ≥ |wτ−1| − 1 = τ−
δ′
2 − 1 > 0,

and |1 + τu−1w| ≥ 1− |τu−1w| = 1− τs− δ
′
2 > 0.

Thus, we can deform the w-contour to C(τ1− s2 ) as well without crossing any poles. With
the change of variable u = s+ iy, w = τ1− s2 eiθ, and Euler’s reflection formula we have

As(t) = (−1)n
∫ etBq(

s
2
)

1

ζ−1

4π2

∫ π

−π

∫
R

(s+ iy)nζ
iy

sin(−π(s+ iy))
etf(s+iy,τ1− s

2 eiθ) dy

1− τs+iy
dθdζ. (3.15)

With this expression in hand, upper bound is immediate. By Lemma 3.5 ((3.9)
specifically with ρ 7→ n− 1, δ 7→ s) pushing the absolute value inside the integrals we see
that

|As(t)| ≤ C exp(−thq(s))
∫ etBq(

s
2
)

1

1

ζ
dζ = C · tBq( s2 ) exp(−thq(s)) (3.16)
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for some constant C = C(q, s) > 0. Hence taking logarithm and dividing by t, we get

lim sup
t→∞

|As(t)| ≤ −hq(s) = −(q − p)1− τ s2
1 + τ

s
2
. (3.17)

Step 2. In this step, we provide a lower bound for Re[As(t)]. Set ε = t−2/5 > 0. For
each k ∈ Z, set vk = − 2π

log τ k and consider the interval Vk := [vk − ε2, vk + ε2]. Also

set Aε := {θ ∈ [−π, π] : |eiθ − 1| ≤ ε| log τ |}. We divide the triple integral in (3.15) into
following parts

As(t) =
∑
k∈Z

(I)k + (II) + (III), (3.18)

where

(I)k :=

∫ etBq(
s
2
)

1

∫
Aε

∫
Vk

(−1)n

4π2ζ

(s+ iy)nζ
iy

sin(−π(s+ iy))

etf(s+iy,τ1− s
2 eiθ)dy

1− τs+iy
dθdζ, (3.19)

(II) :=

∫ etBq(
s
2
)

1

∫
Aε

∫
R\∪kVk

(−1)n

4π2ζ

(s+ iy)nζ
iy

sin(−π(s+ iy))

etf(s+iy,τ1− s
2 eiθ)dy

1− τs+iy
dθdζ, (3.20)

(III) :=

∫ etBq(
s
2
)

1

∫
[−π,π]∩Acε

∫
R

(−1)n

4π2ζ

(s+ iy)nζ
iy

sin(−π(s+ iy))

etf(s+iy,τ1− s
2 eiθ)dy

1− τs+iy
dθdζ. (3.21)

In subsequent steps we obtain the following estimates for each integral. We claim that
we have

(I)0 = (1 +O(t−
1
5 ))

C0√
t

exp(−thq(s)), (3.22)

where hq(s) is defined in (1.3) and

C0 :=

√
(1 + τ

s
2 )3

4π(q − p)(τ 3s
2 −2 − τ2s−2)

(−1)n(s)n
sin(−πs)(1− τs)

> 0. (3.23)

When s is an integer the above constant is defined in a limiting sense. Note that C0 is
indeed positive as n = bsc+ 1. Furthermore, we claim that we have the following upper
bounds for the other integrals:∑

k∈Z\{0}

|(I)k| ≤ Ct−
13
10 exp(−thq(s)). (3.24)

where vk = − 2π
log τ k and

|(II)|, |(III)| ≤ Ct exp (−thq(s)) exp(− 1
C t

1
5 ). (3.25)

Assuming the validity of (3.22), (3.24) and (3.25) we can complete the proof of lower
bound for (2.15). Following the decomposition in (3.18) we see that for all large enough
t,

Re[As(t)] ≥ Re[(I)0]−
∑

k∈Z\{0}

|(I)k| − |(II)| − |(III)|

≥ 1√
t

exp(−thq(s))
[

1
2C0 − Ct−

4
5 − Ct

3
2 exp(− 1

C t
3
5 )
]
≥ C0

4
√
t

exp(−thq(s)).

Taking logarithms and dividing by twe get that lim inft→∞Re[As(t)] ≥ −hq(s). Combining
with (3.17) we arrive at (2.15).
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Step 3. From this step on, we dedicate the proof to justifying the various equations and
claims that appeared in Step 2. First in this step, we prove (3.25). Recall (II) and (III)

defined in (3.20) and (3.21). For each of them, we push the absolute value around each
term of the integrand. We use (3.9) from Lemma 3.5 to get

|(II)| ≤ C exp

(
t sup

y∈R\∪kVk
|eiθ−1|≤ε| log τ |

Re[f(s+ iy, τ1− s2 eiθ)]

)∫ etBq(
s
2
)

1

dζ

ζ
, (3.26)

|(III)| ≤ C exp

(
t sup

y∈R
|eiθ−1|>ε| log τ |

Re[f(s+ iy, τ1− s2 eiθ)]

)∫ etBq(
s
2
)

1

dζ

ζ
. (3.27)

Note that in (3.26), we have |τ iy − 1| ≥ |τ it
− 4

5 − 1| ≥ 1
2 | log τ |t− 4

5 for all large enough

t. Meanwhile in (3.27), |τ1− s2 (eiθ − 1)| ≥ τ1− s2 ε| log τ | = τ1− s2 | log τ |t− 2
5 . In either case,

appealing to (3.4) in Lemma 3.1 with ρ 7→ s gives us that

f(s, τ1− s2 )− Re[f(s+ iy, τ1− s2 eiθ)] ≥ 1
C · t

− 4
5 .

Substituting f(s, τ1− s2 ) with −hq(s) and evaluating the integrals in (3.26) and (3.27)
gives us (3.25).

Step 4. In this step and subsequent steps we prove (3.22) and (3.24). Recall that
vk = − 2π

log τ k and ε = t−
2
5 . We first focus on the (I)k integral defined in (3.30). Our goal

in this and next step is to show

(I)k = (1 +O(t−
1
5 ))

C0(k)

2π
√
t

∫ etBq(
s
2
)

1

ζivk

ζ

∫ ε2

−ε2
ζiy exp(−thq(s+ iy))dydζ. (3.28)

where

C0(k) :=

√
(1 + τ

s
2 )3

4π(q − p)(τ 3s
2 −2 − τ2s−2)

(−1)n(s+ ivk)n
sin(−π(s+ ivk))(1− τs)

(3.29)

Towards this end, note that in the argument for (3.16), we push the absolute value
around each term of the integrand. Thus, the upper bound achieved in (3.16) guarantees
that the triple integral in (I)k is absolutely convergent. Thereafter, Fubini’s theorem
allows us to switch the order of integration inside (I)k. By a change-of-variables, we see
that

(I)k = (−1)n
∫ etBq(

s
2
)

1

ζivk−1

4π2

∫ ε2

−ε2

(s+ iy + ivk)nζ
iy

sin(−π(s+ iy + ivk))

∫
Aε

etf(s+iy,τ1− s
2 eiθ)dθ

1− τs+iy
dydζ,

where recall Aε = {θ ∈ [−π, π] : |eiθ − 1| ≤ ε| log τ |}. Note that in this case range of
y lies in a small window of [−t− 4

5 , t−
4
5 ]. As s is fixed, one can replace (s + iy + ivk)n,

sin(−π(s + iy + ivk)), and 1 − τs+iy by (s + ivk)n, sin(−π(s + ivk)), and 1 − τs with an
expense of O(t−

4
5 ) term (which can be chosen independent of k). We thus obtain

(I)k =
(−1)n(s+ ivk)n(1 +O(t−

4
5 ))

sin(−π(s+ ivk))(1− τs)

∫ etBq(
s
2
)

1

ζivk

4π2ζ

∫ ε2

−ε2
ζiy
∫
Aε

etf(s+iy,τ1− s
2 eiθ)dθdydζ.

(3.30)

We now evaluate the θ-integral in the above expression. We claim that∫
Aε

etf(s+iy,τ1− s
2 eiθ)dθ = (1 +O(t−

1
5 ))

√
π(1 + τ

s
2 )3

t(q − p)(τ 3s
2 −2 − τ2s−2)

exp(−thq(s+ iy)) (3.31)
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Note that (3.28) follows from (3.31). Hence we focus on proving (3.31) in next step.

Step 5. In this step we prove (3.31). For simplicity we let u = s+ iy temporarily. Taylor
expanding the exponent appearing in l.h.s. of (3.31) around θ = −y2 log τ and using the
fact ∂zf(u, z)|

z=τ1−u
2

= 0, we get

l.h.s. of (3.31) =

∫
Aε

etf(u,τ1−u
2 ei(θ+

y
2

log τ))dθ

= exp(tf(u, τ1−u2 ))

∫
Aε

exp

(
− t

2
∂2
zf(u, τ1−u2 )(θ + y

2 log τ)2 +O(t−
1
5 )

)
dθ.

(3.32)

Note that we have replaced the higher order terms by O(t−
1
5 ) in the exponent above as

θ, y are at most of the order O(t−
2
5 ). Furthermore, for all t large enough,

Aε = {θ ∈ [−π, π] : |eiθ − 1| ≤ ε| log τ |}
= {θ ∈ [−π, π] : | sin θ

2 | ≤
1
2ε| log τ |} ⊃ {θ ∈ [−π, π] : |θ| ≤ ε| log τ |}

As y ∈ [−ε2, ε2], we see that Aε ⊃ {θ ∈ [−π, π] : |θ + y
2 log τ | ≤ 1

2ε| log τ |} for all large

enough t. Thus on Acε we have |θ + y
2 log τ | ≥ 1

2 t
− 2

5 | log τ |. Furthermore for small enough
y, by (3.2), we have Re[∂2

zf(u, τ1−u2 )] > 0. Hence the above integral can be approximated
by Gaussian integral. In particular, we have

r.h.s. of (3.32) = (1 +O(t−
1
5 )) exp(tf(u, τ1−u2 ))

√
2π

t∂2
zf(u, τ1−u2 )

(3.33)

Observe that as u = s + iy and y is at most O(t−
4
5 ), ∂2

zf(u, τ1−u2 ) in r.h.s. of (3.33) can
be replaced by ∂2

zf(s, τ1− s2 ) by adjusting the order term. Recall the expression for
∂2
zf(s, τ1− s2 ) from (3.2) and observe that from the definition of f and hq from (3.1) and

(1.3) we have f(u, τ1−u2 ) = hq(s+ iy). We thus arrive at (3.31).

Step 6. With the expression of (I)k obtained in (3.28), in this step we prove (3.22) and
(3.24). As y varies in the window of y ∈ [−t− 4

5 , t−
4
5 ], by Taylor expansion we may replace

thq(s + iy) appearing in the r.h.s. of (3.28) by t(hq(s) + iyh′q(s)) at the expense of an

O(t−
3
5 ) term. Upon making a change of variable r = log ζ − th′q(s) we thus have

(I)k = (1 +O(t−
1
5 ))

C0(k)

2π
√
t
e−thq(s)

∫ tBq(
s
2 )−th′q(s)

−th′q(s)
eivk(r+th′q(s))

∫ ε2

−ε2
eiyrdydr

= (1 +O(t−
1
5 ))

C0(k)

2π
√
t
e−thq(s)

∫ tBq(
s
2 )−th′q(s)

−th′q(s)
eivk(r+th′q(s))

eiε
2r − e−iε2r

ir
dr. (3.34)

We claim that for k = 0, (which implies vk = 0) we have

∫ tBq(
s
2 )−th′q(s)

−th′q(s)

eiε
2r − e−iε2r

ir
dr = 2π(1 +O(t−

1
5 )) (3.35)

For k 6= 0, we have∣∣∣∣∣
∫ tBq(

s
2 )−th′q(s)

−th′q(s)
eivk(r+th′q(s))

eiε
2r − e−iε2r

ir
dr

∣∣∣∣∣ ≤ Ct−
4
5 (3.36)
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where C > 0 can be chosen free of k. Assuming (3.35) and (3.36) we may now complete
the proof of (3.22) and (3.24). Indeed, for k = 0 upon observing that C0 = C0(0) (recall
(3.23) and (3.29)), in view of (3.34) and (3.35) we get (3.22). Whearas for k 6= 0, thanks
to the estimate in (3.36), in view of (3.34), we have∑

k∈Z\{0}

|(I)k| ≤ Ct−
13
10 exp(−thq(s))

∑
k∈Z\{0}

|C0(k)|. (3.37)

For y 6= 0, | (s+iy)n
sin(−π(s+iy)) | ≤ C|y|ne−|y|/C forces r.h.s. of (3.37) to be summable proving

(3.24).

Step 7. In this step we prove (3.35) and (3.36). Recalling that ε2 = t−
4
5 , we see that

∫ tBq(
s
2 )−th′q(s)

−th′q(s)

eiε
2r − e−iε2r

ir
dr =

∫ t1/5Bq(
s
2 )−t1/5h′q(s)

−t1/5h′q(s)

2 sin r

r
dr. (3.38)

Following the definition of hq and Bq in Proposition 2.1 we observe that −h′q(s) =
τ
s
2 log τ

(1+τ
s
2 )2

< 0 and

Bq(s)− h′q(s) =
1− τs + τ

s
2 s log τ

s(1 + τ
s
2 )

= −sB′q(s) > 0,

where B′q(s) < 0 follows from (2.1). Thus as Bq is strictly decreasing (Proposition 2.1 (a))
we have Bq(

s
2 ) > Bq(s) > h′q(s). Thus the integral on r.h.s. of (3.38) can be approximated

by (1 + O(t−1/5))
∫
R

2 sin r
r dr = 2π(1 + O(t−1/5)). This proves (3.35). We now focus on

proving (3.36). Towards this end, we divide the integral appearing in (3.36) into three
regions as follows

l.h.s. of (3.36)≤

∣∣∣∣∣
∫ −1

−th′q(s)
eivk(r+th′q(s))

eiε
2r − e−iε2r

ir
dr

∣∣∣∣∣+

∣∣∣∣∣
∫ 1

−1

eivk(r+th′q(s))
eiε

2r − e−iε2r

ir
dr

∣∣∣∣∣
+

∣∣∣∣∣
∫ tBq(

s
2 )−th′q(s)

1

eivk(r+th′q(s))
eiε

2r − e−iε2r

ir
dr

∣∣∣∣∣ .
(3.39)

Note that for the second term appearing in r.h.s. of (3.39) can be bounded by 4t−
4
5 using∣∣∣∣∫ 1

−1

eivk(r+th′q(s))
2 sin(ε2r)

r
dr

∣∣∣∣ ≤ ∫ 1

−1

∣∣∣∣2 sin(ε2r)

r

∣∣∣∣ dr ≤ 4ε2 = 4t−
4
5 .

For the first term appearing in r.h.s. of (3.39), by making a change of variable r 7→ r vk−ε
2

vk+ε2

we observe the following identity:

∫ −1

−th′q(s)
eivk(r+th′q(s))

eiε
2r

ir
dr =

∫ − vk+ε2

vk−ε2

−th′q(s)
vk+ε2

vk−ε2

eivk(r+th′q(s))
e−iε

2r

ir
dr.

This leads to∫ −1

−th′q(s)
eivk(r+th′q(s))

eiε
2r − e−iε2r

ir
dr =

∫ −th′q(s) vk+ε2

vk−ε2

−th′q(s)
eivk(r+th′q(s))

e−iε
2r

ir
dr

+

∫ −1

− vk+ε2

vk−ε2

eivk(r+th′q(s))
e−iε

2r

ir
dr.
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In the first integral the length of the interval is O(t1/5). However, the integrand itself is
O(t−1). For the second integral, the length of the interval is O(t−4/5), and the integrand
itself is O(1). Note that this is only possible when k 6= 0 (forcing vk 6= 0). And indeed all
the O terms can be taken to be free of vk (and hence of k). Combining this we get that
the first term appearing in r.h.s of (3.39) can be bounded by Ct−

4
5 . An exact analogous

argument provides the same bound for the third term in r.h.s. of (3.39) as well. This
proves (3.36) completing the proof.

4 Bounds for the higher order terms

The goal of this section is to establish bounds for the higher-order term Bs(t) defined
in (2.14). First, recall the Fredholm determinant formula from (1.10). Using the tr(K∧Lζ,t )

notation from (1.9) we may rewrite Bs(t) as follows.

Bs(t) = (−1)n
∫ etBq(

s
2
)

1

ζ−α
dn

dζn

[
1 +

∞∑
L=2

tr(K∧Lζ.t )

]
dζ. (4.1)

We claim that we could exchange the various integrals, derivatives and sums appearring
in the r.h.s. of (4.1) and obtain Bs(t) through term-by-term differentiation, i.e.

Bs(t) = (−1)n
∞∑
L=2

∫ etBq(
s
2
)

1

ζ−α∂nζ (tr(K∧Lζ,t ))dζ. (4.2)

Towards this end, we devote Section 4.1 to its justification. Following the technical
lemmas in Section 4.1, we proceed to prove Proposition 2.5 in Section 4.2.

4.1 Interchanging sums, integrals and derivatives

Recall from (3.8) the definition of K(n)
ζ,t . As a starting point of our analysis, we

introduce the following notations before providing the bounds on |∂nζ tr(K∧Lζ,t )|. For any
n,L ∈ Z>0, define

M(L, n) := {~m = (m1, . . . ,mL) ∈ (Z≥0)L : m1 + · · ·+mL = n}, (4.3)

and
(
n
~m

)
:= n!

m1!···mL! . Furthermore, for any L ∈ Z>0, ζ ∈ R>0 and ~m ∈M(L, n), let

Iζ(~m) :=

∫
. . .

∫
det(K

(mi)
ζ,t (wi, wj))

L
i,j=1

L∏
i=1

dwi (4.4)

where wi-contour lies on C(τ1− δ2 ). We also set |~m|>0 := |{i | i ∈ Z ∩ [1, L],mi > 0}|, i.e.
the number of positive mi in ~m.

To begin with, the next two lemma investigate the term-by-term n-th derivatives of
tr(K∧Lζ,t ) that appear on the r.h.s. of (4.2). The following should be regarded as a higher
order version of Proposition 3.6.

Proposition 4.1. Fix n,L ∈ Z>0 and let M(L, n) be defined as in (4.3). Recall the
function Bq(x) from Proposition 2.1. For any t > 0, the function ζ 7→ tr(K∧Lζ,t ) is infinitely

differentiable at each ζ ∈ [1, etBq(
s
2 )], with

∂nζ tr(K∧Lζ,t ) =
1

L!

∑
~m∈M(L,n)

(
n

~m

)
Iζ(~m), (4.5)

where the r.h.s of (4.5) converges absolutely uniformly. Furthermore, there exists a
constant C = C(n, δ, q) > 0 such that for all ~m ∈M(L, n) we have

|Iζ(~m)| ≤ CLL
L
2 ζLδ−ne−thq(δ), |∂nζ tr(K∧Lζ,t )| ≤ CL

L!
LnL

L
2 ζLδ−ne−thq(δ). (4.6)
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Proof. The proof idea is same as that of Proposition 3.6, but it’s more cumbersome
notationally. For clarity we split the proof into four steps. In the first step, we introduce
some necessary notations. In Steps 2-3, we prove (4.5) and in the final step, we prove
(4.6).

Step 1. In this step we summarize the notation we will require in the proof of (4.5). We
fix L ∈ Z>0, δ ∈ (0, 1), t > 0, and ζ1, ζ2 > 0 and recall Bq(x) from Proposition 2.1.

We define ~ξk ∈ [1, etBq(
s
2 )]L to be the vector whose first k entries are ζ2 and the rest

L− k entries are ζ1:

~ξk := (ξk,1, ξk,2, . . . , ξk,L) := ( ζ2 , ζ2 , . . . , ζ2︸ ︷︷ ︸
k times

, ζ1 , ζ1 , . . . , ζ1︸ ︷︷ ︸
L−k times

), k = 0, 1, . . . , L.

For any ~m = (m1,m2, . . . ,mL) ∈ (Z≥0)L we define the following integral of mixed
parameters

I
(k)
ζ1,ζ2

(~m) :=

∫
. . .

∫
det(K

(mi)
ξk,i,t

(wi, wj))
L
i,j=1

L∏
i=1

dwi. (4.7)

where wi-contour lies on C(τ1− δ2 ). I(k)
ζ1,ζ2

(~m) serves as an interpolation between Iζ1(~m)

and Iζ2(~m) defined in (4.4) as k increases from 0 to L where the parameters ζ are now
allowed to be different for different rows in the determinant.

We next define ~ek = (ek,1, ek,2, . . . , ek,L) to be the unit vector with 1 in the k-th position
and 0 elsewhere. With the above notations in place, for each j, k ∈ {1, 2, . . . , L} and
~m ∈ (Z≥0)L we set

L
(1)
ζ1,ζ2

(~m; k) :=
1

ζ2 − ζ1

[
I

(k)
ζ1,ζ2

(~m)− I(k−1)
ζ1,ζ2

(~m)− (ζ2 − ζ1)I
(k−1)
ζ1,ζ2

(~m+ ~ek)
]
, (4.8)

L
(2)
ζ1,ζ2

(~m; j, k) := I
(j)
ζ1,ζ2

(~m+ ~ek)− I(j−1)
ζ1,ζ2

(~m+ ~ek). (4.9)

Note that we define (4.8) modelling after Dζ1,ζ2 in the proof of Proposition 3.6. Here,

the only differences between the three determinants of the respective I(k)
ζ1,ζ2

(~m)’s lie in

the k-th row, i.e. K(mk)
ζ2,t

v.s. K(mk)
ζ1,t

v.s. K(mk+1)
ζ1,t

. So we have isolated the differences and
tried to reduce the question of differentiability to row-wise in (4.8). Meanwhile, (4.9)
“measures” the distance between I(k)

ζ1,ζ2
(~m+~ek) and I(k−1)

ζ1,ζ2
(~m+~ek) where they differ only

in ξk,k = ζ2 or ζ1 for K(mk)
ξk,k,t

on the k-th row of the determinant.
We finally remark that all the wi-contours in the integrals appearing throughout the

proof are on C(τ1− δ2 ) – we will not mention this further. We would also drop (wi, wj) from

K
(mi)
•,t (wi, wj) when it is clear from the context.

Step 2. We show the infinite differentiability of tr(K∧Lζ,t ) by proving (4.5) in this step.
The proof proceeds via induction on n. When n = 0, observe that (4.5) recovers the
formula of tr(K∧Lζ,t ). This constitutes the base case. To prove the induction step, suppose
(4.5) holds for n = N . Then for n = N + 1, we fix ζ1, ζ2 > 0. Without loss of generality,
we assume ζ1 + 1 > ζ2 > ζ1 and consider

Dζ1,ζ2 :=
∂Nζ tr(K∧Lζ2,t)− ∂

N
ζ tr(K∧Lζ1,t)

ζ2 − ζ1
− 1

L!

∑
~m∈M(L,N+1)

(
N + 1

~m

)
Iζ1(~m). (4.10)

To prove (4.5), it suffices to show |Dζ1,ζ2 | → 0 as ζ2 → ζ1. Towards this end, we first
claim that for all ~m ∈M(L,N) and for all j, k ∈ {1, 2, . . . , L} we have∣∣L(1)

ζ1,ζ2
(~m; k)

∣∣→ 0, and
∣∣L(2)
ζ1,ζ2

(~m; j, k)
∣∣→ 0, as ζ2 → ζ1, (4.11)
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where L
(1)
ζ1,ζ2

(~m; k) and L
(2)
ζ1,ζ2

(~m; j, k) are defined in (4.8) and (4.9) respectively. We
postpone the proof of (4.11) to the next step. Assuming its validity, we now proceed to
complete the induction step.

Towards this end, we first manipulate the expression appearing in r.h.s. of (4.10). A
simple combinatorial fact shows

∑
~m∈M(L,N+1)

(
N + 1

~m

)
Iζ1(~m) =

L∑
k=1

∑
~m∈M(L,N)

(
N

~m

)
Iζ1(~m+ ~ek),

where ~ek is defined in Step 1. Substituting this combinatorics back into the r.h.s. of
(4.10) and using the induction step for n = N , allows us to rewrite Dζ1,ζ2 as follows:

r.h.s. of (4.10) =
1

L!

∑
~m∈M(L,N)

(
N

~m

)[
Iζ2(~m)− Iζ1(~m)

ζ2 − ζ1
−

L∑
k=1

Iζ1(~m+ ~ek)

]
. (4.12)

Recalling the definition of Iζ(~m) in (4.4) and that of I(k)
ζ1,ζ2

(~m) in (4.7), we see that∑L
k=1[I

(k)
ζ1,ζ2

(~m) − I
(k−1)
ζ1,ζ2

(~m)] telescopes to Iζ2(~m) − Iζ1(~m). Furthermore, if we recall

L
(1)
ζ1,ζ2

(~m; k) and L
(2)
ζ1,ζ2

(~m; j, k) from (4.8) and (4.9) respectively, we observe that

I
(k−1)
ζ1,ζ2

(~m+ ~ek)− Iζ1(~m+ ~ek) = I
(k−1)
ζ1,ζ2

(~m+ ~ek)− I(0)
ζ1,ζ2

(~m+ ~ek) =

k∑
j=1

L
(2)
ζ1,ζ2

(~m; j, k).

Combining these observations, we have

r.h.s. of (4.12) =
1

L!

∑
~m∈M(L,N)

(
N

~m

) L∑
k=1

[
I

(k)
ζ1,ζ2

(~m)− I(k−1)
ζ1,ζ2

(~m)− (ζ2 − ζ1)Iζ1(~m+ ~ek)
]

ζ2 − ζ1

=
1

L!

∑
~m∈M(L,N)

(
N

~m

) L∑
k=1

L(1)
ζ1,ζ2

(~m; k) +

k−1∑
j=1

L
(2)
ζ1,ζ2

(~m; j, k)

 . (4.13)

Clearly r.h.s. of (4.13) goes to zero as ζ2 → ζ1 whenever (4.11) is true. Thus by
induction we have (4.5).

Step 3. In this step we prove (4.11). Recall L
(1)
ζ1,ζ2

(~m; k) from (4.8). Following the

definition of I(k)
ζ1,ζ2

(~m) from (4.7) we have

∣∣L(1)
ζ1,ζ2

(~m; k)
∣∣ ≤ ∫ · · · ∫ 1

ζ2 − ζ1

∣∣∣det(K
(mi)
ξk,i,t

)Li,j=1 − det(K
(mi)
ξk−1,i,t

)Li,j=1

−(ζ2 − ζ1) det(K
(mi+ek,i)
ξk−1,i,t

)Li,j=1

∣∣∣ L∏
i=1

dwi.

Recall that in the above expression, up to a constant, the three determinants differ only
in the k-th row. Hence the above expression can be written as

∫
· · ·
∫
|det(A)|

∏L
i=1 dwi,

where the entries of A are given as follows:

Ai,j = K
(mi)
ζ2,t

(wi, wj), i < k, Ai,j = K
(mi)
ζ1,t

(wi, wj), i > k,

Ak,j =
1

ζ2 − ζ1
[K

(mk)
ζ2,t

(wk, wj)−K(mk)
ζ1,t

(wk, wj)− (ζ2 − ζ1)K
(mk+1)
ζ1,t

(wk, wj)]

=
1

2πi

∫ δ+i∞

δ−i∞
Γ(−u)Γ(1 + u)Rζ1,ζ2;mk(u)etf(u,wk) du

wj − τuwk
,
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where Rζ1,ζ2;mk(u) is same as in (3.13). As mi’s are at most n, by Lemma 3.5 ((3.10)
specifically), we can get a constant C > 0 depending only on n, δ, and q, so that

|Ai,j | ≤ C(ζδ−mk1 + ζδ−mk2 ) exp(−thq(δ)) ≤ C(1 + ζδ2) exp(−thq(δ))

for all i 6= k. For Ak,j , we follow the same argument as in Proposition 3.6 (along the lines
of (3.14)) to get

|Ak,j | ≤
τ1− δ2

2π

∫ ζ2

ζ1

∣∣σδ+iy−mk−2
∣∣dσ

· max
wj ,wk∈C(τ1− δ

2 )

∫
R

∣∣∣∣ (δ + iy)mk+2

sin(−π(δ + iy))
etf(δ+iy,wk)

∣∣∣∣ dy

|wj − τ δ+iywk|
.

Note that by Lemma 3.5 ((3.9) specifically) we see that the above maximum is bounded
by C exp(−thq(δ)) where again as mi’s are at most n, the constant C can be chosen
dependent only on n, δ, and q. Since |σu−n−2| = |σδ−mk−2| ≤ |ζδ−mk−2

1 | ≤ |ζδ−2
1 | over the

interval [ζ1, ζ2] for δ ∈ (0, 1), we obtain

|Ak,j | ≤ C exp(−thq(δ))
∫ ζ2

ζ1

|σ|δ−mk−2dσ ≤ C exp(−thq(δ))ζδ−2
1 (ζ2 − ζ1).

As all the above estimates on |Ai,j | are uniform in wi’s, using Hadamard inequality we
have ∫

· · ·
∫
|det(A)|

L∏
i=1

dwi ≤ CLL
L
2 exp(−tLhq(δ))(1 + ζδ2)L−1ζδ−2

1 (ζ2 − ζ1)

Taking ζ2 → ζ1 above, we get the first part of (4.11). The proof of the second part of
(4.11) follows similarly by observing that the corresponding determinants also differ only
in one row. One can then deduce the second part of (4.11) using the uniform estimates
of the kernel and difference of kernels given in (3.10) and (3.11) respectively. As the
proof follows exactly in the lines of above arguments, we omit the technical details.

Step 4. In this step we prove (4.6).
Recall the definition of Iζ(~m) from (4.4). By Hadamard’s inequality and Lemma 3.5

we have

|det(K
(mi)
ζ,t )Li,j=1| ≤ L

L
2

L∏
i=1

max
wi,wj∈C(τ1− δ

2 )

|K(mi)
ζ,t (wi, wj)|

≤ LL
2

L∏
i=1

Cζδ−mi exp(−thq(δ)) = CLL
L
2 ζLδ−n exp(−thq(δ)),

(4.14)

where the last equality follows as
∑L
i=1mi = n. Note that here also C > 0 can be chosen

to be dependent only on n, δ, and q as mi’s are at most n. Recall that wi-contour in Iζ(~m)

lies on C(τ1− δ2 ). Thus in view of (4.14) adjusting the constant C we obtain first inequality
of (4.6).

For the second inequality, We observe the following recurrence relation:

|M(L, n)| = |{~m = (m1, . . . ,mL) ∈ ZL≥0,

L∑
i=1

mi = n}| ≤ L · |M(L, n− 1)|. (4.15)

It follows immediately that |M(L, n)| ≤ Ln. Observe that for each ~m ∈M(L, n),
(
n
~m

)
is

bounded from above by n!. Thus collectively with (4.5) we have

|∂nζ tr(K∧Lζ,t )| ≤ n!Ln

L!
max

~m∈M(L,n)
|Iζ(~m)|.
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Applying the first inequality of (4.6) above leads to the second inequality of (4.6) com-
pleting the proof.

Lemma 4.2. Fix n ∈ Z>0, ζ ∈ [1, etBq(
s
2 )], and t > 0. Then

∂nζ

( ∞∑
L=1

tr(K∧Lζ,t )

)
=

∞∑
L=1

∂nζ (tr(K∧Lζ,t )).

Proof. On account of [27, Proposition 4.2]), it suffices to verify the following conditions:

1.
∑∞
L=1 tr(K∧Lζ,t ) converges absolutely pointwise for ζ ∈ [1, etBq(

s
2 )];

2. the absolute derivative series
∑∞
L=1 ∂

n
ζ (tr(K∧Lζ,t )) converges uniformly for ζ ∈

[1, etBq(
s
2 )].

By Proposition 4.1, we can pass the derivative inside the trace in (2). Both (1) and (2)

follow from (4.6) in Proposition 4.1 as
∑∞
L=1

1
L!C

LLnL
L
2 ζLδ−n exp(−tLhq(δ)) < ∞ for

each ζ ∈ [1, etBq(
s
2 )].

Now, with the results from Lemmas 4.1 and 4.2, we are poised to justify the inter-
changes of operations leading to (4.2).

Proposition 4.3. For fixed n,L ∈ Z≥0, ζ ∈ [1, etBq(
s
2 )] and t > 0,∫ etBq(

s
2
)

1

ζ−α∂nζ

[
1 +

∞∑
L=2

tr(K∧Lζ,t )

]
dζ =

∞∑
L=2

∑
~m∈M(L,n)

(
n

~m

)
1

L!

∫ etBq(
s
2
)

1

ζ−αIζ(~m)dζ.

(4.16)

Proof. Thanks to Lemma 4.2 we can switch the order of derivative and sum to get

l.h.s. of (4.16) =

∫ etBq(
s
2
)

1

∞∑
L=2

ζ−α∂nζ (tr(K∧Lζ,t ))dζ.

We next justify the interchange of the integral and the sum in above expression. Note
that via the estimate in (4.6) we have∫ etBq(

s
2
)

1

∞∑
L=2

ζ−α|∂nζ (tr(K∧Lζ,t ))|dζ≤
∞∑
L=2

1

L!
CLLnL

L
2 exp(−thq(δ))

∫ etBq(
s
2
)

1

ζLδ−n−αdζ <∞.

Hence Fubini’s theorem justifies the exchange of summation and integration. Finally we
arrive at r.h.s. of (4.16) by using the higher order derivative identity (see (4.5)) from
Proposition 4.1.

4.2 Proof of Proposition 2.5

Finally, in this subsection we present the proof of Proposition 2.5 via obtaining an
upperbound for |Bs(t)|, defined in (2.14).

Recall Iζ(~m) from (4.4). We first introduce the following technical lemma that upper

bounds the absolute value of the integral
∫ etBq( s2 )

1
ζ−αIζ(~m)dζ and will be an important

ingredient in the proof of Proposition 2.5.

Lemma 4.4. Fix s > 0 so that α := s − bsc > 0. Set n = bsc + 1. Fix L ∈ Z>0 with
L ≥ 2 and ~m ∈ M(L, n), where M(L, n) is defined in (4.3). There exists a constant
C = C(q, s) > 0 such that∫ etBq(

s
2
)

1

ζ−α|Iζ(~m)|dζ ≤ CLL
L
2 exp(−thq(s)− 1

C t). (4.17)
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where Iζ(~m) is defined in (4.4) and the functions Bq and hq are defined in Proposition
2.1.

Proof. As we obtain upper bounds for the LHS of (4.17) differently depending on the
value of L, we split the proof into two steps as follows. Fix L0 = 2(n + 1). In Step 1,
we prove the inequality for when 2 ≤ L ≤ L0 and in Step 2, we consider the case when
L > L0. In both steps, we deform the w-contours in Iζ(~m) appropriately to achieve its
upper bound.

Step 1. In this step, we prove (4.17) for when 2 ≤ L ≤ L0. Fix ~m = (m1, . . . ,mL) ∈
M(L, n), where M(L, n) is defined in (4.3) and set

ρi :=

{
mi + α

L −
1

|~m|>0
if mi > 0

α
L if mi = 0.

(4.18)

where we recall that |~m|>0 = |{i | i ∈ Z,mi > 0}|.
Recall the definition of Iζ(~m) in (4.4). Note that each K

(mi)
ζ,t (wi, wj) (see (3.8)) are

themselves complex integral over δ + iR. As α > 0 and L ≤ L0 = 2(n+ 1) we may take

the δ appearing in the kernel in K(mi)
ζ,t less than all the ρi’s. Note that this is only possible

when α > 0. This is why we assumed this in the hypothesis here and as well as in the
statement of Proposition 2.5.

In what follows we show that the contours of K(mi)
ζ,t (wi, wj) followed by wi-contours

can be deformed appropriately without crossing any pole in Iζ(~m). Indeed for each

K
(mi)
ζ,t in Iζ(~m) we can write

K
(mi)
ζ,t (wi, wj) =

1

2πi

∫ ρi+i∞

ρi−i∞
Γ(−ui)Γ(1 + ui)(ui)nζ

ui−nef(ui,wi)
dui

wj − τuiwi
.

As each ρi ∈ (0,mi ∨ 1) (see (4.18)), by Remark 3.4, the above equality is true as we
do not cross any poles in the integrand. Ensuing this change, we claim that we can
deform the wi-contour to C(τ1− ρi2 ) one by one without crossing any pole in Iζ(~m). Similar
to the argument given in the beginning of the proof of Proposition 2.4, we note that
as we deform the wi-contours potential sources of poles in Iζ(~m) lie in the exponent

f(ui, wi) := (q−p)
1+wiτ−1 − (q−p)

1+τui−1wi
(recalled from (3.1)) and in the denominator wj − τuiwi.

Take wi ∈ C(τ1− δi2 ), δi,∈ [δ, ρi], and ui ∈ ρi + iR. Observe that

|wj − τuiwi| ≥ |wj | − |τuiwi| ≥ τ1−
δj
2 − τ1+ρi−

δi
2 > 0,

|1 + wiτ
−1| ≥ |wiτ−1| − 1 ≥ τ−

δi
2 − 1, |1 + τui−1wi| ≥ 1− |τui−1wi| ≥ 1− τρi−

δi
2 .

This ensures that each wi-contour can be taken as C(τ1− ρi2 ) without crossing any pole.
Permitting these contour deformations, we wish to apply Lemma 3.5, (3.9) specifically.

Indeed we apply (3.9) with ρ, δ 7→ ρi, w 7→ w′, w′ 7→ wj . Note that we indeed have
|wj | 6= τ1+

ρi
2 here. We thus obtain

|K(mi)
ζ,t (wi, wj)| ≤ Cζρi−mi exp(−thq(ρi)). (4.19)

Here, C is supposed to be dependent on mi, ρi, and q. Note that ρi are in turn dependent
on mi, s and L. Since L is at most L0 = 2(n+ 1), there are at most finitely many choices
of mi’s which in turn produced finitely many choices of ρi’s. As s is fixed, all of the
ρi’s are uniformly bounded away from 0. Hence we can choose the constant C to be
dependent only s and q (recall that n is also dependent on s).
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Observe that as ~m ∈M(L, n) defined in (4.3), we have
∑
mi = n and consequently∑

ρi = n− 1 + α = s. In view of the estimate in (4.19) and the definition of Iζ(~m) from
(4.4), by Hadamard’s inequality, we obtain

|Iζ(~m)| ≤ CLL
L
2 ζs−n exp

(
−t

L∑
i=1

hq(ρi)

)
= CLL

L
2 ζ−1+α exp

(
−t

L∑
i=1

hq(ρi)

)
.

Thus ∫ etBq(
s
2
)

1

ζ−α|Iζ(~m)|dζ ≤ CLL
L
2 exp

(
−t

L∑
i=1

hq(ρi)

)∫ etBq(
s
2
)

1

ζ−1dζ. (4.20)

Observe that
∫ y
x
ζ−1dζ = log y

x . We appeal to the subadditivity hq(x) + hq(y) > hq(x+ y)

in Proposition 2.1 to get that
∑L
i=1 hq(ρi) ≥ hq(s− ρ1) + hq(ρ1). Note that here we used

the fact that L ≥ 2. This leads to

r.h.s. of (4.20) ≤ CLL
L
2 tBq(

s
2 ) exp(−thq(s)) exp(−t(hq(s− ρ1) + hq(ρ1)− hq(s))) (4.21)

Note that from (4.18), ρi ≥ α
L ≥

α
L0

, this forces α
L0
≤ s− ρ1, ρ1 ≤ s− α

L0
. Appealing to the

strict subadditivity in (2.2) gives us that hq(s− ρ1) +hq(ρ1)−hq(s) can be lower bounded
by a constant 1

C > 0 depending only on s and q. Adjusting the constant C we can absorb
tBq(

s
2 ) appearing in r.h.s. of (4.21), to get (4.17), completing our work for this step.

Step 2. In this step, we prove (4.17) for the rest of the cases when L > L0. Fix
~m = (m1, . . . ,mL) ∈ M(L, n). Recall the definition of Iζ(~m) in (4.4). Note that each

K
(mi)
ζ,t (wi, wj) (see (3.8)) is a complex integral over δ + iR. Here we set δ = min( 1

2 ,
s
2 ).

Thanks to (4.6) we have

|Iζ(~m)| ≤ CLL
L
2 ζLδ−n exp(−tLhq(δ)),

where the constant C depends only on n, δ, and q and thus only on s and q. This leads to∫ etBq(
s
2
)

1

ζ−α|Iζ(~m)|dζ ≤ CLL
L
2 exp(−tLhq(δ))

∫ etBq(
s
2
)

1

ζ−α−n+Lδdζ. (4.22)

Recall that s = n− 1 + α. As L ≥ 2(n+ 1) and δ = min(1
2 ,

s
2 ) we have Lδ − n− α > 0 in

this case. Thus, we can upper bound the integral in (4.22) to get

r.h.s. of (4.22) ≤ CLL
L
2 exp(−tLhq(δ))

exp(tBq(
s
2 )(−s+ Lδ))

−s+ Lδ
. (4.23)

We incorporate 1
−s+Lδ into the constant C, Recall the definition of Bq(x) from Proposition

(2.1). We have xBq(x) = hq(x). As Bq(x) is strictly decreasing for x > 0, (Proposition 2.1
(a), (b)) we have

r.h.s. of (4.23) ≤ CLL
L
2 exp(−2thq(

s
2 )− tLδ(Bq(δ)−Bq( s2 )))

≤ CLL
L
2 exp(−2thq(

s
2 )) ≤ CLL

L
2 exp(−thq(s)− 1

C t),

where the last inequality above follows from (2.2) by observing that by subadditivity we
can get a constant C = C(q, s) > 0 such that 2hq(

s
2 ) − hq(s) ≥ 1

C . This completes the
proof.

With Lemma 4.4, we are now ready to prove Proposition 2.5.
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Proof of Proposition 2.5. Recall the definition of Bs(t) as defined in (2.14). Appealing to
(4.1) and Proposition (4.3) we get that

|Bs(t)| =
∞∑
L=2

1

L!

∑
~m∈M(L,n)

(
n

~m

)∫ etBq(
s
2
)

1

ζ−α|Iζ(~m)|dζ (4.24)

Note that
(
n
~m

)
is bounded from above by n!, and by (4.15) we have |M(L, n)| ≤ Ln.

Applying these inequalities along with the estimate in Lemma 4.4 we have that

r.h.s. of (4.24) ≤ exp(−thq(s)− 1
C t)

∞∑
L=2

1

L!
CLL

L
2 Ln

for some constant C = C(q, s) > 0. By Stirling’s formula,
∑∞
L=2

1
L!C

LL
L
2 Ln converges

and hence adjusting the constant C, we obtain (2.16) completing the proof of the
proposition.

A Comparison to TASEP

In this section, we compute explicit expression for the upper tail rate function for
TASEP (ASEP with q = 1) with step initial data and show that it matches with general
ASEP rate function Φ+ defined in (1.4).

Indeed, the large deviation problem for TASEP is already solved in [40] and is
formulated in terms of Exponential Last Passage Percolation (LPP) model (Theorem 1.6
in [40]).

In order to state the connection between TASEP and Exponential LPP, we briefly
recall the Exponential LPP model. Let ΠN be the set of all upright paths π in Z2

>0 from
(1, 1) to (N,N). Let w(i, j), (i, j) ∈ Z2

>0 be independent exponential distributed random
variables with parameter 1. The last passage value for (N,N) is defined to be

H(N) := max
{ ∑

(i,j)∈π

w(i, j);π ∈ ΠN

}
.

As with the ASEP, for TASEP, we also set Hq=1
0 (t) to be the number of particles to the

right of origin at time t. It is well known (see [40] for example) that Hq=1
0 (t) is related to

the last passage value H(N) in the following way

P
(
−Hq=1

0 (t) + t
4 ≥

t
4y
)

= P(H(Mt) ≥ t), where Mt = b t4 (1− y)c+ 1. (A.1)

Theorem A.1. For y ∈ (0, 1) we have

lim
t→∞

1

t
logP

(
−Hq=1

0 (t) + t
4 ≥

t
4y
)

= −Φ+(y). (A.2)

where Φ+ is defined in (1.4).

The idea of the proof of Theorem A.1 is to use large deviation principle for H(N)

which appears in Theorem 1.6 in [40] followed by an application of the relation (A.1).
The only impediment is that the Johansson result appears in a variational form.

Let us recall Theorem 1.6 in [40]. According to Eq (1.21) in [40] (with γ = 1), the
upper tail of H(N) satisfy the following large deviation principle

lim
N→∞

1
N logP(H(N) ≥ Nz) = −J(z), z ≥ 4. (A.3)
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where the rate function J is given by

J(t) := inf
x≥t

[GV (x)−GV (4)], t ≥ 4, where

GV (x) := −2

∫
R

log |x− r|dµV (r) + V (r), x ≥ 4.
(A.4)

Here V (x) = x is defined on [0,∞), and the measure µV is the unique minimizer of
IV (µ) over M(R≥0), the set of probability measures on [0,∞). IV (·) is known as the
logarithmic entropy in presence of the external field V and is given by

IV (µ) := −
∫∫

R2

log |x1 − x2|dµ(x1)dµ(x2) +

∫
R

V (x)dµ(x), µ ∈M(R≥0).

The logarithmic entropy IV (µ) is well studied in both mathematical and physics literature
and has several applications to random matrix theory and related models. We refer to
[61] and [37] and the references there in for more details.

The form of the rate function defined in (A.4) is not exactly same as in [40]. However,
one can show the rate function J defined in (A.4) is same as Eq (2.15) in [40] using the
properties of minimizing measure (see Theorem 1.3 in [61] or Eq (1.6) in [31]). Such an
expression for the rate function is derived using Coulomb gas theory. We refer to [40],
[33], and [26] for treatment on the LDP problems of such nature.

Proof of Theorem A.1. For clarity we split the proof into two steps.

Step 1. We claim that J defined in (A.4) has the following explicit expression.

J(t) =
√
t2 − 4t− 2 log

t− 2 +
√
t2 − 4t

2
, t ≥ 4. (A.5)

We will prove (A.5) in Step 2. Here we assume its validity and conclude the proof of
(A.2).

Towards this end, fix y ∈ (0, 1) and K large enough such that [y − 1
K , y + 1

K ] ⊂
(0, 1). Recall the definition of Mt from (A.1). Note that for all large enough t, we have

4
1−y+K−1Mt ≤ t ≤ 4

1−y−K−1Mt. Thus

P
(
H(Mt) ≥ 4

1−y+K−1Mt

)
≥ P

(
−Hq=1

0 (t) + t
4 ≥

t
4y
)
≥ P

(
H(Mt) ≥ 4

1−y−K−1Mt

)
.

Taking logarithms on each side, dividing by Mt and then taking t→∞ we get

−J
(

4
1−y+K−1

)
≥ lim sup

t→∞

1

Mt
P
(
−Hq=1

0 (t) + t
4 ≥

t
4y
)

≥ lim inf
t→∞

1

Mt
P
(
−Hq=1

0 (t) + t
4 ≥

t
4y
)
≥ −J

(
4

1−y−K−1

)
.

(A.6)

where we used the upper tail large deviation principle for H(N) from (A.3). Observe
that Mt

t →
1−y

4 , and using (A.5) we see that

1− y
4

J
( 4

1− y
)

=
1− y

4

(
4
√
y

1− y
− 2 log

2(1 + y)− 4
√
y

2(1− y)

)
= Φ+(y),

where Φ+ is defined in (1.4). Thus taking K →∞ in (A.6) we arrive at (A.2).

Step 2. We now turn our attention to prove (A.5). It is well known that for V (x) = x,
the minimizer µV is given by the Marchenko-Pastur measure (see Equation 3.3.2 and
Proposition 5.3.7 in [37] with λ = 1):

dµV (x) =

√
4x− x2

2πx
1x∈[0,4]dx.
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Recall GV (x) defined in (A.4). Using the Cauchy Transform for µV (see the last unnum-
bered equation in Page 200 of [37]) we get that for x > 4,

d

dx

∫
log |x− r|dµV (r) =

1

2
−
√
x2 − 4x

2x
,

which implies GV (z)−GV (4) =
∫ z

4

√
x2−4x
x dx. Thus GV (z)−GV (4) is strictly increasing

in y and whence by (A.4) we have

J(t) =

∫ t

4

√
x2 − 4x

x
dx.

To compute the above integral, we make the change of variable x 7→ (z+1)2

z so that

dx = (1− 1
z2 )dz and x2 − 4x = (z2−1)2

z2 . Set a = t−2
2 +

√
t2−4t

2 to get∫ t

4

√
x2 − 4x

x
dx =

∫ a

1

(z − 1)2

z2
dz =

[
z − 1

z
− 2 log z

]a
1

= a− 1

a
− 2 log a.

Plugging the value of a we get (A.5) completing the proof.
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