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Extended mean field control problem: a propagation
of chaos result*
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Abstract

In this paper, we study the extended mean field control problem, which is a class of
McKean–Vlasov stochastic control problem where the state dynamics and the reward
functions depend upon the joint (conditional) distribution of the controlled state and
the control process. By considering an appropriate controlled Fokker–Planck equation,
we can formulate an optimization problem over a space of measure–valued processes
and, under suitable assumptions, prove the equivalence between this optimization
problem and the extended mean–field control problem. Moreover, with the help of this
new optimization problem, we establish the associated limit theory i.e. the extended

mean field control problem is the limit of a large population control problem where the
interactions are achieved via the empirical distribution of state and control processes.
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1 Introduction

The aim of this paper is to provide a rigorous connection between two stochastic
control problems: the stochastic control problem of large population (or particles)
interacting through the empirical distribution of their states and controls on the one
hand, and the other hand the problem of control of stochastic dynamics depending upon
the joint (conditional) distribution of the controlled state and the control, also called
extended mean field control problem.

To fix the ideas, let us briefly described the problems. The large population stochastic
control problem can be formulated as follows (see Section 2.1 for more details). Consider
N–interacting controlled state processes X := (X1, ...,XN ) governed by the following
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system of stochastic differential equations: for t ∈ [0, T ],

dXi
t = b

(
t, Xi

t,
(
ϕN,Xs

)
s∈[0,t]

, ϕNt , α
i
t

)
dt+ σ

(
t, Xi

t,
(
ϕN,Xs

)
s∈[0,t]

, ϕNt , α
i
t

)
dWi

t + σ0dBt,

ϕNt :=
1

N

N∑
i=1

δ(
Xi
t, α

i
t

) and ϕN,Xt :=
1

N

N∑
i=1

δXi
t
.

Here T > 0 is a fixed time horizon, (B,W1, ...,WN ) are independent Brownian motions,
B is called the common noise and (α1, .., αN ) are some admissible controls chosen by a
global planner. In this stochastic control problem, the global planner aims to maximise
the average reward value given by

1

N

N∑
i=1

E

[ ∫ T

0

L
(
t, Xi

t,
(
ϕN,Xs

)
s∈[0,t]

, ϕNt , α
i
t

)
dt+ g

(
Xi
T ,
(
ϕN,Xs

)
s∈[0,T ]

)]
.

When N goes to infinity, the expectation is that this problem “converges” towards
the extended mean field control problem. Loosely speaking (see Section 2.2 for more
details), in the extended mean field control problem the objective is to control via α the
state process X which follows the stochastic differential equation of McKean–Vlasov
type

dXt =b
(
t, Xt, (L(Xs|B))s∈[0,t], L(Xt, αt|B), αt

)
dt

+ σ
(
t, Xt, (L(Xs|B))s∈[0,t], L(Xt, αt|B), αt

)
dWt + σ0dBt,

in order to maximise the quantity

E

[ ∫ T

0

L(t, Xt, (L(Xs|B))s∈[0,t], L(Xt, αt|B), αt)dt+ g(XT , (L(Xs|B))s∈[0,T ])

]
,

where L(Xt, αt|B) (resp L(Xt|B)) denote the conditional distribution of the couple
(Xt, αt) (resp the state Xt) given the common noise B.

The connection we are investigating, i.e. that the stochastic control problem of large
population converges towards the mean field control problem, is often called limit theory
or (controlled) propagation of chaos. In contrast with the classical framework of McKean–
Vlasov stochastic control problem which only considers the conditional distribution of Xt,
here, there is in addition the presence of the conditional distribution of (Xt, αt). Indeed,
when there is no law of control i.e. no L(Xt, αt|B) but only L(Xt|B) in (b, σ, L, g), these
problems have been studied in the literature. Let us mention the work of Snitzman [33]
which shows, for particular coefficients (b, σ) in the absence of control (and the law of
control), via some compactness arguments, a connection of this type. See also the papers
of Oelschläger [31] and Gärtner [17], with no control and no law of control as well, which
use martingale problem in the sense of Stroock and Varadhan [34] adapted in the context
of Mckean–Vlasov equation to prove similar results under minimal assumptions.

In the controlled dynamic case but no extended type, that is to say when the dynamic
depends on the control but not its law, Fischer and Livieri [15] get a connection between
the large population stochastic control problem and the (extended) mean field control
problem for the study of a mean–variance problem arising in finance. Another interesting
work is that of Budhiraja, Dupuis, and Fischer [4], where they study the behavior
of empirical measures of controlled interacting diffusion in order to prove a large
deviation principle in a McKean–Vlasov framework. Still without touching the case
with law of control, the first papers that deal with the case with control under general
assumptions are Lacker [24] and Djete, Possamaï, and Tan [11]. Thanks to an (extension
of) martingale problem of [34], as well as relaxed controls initiated by Fleming and Nisio
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[16], and developed by El Karoui, Huu Nguyen, and Jeanblanc-Picqué [12], combined
with compactness arguments adapted to the McKean–Vlasov setting, [24] proves the
connection between the two problems under general conditions on (b, σ, L, g) without
common noise. Indeed, the idea of using relaxed controls, i.e. control seen as probability
measure of type δαt(du)dt helps to find some compactness properties necessary for
proving these types of results. Following upon these ideas, [11] develops a general
overview of McKean–Vlasov or mean field control problem, and treats the case with
common noise, which turns out to be a non trivial extension.

In the presence of the law of control, this propagation of chaos result is a natural
expectation. In spite of appearances, this is not an easy extension. The aforementioned
techniques do not work in this context. Two main reasons can explain the unsuitable
aspect of the techniques mentioned above. Firstly, the continuity of the application
t 7→ L(Xt|B) (or t 7→ ϕN,Xt ) plays a crucial role. Indeed, the classical idea is to put this
application in a canonical space, which is here the space C([0, T ];P(Rn)) of continuous
functions from [0, T ] into the space of probability measures on Rn, and via compact-
ness arguments and martingale problem get this connection (see [24], and [11] for the
non–Markovian case with common noise). In our situation, this type of continuity is
lost because we must take into account the application t 7→ L(Xt, αt|B) (or t 7→ ϕNt )
which does not have this property since the presence of control α can generate some
discontinuities. Secondly, as highlighted in [11], proving a result of propagation of chaos
is extremely related to the search of the closure of the set of all probabilities that are the
image measure of the controlled state process, the control and the conditional distribu-
tion of the controlled state process and control, i.e. L

(
X, δαt(du)dt,L(X, δαt(du)dt|B)

)
.

Unfortunately, the natural space that one might think to answer this question is not a
closed set due to another problem of continuity (see Remark 2.5 for a more thorough
discussion).

There are not many papers in the literature which study the mean field control
problem with law of control and its connection with a large population stochastic control
problem. To the best of our knowledge, only the recent papers of Laurière and Tangpi
[28] (with strong assumptions) and Motte and Pham [30] (for mean field Markov decision
processes) treat the limit theory question. Most papers focus on the questions of
existence and uniqueness of optimal control. Acciaio, Backhoff Veraguas, and Carmona
[1], with the help of Pontryagin’s maximum principle, obtain necessary and sufficient
conditions to characterize the optimum with strong assumptions on the coefficients in a
no common noise framework. Pham and Wei [32] (without common noise, with closed
loop controls) and Djete, Possamaï, and Tan [10] establish the Dynamic Programming
Principle (DPP for short) and give a Hamilton–Jacobi equation on a space of probability
measures verified by the value function (heuristically proved in [10]). Let us also mention
Carmona and Lacker [6], Elie, Mastrolia, and Possamaï [13], Cardaliaguet and Lehalle
[5], Alasseur, Taher, and Matoussi [2], Casgrain and Jaimungal [8], Lacker and Soret
[26], Féron, Tankov, and Tinsi [14] and [28] who study similar problem in the mean field
game framework called mean field game of controls or extended mean field game, as
well as our companion paper Djete [9] adapts the arguments of this paper to the context
of mean field game of controls.

In this article, our goal is to give some properties on the extended mean field control
problem and to show its connection with the large population stochastic control problem
under general assumptions on (b, σ, L, g) (see Theorem 3.3 and Theorem 3.1). To bypass
the difficulties highlighted above, we follow the idea mentioned in [11] which is to
introduce a new optimization problem by considering a suitable set of controls. This
set must be the closure of some set of probability measures. In this framework, the
appropriate space is the closure of all the probabilities that are the distributions of the
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conditional distribution of the state controlled process and the conditional distribution
of the state controlled process and the control, i.e. L

(
L(Xt|B))t∈[0,T ], δL(Xt,αt|B)(dm)dt

)
(for more details see Section 2.3). Taking into account this type of probability turns
out to be the key to solve the main difficulties. The characterization of its closure is
possible by the appropriate use of (controlled) Fokker–Planck equation. Inspired by
the techniques developed in the proofs of Gyöngy [18], especially [18, Lemma 2.1] (an
adaptation of Krylov [22]) and [18, Proposition 4.3] which are regularization results,
we can determine the desired set thanks to a Fokker–Planck equation. The conditions
used on the coefficients are general, except the non–degeneracy of the volatility σ. This
assumption is capital to prove our main results. Apart from this assumption, our result
appears to be one of the first to establish some general properties on extended mean
field control problem and to show its connection with the large population stochastic
problem. Lacker [25] used similar techniques in the context of convergence of closed
loop Nash equilibria, but his analysis focuses mainly on an adequate manipulation of
[18, Theorem 4.6], while ours focuses on the techniques used for the proofs. Also, let us
mention Lacker, Shkolnikov, and Zhang [27] which establish a correspondence between
Fokker–Planck equations and solutions of SDE in a McKean–Vlasov framework with
common noise.

The rest of the paper is structured as follows. After introducing the notations and
the probabilistic structure to give an adequate definition of the tools that are used
throughout the paper, Section 2 states all the main assumptions and carefully formulates
first the large population stochastic control problem, then the strong formulation of
the extended mean field control problem and finally the stochastic control of measure–
valued processes. Next, in Section 3, we present the main results of this paper: the
equivalence between the strong formulation of extended mean field control problem and
the stochastic control of measure–valued processes, and the propagation of chaos result
i.e. the extended mean field control problem is, when N goes to infinity, the limit of
the large population stochastic control problem in presence of interactions through the
empirical distribution of state and control processes. Finally, Section 4 is devoted to the
proof of our main results and Section 5 provides some approximation results related to
the Fokker–Planck equation needed in our proofs.

Notations

(i) Given a Polish space (E,∆), p ≥ 1, we denote by P(E) the collection of all Borel
probability measures on E, and by Pp(E) the subset of Borel probability measures µ
such that

∫
E

∆(e, e0)pµ(de) <∞ for some e0 ∈ E. We equip Pp(E) with the Wasserstein
metricWp defined by

Wp(µ, µ
′) :=

(
inf

λ∈Λ(µ,µ′)

∫
E×E

∆(e, e′)p λ(de, de′)

)1/p

,

where Λ(µ, µ′) denotes the collection of all probability measures λ on E × E such that
λ(de, E) = µ(de) and λ(E,de′) = µ′(de′). Equipped withWp, Pp(E) is a Polish space (see
[35, Theorem 6.18]). For any µ ∈ P(E) and µ–integrable function ϕ : E → R, we write

〈ϕ, µ〉 = 〈µ, ϕ〉 :=

∫
E

ϕ(e)µ(de), (1.1)

and for another metric space (E′,∆′), we denote by µ ⊗ µ′ ∈ P(E × E′) the product
probability of any (µ, µ′) ∈ P(E)× P(E′).

Given a probability space (Ω,F ,P) supporting a sub–σ–algebra G ⊂ F then for a
Polish space E and any random variable ξ : Ω −→ E, both the notations LP(ξ|G)(ω) and
PGω ◦ (ξ)−1 are used to denote the conditional distribution of ξ knowing G under P.
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(ii) For any (E,∆) and (E′,∆′) two Polish spaces, we shall refer to Cb(E,E
′) to

designate the set of continuous functions f from E into E′ such that supe∈E ∆′(f(e), e′0) <

∞ for some e′0 ∈ E′. Let N be the set of non–negative integers and N∗ be the notation
of the set of positive integers, i.e. N∗ := N \ {0}. Given non–negative integers m and n,
we denote by Sm×n the collection of all m× n–dimensional matrices with real entries,
equipped with the standard Euclidean norm, which we denote by | · | regardless of the
dimensions, for notational simplicity. We also denote Sn := Sn×n, and denote by 0m×n
the element in Sm×n whose entries are all 0, and by In the identity matrix in Sn. For
any matrix a ∈ Sn which is symmetric positive semi–definite, we write a1/2 the unique
symmetric positive semi–definite square root of the matrix a. Let k be a positive integer,
we denote by Ckb (Rn;R) the set of bounded maps f : Rn −→ R with bounded continuous
derivatives of order up to and including k. Let f : Rn −→ R be twice differentiable, we
denote by ∇f and ∇2f the gradient and Hessian of f .

(iii) Let T > 0, and (Σ, ρ) be a Polish space, we denote by C([0, T ],Σ) the space of
all continuous functions on [0, T ] taking values in Σ. Then C([0, T ],Σ) is a Polish space
under the uniform convergence topology, and we denote by ‖ · ‖ the uniform norm. When
Σ = Rk for some k ∈ N, we simply write Ck := C([0, T ],Rk), also we shall denote by
CkW := C([0, T ],P(Rk)), and for p ≥ 1, Ck,pW := C([0, T ],Pp(Rk)).

With a Polish space E, we denote by M(E) the space of all Borel measures q(dt, de)
on [0, T ]×E, whose marginal distribution on [0, T ] is the Lebesgue measure dt, that is to
say q(dt,de) = q(t, de)dt for a family (q(t,de))t∈[0,T ] of Borel probability measures on E.
We also consider the subset M0(E) ⊂M(E) which is the collection of all q ∈M(E) such
that q(dt, de) = δψ(t)(de)dt for some Borel measurable function ψ : [0, T ] → E. For any
q ∈M(E), we define

qt∧·(ds,de) := q(ds,de)
∣∣
[0,t]×E + δe0(de)ds

∣∣
(t,T ]×E , for some fixed e0 ∈ E. (1.2)

2 Extended mean field control problem

Let (`, n) ∈ N ×N?, (U, ρ) be a nonempty Polish space and PnU denote the space of
all Borel probability measures on Rn × U i.e. PnU := P(Rn × U). We give ourselves the
following Borel measurable functions[

b, σ, L
]

: [0, T ]×Rn × CnW × PnU × U −→ Rn × Sn×n ×R and g : Rn × CnW −→ R.

Assumption 2.1. The functions [b, σ, L] are non–anticipative in the sense that, for all
(t, x, π,m, u) ∈ [0, T ]×Rn × CnW × PnU × U[

b, σ, L
]
(t, x, π,m, u) =

[
b, σ, L

]
(t, x, πt∧·,m, u).

Moreover, there exist positive constants C and p such that p ≥ 2 and
(i) U is a compact space;
(ii) b and σ are continuous bounded functions, and σ0 ∈ Sn×` is constant;
(iii) one has for all (t, x, x′, π, π′,m,m′, u) ∈ [0, T ]× (Rn)2 × (CnW)2 × (PnU )2 × U∣∣[b, σ](t, x, π,m, u)− [b, σ](t, x′, π′,m′, u)

∣∣ ≤ C
(
|x− x′|+ sup

s∈[0,T ]

Wp(πs, π
′
s) +Wp(m,m

′)
)
;

(iv) for some constant θ > 0, one has, for all (t, x, π,m, u) ∈ [0, T ]×Rn×CnW ×PnU ×U ,

θIn ≤ σσ>(t, x, π,m, u);

(v) the reward functions L and g are continuous, and for all (t, x, π,m, u) ∈ [0, T ] ×
Rn × CnW × PnU × U , one has∣∣L(t, x, π,m, u)

∣∣+ |g(x, π)| ≤ C
[
1 + |x|p + sup

s∈[0,T ]

Wp(πs, δ0)p +

∫
Rn
|x′|pm(dx′, U)

]
.
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Remark 2.2. These assumptions are standard and in the same spirit as those used in
[24] and [11], but with some specific modifications adapted to the context of this article.
They ensure the well–posedness of the objects used throughout this paper. Due to the
technical aspect of our paper, the point (i) is considered essentially to simplify (the
presentation of) the proofs. But, using the classical uniform integrability condition as
in [24] and [11], it is possible to work with U a non–bounded set of Rn for instance.
The point (iv) is the least classical assumption in the study in this problem. This is
an important assumption for the proofs of our results, in particular to deal with the
Fokker–Planck equations and the different SDEs considered in the proofs (see Section 5).

2.1 The large population stochastic control problem

In this section, we present theN–agent stochastic control problem or large population
control problem. The study of this control problem when N goes to infinity is one of the
main objective of this paper.

For a fixed (ν1, . . . , νN ) ∈ Pp(Rn)N , let

ΩN := (Rn)N × (Cn)N × C`

be the canonical space, with canonical variable X0 = (X1
0, . . . ,X

N
0 ), canonical processes

W = (W1
s , . . . ,W

N
s )0≤s≤T and B = (Bs)0≤s≤T , and probability measure PNν under which

X0 ∼ νN := ν1 ⊗ · · · ⊗ νN and (W, B) are standard Brownian motions independent of X0.
Let FN = (FNs )0≤s≤T be defined by

FNs := σ
{
X0,Wr, Br, r ∈ [0, s]

}
, s ∈ [0, T ].

Let us denote by AN (νN ) the collection of all U–valued FN–predictable processes. Then,
given α := (α1, . . . , αN ) ∈ (AN (νN ))N , denote by Xα := (Xα,1

· , . . . ,Xα,N
· ) the unique

strong solution of the following system of SDEs, EP
N
ν

[
‖Xα,i‖p

]
< ∞, for each i ∈

{1, . . . , N},

Xα,i
t = Xi

0 +

∫ t

0

b
(
r,Xα,i

r , ϕN,Xr∧· , ϕ
N
r , α

i
r

)
dr +

∫ t

0

σ
(
r,Xα,i

r , ϕN,Xr∧· , ϕ
N
r , α

i
r

)
dWi

r + σ0Bt,

(2.1)

for all t ∈ [0, T ], with

ϕN,Xt (dx) :=
1

N

N∑
i=1

δ(
Xα,i
t

)(dx) and ϕNt (dx, du) :=
1

N

N∑
i=1

δ(
Xα,i
t , αit

)(dx, du).

The value function V NS (ν1, . . . , νN ) is defined by

V NS (ν1, . . . , νN ) := sup
(α1,...,αN )

JN (α) (2.2)

where

JN (α) :=
1

N

N∑
i=1

EP
N
ν

[ ∫ T

0

L
(
t,Xα,i

t , ϕN,Xt∧· , ϕ
N
t , α

i
t

)
dt+ g

(
Xα,i
T , ϕN,XT∧·

)]
,

which is well–posed under Theorem 2.1.

Remark 2.3. (i) Our formulation allows for coefficients depending on the path of the
empirical distribution of Xα, but can only accommodate a Markovian dependence with
respect to Xα itself. In some sense, we work on a non–Markovian framework w.r.t. the
empirical distribution of Xα. Indeed, as we will see in Section 2.3, our point of view is to
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write the entire problem as an optimization involving mainly the empirical distribution
of Xα i.e. ϕN,X. Therefore our key variable is ϕN,X (not Xα ) and we can deal with its
path, hence the non–Markovian aspect.

(ii) Sometimes, the probability on CnW ×M(PnU )× C`

P(α1, ..., αN ) := PNν ◦
(

(ϕN,Xt )t∈[0,T ], δ(ϕNs )(dm)ds, (Bt)t∈[0,T ]

)−1

(2.3)

will be used to refer to (α1, . . . , αN ) ∈ (AN (νN ))N . The notation PNS (ν1, . . . , νN ) will
designate all probabilities of this type. The need for this space will become clearer in
the following.

2.2 The extended mean field control problem

On a fixed probability space, we formulate the classical McKean–Vlasov control
problem with common noise including the (conditional) law of control.

For a fixed ν ∈ Pp(Rn), let

Ω := Rn × Cn × C`

be the canonical space, with canonical variable ξ, canonical processes W = (Wt)0≤t≤T
and B = (Bt)0≤t≤T , and probability measure Pν under which ξ ∼ ν and (W,B) are
standard Brownian motions independent of ξ. Let F = (Fs)0≤s≤T and G = (Gs)0≤s≤T be
defined by: for all s ∈ [0, T ],

Fs := σ
{
ξ,Wr, Br, r ∈ [0, s]

}
and Gs := σ

{
Br, r ∈ [0, s]

}
.

Let us denote by A(ν) the collection of all U–valued processes α = (αs)0≤s≤T which are
F-predictable. Then, given α ∈ A(ν), let Xα be the unique strong solution of the SDE
(see [10, Theorem A.3]): EPν

[
‖Xα‖p

]
<∞, Xα

0 = ξ, and for t ∈ [0, T ],

Xα
t = Xα

0 +

∫ t

0

b
(
r,Xα

r , µ
α
r∧·, µ

α
r , αr

)
dr +

∫ t

0

σ
(
r,Xα

r , µ
α
r∧·, µ

α
r , αr

)
dWr + σ0Bt, (2.4)

with µαr := LPν
(
Xα
r

∣∣Gr) and µαr := LPν
(
Xα
r , αr

∣∣Gr), for all r ∈ [0, T ].

Let us now introduce the following McKean–Vlasov control problem by

VS(ν) := sup
α∈A(ν)

Φ(α) where Φ(α) := EPν
[ ∫ T

0

L(t,Xα
t , µ

α
t∧·, µ

α
t , αt)dt+ g(Xα

T , µ
α)

]
.

(2.5)

Remark 2.4. Similarly to [11], notice that, this formulation takes into account the case
without common noise. Indeed, when ` = 0, the space C` and Sn×` degenerate and
become {0}. Then, B = 0 and, the filtration G is constant equal to the trivial σ–algebra
{∅,Ω}. Therefore, there is no conditional distribution anymore.

Remark 2.5 (Discussion on a possible relaxed extended mean field control problem). An
adequate way to study the properties of VS and/or to give a limit theory is to find the
closure S(ν) of some particular space S(ν) for the Wasserstein topology. To simplify,
let us take ` = 0 (without common noise), according to the classical ideas of relaxed

controls, S(ν) :=
{
Pν ◦

(
Xα, δαt(du)dt

)−1
, α ∈ A(ν)

}
(see discussion Djete, Possamaï,

and Tan [11] and also Lacker [24]).

Following [24] and [11], let us give an example to see why the “natural” expected
relaxed controls is not a “good” set. Let n = 1, U = [1, 2], ν = δ0, σ(t, x, π,m, u) :=∣∣ ∫
U
u′ m(Rn,du′)

∣∣ and b = 0. Notice that S(ν) ⊂ P
(
Cn×M(U)

)
, then the canonical space
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is ΩR := Cn ×M(U). Denote (X,Λt(du)dt) the canonical process and F := (F t)t∈[0,T ] the
canonical filtration. A naive relaxed controls is PR(ν) ⊂ P(Cn ×M(U)) defined by

PR(ν) :=
{
P : P(X0 = 0) = 1, (MP,f

t )t∈[0,T ] is a (P,F)–martingale ∀f ∈ C2
b (R)

}
,

where MP,f
t := f(Xt)− 1

2

∫ t
0
∇2f(Xs)E

P
[ ∫
U
u Λs(du)

]2
ds.

But, PR(ν) defined in this way is not a closed set. Indeed the map q ∈M(U)→ qt ∈
P(U) is not continuous for the Wasserstein topology. Therefore PR(ν) can not be the
closure of S(ν). More generally, as long as the coefficients (b, σ) are non–linear w.r.t m,
this kind discontinuity will appear. Due to this type of lack of continuity, this approach
cannot work. We need then to change the framework.

2.3 Stochastic control of measure–valued processes

As previously mentioned, the classical approach of relaxed controls is not appropriate.
To bypass the difficulty generated by the (conditional) distribution of control in this
study, especially to prove the limit theory result or (controlled) propagation of chaos, we
introduce a new stochastic control problem. Motivated by the Fokker–Planck equation
verified by the couple (µα, µα) from (2.4), we give in this part an equivalent formulation
of the extended mean field control problem which is less “rigid”.

2.3.1 Measure–valued rules

Recall that M := M
(
PnU
)

denotes the collection of all finite (Borel) measures q(dt,dm)

on [0, T ] × PnU , whose marginal distribution on [0, T ] is the Lebesgue measure ds, i.e.
q(ds,dm) = q(s,dm)ds for a measurable family (q(s,dm))s∈[0,T ] of Borel probability
measures on PnU . Let Λ be the canonical element on M. We then introduce a canonical
filtration FΛ = (FΛ

t )0≤t≤T on M by

FΛ
t := σ

{
Λ(C × [0, s]) : ∀s ≤ t, C ∈ B(PnU )

}
.

For each q ∈M, one has a disintegration property: q(dt, dm) = q(t,dm)dt, and there is a
version of disintegration such that (t, q) 7→ q(t,dm) is FΛ–predictable.

We denote by (µ,Λ, B) the canonical element on Ω := CnW ×M × C`. The canonical
filtration F = (F t)t∈[0,T ] is then defined by: for all t ∈ [0, T ]

F t := σ
{
µt∧·,Λt∧·, Bt∧·

}
,

where Λt∧· denotes the restriction of Λ on PnU × [0, t] (see notation 1.2). Notice that, we
can choose a version of disintegration Λ(dm,dt) = Λt(dm)dt with (Λt)t∈[0,T ] a P(PnU )–
valued F–predictable process.

Let us consider L the following generator: for all (t, x, π,m, u) ∈ [0, T ]×Rn × CnW ×
PnU × U and any ϕ ∈ C2(Rn)

Ltϕ(x, π,m, u) :=
1

2
Tr
[
σσ>(t, x, π,m, u)∇2ϕ(x)

]
+ b(t, x, π,m, u)>∇ϕ(x),

also we introduce, for every f ∈ C2(Rn), Nt(f):

Nt(f) := 〈f(· − σ0Bt), µt〉 − 〈f, µ0〉

−
∫ t

0

∫
PnU

∫
Rn×U

Lr[f(· − σ0Br)]
(
x, µ,m, u

)
m(dx,du)Λr(dm)dr,

(2.6)
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recall that 〈·, ·〉 is defined in (1.1). Notice that, under Theorem 2.1, the integral in the
definition N(f) is well–posedness. For each π ∈ P(Rn), one considers the Borel set Zπ
which is the set of probability measures m on Rn × U with marginal on Rn equal to π i.e.

Zπ :=
{
m ∈ PnU : m(dx, U) = π(dx)

}
.

Definition 2.6. For every ν ∈ P(Rn), P ∈ P(Ω) is a measure–valued rule if:

• P
(
µ0 = ν

)
= 1.

• (Bt)t∈[0,T ] is a (P,F) Wiener process starting at zero and for P–almost every ω ∈ Ω,
Nt(f) = 0 for all f ∈ C2

b (Rn) and every t ∈ [0, T ].

• For dP⊗ dt almost every (t, ω) ∈ [0, T ]× Ω, Λt
(
Zµt

)
= 1.

We shall denote by PV (ν) the set of all measure–valued rules with initial value ν.

2.3.2 Optimization problem

Let us define, for all (π, q) ∈ CnW ×M(PnU ),

J(π, q) :=

∫ T

0

∫
PnU

∫
Rn×U

L
(
t, x, π,m, u

)
m(dx, du)qt(dm)dt+

∫
Rn
g
(
x, π

)
πT (dx).

Notice that, under Theorem 2.1, the map J : Cn,pW ×Mp(PnU )→ R is continuous (see for
instance Theorem A.4). We can now define the measure–valued control problem: for
each ν ∈ P(Rn),

VV (ν) := sup
P∈PV (ν)

EP
[
J(µ,Λ)

]
. (2.7)

Remark 2.7. (i) Theorem 2.6 is partly inspired by the Fokker–Planck equation verified by
(µαt , µ

α
t )t∈[0,T ] (see (2.4) and Theorem 2.9), in particular the last two points characterize

this Fokker–Planck aspect. Indeed, (µ,Λ) satisfy: for all (t, f)

〈f(· − σ0Bt), µt〉

= 〈f, µ0〉+

∫ t

0

∫
PnU

∫
Rn×U

Lr[f(· − σ0Br)]
(
x, µ,m, u

)
mx(du)µr(dx)Λr(dm)dr,

where for each m ∈ PnU , the Borel measurable function Rn 3 x → mx ∈ P(U) verifies
mx(du)m(dx, U) = m(dx,du). This kind of control turns out to be less “rigid”. Especially,
PV (ν) is a compact set for the Wasserstein topology (see Theorem 3.1).

(ii) Working with these variables seems to be the key to better understand the
problem and solves the principal difficulties. Mainly, to prove a limit theory result in this
context, we make an approximation of the distribution of (µ,Λ) thanks to the distribution
of variables of type (µα, δµαt (dm)dt) and not thanks to the approximation of the law of
X. This approximation is achieved by using Fokker–Planck equations. To the best of our
knowledge, looking at this kind of variable or “control” has never been studied in the
literature (except in [11], only for technical reasons).

SDE formulation of measure–valued rules Instead of presenting what we call
measure–valued rules as solutions of Fokker–Planck equation, it is possible to formu-
late the measure–valued rules through solution of SDEs. Indeed, using an equivalence
between Fokker–Planck equations and SDEs, there is an alternative way to formulate
the measure–valued rules. In order to give more insights about the measure–valued
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rules, let us describe the SDEs formulation. For this purpose, we introduce the notion of
extended relaxed control rules. We say that the tuple

(Ω,F ,F,P,W,B,X, µ,Λ)

is an extended relaxed control rule if

(i) (Ω,F ,F,P) is a filtered probability space. on (Ω,F ,F,P), (W,B) is a Rn × R`–
valued F–Brownian motion, (X,µ) is a Rn ×P(Rn)–valued F–adapted continuous
process and Λ is a P(PnU )–valued F–predictable process.

(ii) X0, W and (µ,Λ, B) are independent.
(iii) The process µ verifies µt = LP(Xt|µt∧·,Λt∧·, Bt∧·) = LP(Xt|µ,Λ, B) for all t ∈ [0, T ].

The process Λ is s.t. Λt(Zµt) = 1 dP ⊗ dt a.e. and the process X is solution of:
LP(X0) = ν and

dXt =

∫
PnU

∫
U

b(t,Xt, µ,m, u)mXt(du)Λt(dm)dt

+
(∫
PnU

∫
U

σσ>(t,Xt, µ,m, u)mXt(du)Λt(dm)
)1/2

dWt + σ0dBt,

where for each m ∈ PnU , the Borel measurable function Rn 3 x → mx ∈ P(U)

verifies mx(du)m(dx, U) = m(dx,du).

Using [27, Theorem 1.3.] or an easy adaptation of Theorem 5.8 or Theorem 5.9, we
have the following equivalence result.

Proposition 2.8. (i) For any extended relaxed control rule (Ω,F ,F,P,W,B,X, µ,Λ),

P ◦
(
µ,Λ, B

)−1
belongs to PV (ν).

(ii) Conversely, for any P ∈ PV (ν) measure–valued rule, there exists an extended
relaxed control rule (Ω,F ,F,P,W,B,X, µ,Λ) s.t.

P = P ◦
(
µ,Λ, B

)−1
.

As stated in the preamble of this part, the measure–valued control problem is mo-
tivated by the Fokker–Planck equation verified by the couple (µα, µα) of the strong
formulation. Therefore, the strong controls i.e. (µα, µα)α∈A(ν) can be seen as a spe-
cial case of measure–valued rules. By taking into account the previous equivalence
Proposition or by applying Itô’s formula, it is straightforward to deduce the following
proposition.

Proposition 2.9. For each ν ∈ Pp(Rn), let us introduce

PS(ν) :=
{
Pν ◦

(
(µαt )t∈[0,T ], δµαr (dm)dr, (Bt)t∈[0,T ]

)−1
, α ∈ A(ν)

}
.

one has PS(ν) ⊂ PV (ν) and

VS(ν) = sup
Q∈PS(ν)

EQ
[
J
(
µ,Λ

)]
.

Proof. Let f ∈ C2(Rn) and t ∈ [0, T ], denote byNt(µ,Λ, B)(f) := Nt(f). For any α ∈ A(ν),
it is obvious that Pν(µα0 = ν) = 1 and δµαt

(
Zµαt

)
= 1 dPν ⊗ dt a.e.. After applying

Itô’s formula with the process Xα
· − σ0B·, and taking the conditional expectation w.r.t.

the σ–field GT , one has Nt(µα, δµαt (dm)dt, B)(f) = 0, Pν–a.e. for all (t, f). Then Pν ◦(
µα, δµαt (dm)dt, B

)−1 ∈ PV (ν). Therefore PS(ν) ⊂ PV (ν). In addition, notice that

Φ(α) = EPν
[ ∫ T

0

∫
PnU
〈L(t, ·, µαt∧·,m, ·),m〉δµαt (dm)dt+ 〈g(·, µα), µαT 〉

]
,

consequently VS(ν) = supQ∈PS(ν)E
Q
[
J
(
µ,Λ

)]
.
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3 Main results

Now, we formulate the main results of this paper.

Theorem 3.1 (Equivalence). Let Theorem 2.1 hold true and ν ∈ Pp′(Rn), with p′ > p.
Then PV (ν) is convex and compact for the Wasserstein metricWp. Moreover

(i) When ` 6= 0, forWp, the set PS(ν) is dense in PV (ν).
(ii) When ` = 0, for any P ∈ PV (ν), there exists a family (Pkz)(k,z)∈N∗×[0,1] ⊂ PS(ν)

such that for each k ∈ N∗, [0, 1] 3 z → Pkz ∈ P(Ω) is Borel measurable and one gets

lim
k→∞

Wp

(∫ 1

0

Pkz dz, P

)
= 0.

Consequently

VV (ν) = VS(ν),

and there exists P? ∈ PV (ν) such that VS(ν) = EP?
[
J
(
µ,Λ

)]
.

Remark 3.2. (i) As in [11] (see also [23] and [9] for the mean field game context), there
are some specificities when ` = 0. Indeed, when ` = 0, (µα, µα) are deterministic, but
(µ,Λ) can still be random, therefore, except in particular situation, it is not possible
to approximate the non atomic measure P by a sequence of atomic measure of type
δ(µα,δµαs (dm)ds). However, a randomisation is possible as mentioned in (ii) of Theorem 3.1.

(ii) Theorem 3.1 and the following Theorem 3.3 are in the same spirit that Theorem
3.1 and Theorem 3.6 of [11]. The main difference is the presence of the distribution of
controlled state and control, and this particularity turns out to be a non trivial extension
(see discussion in Section 2.2).

Theorem 3.3 (Propagation of chaos). Let Theorem 2.1 hold true, p′ > p and (νi)i∈N∗ ⊂
Pp′(Rn) satisfying supN≥1

1
N

∑N
i=1

∫
Rn
|x′|p′νi(dx′) <∞. Then

lim
N→∞

∣∣∣∣V NS (ν1, . . . , νN
)
− VS

( 1

N

N∑
i=1

νi
)∣∣∣∣ = 0.

Finally, we provide some properties of optimal control of our problem. For any
ν ∈ P(Rn), denote by P?V (ν) the set of optimal control i.e. P? ∈ P?V (ν) if P? ∈ PV (ν) and
VV (ν) = EP?

[
J
(
µ,Λ

)]
.

Proposition 3.4. Suppose that the conditions of Theorem 3.3 hold. For some ν ∈
Pp(Rn), let limN→∞Wp

(
1
N

∑N
i=1 ν

i, ν
)

= 0.
(i) For any sequence of non negative numbers (εN )N∈N∗ verifying lim

N→∞
εN = 0, if

(PN )N∈N∗ is the sequence satisfying PN := P(α1, . . . , αN ) (see (2.3)) with

for each N ∈ N∗, αi ∈ AN (νN ) ∀i ∈ J1, NK and V NS (ν1, . . . , νN )− εN ≤ EPN
[
J
(
µ,Λ

)]
,

(3.1)

then

lim
N→∞

inf
P?∈P?V (ν)

Wp

(
PN ,P?

)
= 0.

(ii) Moreover, for each P? ∈ P?V (ν), there exist (εN )N∈N∗ ⊂ (0,∞) verifying
lim
N→∞

εN = 0 and a sequence (P?,N )N∈N∗ satisfying P?,N := P(α?,1, . . . , α?,N ) and condi-

tion 3.1 s.t. lim
N→∞

Wp(P
?,N ,P?) = 0.

Remark 3.5. (i) The previous proposition shows that any εN–optimal control of the
large population stochastic control problem converges towards an optimal control of
the McKean–Vlasov stochastic control problem in distribution sense. In particular when
there exists a unique strong optimal control of the McKean–Vlasov control problem,
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any εN–optimal control of the large population control problem converges towards this
control.

(ii) To the best of our knowledge, Theorem 3.3 and Theorem 3.4 seem to be the first
result under these general assumptions to provide these types of convergence results.
As mentioned in the introduction, other authors treat these questions but in a particular
framework. For instance, while dealing with the convergence of Nash equilibria, [28]
gives a limit theory result for the extended mean field control problem. The framework
of [28] is less general than ours, in particular, they consider a situation without common
noise (σ0 = 0), with volatility σ constant. Besides, they need assumptions over (b, g, L)

via the Hamiltonian which lead to the uniqueness of the optimum and, these assumptions
are sometimes quite difficult to verify in practice. However, it should be mentioned
that the results of [28] include a rate of convergence that we do not provide. Let us
also mention [30] which treats these questions of convergence but for Markov decision
processes in discrete time.

The next corollary is just a combination of Theorem 3.3 and [11, Proposition 4.15]. It
states that if a strong control is close enough to the optimum value of the mean field
control problem, from this control, we can construct N agents which are close to the
optimum of the large population stochastic control problem.

Corollary 3.6. Let Theorem 2.1 hold true. Let ν ∈ Pp′(Rn), with p′ > p, (εN )N∈N∗ be
a sequence of non negative real such that lim

N→∞
εN = 0. Also, for each N ∈ N∗, let

αN ∈ A(ν) satisfying αNt = φN (t, ξ,Wt∧·, Bt∧·) Pν a.e. for all t ∈ [0, T ] with a Borel
function φN : [0, T ]×Rn × Cd × C` → U , and

VS(ν)− εN ≤ Φ(αN ).

Then, there exists (δN )N∈N∗ ⊂ (0,∞) s.t. lim
N→∞

δN = 0 and (α1,N , . . . , αN,N ) ∈ AN (νN )N

with νN := ν ⊗ · · · ⊗ ν satisfying

αi,Nt = φN (t,Xi
0,W

i
t∧·, Bt∧·), P

N
ν a.e. and V NS (ν, . . . , ν)− δN ≤ JN (α1,N , . . . , αN,N ).

4 Proofs of the main results

In this part, we will present the proof of the main results of this paper namely
Theorem 3.1 and Theorem 3.3. Some proofs use the results from Section 5 which will be
proven just after.

4.1 Equivalence result

This section is devoted to the proof of Theorem 3.1. To achieve this proof, we provide
an approximation of measure–valued rule by McKean–Vlasov processes. Before starting
the proofs, by shifting some probabilities, let us give a reformulation of measure–valued
rules. For all (t,b, π,m) ∈ [0, T ]× C` × CnW × PnU ,

πt[b](dy) :=

∫
Rn
δ(
y′+σ0bt

)(dy)πt(dy
′), m[bt](du,dy) :=

∫
Rn×U

δ(y′+σ0bt)(dy)m(du,dy′)

(4.1)

and any q ∈M,

qt[b](dm) :=

∫
PnU

δ(
m′[bt]

)(dm)qt(dm
′). (4.2)
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In the same way, let us consider the “shifted” generator L̂,

L̂t[ϕ](y,b, π,m, u)

:=
1

2
Tr
[
σσ>(t, y + σ0bt, πt[bt],m[bt], u)∇2ϕ(y)

]
+ b(t, y + σ0bt, πt[bt],m[bt], u)>∇ϕ(y).

(4.3)

Next, on the canonical filtered space (Ω,F) (see Section 2.3), let (ϑt)t∈[0,T ] be
the P(Rn)–valued F–adapted continuous process and (Θt)t∈[0,T ] be the PnU–valued F–
predictable process defined by

ϑt(ω̄) := µt(ω̄)[−B(ω̄)] and Θt(ω̄)(dm) := Λt(ω̄)[−B(ω̄)](dm), for all (t, ω̄) ∈ [0, T ]× Ω.

(4.4)

The next result follows immediately, so we omit the proof.

Lemma 4.1. Let P ∈ PV (ν). Then, Θt(Zϑt) = 1, dP ⊗ dt, a.e. (t, ω̄) ∈ [0, T ] × Ω, and
P–a.e. ω̄ ∈ Ω, for all (f, t) ∈ C2

b (Rn)× [0, T ],

Nt(f) = 〈f, ϑt〉 − 〈f, ν〉 −
∫ t

0

∫
PnU

∫
Rn×U

L̂rf(y,B, ϑ,m, u)m(du,dy)Θr(dm)dr.

Next, let us provide some estimates for the different controls. The first result is
standard, the second is just an application of Theorem 5.2 (see also Theorem 5.4)
combined with Theorem 4.1.

Lemma 4.2 (Estimates). Under Theorem 2.1, for any (ν, ν1, . . . , νN ) ∈ Pp′(Rn)N+1 with
p′ > p, there exists K > 0, depending only of coefficients (b, σ) and p′, such that: for
every (α1, . . . , αN ) ∈ (AN (νN ))N one has

EPN
[

sup
t∈[0,T ]

∫
Rn
|x|p

′
µt(dx)

]
≤ K

[
1 +

∫
Rn
|x′|p

′ 1

N

N∑
i=1

νi(dx′)

]
,

where PN := P(α1, ..., αN ) ∈ P(Ω) (see definition (2.3)), and for each P ∈ PV (ν) or

α ∈ A(ν) with P = Pν ◦
(
µα, δµαt (dm)dt, B

)−1
, P-a.e. ω ∈ Ω,

sup
t∈[0,T ]

∫
Rn
|x|p

′
ϑt(ω)(dx) + EP

[
sup
t∈[0,T ]

∫
Rn
|x|p

′
µt(dx)

]
≤ K

[
1 +

∫
Rn
|x′|p

′
ν(dx′)

]
.

In addition

Wp

(
ϑs(ω), ϑt(ω)

)p ≤ K|t− s|, for all (t, s) ∈ [0, T ]× [0, T ], P-a.e. ω ∈ Ω,

where ϑ is the process given in equation (4.4).

4.1.1 Technical lemmas

In this part, from a measure–valued rule, we will build a sequence of processes that
approximate the measure–valued rule and that are close enough to strong control rules.
This part is the fundamental part for the proof of Theorem 3.1.

let ν ∈ Pp′(Rn), P ∈ PV (ν), and (Ω̃, F̃, F̃ , P̃) be a filtered probability space supporting

W Rn–valued F̃–Brownian motion and let ξ be a F̃0–random variable s.t. LP̃(ξ) = ν. We
define the filtered probability space (Ω̂, F̂, F̂ , P̂) which is an extension of the canonical
space (Ω,F,P): Ω̂ := Ω̃ × Ω, F̂ := (F̃t ⊗ F t)t∈[0,T ] and P̂ := P̃ ⊗ P. The variables (ξ,W )

of Ω̃ and (B,µ,Λ) of Ω are naturally extended on the space Ω̂ while keeping the same
notation (ξ,W,B, µ,Λ) for simplicity. Also, let us consider the filtration (Ĝt)t∈[0,T ] defined
by

Ĝt := σ
{
Bt∧·, µt∧·,Λt∧·

}
, for all t ∈ [0, T ].
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Proposition 4.3. Under Theorem 2.1, if we take any [0, 1]–valued uniform variable Z
P̂–independent of (ξ,W,B, µ,Λ), there exists a sequence of F̂–predictable processes
(αk)k∈N∗ satisfying: for each k ∈ N∗,

αkt := Gk(t, ξ, µt∧·,Λt∧·,Wt∧, Bt∧, Z), P̂–a.e., for all t ∈ [0, T ],

with a Borel function Gk : [0, T ]×Rn × CnW ×M(PnU )× Cn × C` × [0, 1]→ U such that if

we let X̂k be the unique strong solution of: EP̂[‖X̂k‖p′ ] <∞, for all t ∈ [0, T ]

X̂k
t = ξ +

∫ t

0

b(r, X̂k
r , µ

k, µkr , α
k
r )dr +

∫ t

0

σ(r, X̂k
r , µ

k, µkr , α
k
r )dWr + σ0Bt, P̂–a.e.

where µkt := LP(X̂k
t |Ĝt) and µkt := LP̂(X̂k

t , α
k
t |Ĝt) then

lim
k→∞

[
Wp

(
δµks (dm)ds,Λs(dm)ds

)
+ sup
t∈[0,T ]

Wp(µ
k
t , µt)

]
= 0, P̂–a.e.. (4.5)

Therefore

lim
k→∞

LP̂
(

(µkt )t∈[0,T ], δµks (dm)ds, (Bt)t∈[0,T ]

)
= P, for the Wasserstein metricWp.

Proof. As P ∈ PV (ν), by definition, P a.e. ω ∈ Ω, Nt(f) = 0 for all f ∈ C2
b (Rn) and

t ∈ [0, T ]. By Theorem 4.1, by taking into account the extension of all variables on Ω̂,
recall that (ϑt)t∈[0,T ] and (Θt)t∈[0,T ] are defined in (4.4), one has Θt(Zϑt) = 1, dP̂⊗dt a.e.

(t, ω) ∈ [0, T ]× Ω̂, and P̂–a.e. ω ∈ Ω̂, for all (f, t) ∈ C2
b (Rn)× [0, T ],

Nt(f) = 〈f, ϑt〉 − 〈f, ν〉 −
∫ t

0

∫
PnU

∫
Rn×U

L̂rf(y,B, ϑ,m, u)m(du,dy)Θr(dm)dr.

Define

Γ :=
{
m ∈ PnU :

∫
Rn
|y|p

′
m(dy, U) ≤ K̂

}
,

where K̂ > 0 is such that K̂ > K

[
1 +

∫
Rn
|x′|p′ν(dx′)

]
, with K is a constant used in

Lemma 4.2. Notice that Γ is a compact set of Pp(Rn × U) and by Theorem 4.2, one has

that Θt(Γ) = 1, dP̂⊗dt, a.e. (t, ω) ∈ [0, T ]× Ω̂. As Γ is a compact set of Pp(Rn×U), there
exists a family of measurable functions (hk)k∈N∗ with hk : [0, T ]×M→ PnU , s.t.

lim
k→∞

δhk(t,Θt∧·)(dm)dt = Θt(dm)dt, P̂ –a.e.

then

lim
k→∞

LP̂
(
ϑ, δhk(t,Θt∧·)(dm)dt, B

)
= LP̂(ϑ,Θ, B), inWp.

In the same spirit of notations (4.3), we introduce

[b̂, σ̂](t, y,b, π,m, u) := [b, σ](t, y + σ0bt, π[b],m[bt], u), (4.6)

notice that [b̂, σ̂] : [0, T ] × Rn × C` × CnW × PnU × U → Rn × Sn×n is continuous and for
b ∈ C`, [b̂, σ̂](·, ·,b, ·, ·, ·) verify the Assumption 2.1 with constant C and θ independent of
b (see Assumption 2.1).
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Now, let us apply Theorem 5.8 (see also Theorem 5.6). As
(
ϑ, δhk(t,Θt∧·)(dm)dt, B

)
k∈N∗

is P̂ independent of (ξ,W ) and

lim
k→∞

LP̂
(
ϑ, δhk(s,Θs∧·)(dm)ds,B

)
= LP̂

(
ϑ,Θs(dm)ds,B

)
, inWp,

by Theorem 5.8, there exists Gk : [0, T ] × Rn ×M × CnW × Cn × C` × [0, 1] → U a Borel
function such that if Xk is the unique strong solution of: for all t ∈ [0, T ]

Xk
t = ξ +

∫ t

0

b̂
(
r,Xk

r , B, ϑ
k, ϑ

k

r , α
k
r

)
dr +

∫ t

0

σ̂
(
r,Xk

r , B, ϑ
k, ϑ

k

r , α
k
r

)
dWr, P̂–a.e., (4.7)

where

αkt := Gk
(
t, ξ,Θk

t∧·, ϑt∧·,Wt∧·, Bt∧·, Z
)
, ϑ

k

t := LP̂
(
Xk
t , α

k
t

∣∣Gkt ) and ϑkt := LP̂
(
Xk
t

∣∣Gkt ),
with Θk

t (dm)dt := δ(
hk(t,Θt∧·)

)(dm)dt, and Gk := (Gks )s∈[0,T ] := (σ{ϑs∧·,Θk
s∧·, Bs∧·})s∈[0,T ],

then

lim
j→∞

EP̂
[ ∫ T

0

Wp

(
ϑ
kj
t ,m

kj
t

)p
dt+ sup

t∈[0,T ]

Wp(ϑ
kj
t , ϑt)

]
= 0

and

lim
j→∞

LP̂
(
ϑkj ,Θkj , B

)
= LP̂

(
ϑ,Θ, B

)
, inWp,

where mk
t := hk(t,Θt∧·) and (kj)j∈N∗ ⊂ N∗ is a sub–sequence. Notice that, as Gk ⊂ Ĝ,

and (ξ,W,Z) are P̂ independent of Ĝ, one has LP̂
(
Xk
t , α

k
t

∣∣Gkt ) = LP̂
(
Xk
t , α

k
t

∣∣Ĝt), P̂–a.e.

for all t ∈ [0, T ]. Using equation (4.6), we rewrite Xk by: for all t ∈ [0, T ], P̂–a.e.

Xk
t = ξ +

∫ t

0

b
(
r,Xk

r + σ0Br, (LP̂(Xk
s + σ0Bs|Ĝs))s∈[0,T ],LP̂(Xk

r + σ0Br, α
k
r |Ĝr), αkr

)
dr

+

∫ t

0

σ
(
r,Xk

r + σ0Br, (LP̂(Xk
s + σ0Bs|Ĝs))s∈[0,T ],LP̂(Xk

r + σ0Br, α
k
r |Ĝr), αkr

)
dWr.

Denote by X̂k := Xk + σ0B, one finds P̂–a.e., for all t ∈ [0, T ],

X̂k
t = ξ +

∫ t

0

b
(
r, X̂k

r , (LP̂(X̂k
s |Ĝs))s∈[0,T ],LP̂(X̂r, α

k
r |Ĝr), αkr

)
dr

+

∫ t

0

σ
(
r, X̂k

r , (LP̂(X̂k
s |Ĝs))s∈[0,T ],LP̂(X̂k

r , α
k
r |Ĝr), αkr

)
dWr + σ0Bt,

With the notation introduced in (4.1) and (4.2), it is straightforward to check that the
map

(π, q,b) ∈ CnW ×M× C` →
(
π[b], qt[b](dm)dt,b

)
∈ CnW ×M× C`

is continuous. Consequently, one has

lim
j→∞

EP̂
[ ∫ T

0

Wp

(
ϑ
kj
t [Bt],m

kj
t [Bt]

)p
dt+ sup

t∈[0,T ]

Wp(ϑ
kj
t [B], ϑt[B])

]
= 0,

therefore, inWp,

lim
j→∞

LP̂
(

(LP̂(X̂
kj
t |Ĝt))t∈[0,T ], δ(LP̂(X̂

kl
s ,α

kl
s |Ĝs))

(dm)ds,B
)

= lim
j→∞

LP̂
(
ϑkj [B],Θ

kj
t [B](dm)dt, B

)
= LP̂

(
ϑ[B],Θt[B](dm)dt, B

)
.
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After simple calculations, (ϑ[B],Θt[B](dm)dt, B) = (µ,Λ, B), P̂–a.e. Then

lim
j→∞

EP̂
[ ∫ T

0

Wp

(
LP̂(X̂

kj
t , α

kj
t |Ĝt),m

kj
t [Bt]

)p
dt+ sup

t∈[0,T ]

Wp

(
LP̂(X̂

kj
t |Ĝt), µt

)]
= 0,

and hence

lim
j
LP̂
(

(LP̂(X̂
kj
t |Ĝt))t∈[0,T ], δ(LP̂(X̂

kj
s ,α

kl
s |Ĝs))

(dm)ds,B
)

= LP̂(µ,Λ, B) = P, inWp.

After extraction from (X̂kj , αkj )j∈N∗ , one has also the P̂–a.e. convergence (4.5).

4.1.2 Proof of Theorem 3.1

First, for ν ∈ Pp′(Rn), under Theorem 2.1, let us prove that PV (ν) is a compact set for the
Wasserstein topologyWp. Let (Pk)k∈N∗ ⊂ PV (ν), by Theorem 4.4, (Pk)k∈N∗ is relatively
compact for the Wassertein topologyWp and any limit P∞ of any sub–sequence belongs
to PV (ν). Therefore PV (ν) is compact. By similar techniques used in [11, Theorem 3.1],
it is straightforward to show that PV (ν) is convex.

Next, we prove the items (i) and (ii) of Theorem 3.1. By applying Theorem 4.3,
with the same notations, for any [0, 1]–valued uniform variable Z P̂–independent of
(ξ,W,B, µ,Λ), there exists a sequence of F̂–predictable processes (αk)k∈N∗ satisfying:
for each k ∈ N∗,

αkt := Gk(t, ξ, µt∧·,Λt∧·,Wt∧, Bt∧, Z), P̂–a.e., for all t ∈ [0, T ],

with Gk : [0, T ]×Rn × CnW ×M(PnU )× Cn × C` × [0, 1]→ U is a Borel function such that if
X̂k is the unique strong solution of: for all t ∈ [0, T ]

X̂k
t = ξ +

∫ t

0

b(r, X̂k
r , µ

k, µkr , α
k
r )dr +

∫ t

0

σ(r, X̂k
r , µ

k, µkr , α
k
r )dWr + σ0Bt, P̂–a.e.

where µkt := LP(X̂k
t |Ĝt) and µkt := LP̂(X̂k

t , α
k
t |Ĝt) then

lim
k→∞

LP̂
(

(µkt )t∈[0,T ], δµks (dm)ds, (Bt)t∈[0,T ]

)
= P, for the Wasserstein metricWp.

For each k ∈ N∗, X̂k
t = Hk

t (ξ,Wt∧·, µt∧·,Λt∧·, Bt∧·, Z), for all t ∈ [0, T ], P̂–a.e. with
Hk : Rn × Cn × CnW ×M × C` × [0, 1] → Cn a Borel function. Then, as (ξ,W,Z) are P̂–

independent of (µ,Λ, B), one gets that for all t ∈ [0, T ], LP̂(X̂k
t∧·, α

k
t |Ĝt) = LP̂(X̂k

t∧·, α
k
t |ĜT ),

P̂–a.e.. Let us introduce the process (µ̂kt )t∈[0,T ],

µ̂kt := LP̂(X̂k
t∧·, X̂

k
t∧· − σ0Bt∧·,W,Λ

k
t∧·|Ĝt), for all t ∈ [0, T ] with Λkt (du)dt := δαkt (du)dt.

For each k ∈ N∗, µ̂kt ∈ P(Cn × Cn × Cn ×M(U)), for all t ∈ [0, T ] and if (X̃, Ỹ , W̃ , Λ̃)

is the canonical process on Cn × Cn × Cn ×M(U), one has µkt = Lµ̂kt (X̃t), P̂–a.e., and

LP̂(X̂k
t , α

k
t |Ĝt)(dx, du) = Eµ̂

k
t [δX̃t(dx)Λ̃t(du)], P̂–a.e. for all t ∈ [0, T ]. It is straightforward

to see that µ̂kt = LP̂(X̂k
t∧·, X̂

k
t∧· − σ0Bt∧·,W,Λ

k
t∧·|ĜT ), for each k ∈ N∗, then for all t ∈

[0, T ], P̂–a.e.,

µ̂kt = LP̂(X̂k
t∧·, X̂

k
t∧· − σ0Bt∧·,W,Λ

k
t∧·|Bt∧·, µ̂kt∧·) = LP̂(X̂k

t∧·, X̂
k
t∧· − σ0Bt∧·,W,Λ

k
t∧·|B, µ̂k)

and (B, µ̂k) are P̂–independent of (ξ,W ). For all k ∈ N∗, denote

Q
k

:= P̂ ◦
(
X̂k, X̂k − σ0B,Λ

k,W,B, µ̂k
)−1
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Q
k

belongs to

P
(
Cn × Cn ×M(U)× Cn × C` × P(Cn × Cn × Cn ×M(U))

)
,

then Q
k

is a weak control according to [11, Definition 2.9]. Then by (a slight extension
of) [11, Proposition 4.5],

(1) when ` 6= 0, there exists αj,k ∈ A(ν), and Xαj,k the strong solution of (2.4) with
control αj,k such that

lim
j→∞

Pν ◦
(
Xαj,k ,W,B, δ

(µα
j,k
s , αj,ks )

(dm,du)ds
)−1

= P̂ ◦
(
X̂k,W,B, δ(µks , αks )(dm,du)ds

)−1

, inWp.

(2) When ` = 0, there exists a family of Borel functions (κkj )k,j with κkj : [0, T ] ×
Rn × Cn × [0, 1] → U , such that if αj,kt [z] := κkj (t, ξ,Wt∧·, z), for z ∈ [0, 1], one gets

(αj,kt [z])t∈[0,T ] ∈ A(ν) and

lim
j→∞

∫ 1

0

Pν ◦
(
Xαj,k[z],W,B, δ

(µ
αj,k[z]
s , αj,ks [z])

(dm,du)ds
)−1

dz

= P̂ ◦
(
X̂k,W,B, δ(µks , αks )(dm,du)ds

)−1

, inWp.

All these results are enough to deduce the items (i) and (ii) of Theorem 3.1, and
conclude that: for ν ∈ Pp′(Rn), VS(ν) = VV (ν) and there exists P? ∈ PV (ν) such that
VV (ν) = EP∗

[
J
(
µ,Λ

)]
.

4.2 Propagation of chaos

With the help of Theorem 3.1, in this section we provide one of the main objective of
this paper, which is to prove the limit theory result or (controlled) propagation of chaos.

4.2.1 Technical results: study of the behavior of processes when N goes to
infinity

In this part, the properties of some sequences of probability measures on the canonical
space Ω are given. Mainly, the behavior when N goes to infinity of sequences of type
(P(α1, ..., αN ))N∈N∗ construct from the formulation of large population stochastic control
problem are studied. (see Section 2.1 and Theorem 2.3).

Proposition 4.4. Let Theorem 2.1 hold true and (νi)i∈N∗ ⊂ Pp′(Rn). Recall that νN :=

ν1 ⊗ ...⊗ νN , for each N ∈ N∗.
(i) Let (PN )N∈N∗ be the sequence satisfying PN := P(α1,N , ..., αN,N ) (see definition

(2.3)) with αi,N ∈ AN (νN ) ∀i ∈ J1, NK, for each N ∈ N∗. If

sup
N≥1

1

N

N∑
i=1

∫
Rn
|x′|p

′
νi(dx′) <∞

then (PN )N∈N∗ is precompact in Pp(Ω) for the metricWp and for every P∞ ∈ P(Ω) the

limit of any sub–sequence (PNj )j∈N, P∞ ∈ PV
(

limj→∞
1
Nj

∑Nj
i=1 ν

i
)
.

(ii) Let us consider the sequence (Pk)k∈N∗ of probability measures such that Pk ∈
PV (νk) for each k ∈ N∗. If

sup
k≥1

∫
Rn
|x′|p

′
νk(dx′) <∞
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then (Pk)k∈N∗ is precompact in Pp(Ω) for the metric Wp and for every P∞ ∈ P(Ω) the
limit of any sub–sequence (Pkj )j∈N∗ , P∞ ∈ PV

(
limj→∞ νkj

)
.

Proof. (i) Thanks to Proposition A.2 or/and Proposition-B.1 of [7], as U is compact, it
is easy to check that (PN )N∈N∗ is pre–compact on Pp(Ω) for the metric Wp. Let P∞

be a limit of a sub–sequence (PNj )j∈N∗ . For sake of simplicity, we denote (PNj )j∈N∗ =

(PN )N∈N∗ and ν := limj
1
Nj

∑Nj
i=1 ν

i.

Now, let us show P∞ ∈ PV (ν). Let f ∈ C2
b (Rn). For each t ∈ [0, T ], we shall denote

Nt(Bt∧·,Λt∧·, µt∧·)(f) = Nt(f) to specify the dependence w.r.t. (B,µ,Λ) (see definition
(2.6)). Notice that the function (t,b, π, q) ∈ [0, T ]×C`×CnW×M→ Nt(bt∧·, qt∧·, πt∧·)(f) ∈
R is continuous and bounded. It is straightforward to check that: for all t ∈ [0, T ]

Nt
(
Bt∧·, (δϕNs (dm)ds)t∧·, ϕ

N,X
t∧·

)
(f)

=
1

N

N∑
i=1

∫ t

0

∇f(Xα,i
r − σ0Br)σ(r,Xα,i

r , ϕN,Xr∧· , ϕ
N
r , α

i
r)dW

i
r, P

N
ν –a.e..

With the same techniques used in the proof of [24, Proposition 5.1] or [11, Proposition
4.17], one has

EP∞
[∣∣(Nt(f)

∣∣2]
= EP∞

[∣∣(Nt(Bt∧·,Λt∧·, µt∧·)(f)
∣∣2] = lim

N
EPN

[∣∣(Nt(Bt∧·,Λt∧·, µt∧·)(f)
∣∣2]

= lim
N
EP

N
ν

[∣∣(Nt(Bt∧·, (δϕNs (dm)ds)t∧·, ϕ
N,X
t∧·

)
(f)
∣∣2]

= lim
N
EP

N
ν

[∣∣∣ 1

N

N∑
i=1

∫ t

0

∇f(Xα,i
r − σ0Br)σ(r,Xα,i

r , ϕN,X, ϕNr , α
i
r)dW

i
r

∣∣∣2]

= lim
N

1

N2

N∑
i=1

EP
N
ν

[ ∫ t

0

∣∣∣∇f(Xα,i
r − σ0Br)σ(r,Xα,i

r , ϕN,X, ϕNr , α
i
r)
∣∣∣2dr

]
= 0.

By taking (t, f) under a countable set of [0, T ]× C2
b (Rn) then P∞ a.e. ω ∈ Ω, Nt(f) = 0

for all (t, f) ∈ [0, T ]× C2
b (Rn).

For any bounded continuous functions h ∈ Cb(R
n), the map (q, π) ∈ M × CnW →∫ T

0

∫
PnU

∣∣〈h,m(dz, U)〉 − 〈h, πt(dz)〉
∣∣2qt(dm)dt ∈ R is bounded and continuous (see for

instance Theorem A.4), one finds that

EP∞
[ ∫ T

0

∫
PnU

∣∣〈h,m(dz, U)〉 − 〈h, µt(dz)〉
∣∣2Λt(dm)dt

]
= lim

N
EP

N
ν

[ ∫ T

0

∫
PnU

∣∣〈h,m(dz, U)〉 − 〈h, ϕN,Xt (dz)〉
∣∣2δϕNt (dm)dt

]

= lim
N
EP

N
ν

[ ∫ T

0

∣∣∣ 1

N

N∑
i=1

[h(Xα,i
t )− h(Xα,i

t )]
∣∣∣2dt

]
= 0,

by taking h under a countable set of Cb(Rn), one concludes Λt
(
Zµt

)
= 1 P∞ ⊗ dt a.e..

It is obvious that (Bt)t∈[0,T ] is a (P∞,F) Wiener process. Let Q ∈ N∗, and (hq)q∈{1,..,Q} :

Rn → RQ be bounded functions, one has

EP∞
[ Q∏
q=1

〈hq, µ0〉
]

=

Q∏
q=1

〈hq, ν〉.
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Let us show this result when Q = 2, when Q ∈ N∗, the proof is similar.

EP∞
[
〈h1, µ0〉〈h2, µ0〉

]
= lim

N

1

N2

N∑
i,j=1

EP
N
ν
[
h1(Xα,i

0 )h2(Xα,j
0 )
]

= lim
N

1

N2

N∑
i=1

〈h1, νi〉〈h2, νi〉+
1

N2

N∑
i6=j

〈h1, νi〉〈h2, νj〉

= lim
N
〈h1,

1

N

N∑
i=1

νi〉〈h2,
1

N

N∑
i=1

νi〉 = 〈h1, ν〉〈h2, ν〉,

by [11, Proposition A.3], P∞ ◦ (µ0)−1 = δν , then µ0 = ν, P∞–a.e.. All these results allow
to deduce the first statement of this proposition.

(ii) For the second part of this proposition, notice that, thanks to Lemma 4.2,

sup
k∈N∗

EPk

[
sup
t∈[0,T ]

∫
Rn
|x|p

′
ϑt(dx)

]
≤ K

[
1 + sup

k∈N∗

∫
Rn
|x′|p

′
νk(dx′)

]
<∞

and

lim sup
δ→0

sup
k∈N∗

sup
τ
EPk

[
Wp

(
ϑ(τ+δ)∧T , ϑτ

)]
= 0,

where τ is a [0, T ]–valued F–stopping time, and recall that (ϑ)t∈[0,T ] is the P(Rn)–valued
F–adapted continuous process defined in equation (4.4). Then by Aldous’ criterion
[20, Lemma 16.12] (see also proof of [7, Proposition-B.1]),

(
Pk ◦

(
(ϑt)t∈[0,T ]

)−1)
k∈N∗ is

relatively compact for the metric Wp. Then, using the fact that Pk ∈ PV (νk) for each
k ∈ N∗ and the relation between (ϑ,Θ) and the canonical processes (µ,Λ) (see equation

(4.4)), we deduce that (Pk)k∈N∗ =
(
Pk ◦

(
µ,Λ, B

)−1)
k∈N∗ is relatively compact in Wp.

The rest of the proof is similar to the previous proof.

Proposition 4.5. Let Theorem 2.1 hold true, ν ∈ Pp′(Rn) with p′ > p and (νi)i∈N ⊂
Pp′(Rn) such that

sup
i∈N

∫
Rn
|x′|p

′
νi(dx′) <∞ and νi

Wp−→
i→∞

ν, then lim
i→∞

VS(νi) = VS
(
ν
)
.

In particular, the map VS : Pp′(Rn) −→ R is continuous.

Proof. By Theorem 3.1, one has VS(ν) = VV (ν), thanks to this result, the proof is similar
to the proof of [11, Proposition 3.7.]. Let (δk)k∈N∗ ⊂ N∗ with limk→∞ δk = 0 and (Pk)k∈N∗

be a sequence such that Pk ∈ PV (νk) and VV (νk) − δk ≤ EPk [J(µ,Λ)]. By Proposition
4.4, (Pk)k∈N is relatively compact on (Pp(Ω),Wp) and if P ∈ P(Ω) is the limit of a sub–
sequence (Pkj )j∈N∗ then P ∈ PV (ν). Using Theorem 2.1, by convergence of (Pkj )j∈N∗ ,

one has limj |EPkj [J(µ,Λ)]− EP[J(µ,Λ)]| = 0. Therefore, one gets

lim sup
k

VV (νk) ≤ lim
j
EPkj [J(µ,Λ)] = EP[J(µ,Λ)] ≤ VV (ν) = VS(ν).

By [11, Proposition 4.15], VS(ν) ≤ lim infj VS(νkj ), this is enough to conclude that
lim
k
VS(νk) = VS(ν), and deduce the result.
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4.2.2 Proof of Theorem 3.3

By combining Theorem 3.1, Theorem 4.4 and Theorem 4.5, this proof turns to be the
same used in the proof of [11, Theorem 3.6]. For the sake of completeness, we repeat
the proof.

(i) By Theorem 4.4 (with the same notations), if the sequence (PN )N∈N∗ is such that:
V NS (ν1, ..., νN ) − εN ≤ EPN [J(µ,Λ)], where (εN )N∈N∗ is sequence with limN→∞ εN = 0,
then (PN )N∈N∗ is relatively compact on (Pp(Ω),Wp) and for every P∞ ∈ P(Ω) the limit

of the sub–sequence (PNj )j∈N∗ , P∞ ∈ PV
(

limj→∞
1
Nj

∑Nj
i=1 νi

)
, therefore

lim sup
N→∞

V NS (ν1, ..., νN ) ≤ lim
j→∞

EPNj [J(µ,Λ)] = EP[J(µ,Λ)] ≤ VV
(

lim
j→∞

1

Nj

Nj∑
i=1

νi

)
.

Then, as limj→∞
1
Nj

∑Nj
i=1 νi ∈ Pp′(Rn) and Theorem 2.1 holds true one can deduce that

VV

(
limj→∞

1
Nj

∑Nj
i=1 νi

)
= VS

(
limj→∞

1
Nj

∑Nj
i=1 νi

)
. By [11, Proposition 4.15],

VS

(
lim
j→∞

1

Nj

Nj∑
i=1

νi

)
≤ lim inf

j→∞
V
Nj
S (ν1, ..., νNj ).

To recap

VS

(
lim
j→∞

1

Nj

Nj∑
i=1

νi

)
≤ lim inf

j→∞
V
Nj
S (ν1, ..., νNj )

≤ lim sup
j→∞

V
Nj
S (ν1, ..., νNj ) ≤ VS

(
lim
j→∞

1

Nj

Nj∑
i=1

νi

)
.

(ii) Let (Nj)j∈N be the sequence corresponding to:

lim sup
N→∞

∣∣∣V NS (ν1, ..., νN )− VS
( 1

N

N∑
i=1

νi
)∣∣∣ = lim

j→∞

∣∣∣V NjS (ν1, ..., νNj )− VS
( 1

Nj

Nj∑
i=1

νi
)∣∣∣.

By the previous proof, limj→∞ V
Nj
S (ν1, ..., νNj ) = VS

(
limj→∞

1
Nj

∑Nj
i=1 ν

i
)

, as the

sequence ( 1
Nj

∑Nj
i=1 ν

i)j∈N∗ is bounded in (Pp′(Rn),Wp′) and converges in (Pp(Rn),Wp),
by Theorem 4.5,

lim
j→∞

VS

( 1

Nj

Nj∑
i=1

νi
)

= VS

(
lim
j→∞

1

Nj

Nj∑
i=1

νi
)
,

this is enough to conclude the proof.

4.3 Proof of Theorem 3.4

Notice that, for ν ∈ Pp′(Rn), by Theorem 3.1, P?V (ν) is nonempty. Let us define the
distance function to the set P?V (ν), for each Q ∈ P(Ω), Ψ?(Q) := infP?∈P?V (ν)Wp

(
Q,P?

)
.

It is well know that, as P?V (ν) is nonempty, the function Ψ? : Q ∈ Pp(Ω) → R is
continuous. Then by Theorem 4.4, (PN )N∈N∗ is precompact in Pp(Ω) for the metric
Wp and if P ∈ P(Ω) is the limit of a sub–sequence (PNj )j∈N∗ , one have P ∈ PV (ν).

Under Theorem 2.1, limj→∞E
PNj [J(µ,Λ)] = EP[J(µ,Λ)]. Combining Theorem 3.3 and

Theorem 4.5, one has that

lim
j→∞

V
Nj
S (ν1, ..., νNj ) = VS

(
lim
j→∞

1

Nj

Nj∑
i=1

νi

)
= VS(ν) = VV (ν) ≤ EP[J(µ,Λ)],
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then P ∈ P?V (ν). Hence each limit of any sub–sequence of (PN )N∈N∗ belongs to P?V (ν).
Consequently, if (PNj )j∈N is the sub–sequence corresponding to lim sup

N→∞
Ψ?(PN ) =

lim
j→∞

Ψ?(PNj ), by continuity of Ψ? and the fact that any limit is an optimal control,

lim sup
N→∞

Ψ?(PN ) = 0. The second part of this proposition is just a combination of The-

orem 3.1, [11, Proposition 4.15] and Theorem 3.3. This is enough to conclude the
result.

5 Approximation of Fokker–Planck equations

In this section, we give an approximation of a particular Fokker–Planck equation
via a sequence of measure–valued processes constructed from classical SDE processes
interacting through the empirical distribution of their states and controls. This result is
a crucial part for the proof of Theorem 3.1 and Theorem 3.3.

5.1 Main ideas leading the proof

Because of the technical aspect of this part, before going into details, let us first
explain in a simple situation the main goal of this part and the ideas for the proof. As we
said earlier, from a Fokker–Planck equation satisfied by a measure–valued solution P (see
Theorem 2.6), we want to construct a sequence of “weak” McKean–Vlasov processes
s.t. the limit, in a certain sense, of this sequence will be P. Let us be more precise. For
simplification, we assume that n = ` = 1, U = [1, 2], b = 0, σ(t, x, π,m, u) = σ(m,u) :=

σ(m)u. Let P ∈ PV , (µ,Λ, B) satisfy: Λt(Zµt) dP̃⊗ dt a.e. and for all (t, f)

d〈f(· − σ0Bt), µt〉 =

∫
PnU

∫
Rn×U

f ′′(x− σ0Bt)σ(m)2u2mx(du)µt(dx)Λt(dm)dt. (5.1)

Using the SDEs formulation, on an extension (Ω̃, F̃, P̃) of (Ω,F,P), we can find X satisfy-
ing

dXt =

(∫
PnU

∫
U

σ(m)2u2mXt(du)Λt(dm)

)1/2

dWt + σ0dBt, (5.2)

X0 = ξ with µt = LP̃(Xt|Gt) = LP̃(Xt|GT ), where W is a F̃–Brownian motion, ξ a
F̃0–random variable s.t. L(ξ) = ν and (W, ξ) is independent of GT . The process (Λt)t∈[0,T ]

can be seen as a control of the process X or µ. The goal is to construct a sequence of
F–predictable processes (αk)k∈N∗ s.t. if Xk is the solution of

dXk
t = σ(mk

t )αkt dWt + σ0dBt, Xk
0 = ξ, mk

t := L(Xk
t |Gt) and mk

t := L(Xk
t , α

k
t |Gt),

one has that

lim
k→∞

P̃ ◦
(
mk, δmkt (dm)dt, B

)−1
= P̃ ◦

(
µ,Λ, B

)−1
inWp.

If it was possible for Equation (5.1) or Equation (5.2) to satisfied an appropriate
uniqueness result (in law), this kind of approximation would become much simpler to
perform. Unfortunately, for a general Λ, a uniqueness result can not be expected for this
type of equation. Therefore, find the sequence (αk)k∈N∗ becomes a challenging problem.

Strategy of proof: 1–regularization This part is realized in Section 5.2. The main
idea here is to regularize Equation (5.1) or Equation (5.2) in order to recover some
uniqueness result. Indeed, in Section 5.2, we show that: Xε solution of

dXε
t = σε(t,Λt, X

ε
t )dWt + σ0dBt, Xε

0 = ξ, µεt := LP̃(Xε
t |Gt) (5.3)
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satisfies

lim
ε→0

sup
t∈[0,T ]

Wp(µt, µ
ε
t ) = 0, P̃ a.e.

where for each ε > 0, we define Gε(x) := ε−1G(ε−1x), where G ∈ C∞(Rn;R) with
compact support satisfying G ≥ 0, G(x) = G(−x) for x ∈ Rn, and

∫
Rn
G(y)dy = 1, and

(recall that Λt(Zµt) = 1)

σε(t,Λt, x)2 :=

∫
PnU

∫
U

σ(m)2u2my(du)
Gε(x− y)∫

Rn
Gε(x− z)µt(dz)

µt(dy)Λt(dm)

=

∫
PnU

∫
U

σ(m)2u2m(du,dy)
Gε(x− y)∫

Rn
Gε(x− z)m(dz, U)

Λt(dm).

Notice that, now, when Λ is given, Equation (5.3) or its associated Fokker–Planck
equation satisfies a uniqueness result. Indeed, as σε is smooth in x, Equation (5.3) is
uniquely solvable.

Next, we are able to find a sequence of PnU–valued (σ{Λt∧·})t∈[0,T ]–predictable pro-

cesses (ν̄k)k∈N∗ s.t. lim
k→∞

δν̄kt (dm)dt = Λ P̃–a.e. If µε,kt = LP̃(Xε,k
t |Gt) is the solution

of

d〈f(· − σ0Bt), µ
ε,k
t 〉 =

∫
Rn
f ′′(x− σ0Bt)σ

ε(t, δν̄kt (dm), x)2µε,kt (dx)dt, (5.4)

one has, when ε > 0 is fixed, by passing to the limit in Equation (5.4) and using
uniqueness of Equation (5.3), we find that lim

k→∞
µε,k = µε a.e. Consequently, we can set k

and ε as fixed, and focus on the approximation of Equation (5.4) or equivalently of

dXε,k
t = σε(t, δν̄kt , X

ε,k
t )dWt + σ0dBt, Xε,k

0 = ξ (5.5)

Strategy of proof: 2–construction of control and discretization Recall that the
map σε(t, δν̄kt , x) satisfies

σε(t, δν̄kt , x)2 =

∫
U

σ(ν̄kt )2u2ν̄kt (du,dy)
Gε(x− y)∫

Rn
Gε(x− z)ν̄kt (dz, U)

.

Let us assume that it is possible to construct a Borel function αε,k : [0, T ]×U ×Rn →
U , a Rn–valued F–adapted continuous process X̃ε,k and a [0, 1]–valued F–predictable
process F satisfying: Ft and X̃ε,k

t are conditionally independent given Gt,

LP̃Gt (αε,k(t, Ft, X̃
ε,k
t )|X̃ε,k

t = x) =

∫
U

ν̄kt (du,dy)
Gε(x− y)∫

Rn
Gε(x− z)ν̄kt (dz, U)

,

and X̃ε,k satisfies

dX̃ε,k
t = σ(ν̄kt )αε,k(t, Ft, X̃

ε,k
t )dWt + σ0dBt, X̃ε,k

0 = ξ.

Notice that, by uniqueness of Equation (5.4), L(X̃ε,k
t |Gt) = µε,kt a.e. for all t ∈ [0, T ].

Given (αε,k, X̃ε,k, F ), our last sequence is then given by: Y ε,k solution of

dY ε,kt = σ(mε,k
t )αε,k(t, Ft, X̃

ε,k
t )dWt + σ0dBt, with mε,k

t := L(Y ε,kt |Gt)

and mε,k
t := L(Y ε,kt , αε,k(t, Ft, X̃

ε,k
t )|Gt). By using some technical results, proving in

Theorem A.2 and Theorem A.3, we deduce that

lim
k→∞

lim
ε→0

P̃ ◦
(
mε,k, δmε,kt

(dm)dt, B
)−1

= P̃ ◦
(
µ,Λ, B

)−1
inWp.
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The fact is we are not able to construct the tuple (αε,k, X̃ε,k, F ) as presented be-
low. This construction will be done through approximation by discretization in time in
Section 5.3. Moreover, the framework that we will consider in the next part will be
more general than the presentation we have chosen for the main results. The reason
is that the techniques we use can be applied to both mean field game and mean field
control problem (see our companion paper [9]). Therefore, we made the choice to have
a presentation that allows the results to be used in both contexts.

5.2 Regularization of the Fokker–Planck equation

In this part, with the help of a regularization by convolution, we show that it can be
possible to approximate a particular solution of a Fokker–Planck equation with “non–
smooth” coefficients by a sequence of solutions of Fokker-Planck equations with “smooth”

coefficients, this part is largely inspired by the proof of [18, Lemma 2.1].
Let b ∈ C`, (nt)t∈[0,T ] and (zt)t∈[0,T ] belong to CnW and also q̂t(dm,dm

′)dt ∈M((PnU )2).
Moreover, (n, z, q̂,b) satisfy the following equation: n0 = ν and

d〈f(t, .),nt〉 =
[
〈∂tf(t, .),nt〉+

∫
(PnU )2

〈At[f(t, ·)](.,b,n, z,m, ν̄, .),m〉q̂t(dm,dν̄)
]
dt,

for all (t, f) ∈ [0, T ]× C1,2
b ([0, T ]×Rn), where the generator A is defined by

Atϕ(x,b,n, z,m, ν̄, u)

:=
1

2
Tr
[
σ̂σ̂>(t, x,b,n, z,m, ν̄, u)∇2ϕ(x)

]
+ b̂(t, x,b,n, z,m, ν̄, u)>∇ϕ(x), (5.6)

with (b̂, σ̂) : [0, T ]×Rn × C` × (CnW)2 × (PnU )2 × U → Rn × Sn is bounded and continuous
function in all arguments, and for each ν̄ ∈ PnU , the map (b̂, σ̂)(·, ·,b, ·, z, ·, ν̄, ·) satisfies
Assumption 2.1 with constant θ independent of ν̄.

Remark 5.1. As said in the end of Section 5.1, we consider this type of general Fokker–
Planck equation because we want to have a formulation useful both in mean field game
and mean field control. Here, the mean field game aspect appears in the integration
over dν̄ in q̂ and z. The integration over dν̄ in q̂ and z play the role of fixed measures as
it can happen in mean field game.

Let G ∈ C∞(Rn;R) with compact support satisfying G ≥ 0, G(x) = G(−x) for x ∈ Rn,
and

∫
Rn
G(y)dy = 1, and define Gε(x) := ε−nG(ε−1x) and for all π ∈ P(Rn), π(ε)(x) :=∫

Rn
Gε(x− y)π(dy) for all x ∈ Rn. Now, for each ε > 0, let us introduce the generator of

the regularized Fokker–Planck equation Aε: for all (t, q̂, x) ∈ [0, T ]× P((PnU )2)×Rn

Aεtϕ[b,n, z, q̂](x) :=
1

2
Tr
[
âε[b,n, z, q̂](t, x)∇2ϕ(x)

]
+ b̂ε[b,n, z, q̂](t, x)>∇ϕ(x), (5.7)

where for (t, x, γ, π, β,m, ν̄, u) ∈ [0, T ]×Rn×C`×(CnW)2×(PnU )2×U , â(t, x, γ, π, β,m, ν̄, u) :=

σ̂σ̂>(t, x, γ, π, β,m, ν̄, u) and (âε, b̂ε) are defined by:

(âε, b̂ε)[b, π, β, q](t, x) (5.8)

:=

∫
(PnU )2

∫
Rn

∫
U

(a, b)(t, y,bt∧·, πt∧·, βt∧·,m, ν̄, u)
Gε(x− y)

(m(dz, U))(ε)(x)
m(du,dy)q(dm,dν̄).

(5.9)

We are now ready to formulate our regularization/approximation result of Fokker–
Planck equation. The following proposition is proved in Appendix A.1.
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Proposition 5.2 (Regularization of Fokker-Planck equation). Let ν ∈ Pp(Rn), for each
ε > 0, there exists a unique solution (nεt )t∈[0,T ] ∈ Cn,pW of: nε0 = ν and for all f ∈
C1,2
b ([0, T ]×Rn) and

d〈f(t, .),nεt 〉 =

[ ∫
Rn
∂tf(t, y)nεt (dy) +

∫
Rn
Aεtf(t, ·)[b,n, z, q̂r](t, y)nεt (dy)

]
dt. (5.10)

Moreover, if ν ∈ Pp′(Rn) and q̂t(Znt × PnU ) = 1 dt–for almost every t ∈ [0, T ], then

lim
ε→0

sup
t∈[0,T ]

Wp(n
ε
t ,nt) = 0. (5.11)

Remark 5.3. (i) Let (Ω̂, F̂, F̂ ,P) be a probability space supportingW a F̂–Wiener process
of dimension Rn and ξ a F0–random variable such that LP(ξ)(dy) = ν(dy). Given ε > 0,
let Y ε be the unique strong solution (well defined, see Appendix A.1 (more precisely the
Proof of Theorem 5.2) )

dY εt = b̂ε[b,n, z, q̂t](t, Y
ε
t )dt+ (âε)1/2[b,n, z, q̂t](t, Y

ε
t )dWt, Y

ε
0 = ξ, (5.12)

one has, by uniqueness of (5.10), LP(Y εt ) = nεt for all t ∈ [0, T ] where nε is the solution
of (5.10).

(ii) We will sometimes use the previous lemma with Theorem A.2, in which nε

must be obtainable through a diffusion process that has a volatility term which verifies
âε[b,n, z, q̂r](t, Y

ε
t ) ≥ θIn×n. The SDE (5.12) allows to say that nε satisfies these condi-

tions. Also, from Theorem 5.2 and the SDE representation (5.12), it is straightforward to
see that the measure nt(dx)dt is equivalent to the Lebesgue measure on Rn × [0, T ] (see
for instance Theorem A.1 ).

Remark 5.4. Combining Theorem 5.3 (diffusion form (5.12) of nε ) with Theorem 5.2
(convergence result (5.11)), as (b, σ) are bounded, there exists a constant C > 0, depend-
ing only of coefficients (b, σ), p and p′, such that

sup
r∈[0,T ]

∫
Rn
|x|p

′
nr(dx) ≤ C

(
1 +

∫
Rn
|x|p

′
ν(dx)

)
and

Wp

(
ns,nt

)p ≤ C|t− s|, for all (t, s) ∈ [0, T ]× [0, T ].

5.3 Approximation by N–agents

Now, let us formulate the approximation result of Fokker–Planck equation by N -
interacting SDE equations. In order to achieve this, we first describe the associated
framework.

Let
(
Ωq,Fq,Fq,Q

)
be a filtered probability space supporting (Bt)t∈[0,T ] a R`–valued

Fq–adapted continuous process, µ and ζ two P(Rn)–valued Fq–continuous processes, Λ

a M
(
(PnU )2

)
–valued variable such that (Λt)t∈[0,T ] is Fq–predictable. Besides, (µ,B, ζ,Λ)

satisfy: Λt
(
Zµt × PnU

)
= 1, for dQ⊗ dt–almost surely, and Q–a.e.

d〈f, µt〉 =

∫
PnU×PnU

∫
Rn×U

Atf(y,B, φ(µ), ζ,m, ν̄, u)m(dy,du)Λt(dm,dν̄)dt, µ0 = ν,

(5.13)

for all t ∈ [0, T ] and f ∈ C2
b (Rn), where

Atϕ(x,b, π, β,m, ν̄, u)

:=
1

2
Tr
[
σ̂σ̂>(t, x,b, π, β,m, ν̄, u)∇2ϕ(x)

]
+ b̂(t, x,b, π, β,m, ν̄, u)>∇ϕ(x), (5.14)
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with, as in (5.6), (b̂, σ̂) is continuous in all arguments and bounded, and the map
(b̂, σ̂)(·, ·,b, ·, β, ·, ν̄, ·) satisfies Assumption 2.1 with constant C and θ independent of
(b, β, ν̄) (see Assumption 2.1). Besides, φ : CnW → CnW is a Lipschitz function s.t. for all
t ∈ [0, T ], φt(π) = φt(πt∧·).

Remark 5.5. (i) Notice that, (5.13) is an equation over µ in the sense that with the
condition Λt

(
Zµt × PnU

)
= 1, for dQ ⊗ dt–almost surely, the process µ appears on both

sides on the equality. Under general Theorem 2.1, it is not difficult to show that there are
processes (µ,Λ) verifying equation (5.13) (see for instance [11, Theorem A.2]). However,
without additional assumptions, a uniqueness result cannot be expected.

(ii) This type of Fokker–Planck equation appears especially in the study of optimal
control of McKean-Vlasov equation (see Section 4 above) and mean field game (see [9]).
One the most important variable is Λ. It can play the role of control in optimal control of
McKean-Vlasov equation, but also of external parameter as it is the case in the mean
field game.

Let (Ω̂, F̂ , F̂, P̂) be another filtered probability space supporting:

• (W i)i∈N∗ a sequence of Rn–valued independent F̂–Brownian motions and (ξi)i∈N∗

a sequence of independent F̂0–random variables s.t. LP̂(ξi) = νi ∈ Pp′(Rn),

• (µN )N∈N∗ and (ζN )N∈N∗ two sequences of P(Rn)–valued F̂–adapted continuous
processes, and (BN )N∈N∗ a sequence of R`–valued F̂–adapted continuous pro-
cesses,

• (mN )N∈N∗ and (ν̄N )N∈N∗ two sequences of PnU–valued F̂–predictable processes,

satisfying:

lim
N→∞

Wp′

(
1

N

N∑
i=1

νi, ν

)
= 0 and lim

N→∞
LP̂
(
φ(µN ), ζN ,Λ

N
, BN

)
= LQ

(
φ(µ), ζ,Λ, B

)
,

(5.15)

where Λ
N

t (dm,dν̄)dt := δ(mNt , ν̄Nt )(dm,dν̄)dt. The convergence takes place inWp.

Furthermore, let (Zi)i∈N∗ be a sequence of independent [0, 1]–valued F̂–measurable
uniform variables independent of other variables, and for each (i,N) ∈ N∗ ×N∗, denote
by F̂i,N := (F̂ i,Nt )t∈[0,T ] the filtration defined by:

F̂ i,Nt := σ
{
ξi,Λ

N

t∧·, φt∧·(µ
N ), ζNt∧·,W

i
t∧·, B

N
t∧·, Z

i
}
, for each t ∈ [0, T ]. (5.16)

The next proposition describes an approximation by a sequence of N–interacting
processes of the Fokker–Planck equation (5.13).

Proposition 5.6. There exists a sequence of processes (αi,N )(i,N)∈N∗×N∗ satisfying for

each (i,N) ∈ N∗ ×N∗, αi,N is F̂i,N–predictable, s.t. if we let (X̂1
t , ..., X̂

N
t )t∈[0,T ] be the

continuous processes unique strong solution of: for each i ∈ {1, ..., N}, EP̂[‖X̂i‖p′ ] <∞,
for all t ∈ [0, T ]

X̂i
t = ξi +

∫ t

0

b̂
(
r, X̂i

r, B
N , φ(µ̂N ), ζN , m̂N

r , ν̄
N
r , α

i,N
r

)
dr

+

∫ t

0

σ̂
(
r, X̂i

r, B
N , φ(µ̂N ), ζN , m̂N

r , ν̄
N
r , α

i,N
r

)
dW i

r , P̂–a.e. (5.17)

where m̂N
t (dx, du) := 1

N

∑N
i=1 δ(X̂it , α

i,N
t )(dx,du), µ̂Nt (dx) := m̂N

t (dx, U), then, one has,

for a sub-sequence (Nk)k∈N∗ ⊂ N∗,

lim
k→∞

EP̂
[ ∫ T

0

Wp

(
m̂Nk
t ,mNk

t

)p
dt+ sup

t∈[0,T ]

Wp

(
φt(µ̂

Nk), φt(µ
Nk)
)]

= 0
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and

lim
k→∞

LP̂
(
µ̂Nk , ζNk , Λ̂Nk , BNk

)
= LQ

(
µ, ζ,Λ, B

)
, inWp (5.18)

with Λ̂Nks (dm,dν̄)ds := δ
(m̂

Nk
s ,ν̄

Nk
s )

(dm,dν̄)ds.

Remark 5.7. (i) Theorem 5.6 as well as Theorem 5.8 (see below) can be considered as a
general characterization of Fokker–Planck equation of type (5.13) via a sequence of SDE
processes interacting through the empirical distribution of the states and “controls”.
These results are very useful both in the study of extended mean field control problem
(see Theorem 4.3) and in mean field game of controls (see our companion paper [9]).

(ii) Because of non–uniqueness of Fokker–Planck equation (5.13), the condition (5.15)
is a crucial and essential assumption. Furthermore, notice that, the condition (5.15)

does not require any equation verified by the sequence
(
φ(µN ), ζN ,Λ

N
, BN

)
N∈N∗ . Only

the convergence result (5.15) is necessary.
(iii) Observe that, the sequence (ΛN )N∈N∗ is a subset ofM0

(
(PnU )2

)
and not a general

subset of M
(
(PnU )2

)
. For an understandable and easy presentation, we consider this type

of sequence, but a general subset of M
(
(PnU )2

)
is possible (see Proposition 5.9 below).

(iv) The presence of the map φ, notably in (5.15), specifies the condition needed on
µ for the result. In particular, if φ is null, it means that no assumption of convergence
towards µ is necessary to find a sequence of SDE processes converging to µ.

Proof of Proposition 5.6. The proof is divided in three steps for a better understanding.
Step 1 : Approximation by regularization of F-P equation: Let ε > 0 and recall

that Aε is defined in (5.7). For all ω ∈ Ωq, by Theorem 5.2, there exists a continuous
process (µεt (ω))t∈[0,T ] verifying

d〈f, µεt (ω)〉 =

∫
Rn
Aεtf

[
B(ω), φ(µ(ω)), ζ(ω),Λt(ω)

]
(x)µεt (ω)(dx)dt, µε0 = ν, (5.19)

for all f ∈ C2
b (Rn;R) and for Q–a.e. ω ∈ Ωq, limε→0 supt∈[0,T ]Wp(µ

ε
t (ω), µt(ω)). Also, by

Theorem A.6, there is a function Φε : C` × CnW × CnW ×M
(
(PnU )2

)
→ CnW such that Q–a.e.

ω ∈ Ωq

µεt (ω) = Φεt

(
Bt∧·(ω), φt∧·(µ(ω)), ζt∧·(ω),Λt∧·(ω)

)
, for all t ∈ [0, T ]. (5.20)

Step 2 : Approximation by discretization: Now, let us define for all (x,m) ∈ Rn ×
PnU , the probability

Hε(x,m)(du) :=

∫
Rn
m(du,dy)

Gε(x− y)

(m(U,dz))(ε)(x)
.

Recall that G ∈ C∞(Rn;R) with compact support satisfying G ≥ 0, G(x) = G(−x) for
x ∈ Rn, and

∫
Rn
G(y)dy = 1. We denoted Gε(x) := ε−nG(ε−1x) and for all π ∈ P(Rn),

π(ε)(x) :=
∫
Rn
Gε(x − y)π(dy) for all x ∈ Rn. By Blackwell and Dubins [3], there exists

a Borel application Nε : (x,m, v) ∈ Rn × PnU × [0, 1] → Nε(x,m)(v) ∈ U s.t. for all
(x,m) ∈ Rn × PnU and any [0, 1]–valued uniform random variable F ,

P̂ ◦
(
Nε(x,m)(F )

)−1
(du) = Hε(x,m)(du).

Step 2.1 : Construction of scheme of discretization: Let us consider the partition

(tNk )1≤k≤2N with tNk = kT
2N

, and take a sequence of Rn–valued independent Brownian
motions (Zi)i∈N∗ , independent of all of other variables. Let ϕ : [0, T ]×Rn → [0, 1] be a

Borel function such that, for all t ∈ [0, T ], LP̂(ϕ(t− tNk , Zit −ZitNk )) is the uniform law when
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t > tNk . For all i ∈ {1, ..., N}, denote by V i,Nt := ϕ(t − tNk , Zit − ZitNk ), when t ∈ [tNk , t
N
k+1),

and given ε > 0, we define on (Ω̂, F̂, F̂ , P̂), by Euler scheme, Xε,i,N := Xi as follows:
Xi

0 := ξi and for all t ∈ [0, T ], i ∈ {1, ..., N},

Xi
t = Xi

0 +

∫ t

0

B̂
(
s,Xi

[s]N , B
N , φ(µN ), ζN ,mN

s , ν̄
N
s , N

ε(Xi
[s]N ,m

N
s )(V i,Ns )

)
ds

+

∫ t

0

Σ̂
(
s,Xi

[s]N , B
N , φ(µN ), ζN ,mN

s , ν̄
N
s , N

ε(Xi
[s]N ,m

N
s )(V i,Ns )

)
dW i

s , (5.21)

where [s]N = tNk if tNk ≤ s < tNk+1, and, for s ∈ [tNk , t
N
k+1),

B̂
(
s,Xi

tNk
, BN , φ(µN ), ζN ,mN

s , ν̄
N
s , N

ε(Xi
tNk
,mN

s )(V i,Ns )
)

:= b̂
(
s,Xi

tNk
, BN , φ(µN ), ζN ,mN

s , ν̄
N
s , N

ε(Xi
tNk
,mN

s )(V i,Ns )
)

+B
(
s,Xi

tNk
, BN , φ(µN ), ζN ,mN

s , ν̄
N
s

)
,

and

Σ̂
(
s,Xi

tNk
, BN , φ(µN ), ζN ,mN

s , ν̄
N
s , N

ε(Xi
tNk
,mN

s )(V i,Ns )
)

:= Σ
(
s,Xi

tNk
, BN , φ(µN ), ζN ,mN

s , ν̄
N
s

)
× σ̂

(
s,Xi

tNk
, BN , φ(µN ), ζN ,mN

s , ν̄
N
s , N

ε(Xi
tKk
,mN

s )(V i,Ns )
)
,

with

B
(
s,Xi

tNk
, BN , φ(µN ), ζN ,mN

s , ν̄
N
s

)
:=

[
b̂ε
[
BN , φ(µN ), ζN ,Λ

N

s

]
(s,Xi

tNk
)

−
∫
U

b̂
(
s,Xi

tNk
, BN , φ(µN ), ζN ,mN

s , ν̄
N
s , u

)
Hε(Xi

tNk
,mN

s )(du)

]
and

Σ
(
s,Xi

tNk
, BN , φ(µN ), ζN ,mN

s , ν̄
N
s

)
:=

[
âε
[
BN , φ(µN ), ζN ,Λ

N

s

]
(s,Xi

tNk
)1/2

×
(∫

U

â
(
s,Xi

tNk
, BN , φ(µN ), ζN ,mN

s , ν̄
N
s , u

)
Hε(Xi

tNk
,mN

s )(du)

)−1/2
]
, (5.22)

recall that Λ
N

s (dm,dν̄)ds := δmNs (dm)δν̄Ns dν̄)ds.

Notice that, there exists a Borel function FN : Rn×M
(
(PnU )2

)
×CnW ×CnW ×Cn×Cn×

C` → Cn s.t. for each i ∈ {1, ..., N},

Xi
t = FNt

(
ξi,Λ

N

t∧·, φt∧·(µ
N ), ζNt∧·,W

i
t∧·, Z

i
t∧·, B

N
t∧·
)
, for all t ∈ [0, T ], P̂–a.e. (5.23)

Step 2.2 : Compactness and identification of the limit: At this stage, we want to
show a compactness result and identify the limit of a certain sequence of probabil-
ity measures constructed from the SDE process (X1, ..., XN ).
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Using the assumptions imposed on coefficients (b̂, σ̂) (see the definition of the genera-
tor A in (5.14)), especially the fact that σ̂σ̂> ≥ θIn and (b̂, σ̂) are bounded, one has that
[B̂, Σ̂] are bounded and there exists a constant D > 0 such that for all ε and N

sup
i∈{1,...,N}

EP̂
[∣∣Xε,i,N

t −Xε,i,N
s

∣∣p] ≤ D|t− s|, for all (t, s) ∈ [0, T ]× [0, T ]. (5.24)

Moreover, by using the fact that supN≥1
1
N

∑N
i=1

∫
Rn
|x|p′νi(dx) < ∞ (see condition

(5.15)), it is straightforward to verify that: supN≥1
1
N

∑N
i=1E

P̂
[

supt∈[0,T ] |X
ε,i,N
t |p′

]
<∞.

Then, by [7, Proposition A.2] or/and [7, Proposition-B.1], for each ε > 0, the sequence
(PN )N∈N∗ is relatively compact inWp, where

PN := P̂ ◦
(
ϑN , φ(µN ), ζN ,Λ

N
, BN

)−1

∈ P
(
CnW × CnW × CnW ×M

(
(PnU )2

)
× C`

)
with ϑNt (dx) := 1

N

∑N
i=1 δXε,i,Nt

(dx).

Let us identify the limit of any convergent sub–sequence of (PN )N∈N∗ . For sake of
clarity, we use the notation Xi instead of Xε,i,N . Recall that for the time being ε > 0 is
considered as fixed.

For each N ∈ N∗, i ∈ {1, ..., N}, and (s, u) ∈ [0, T ]× U , let[
b̂ε,i,Ns , âε,i,Ns

]
:= [b̂ε, âε]

[
BN , φ(µN ), ζN ,Λ

N

s

]
(s,Xi

[s]N )

and[
b̂i,Ns , âi,Ns , B̂i,Ns , Σ̂i,Ns , Âi,Ns

]
(u) :=

[
b̂, â, B̂, Σ̂, Σ̂Σ̂>

](
s,Xi

[s]N , B
N , φ(µN ), ζN ,mN

s , ν̄
N
s , u

)
.

By Itô’s formula, for all f ∈ C∞b (Rn) and t ∈ [0, T ]

〈f, ϑNt 〉

= 〈f, ϑN0 〉+
1

N

N∑
i=1

∫ t

0

∇f(Xi
s)Σ̂

i,N
s

(
Nε(Xi

[s]N ,m
N
s )(V i,Ns )

)
dW i

s

+
1

N

N∑
i=1

∫ t

0

[
∇f(Xi

s)B̂
i,N
s

(
Nε(Xi

[s]N ,m
N
s )(V i,Ns )

)
+

1

2
Tr
[
Âi,Ns

(
Nε(Xi

[s]N ,m
N
s )(V i,Ns )

)
∇2f(Xi

s)
]]

ds

= 〈f, ϑN0 〉+
1

N

N∑
i=1

∫ t

0

∇f(Xi
s)Σ̂

i,N
s

(
Nε(Xi

[s]N ,m
N
s )(V i,Ns )

)
dW i

s

+
1

N

N∑
i=1

∫ t

0

[
∇f(Xi

[s]N )B̂i,Ns
(
Nε(Xi

[s]N ,m
N
s )(V i,Ns )

)
+

1

2
Tr
[
Âi,Ns

(
Nε(Xi

[s]N ,m
N
s )(V i,Ns )

)
∇2f(Xi

[s]N )
]]

ds

+
1

N

N∑
i=1

∫ t

0

[
∇f(Xi

s)−∇f(Xi
[s]N )

]
B̂i,Ns

(
Nε(Xi

[s]N ,m
N
s )(V i,Ns )

)
ds

+
1

N

N∑
i=1

∫ t

0

1

2
Tr
[
Âi,Ns

(
Nε(Xi

[s]N ,m
N
s )(V i,Ns )

)[
∇2f(Xi

s)−∇2f(Xi
[s]N )

]]
ds.
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Observe that, for s ∈ (tNk , t
N
k+1), for each i 6= j, [B̂]i,js = [Â]i,js = 0, where

[B̂]i,js := EP̂
[
∇f(Xi

[s]N )
{
B̂i,Ns

(
Nε(Xi

[s]N ,m
N
s )(V i,Ns )

)
− b̂ε,i,Ns

}
∇f(Xj

[s]N
)
{
B̂j,Ns

(
Nε(Xj

[s]N
,mN

s )(V j,Ns )
)
− b̂ε,j,Ns

}]
and

[Â]i,js := EP̂
[{
Âi,Ns

(
Nε(Xi

[s]N ,m
N
s )(V i,Ns )

)
− âε,i,Ns

}
∇2f(Xi

[s]N ){
Âj,Ns

(
Nε(Xj

[s]N
,mN

s )(V j,Ns )
)
− âε,j,Ns

}
∇2f(Xj

[s]N
)

]
.

Indeed, by using the fact that: for all (x,m, e) ∈ Rn × PnU × {1, ..., N}, one has P̂ ◦(
N ε(x,m)(V e,Ks )

)−1
(du) = Hε(x,m)(du), and (V is , V

j
s ) are independent and independent

of other variables, one has

[B̂]i,js = EP̂

[
∇f(Xi

[s]N )
{
b̂i,Ns

(
Nε(Xi

[s]N ,m
N
s )(V i,Ns )

)
−
∫
U

b̂i,Ns (u)Hε(Xi
[s]N ,m

N
s )(du)

}
∇f(Xj

[s]N
)
{
b̂i,Ns

(
Nε(Xj

[s]N
,mN

s )(V j,Ns )
)
−
∫
U

b̂i,Ns (u)Hε(Xj
[s]N

,mN
s )(du)

}]
= 0.

(5.25)

By similar way, if we denote by Σi,Ns := Σ
(
s,Xi

[s]N , B
N , φ(µN ), ζN ,mN

s , ν̄
N
s

)
, one finds

[Â]i,js = EP̂

[
∇2f(Xi

[s]N )
{

Σi,Ns âi,Ns
(
Nε(Xi

[s]N ,m
N
s )(V i,Ns )

)
(Σi,Ns )> − âε,i,Ns

}
∇2f(Xj

[s]N
)
{

Σj,Ns âj,Ns
(
Nε(Xj

[s]N
,mN

s )(V j,Ns )
)

(Σj,Ns )> − âε,j,Ns

}]

= EP̂

[
∇2f(Xi

[s]N )
{

Σi,Ns

∫
U

âi,Ns (u)Hε(Xi
[s]N ,m

N
s )(du) (Σi,Ns )> − âε,i,Ns

}
∇2f(Xj

[s]N
)
{

Σj,Ns

∫
U

âj,Ns (u)Hε(Xj
[s]N

,mN
s )(du) (Σj,Ns )> − âε,j,Ns

}]

= EP̂

[
∇2f(Xi

[s]N )
{
âε,i,Ns − âε,i,Ns

}
∇2f(Xj

[s]N
)
{
âε,j,Ns − âε,j,Ns

}]
= 0. (5.26)

By simple calculations,

〈f, ϑNt 〉 − 〈f, ϑN0 〉 −
∫ t

0

∫
Rn
Aεrf

[
BN , φ(µN ), ζN ,Λ

N

r

]
(x)ϑN[r]N (dx)dr

=
1

N

N∑
i=1

∫ t

0

∇f(Xi
[s]N )Σ̂i,Ns

(
Nε(Xi

[s]N ,m
N
s )(V i,Ns )

)
dW i

s

+

∫ t

0

[
∇f(Xi

[s]N )
{
B̂i,Ns

(
Nε(Xi

[s]N ,m
N
s )(V i,Ns )

)
− b̂ε,i,Ns

}
+

1

2
Tr
[{
Âi,Ns

(
Nε(Xi

[s]N ,m
N
s )(V i,Ns )

)
− âε,i,Ns

}
∇2f(s,Xi

[s]N )
]
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+
[
∇f(Xi

s)−∇f(Xi
[s]N )

]
B̂i,Ns

(
Nε(Xi

[s]N ,m
N
s )(V i,Ns )

)
+

1

2
Tr
[
Âi,Ns

(
Nε(Xi

[s]N ,m
N
s )(V i,Ns )

)[
∇2f(Xi

s)−∇2f(Xi
[s]N )

]]]
ds,

consequently, there exists a constant C > 0 (independent of N ) such that

EP̂

[∣∣∣〈f, ϑNt 〉 − 〈f, ϑN0 〉 − ∫ t

0

∫
Rn
Aεrf

[
BN , φ(µN ), ζN ,Λ

N

r

]
(x)ϑN[r]N (dx)dr

∣∣∣2]

≤ C

(
EP̂

[∣∣∣ 1

N

N∑
i=1

∫ t

0

∇f(Xi
[s]N )Σ̂i,Ns

(
Nε(Xi

[s]N ,m
N
s )(V i,Ns )

)
dW i

s

∣∣∣2]

+

∫ t

0

EP̂

[∣∣∣ 1

N

N∑
i=1

∇f(Xi
[s]N )

{
B̂i,Ns

(
Nε(Xi

[s]N ,m
N
s )(V i,Ns )

)
− b̂ε,i,Ns

}∣∣∣2]ds

+

∫ t

0

EP̂

[∣∣∣ 1

N

N∑
i=1

1

2
Tr
[{
Âi,Ns

(
Nε(Xi

[s]N ,m
N
s )(V i,Ns )

)
− âε,i,Ns

}
∇2f(Xi

[s]N )
]∣∣∣2]ds

+

∫ t

0

1

N

N∑
i=1

EP̂

[∣∣∣[∇f(Xi
s)−∇f(Xi

[s]N )
]∣∣∣2 +

∣∣∣1
2

[
∇2f(Xi

s)−∇2f(Xi
[s]N )

]∣∣∣2]ds

)
.

By successively applying the results (5.25) and (5.26), and inequality (5.24), one gets
a constant M > 0 depending on (f, b, σ) (which changes from line to line) s.t.

EP̂

[∣∣∣〈f, ϑNt 〉 − 〈f, ϑN0 〉 − ∫ t

0

∫
Rn
Aεrf

[
BN , φ(µN ), ζN ,Λ

N

r

]
(x)ϑN[r]N (dx)dr

∣∣∣2]

≤M

(
EP̂

[∣∣∣∣∣ 1

N

N∑
i=1

∫ t

0

∇f(Xi
s)Σ̂

i,N
s

(
Nε(Xi

[s]N ,m
N
s )(V i,Ns )

)
dW i

s

∣∣∣∣∣
2]

+
1

2N
+

1

N

)

≤M

(
1

N2

N∑
i=1

EP̂

[∫ t

0

∣∣∣∇f(Xi
s)Σ̂

i,N
s

(
Nε(Xi

[s]N ,m
N
s )(V i,Ns )

)∣∣∣2ds

]
+

1

2N
+

1

N

)
. (5.27)

Remark that as ∇f and Σ̂ are bounded,

1

N2

N∑
i=1

EP̂

[∫ t

0

∣∣∣∇f(Xi
s)Σ̂

i,N
s

(
Nε(Xi

[s]N ,m
N
s )(V i,Ns )

)∣∣∣2ds

]
≤M 1

N
. (5.28)

Thanks to inequality (5.24), it is straightforward to verify that

lim
N→∞

Wp

(
LP̂
(
ϑN , ϑN , φ(µN ), ζN ,Λ

N
, BN

)
,LP̂

(
ϑN , (ϑN[t]N )t∈[0,T ], φ(µN ), ζN ,Λ

N
, BN

))
= 0. (5.29)

Let P∞ ∈ P
(
CnW × CnW × CnW × M

(
(PnU )2

)
× C`

)
be the limit of any sub–sequence

(PNk)k∈N∗ of (PN )N∈N∗ , and denote by (βϑ, βµ, βζ , β,B) the canonical process on CnW ×
CnW × CnW ×M

(
(PnU )2

)
× C`. By combining inequalities (5.27) and (5.28) with the result

(5.29), by passing to the limit, using continuity of coefficients, given ε > 0: for all
(t, f) ∈ [0, T ]× C∞b (Rn)

lim
k
EP̂

[∣∣∣∣〈f, ϑNkt 〉 − 〈f, ϑNk0 〉 −
∫ t

0

∫
Rn
Aεrf

[
BNk , φ(µNk), ζNk ,Λ

Nk
r

]
(x)ϑNk

[r]Nk
(dx)dr

∣∣∣∣2
]

= EP∞

[∣∣∣∣〈f, βϑt 〉 − 〈f, ν〉 − ∫ t

0

[ ∫
Rn
Aεrf

[
B, βµ, βζ , βr

]
(x)βϑr (dx)

]
dr

∣∣∣∣2
]

= 0.
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Therefore, after taking a countable family of (f, t), one gets: for all (t, f) ∈ [0, T ]×C∞b (Rn)

〈f, βϑt 〉 = 〈f, ν〉+

∫ t

0

∫
Rn
Aεrf

[
B, βµ, βζ , βr

]
(x)βϑr (dx)dr, for all t ∈ [0, T ], P∞–a.e.

from this equality, we can show the previous equality holds true for all f ∈ C2
b (Rn). For

each ε > 0, by uniqueness βϑ := Φε
(
B, βµ, βζ , β

)
with Φε : C`×CnW×CnW×M

(
(PnU )2

)
→ CnW

a Borel function used in (5.20). Notice that, by assumptions (5.15),

P∞ ◦
(
βµ, βζ , β,B

)−1
= lim

k
P̂ ◦

(
φ(µNk), ζNk ,Λ

Nk
, BNk

)−1
= Q ◦

(
φ(µ), ζ,Λ, B

)−1
inWp.

This result is enough to deduce that P∞ = Q ◦
(
µε, φ(µ), ζ,Λ, B

)−1
. This is true for any

limit P∞ for any sub–sequence of (PN )N∈N∗ , therefore

lim
N→∞

P̂ ◦
(
ϑN , φ(µN ), ζN ,Λ

N
, BN

)−1
= Q ◦

(
µε, φ(µ), ζ,Λ, B

)−1
inWp. (5.30)

Step 3 : Last approximation: To finish, now, let us define X̂ε,i,N := X̂i the strong

solution of: X̂i
0 = ξi, for all t ∈ [0, T ],

dX̂i
t = b̂

(
t, X̂i

t , B
N , φ(µ̂N ), ζN , m̂N

t , ν̄
N
t , α

i
t

)
dt+ σ̂

(
t, X̂i

t , B
N , φ(µ̂N ), ζN , m̂N

t , ν̄
N
t , α

i
t

)
dW i

t ,

where αit := Nε(Xi
tNk
,mN

t )(V i,Nt ) for all t ∈ [tNk , t
N
k+1[, we denote also m̂N

t (dx, du) :=

1
N

∑N
i=1 δ(X̂it , αit)

(dx, du) and µ̂Nt (dx) := m̂N
t (dx, U), recall that (X1, ..., XN ) are defined

in (5.21). It is straightforward to check that: there exists a constant D > 0 (independent
of ε and N )

sup
i∈{1,...,N}

EP̂
[
|X̂i

t − X̂i
s

∣∣p] ≤ D|t− s|, for all (t, s) ∈ [0, T ]× [0, T ]. (5.31)

By Bukholder–Davis–Gundy inequality, lipschitz property of coefficients and previous
inequality (5.31),

EP̂
[

sup
s∈[0,t]

|X̂i
s −Xi

s|p
]

≤ D̂

(
EP̂
[ ∫ t

0

∣∣∣b̂(r, X̂i
r, B

N , φ(µ̂N ), ζN , m̂N
r , ν̄

N
r , α

i
r

)
− B̂

(
r,Xi

[r]N , B
N , φ(µN ), ζN ,mN

r , ν̄
N
r , N

ε(Xi
[r]N ,m

N
r )(V i,Nr )

)∣∣∣pdr]
+ EP̂

[ ∫ t

0

∣∣∣σ̂(r, X̂i
r, B

N , φ(µ̂N ), ζN , m̂N
r , ν̄

N
r , α

i
r

)
− Σ̂

(
r,Xi

[r]N , B
N , φ(µN ), ζN ,mN

r , ν̄
N
r , N

ε(Xi
[r]N ,m

N
r )(V i,Nr )

)∣∣∣pdr])

≤ D̂

(
EP̂
[ ∫ t

0

∣∣∣b̂(r, X̂i
r, B

N , φ(µ̂N ), ζN , m̂N
r , ν̄

N
r , α

i
r

)
− b̂(r,Xi

[r]N , B
N , φ(µN ), ζN ,mN

r , ν̄
N
r , α

i
r)
∣∣∣p]

+ EP̂
[ ∫ t

0

∣∣∣b(r,Xi
[r]N , B

N , φ(µN ), ζN ,mN
r , ν̄

N
r , α

i
r)

− B̂
(
r,Xi

[r]N , B
N , φ(µN ), ζN ,mN

r , ν̄
N
r , N

ε(Xi
[r]N ,m

N
r )(V i,Nr )

)∣∣∣pdr]
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+ EP̂
[ ∫ t

0

∣∣∣σ̂(r, X̂i
r, B

N , φ(µ̂N ), ζN , m̂N
r , ν̄

N
r , α

i
r

)
− σ̂(r,Xi

[r]N , B
N , φ(µN ), ζN ,mN

r , ν̄
N
r , α

i
r)
∣∣∣pdr]

+ EP̂
[ ∫ t

0

∣∣∣σ̂(r,Xi
[r]N , B

N , φ(µN ), ζN ,mN
r , ν̄

N
r , α

i
r)

− Σ̂
(
r,Xi

[r]N , B
N , φ(µN ), ζN ,mN

r , ν̄
N
r , N

ε(Xi
[r]N ,m

N
r )(V i,Nr )

)∣∣∣pdr])

≤ D̂

(
EP̂
[ ∫ t

0

∣∣∣b̂ε[BN , φ(µN ), ζN ,Λ
N

r

]
(r,Xi

[r]N )

−
∫
U

b̂
(
r,Xi

[r]N , B
N , φ(µN ), ζN ,mN

r , ν̄
N
r , u

)
Hε(mN , Xi

[s]N )(du)
∣∣∣pdr]

+ EP̂
[ ∫ t

0

∣∣∣1− Σ
(
r,Xi

[r]N , B
N , φ(µN ), ζN ,mN

r , ν̄
N
r

)∣∣∣pdr
+

∫ t

0

Wp

( 1

N

N∑
i=1

δ(
Xi

[r]N
, αir

)(dx,du),mN
r (dx, du)

)p
dr

]

+ EP̂
[

sup
e′∈[0,T ]

Wp(φe′(ϑ
N ), φe′(µ

N )) +

∫ t

0

sup
e∈[0,r]

∣∣X̂i
e −Xi

e

∣∣pdr]+
1

2N

)
,

then by Gronwall lemma

EP̂
[

sup
t∈[0,T ]

|X̂i
t −Xi

t |p
]
≤ D̂

(
EP̂
[

sup
e′∈[0,T ]

Wp

(
φe′(ϑ

N ), φe′(µ
N )

)]
+

1

2N
+ Eε,i,N + Cε,N

)

where Cε,N := EP̂
[ ∫ T

0
Wp

(
1
N

∑N
i=1 δ

(
Xi

[r]N
, αir

)(dx, du),mN
r (dx, du)

)p
dr
]
, and

Eε,i,N

:= EP̂

[∫ T

0

∣∣∣[b̂ε, âε][BN , φ(µN ), ζN ,Λ
N

r

]
(r,Xi

[r]N )

−
∫
U

[
b̂, â
](
r,Xi

[r]N , B
N , φ(µN ), ζN ,mN

r , ν̄
N
r , u

)
Hε(Xi

[r]N ,m
N
r )(du)

∣∣∣pdr].
Firstly, thanks to results (5.30) and the approximation realized in (5.19), one gets

lim
ε→0

lim
N→∞

EP̂
[

sup
e′∈[0,T ]

Wp

(
φe′(ϑ

N ), φe′(µ
N )
)]

= lim
ε→0

EQ
[

sup
e′∈[0,T ]

Wp

(
φe′(µ

ε), φe′(µ)
)]

= 0.

(5.32)

Secondly, after calculations, it is straightforward to deduce that

1

N

N∑
i=1

Eε,i,N =

EP̂

[∫ T

0

∫
Rn

∫
(PnU )2∣∣∣ ∫

U×Rn

[
b̂, â
](
r, y,BN , φ(µN ), ζN ,m, ν̄, u

) Gε(x− y)

(m(U,dz))(ε)(x)
m(du,dy)
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−
∫
U×Rn

[
b̂, â
](
r, x,BN , φ(µN ), ζN ,m, ν̄, u

) Gε(x− y)

(m(U,dz))(ε)(x)
m(du,dy)

∣∣∣p
Λ
N

r (dm, dν̄)ϑN[r]N (dx)dr

]
.

By regularity of coefficients (Assumption 2.1 and (b̂, σ̂) bounded), the results (5.30) and
(5.29) allow to get

lim
N→∞

1

N

N∑
i=1

Eε,i,N

≤ EQ
[∫ T

0

∫
Rn

∫
(PnU )2

∫
U×Rn

∣∣∣[b̂, â](r, y,B, φ(µ), ζ,m, ν̄, u
)

−
[
b̂, â
](
r, x,B, φ(µ), ζ,m, ν̄, u

)∣∣∣p Gε(x− y)

(m(U,dz))(ε)(x)
m(du,dy)Λr(dm,dν̄)µεr(dx)dr

]
,

then, by Theorem A.3, lim
ε→0

lim
N→∞

1

N

N∑
i=1

Eε,i,N = 0.

Next, let us define the variable

ΥN
r (de′,de)dr := EP̂

[
δ(
mNr ,m

N
r

)(de′,de)dr] ∈M((PnU )2
)
,

where mN
r (dx, du) := 1

N

∑N
i=1 δ

(
Xi

[r]N
, αir

)(dx,du). It is easy to check that the sequence

(ΥN )N∈N∗ is relatively compact for the Wasserstein metricWp. Denote by Υ∞ the limit
of a sub–sequence (ΥNk)k∈N∗ . Let Q ∈ N∗, (fq)q∈{1,...Q} : Rn × U → RQ be bounded
continuous functions and g : [0, T ]× PnU → R. One has∫ T

0

∫
(PnU )2

Q∏
q=1

〈fq, e′〉g(t, e)Υ∞t (de′,de)dt

= EQ
[ ∫ T

0

∫
PnU

Q∏
q=1

∫
Rn
〈fq(x, ·), Hε(x,m)〉µεt (dx)g(t,m)Λt(dm,PnU )dt

]
.

We prove this equality when Q = 2, the case Q ∈ N∗ follows immediately. Indeed,∫ T

0

∫
(PnU )2

〈f1, e′〉〈f2, e〉g(t, e)Υ∞t (de′,de)dt

= lim
k

1

Nk

1

Nk

Nk∑
i,j=1

EP̂
[ ∫ T

0

f1
(
Xi

[t]Nk , α
i
t

)
f2
(
Xj

[t]Nk
, αjt
)
g(t,mNk

t )dt

]

= lim
k

(
1

Nk

1

Nk

∑
i6=j

EP̂
[ ∫ T

0

∫
U

f1
(
Xi

[t]Nk , u
)
Hε(Xi

[t]Nk ,m
Nk
t )(du)

∫
U

f2
(
Xj

[t]Nk
, u
)
Hε(Xi

[t]Nk ,m
Nk
t )(du)g(t,mNk

t )dt

]
+

1

Nk

1

Nk

Nk∑
i=1

EP̂
[ ∫ T

0

f1
(
Xi

[t]Nk , N
ε(Xi

[t]Nk ,m
Nk
t )(V i,Nkt )

)
f2
(
Xj

[t]Nk
, Nε(Xi

[t]Nk ,m
Nk
t )(V i,Nkt )

)
g(t,mNk

t )dt

])
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= lim
k

(
EP̂
[ ∫ T

0

∫
Rn

∫
U

f1(x, u)Hε(x,mNk
t )(du)ϑNk

[t]Nk
(dx)∫

Rn

∫
U

f2(y, u)Hε(y,mNk
t )(du)ϑNk

[t]Nk
(dy)g(t,mNk

t )dt

]
− 1

Nk

1

Nk

∑
i=1

EP̂
[ ∫ T

0

∫
U

f1
(
Xi

[t]Nk , u
)
Hε(Xi

[t]Nk ,m
Nk
t )(du)∫

U

f2
(
Xi

[t]Nk , u
)
Hε(Xi

[t]Nk ,m
Nk
t )(du)g(t,mNk

t )dt

]
+

1

Nk

1

Nk

Nk∑
i=1

EP̂
[ ∫ T

0

f1
(
Xi

[t]Nk , N
ε(Xi

[t]Nk ,m
Nk
t )(V i,Nkt )

)
f2
(
Xi

[t]Nk , N
ε(Xi

[t]Nk ,m
Nk
t )(V i,Nkt )

)
g(t,mNk

t )dt

])

= EQ
[ ∫ T

0

∫
PnU

∫
Rn

∫
U

f1(x, u)Hε(x,m)(du)µεt (dx)∫
Rn

∫
U

f2(y, u)Hε(y,m)(du)µεt (dy)g(t,m)Λt(dm,PnU )dt

]
,

where the fourth equality is true because of the same argument used in (5.25) and (5.26),
i.e. for all (s, v) ∈ (tNlk , tNlk+1) × {1, ..., Nl}, P̂ ◦

(
Nε(x,m)(V v,Nls )

)−1
(du) = Hε(x,m)(du),

and for i 6= j (V is , V
j
s ) are independent and independent of other variables, and the last

equality follows from (5.30) and (5.29), and the terms starting with 1
(Nl)2

∑Nl
i=1 go to zero

because (f1, f2, g) are bounded. Hence,

Υ∞t (de′,de)dt = Υ̂t(de
′,de)dt,

where Υ̂t(de
′,de)dt := EQ

[
δ(
Hε(x,e)(du)µεt (dx)

)(de′)Λt(de,PnU )dt

]
, this is true for any limit

Υ∞ of any sub–sequence. Therefore, the sequence (ΥN )N∈N∗ converges towards Υ̂ for
the wasserstein metricWp. Then, to finish, by Theorem A.3,

lim
ε→0

lim
N→∞

Cε,N = lim
ε→0

lim
N→∞

EP̂
[ ∫ T

0

Wp

( 1

N

N∑
i=1

δ(
Xi

[r]N
, αir

)(dx, du),mN
r

)p
dr

]

= lim
ε→0

EQ
[ ∫ T

0

∫
PnU
Wp

(
Hε(x,m)(du)µεt (dx),m

)p
Λt
(
dm,PnU

)
dt

]
= 0.

All these results allow to deduce that lim
ε→0

lim
N→∞

1

N

N∑
i=1

EP̂
[

sup
t∈[0,T ]

∣∣X̂ε,i,N
t −Xε,i,N

t

∣∣p] = 0.

As

EP̂
[ ∫ T

0

Wp

(
m̂N
t ,m

N
t

)p
dr

]
≤ EP̂

[ ∫ T

0

Wp

(
m̂N
t (dx,du),

1

N

N∑
i=1

δ(
Xi

[t]N
, αit

)(dx, du)
)p

dr

]

+ EP̂
[ ∫ T

0

Wp

( 1

N

N∑
i=1

δ(
Xi

[t]N
, αit

)(dx, du),mN
t (dx, du)

)p
dr

]

≤ 1

N

N∑
i=1

EP̂
[ ∫ T

0

∣∣X̂ε,i,N,K
t −Xε,i,N

[t]N

∣∣pdt]
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+ EP̂
[ ∫ T

0

Wp

( 1

N

N∑
i=1

δ(
Xi

[t]N
, αit

)(dx, du),mN
t (dx, du)

)p
dr

]

≤ 1

N

N∑
i=1

EP̂
[ ∫ T

0

∣∣X̂ε,i,N
t −Xε,i,N

t

∣∣pdt]+
1

2N

+ EP̂
[ ∫ T

0

Wp

( 1

N

N∑
i=1

δ(
Xi

[t]N
, αit

)(dx, du),mN
t (dx, du)

)p
dr

]

then lim
ε→0

lim
N→∞

EP̂
[ ∫ T

0

Wp

(
m̂N
t ,m

N
t

)p
dr

]
= 0, similarly, using (5.32),

lim
ε→0

lim
N→∞

EP̂
[

sup
e′∈[0,T ]

Wp(φe′(µ̂
N ), φe′(µ

N ))

]
≤ lim
ε→0

lim
N→∞

(
EP̂
[

sup
e′∈[0,T ]

Wp(φe′(µ̂
N ), φe′(ϑ

N ))

]
+ EP̂

[
sup

e′∈[0,T ]

Wp(φe′(ϑ
N ), φe′(µ

N ))

])

≤ K lim
ε→0

lim
N→∞

(
1

N

N∑
i=1

EP̂
[

sup
t∈[0,T ]

∣∣X̂ε,i,N
t −Xε,i,N

t

∣∣p]+
1

2N

+ EP̂
[

sup
e′∈[0,T ]

Wp(φe′(ϑ
N ), φe′(µ

N ))

])
= 0.

All previous result combined with measurability property (5.23) allowed to say (α1, ..., αN )

and (X̂1, ..., X̂N ) are the controls and the processes we are looking for.

In fact, in Theorem 5.6, instead of interaction processes of type (5.17), it is possible
to use a sequence of weak McKean–Vlasov processes and obtain similar result. Let us
assume conditions and inputs previously mentioned for Theorem 5.6 are satisfied. Let
W be a (P̂, F̂)–Brownian motion, ξ be a F̂0–random variable with LP̂(ξ) = ν, and Z be a
uniform variable independent of (ξ,W ). In addition,(

ψ(µN ), ζN ,Λ
N
, BN

)
N∈N∗ are P̂–independent of

(
W, ξ, Z

)
. (5.33)

For each N ∈ N∗, define the filtrations F̂N := (F̂Nt )t∈[0,T ] and Ĝ := (ĜNt )t∈[0,T ] by

F̂Nt := σ
{
ξ,Λ

N

t∧·, φt∧·(µ
N ), ζNt∧·,Wt∧·, B

N
t∧·, Z

}
and

ĜNt := σ
{
ψt∧·(µ

N ), ζNt∧·,Λ
N

t∧·, B
N
t∧·
}
,

for all t ∈ [0, T ]. Ĝ will play the role of the common noise filtration. We now provide
approximations by weak McKean–Vlasov processes. The proofs of the next Theorem 5.8
and Theorem 5.9 are left in Appendix A.1.

Proposition 5.8. There exists a sequence of processes (αN )N∈N∗ satisfying: for each
N ∈ N∗, αN is F̂N–predictable, such that if XN is the unique strong solution of:
EP̂[‖XN‖p′ ] <∞, XN

0 = ξ, for all t ∈ [0, T ],

dXN
t

= b̂
(
t,XN

t , B
N , φ(µ̂N ), ζN , m̂N

r , ν̄
N
r , α

N
r

)
dt+ σ̂

(
t,XN

t , B
N , φ(µ̂N ), ζN , m̂N

t , ν̄
N
t , α

N
t

)
dWt,

(5.34)
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where m̂N
t := LP̂

(
XN
t , α

N
t

∣∣ĜNt ) and µ̂Nt := LP̂
(
XN
t

∣∣ĜNt ), then for the sub–sequence
(Nk)k∈N∗ given in Proposition 5.6,

lim
k→∞

EP̂
[ ∫ T

0

Wp

(
m̂Nk
t ,mNk

t

)p
dt+ sup

t∈[0,T ]

Wp

(
φt(µ̂

Nk), φt(µ
Nk)
)]

= 0,

and if Λ̂s(dm,dν̄)ds := δ
(m̂

Nk
s ,ν̄

Nk
s )

(dm, dν̄)ds,

lim
k→∞

LP̂
(
µ̂Nk , ζNk , Λ̂, BNk

)
= LQ

(
µ, ζ,Λ, B

)
, inWp. (5.35)

Another useful approximation Using roughly the same arguments as those used in
the proof of the Theorem 5.6, another approximation result can be provided. This can be

seen as another version of Theorem 5.8 where the sequence (Λ
N

)N∈N∗ is not necessarily
a subset of M0

(
(PnU )2

)
and the controls that achieve the approximation are probability

measures.

Proposition 5.9. Let us stay in the context of Theorem 5.8 with (Λ
N

)N∈N∗ not nec-
essarily a subset of M0

(
(PnU )2

)
. There exists (βN )N∈N∗ a sequence of P(U)–valued

(F̂t ⊗ B(PnU ))t∈[0,T ]–predictable processes such that if (XN
t )t∈[0,T ] := (Xt)t∈[0,T ] is the

unique strong solution of: EP̂[‖XN‖p′ ] <∞, X0 = ξ, for all t ∈ [0, T ], P̂–a.e.,

dXt

=

∫
(PnU )2

∫
U

b̂
(
t,Xt, B

N , φ(ηN ), ζN , m̂N
t [m], ν̄, u

)
βNt (m)(du) Λ

N

t (dm,dν̄)dt

+

(∫
(PnU )2

∫
U

σ̂σ̂>
(
t,Xt, B

N , φ(ηN ), ζN , m̂N
t [m], ν̄, u

)
βNt (m)(du) Λ

N

t (dm,dν̄)

)1/2

dWt

where

m̂N
t [m](dx, du) := EP̂

[
βNt (m)(du)δXNt (dx)

∣∣∣ĜNt ] and µ̂Nt := LP̂(XN
t

∣∣ĜNt ) for all t ∈ [0, T ],

then, one has, for a sub–sequence (Nj)j∈N∗ ⊂ N∗,

lim
j→∞

EP̂
[ ∫ T

0

∫
PnU
Wp

(
m̂kj
r [m],m

)
Λ
Nj
r (dm,PnU )dr

]
= 0

and

lim
j→∞

EP̂
[

sup
s∈[0,T ]

Wp

(
φs(µ̂

Nj ), φs(µ
Nj )
)]

= 0,

in addition if Λ̂Ns (dm, dν̄)ds :=
∫
PnU

δm̂N
s [e](dm)Λ

N

s (de, dν̄)ds,

lim
j→∞

LP̂
(
µ̂Nj , ζNj , Λ̂Nj , BNj

)
= LQ

(
µ, φ(µ), ζ,Λ, B

)
, inWp. (5.36)

Remark 5.10. With exactly the same proof, an important observation is the following: if
the coefficients functions (b̂, σ̂) are of the form of type(

b̂, σ̂σ̂>
)
(t, x,b, π, β,m, ν̄, u) :=

(
b̂?, â?

)
(t,b, π, β, ν̄) +

(
b̂◦, â◦

)
(t, x,b, π, β,m, u),

where (b̂?, â?, b̂◦, â◦) are bounded continuous functions, we can replace the convergence
assumptions (5.15) by

lim
N→∞

Wp′

(
1

N

N∑
i=1

νi, ν

)
= 0
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and

lim
N→∞

LP̂
(
φ(µN ), ζN ,Λ◦,N ,Λ?,N , BN

)
= LQ

(
φ(µ), ζ,Λ◦,Λ?, B

)
, inWp, (5.37)

with Λ◦,N := Λ
N

t (dm,PnU )dt, Λ?,N := Λ
N

t (PnU ,dν̄)dt, Λ◦ := Λt(dm,PnU )dt, and Λ? :=

Λt(PnU ,dν̄)dt. And then, in Theorem 5.6, Theorem 5.8 and Theorem 5.9, the convergence
results (5.18), (5.35) and (5.36) are replaced by

lim
j→∞

LP̂
(
µ̂Nj , ζNj , Λ̂

Nj
t (dm,PnU )dt, Λ̂

Nj
t (PnU ,dν̄)dt, BNj

)
= LQ

(
µ, φ(µ), ζ,Λ◦,Λ?, B

)
,

in Wp. In other words, when the variables (m, ν̄) of (b̂, σ̂σ̂>) are “separated”, we just

need separated condition on (Λ
N

)N∈N∗ of type (5.37), i.e. Λ
N

“separated”.
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A Some technical results

A.1 Technical proofs

We will give here successively the proofs of Theorem 5.2, Theorem 5.8 and Theo-
rem 5.9.

Proof of Theorem 5.2. Let δ > 0 and define

qδt (dm,dm
′) :=

1

δ

∫ t

(t−δ)∨0

q̂δs(dm,dm
′)ds, for all t ∈ [0, T ].
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By using similar approach to [29, Lemma 4.4], the sequence (q̂δ)δ>0 satisfying: for each
δ > 0, q̂δt (dm,dm

′)dt ∈ M((PnU )2), q̂δ : t ∈ [0, T ] → q̂δt (dm, dm
′) ∈ (PnU )2 is continuous,

and lim
δ→0

q̂δt = q̂t, in weakly sense for ds almost every t ∈ [0, T ].

Let us fix t0 ∈ (0, T ], φ ∈ C2
b (Rn), by [21, Chapter 2 Section 9 Theorem 10], there

exists vε,δ ∈ C1,2
b ([0, t0]×Rn) satisfying: vε,δ(t0, x) = φ(x) and

∂tv
ε,δ(t, x) +Aεt [vε,δ(t, .)][b,n, z, q̂δt ](x) = 0 for all (t, x) ∈ [0, t0)×Rn. (A.1)

Notice that, under Theorem 2.1, for each ε > 0, âε[b,n, z, κ](t, x) ≥ θIn×n for all (t, x, κ) ∈
[0, T ]×Rn×P((PnU )2). By Proposition A.5, for all t ∈ [0, T ], x ∈ Rn → (âε)1/2[n, z, κ](t, x) ∈
Sn×n is Lipschitz (with Lipschitz constant independent of (t,n, z, κ)).

Let (Ω,F,F ,P) be a probability space supporting W a Rn–valued (P,F)–Brownian
motion, and ξ a F0–random variable such that LP(ξ) ∈ Pp(Rn). Now, for every t ∈ [0, t0],
denote by Xε,δ,t,ξ := X the continuous process unique strong solution of: P–a.e.,

Xs = ξ +

∫ s

t

b̂ε[b,n, z, q̂δr](r,Xr)dr +

∫ s

t

(âε)1/2[b,n, z, q̂δr](r,Xr)dWr for all s ∈ [t, T ].

By applying Itô’s formula, one has that (Feynman Kac’s formula)

vε,δ(t, x) = EP
[
φ(Xε,δ,t,ξ

t0 )
∣∣ξ = x

]
= EP

[
φ(Xε,δ,t,x

t0 )
]

for all (t, x) ∈ [0, t0]×Rn. (A.2)

By definition of âε and b̂ε (see (5.8)), and by using the fact that q̂δ ∈ M((PnU )2), there
exists a constant Cε (independent of δ > 0) such that: for all (t, x) ∈ [0, T ]×Rn,∣∣∇2

(
b̂ε[b,n, z, q̂δt ], â

ε[b,n, z, q̂δt ]
)
(t, x)

∣∣+
∣∣∇(b̂ε[b,n, z, q̂δt ], âε[b,n, z, q̂δt ])(t, x)

∣∣ ≤ Cε.
Then, by [21, Chapter 2 Section 8 Theorem 8, Theorem 7], for two unit vectors (w1, w2) ∈
Rn×Rn, there exist two Rn–valued F–adapted continuous processes Y ε,δ,t,x,w

1

:= Y and
Zε,δ,t,x,w

1,w2

:= Z such that

lim
h→0

EP
[

sup
s∈[t,t0]

∣∣∣Xε,δ,t,x+hw1

s −Xε,δ,t,x
s

h
− Ys

∣∣∣] = 0

and

lim
h→0

EP
[

sup
s∈[t,t0]

∣∣∣Y ε,δ,t,x+hw2,w1

s − Y ε,δ,t,x,w1

s

h
− Zs

∣∣∣] = 0,

formally speaking, Y can be seen as the “derivative” (given a direction w1) of x →
Xx, and Z the “derivative” (given w1 and another direction w2) of Y . In addition
EP
[

sups∈[t,t0] |Ys|+ |Zs|
]
≤ Kε, with Kε depending on ε but not of δ. As φ ∈ C2

b (Rn), by

using the previous results and equation (A.2), there exists K̂ε > 0 (independent of δ)
satisfying: for all (t, x) ∈ [0, T ]×Rn∣∣∇2vε,δ(t, x)

∣∣+
∣∣∇vε,δ(t, x)

∣∣+
∣∣vε,δ(t, x)

∣∣ ≤ K̂ε. (A.3)

Therefore, for all ε > 0,∣∣Aεtvε,δ(t, ·)[b,n, z, q̂t](x)−Aεtvε,δ(t, ·)[b,n, z, q̂δt ](x)
∣∣

≤ K̂ε

(∣∣[b̂ε, âε][b,n, z, q̂t](t, x)− [b̂ε, âε][b,n, z, q̂δt ](t, x)
∣∣),

by definition (5.8), as lim
δ→0

q̂δt = q̂t, for ds almost every t ∈ [0, T ], one gets:

lim
δ→0

∣∣Aεtvε,δ(t, ·)[b,n, z, q̂t](x)−Aεtvε,δ(t, ·)[b,n, z, q̂δt ](x)
∣∣ = 0, (A.4)
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for each ε > 0 and x ∈ Rn, for ds almost every t ∈ [0, T ].

Uniqueness: For each ε > 0 fixed, let us prove the uniqueness of (nεt )t∈[0,T ] solution of
equation (5.10). Let n1,ε and n2,ε be two solutions of the Fokker–Planck equation (5.10)
mentioned in the Lemma, for any t0 ∈ [0, T ] and φ ∈ C2

b (Rn), denote by v := vε,δ,φ,t0

solution of (A.1) associated to (t0, φ). One finds

∫
Rn
φ(y)n1,ε

t0 (dy)−
∫
Rn
φ(y)n2,ε

t0 (dy)

=

∫ t0

0

〈∂tv(r, .),n1,ε
r 〉 − 〈∂tv(r, .),n2,ε

r 〉

+ 〈Aεrv[b,n, z, q̂r](.),n
1,ε
r 〉 − 〈Aεrv[b,n, z, q̂r](.),n

2,ε
r 〉dr

=

∫ t0

0

〈Aεrv[b,n, z, q̂r](·)−Aεrv[b,n, z, q̂δr](·),n1,ε
r 〉

+ 〈Aεrv[b,n, z, q̂r](·)−Aεrv[b,n, z, q̂δr](·),n2,ε
r 〉 dr,

by (A.4), given ε > 0, after taking δ → 0, by Lebesgue’s dominated convergence theorem,∫
Rn
φ(y)n1,ε

t0 (dy) =
∫
Rn
φ(y)n2,ε

t0 (dy), this is true for all (t0, φ) ∈ [0, T ] × C2
b (Rn), then

n1,ε = n2,ε.

Convergence of nε: Now, we show the second assertion of our Lemma. Using the
fact that q̂t(Znt × PnU ) = 1 dt–almost surely t ∈ [0, T ], one gets for all t ∈ [0, T ],

∫
Rn
vε,δ(t, y)

∫
Rn
Gε(z − y)nt(dz)dy =

∫
Rn

∫
Rn
vε,δ(t, z − y)nt(dz)Gε(y)dy

=

∫
Rn
vε,δ(0, y)

∫
Rn
Gε(z − y)ν(dz)dy +

∫ t

0

∫
Rn

[ ∫
Rn
∂tv

ε,δ(s, z − y)ns(dz)

+

∫
(PnU )2

∫
Rn×U

As[vε,δ(s, · − y)](z,b,n, z,m, ν̄, u)m(dz,du)q̂s(dm,dν̄)

]
Gε(y) dy ds

=

∫
Rn
vε,δ(0, y)

∫
Rn
Gε(z − y)ν(dz)dy +

∫ t

0

∫
Rn

∫
Rn

[
∂tv

ε,δ(s, z − y)

+

∫
(PnU )2

∫
U

As[vε,δ(s, · − y)](z,b,n, z,m, ν̄, u)mz(du)q̂s(dm,dν̄)

]
Gε(y) ns(dz) dy ds

=

∫
Rn
vε,δ(0, y)

∫
Rn
Gε(z − y)ν(dz)dy +

∫ t

0

∫
Rn

[
∂tv

ε,δ(s, y)

∫
Rn
Gε(z − y) ns(dz)

+

∫
(PnU )2

∫
Rn×U

b̂(s, z,b,n, z,m, ν̄, u)∇vε,δ(s, y)Gε(z − y)mz(du)ns(dz)q̂s(dm,dν̄)

+

∫
(PnU )2

∫
Rn×U

1

2
Tr
[
â(s, z,b,n, z,m, ν̄, u)∇2vε,δ(s, y)

]
Gε(z − y)mz(du)ns(dz)q̂s(dm,dν̄)

]
dy ds

=

∫
Rn
vε,δ(0, y)

∫
Rn
Gε(z − y)ν(dz)dy +

∫ t

0

∫
Rn

[
∂tv

ε,δ(s, y)(ns)
(ε)(y)

+

∫
(PnU )2

∫
Rn×U

b̂(s, z,b,n, z,m, ν̄, u)
Gε(z − y)

(m(dz′, U))(ε)(y)
m(dz,du)q̂s(dm,dν̄)∇vε,δ(s, y)(ns)

(ε)(y)
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+
1

2
Tr

[ ∫
(PnU )2

∫
Rn×U

â(s, z,b,n, z,m, ν̄, u)
Gε(z − y)

(m(dz′, U))(ε)(y)
m(dz,du)q̂s(dm,dν̄)∇2vε,δ(s, y)

]
(ns)

(ε)(y)

]
dy ds

=

∫
Rn
vε,δ(0, y)

∫
Rn
Gε(z − y)ν(dz)dy

+

∫ t

0

∫
Rn

[∂tv
ε,δ(r, y) +Aεr[vε,δ(r, ·)][b,n, z, q̂r](r, y)](nr)

(ε)(y) dy dr,

where for each π ∈ P(Rn), we write π(ε)(x) :=
∫
Rn
Gε(x− z)π(dz), for all x ∈ Rn.

Then by (A.1)∫
Rn
vε,δ(0, y)ν(ε)(y)dy

=

∫
Rn
φ(y)(nt0)(ε)(y)dy

+

∫ t0

0

∫
Rn

[Aεr[vε,δ(r, ·)][b,n, z, q̂δr](y)−Aεr[vε,δ(r, ·)][b,n, z, q̂r](y)](nr)
(ε)(y)dydr.

By equation (A.2), one has∫
Rn
vε,δ(0, y)

∫
Rn
Gε(z − y)ν(dz)dy

=

∫
Rn
E
[
φ(Xε,δ,0,ξ

t0 )
∣∣ξ = y

]
ν(ε)(y)dy =

∫
Rn
φ(x)nε,δt0 (dx),

where nε,δt := LP(Xε,δ,0,ξε

t ) for t ∈ [0, T ], with LP(ξε)(dy) = ν(ε)(y)dy. Combining the
previous equality,∫
Rn
φ(y)nt0(dy)

=

∫
Rn
φ(y)nt0(dy)−

∫
Rn
φ(y)

∫
Rn
Gε(z − y)nt0(dz)dy

+

∫
Rn
φ(y)

∫
Rn
Gε(z − y)nt0(dz)dy

=

∫
Rn
φ(y)nt0(dy)−

∫
Rn
φ(y)

∫
Rn
Gε(z − y)nt0(dz)dy

+

∫
Rn
vε(0, y)

∫
Rn
Gε(z − y)ν(dz)dy+∫ t0

0 ∫
Rn

[
Aεrvε,δ(r, ·)[b,n, z, q̂r](y)−Aεrvε,δ(r, ·)[b,n, z, q̂δr](y)

] ∫
Rn
Gε(z − y)nr(dz) dy dr

=

∫
Rn
φ(y)nε,δt0 (dy) +

∫
Rn
φ(y)nt0(dy)−

∫
Rn
φ(y)

∫
Rn
Gε(z − y)dy nt0(dz)+∫ t0

0 ∫
Rn

[
Aεrvε,δ(r, ·)[b,n, z, q̂r](y)−Aεrvε,δ(r, ·)[b,n, z, q̂δr](y)

] ∫
Rn
Gε(z − y)nr(dz) dy dr.
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Consequently, for each ε > 0,

lim sup
δ→0

∣∣∣ ∫
Rn
φ(y)nt0(dy)−

∫
Rn
φ(y)nε,δt0 (dy)

∣∣∣
≤
∣∣∣ ∫
Rn
φ(y)nt0(dy)−

∫
Rn
φ(y)

∫
Rn
Gε(z − y)dy nt0(dz)

∣∣∣.
Finally

lim
ε→0

lim sup
δ→0

∣∣∣ ∫
Rn
φ(y)nt0(dy)−

∫
Rn
φ(y)nε,δt0 (dy)

∣∣∣ = 0, (A.5)

for any φ ∈ C2
b (Rn) and t0 ∈ [0, T ], where we used that limε→0 |

∫
Rn
φ(y)Gε(z − y)dy −

φ(z)| = 0, for all z ∈ Rn.
Notice that ν(ε)(y)(dy) converges weakly to ν(dy). By Skorokhod’s representation

theorem, one can find a probability space (Ω̃, F̃ , P̃) supporting (ξε)ε>0 and ξ such that

LP̃(ξε) = ν(ε)(y)(dy) and LP̃(ξ) = ν(dy), and limε→0 ξ
ε = ξ P̃ a.e.. And when LP(ξ) = ν ∈

Pp′(ν), one has supε>0E
P̃[|ξε|p′ ] = supε>0

∫
Rn
|y|p′ν(ε)(y)(dy) ≤ C(1+

∫
Rn
|y|p′ν(dy)) <∞,

by using standard techniques of uniform integrability, limε→0E
P̃[|ξε − ξ|p] = 0, recall

that p′ > p. If necessary, it is possible to enlarge the initial space, for sake of clarity and
without technical problems, let us assume (Ω̃, F̃ , P̃) is equal to the initial space (Ω,F ,P).
For each ε > 0, let Xε be the continuous process unique strong solution of: P–a.e.

Xε
s = ξ +

∫ s

0

b̂ε[b,n, z, q̂r](r,X
ε
r )dr +

∫ s

0

(âε)1/2[b,n, z, q̂r](r,X
ε
r )dWr for all s ∈ [0, T ].

By using the regularity of (b̂ε, âε) for ε fixed, it is straightforward to find that

lim
ε→0

lim
δ→0

EP
[

sup
t∈[0,T ]

∣∣Xε
t −X

ε,δ,0,ξε

t

∣∣p] = 0.

By Itô’s formula and uniqueness of the Fokker–Planck equation (5.10), nεt = LP(Xε
t ) for

each t ∈ [0, T ]. Thanks to (A.5) and the previous result, one gets that, in weakly conver-
gence sense, lim

ε
nεt = lim

ε→0
lim
δ→0

nε,δt = nt for each t ∈ [0, T ]. Therefore, we proved that: for

each t ∈ [0, T ], nεt converges weakly to nt. To deduce the Wasserstein convergenceWp,
notice that: supε>0 supt∈[0,T ]

∫
Rn
|x|p′nεt(dx) ≤ C(1 +

∫
Rn
|y|p′ν(dy)) <∞, and

lim sup
δ′→0

sup
ε>0

sup
s∈[0,T ]

Wp

(
nε(s+δ′)∧T ,n

ε
s

)p
= lim sup

δ′→0
sup
ε>0

sup
s∈[0,T ]

Wp

(
LP(Xε

(s+δ′)∧T ),LP(Xε
s )
)p

≤ lim sup
δ′→0

sup
ε>0

sup
s∈[0,T ]

EP
[∣∣Xε

(s+δ′)∧T −X
ε
s

∣∣p] ≤ Ĉ lim sup
δ′→0

δ′ = 0,

where the last equality follows from the Holder’s property of trajectories of Xε with a
constant independent of ε (essentially because (b̂, σ̂) are bounded). By Aldous’ criterion
[20, Lemma 16.12] (see also proof of [7, Proposition-B.1]), (nε)ε>0 is relatively com-
pact in C([0, T ];Pp(Rn)) with the metric ∆(ν, ν′) := supt∈[0,T ]Wp(νt, ν

′
t) for all (ν, ν′) ∈

C([0, T ];Pp(Rn)) × C([0, T ];Pp(Rn)). As for each t ∈ [0, T ], nεt converges weakly to nt,
then the limit of each sub–sequence of (nε)ε>0 is n, consequently lim

ε→0
sup
t∈[0,T ]

Wp(n
ε
t ,nt) =

0.

Proof of Theorem 5.8. Before starting, let us mention that many parts of this proof use
Theorem 5.6 and its associated proof.
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Let us take the sequence of processes (αi,N )(i,N)∈N∗×N∗ given in Theorem 5.6 with

LP̂(ξi) = νi = ν for each i, and define the unique strong solution Xi,N of: Xi,N
0 = ξ and

dXi,N
t =b̂

(
t,Xi,N

t , BN , φ(µ̂i,N ), ζN , m̂i,N
t , ν̄Nt , α

i,N
t

)
dt

+ σ̂
(
t,Xi,N

t , BN , φ(µ̂i,N ), ζN , m̂i,N
t , ν̄Nt , α

i,N
t

)
dW i

t ,

with m̂i,N
t := LP̂

(
Xi,N
t , αi,Nt

∣∣ĜNt ) and µ̂i,Nt := LP̂
(
Xi,N
t

∣∣ĜNt ). As αi,N is F̂i,N–predictable

(F̂i,N is defined in (5.16)), there exists a Borel function G : [0, T ] × Rn ×M
(
(PnU )2

)
×

CnW×CnW×Cn×C`× [0, 1]→ U satisfying αi,Nt = G
(
t, ξi,Λ

N

t∧·, φt∧·(µ
N ), ζNt∧·,W

i
t∧·, B

N
t∧·, Z

i
)
,

dt⊗dP̂–a.e.. Define αNt := G
(
t, ξ,Λ

N

t∧·, φt∧·(µ
N ), ζNt∧·,Wt∧·, B

N
t∧·, Z

)
. Let XN be the unique

strong solution of equation (5.34) (associated to αN ). By independence condition in
Assumption (5.33), recall that m̂N is given in equation (5.34),

m̂i,N
t = m̂N

t , P̂–a.e.

and

given the σ–field ĜNt , for i 6= j, (Xi,N
t∧· , α

i,N
t ) are independent of (Xj,N

t∧· , α
j,N
t ) (A.6)

and LP̂
(
Xi,N , ξi,Λ

N
, φ(µN ), ζN ,W i, BN , Zi

)
= LP̂

(
XN , ξ,Λ

N
, φ(µN ), ζN ,W,BN , Z

)
for

each i.
Let us introduce for each N ∈ N∗, the measure on [0, T ]× P(Cn × U)× P(Cn × U)

ΓNt (de, de′)dt := EP̂
[
δ(
β
N
t , LP(Xi,Nt∧· ,α

i,N
t |ĜNt )

)(de, de′)dt],
with β

N

t (dx,du) := 1
N

∑N
i=1 δ(Xi,Nt∧· ,α

i,N
t )(dx,du). As (b̂, σ̂) are bounded and ν ∈ Pp′(Rn),

it is straightforward to check that supN≥1 supi∈{1,...,N}E
P̂
[

supt∈[0,T ]

∣∣Xi,N
t

∣∣p′] <∞, and

hence (ΓN )N∈N∗ is relatively compact for the Wasserstein metricWp. Denote by Γ∞ the
limit of a sub–sequence of (ΓN )N∈N∗ . For simplicity, we will use the same notation for
the sequence and the sub–sequence. One gets

Γ∞t (de, de′)dt = δe(de
′)Γ∞t

(
de,P(Cn × U)

)
dt. (A.7)

It is enough to show that: for all Q ∈ N∗, any bounded functions (fq)d∈{1,...,Q} : Cn×U →
RQ and g : [0, T ]× P(Cn × U)→ R∫ T

0

∫
P(Cn×U)2

Q∏
q=1

〈fq, e〉g(t, e′)Γ∞t (de, de′)dt

=

∫ T

0

∫
P(Cn×U)

Q∏
q=1

〈fq, e〉g(t, e)Γ∞t
(
de,P(Cn × U)

)
dt.

Let us prove this result when Q = 2, the case Q ∈ N∗ is true by similar way.∫ T

0

∫
P(Cn×U)2

Q∏
q=1

〈fq, e〉g(t, e′)Γ∞t (de, de′)dt

= lim
N

1

N

N∑
i,j=1

EP̂
[ ∫ T

0

f1
(
Xi,N
t∧· , α

i,N
t

)
f2
(
Xj,N
t∧· , α

j,N
t

)
g(t, m̂N

t )dt

]

= lim
N

1

N2

(∑
i 6=j

EP̂
[ ∫ T

0

f1
(
Xi,N
t∧· , α

i,N
t

)
f2
(
Xj,N
t∧· , α

j,N
t

)
g(t, m̂N

t )dt

]

+

N∑
i=1

EP̂
[ ∫ T

0

f1
(
Xi,N
t∧· , α

i,N
t

)
f2
(
Xi,N
t∧· , α

i,N
t

)
g(t, m̂N

t )dt

])
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= lim
N

(
1

N2

∑
i 6=j

EP̂
[ ∫ T

0

EP̂
[
f1
(
Xi,N
t∧· , α

i,N
t

)∣∣ĜNt ]EP̂[f2
(
Xj,N
t∧· , α

j,N
t

)∣∣ĜNt ]g(t, m̂N
t )dt

]

+
1

N2

N∑
i=1

EP̂
[ ∫ T

0

f1
(
Xi,N
t∧· , α

i,N
t

)
f2
(
Xi,N
t∧· , α

i,N
t

)
g(t, m̂N

t )dt

])

= lim
N

(
EP̂
[ ∫ T

0

〈f1, m̂N
t 〉〈f2, m̂N

t 〉g(t, m̂N
t )dt

]

− 1

N2

N∑
i=1

EP̂
[ ∫ T

0

EP̂
[
f1
(
Xi,N
t∧· , α

i,N
t

)∣∣ĜNt ]EP̂[f2
(
Xi,N
t∧· , α

i,N
t

)
g(t, m̂N

t )
∣∣ĜNt ]dt]

+
1

N2

N∑
i=1

EP̂
[ ∫ T

0

f1
(
Xi,N
t∧· , α

i,N
t

)
f2
(
Xi,N
t∧· , α

i,N
t

)
g(t, m̂N

t )dt

])

=

∫ T

0

∫
P(Rn×U)

〈f1, e〉〈f2, e〉g(t, e)Γ∞t
(
de,P(Cn × U)

)
dt,

where we used result (A.6) and the fact that the terms starting with 1
(Nl)2

∑Nl
i=1 go to

zero because (f1, f2, g) are bounded.

Next, for all t ∈ [0, T ], using Lipshitz property, there exists a constant C > 0 (which
changes from line to line)

EP̂
[

sup
s∈[0,t]

∣∣Xi,N
s − X̂i

s

∣∣p]
≤ CEP̂

[ ∫ t

0

sup
r∈[0,s]

∣∣Xi,N
r − X̂i

r

∣∣p
+ sup
r∈[0,s]

Wp

(
µ̂Nr ,

1

N

N∑
i=1

δXi,Nr

)p
+Wp

(
m̂N
s ,

1

N

N∑
i=1

δ(Xi,Ns ,αi,Ns )

)p
ds

]
≤ CEP̂

[ ∫ t

0

sup
r∈[0,s]

∣∣Xi,N
r − X̂i

r

∣∣p +Wp

(
LP
(
(Xi,N

s∧· , α
i,N
s

∣∣ĜNs ), βNs )pds],
recall that (X̂1, ..., X̂N ) are defined in equation (5.17) (in Theorem 5.6), and m̂N

t :=

LP̂
(
XN
t , α

N
t

∣∣ĜNt ) and µ̂Nt := LP̂
(
XN
t

∣∣ĜNt ).
Then by Gronwall Lemma, we find

EP̂
[

sup
s∈[0,T ]

∣∣Xi,N
s − X̂i

s

∣∣p] ≤ CEP̂[ ∫ T

0

Wp

(
LP̂
(
(Xi,N

s∧· , α
i,N
s

∣∣ĜNs ), βNs )pds].
As,

EP̂
[ ∫ T

0

Wp

(
m̂N
s ,

1

N

N∑
i=1

δ(X̂i,Ns ,αi,Ns )

)p
ds

]

≤ EP̂
[ ∫ T

0

Wp

(
m̂N
s ,

1

N

N∑
i=1

δ(Xi,Ns ,αi,Ns )

)p
ds

]

+ EP̂
[ ∫ T

0

Wp

( 1

N

N∑
i=1

δ(Xi,Ns ,αi,Ns ),
1

N

N∑
i=1

δ(X̂i,Ns ,αi,Ns )

)p
ds

]
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≤ C
(
EP̂
[ ∫ T

0

Wp

(
LP̂
(
(Xi,N

s∧· , α
i,N
s

∣∣ĜNs ), βNs )pds]+ EP̂
[ ∫ T

0

∣∣Xi,N
s − X̂i

s

∣∣pds])
≤ CEP̂

[ ∫ T

0

Wp

(
LP̂
(
(Xi,N

s∧· , α
i,N
s

∣∣ĜNs ), βNs )pds],
therefore, by taking the sub–sequence corresponding to the lim sup, by result (A.7),

lim sup
l→∞

EP̂
[ ∫ T

0

Wp

(
m̂Nl
s ,

1

Nl

Nl∑
i=1

δ(X̂i,Ns ,αi,Ns )

)p
ds+ sup

t∈[0,T ]

Wp

(
φt(µ̂

Nl), φt(µ
Nl)

]
= 0.

From all previous results, it is straightforward to check that

lim
N→∞

Wp

(
LP̂
(
µ̂N , ζN , δ(m̂Ns ,ν̄Ns )(dm,dν̄)ds,BN

)
,LP̂

(
γ̂N , ζN , δ(θ̂Ns ,ν̄Ns )(dm, dν̄)ds,BN

))
= 0,

where γ̂Nt := 1
N

∑N
i=1 δ(X̂i,Nt ) and θ̂t := 1

N

∑N
i=1 δ(X̂i,Nt ,αi,Nt ). Consequently, by Theorem 5.6

lim
k→∞

LP̂
(
µ̂Nk , ζNk , δ

(m̂
Nk
s ,ν̄

Nk
s )

(dm,dν̄)ds,BNk
)

= lim
k→∞

LP̂
(
γ̂Nk , ζNk , δ

(θ̂
Nk
s ,ν̄

Nk
s )

(dm,dν̄)ds,BNk
)

= LQ
(
µ, ζ,Λ, B

)
,

recall that m̂N
t := LP̂

(
XN
t , α

N
t

∣∣ĜNt ) and µ̂Nt := LP̂
(
XN
t

∣∣ĜNt ).
Proof of Theorem 5.9. The proof of this Proposition is exactly the same as Proposition
5.6, we essentially recall the main step.

Approximation by SDE : Tightness and identification of the limit process:
We denote by Zε,N the unique strong solution of:

Zε,Nt = ξ +

∫ t

0

b̂ε[BN , φ(µN ), ζN ,Λ
N

r ](r, Zε,Nr )dr

+

∫ t

0

(âε)1/2[BN , φ(µN ), ζN ,Λ
N

r ](r, Zε,Nr )dWr, t ∈ [0, T ], P̂–a.e..

And for all (t, ω) ∈ [0, T ]× Ω, denote ϑε,Nt (ω) := LP̂
(
Zε,Nt

∣∣ĜNt )(ω), and

Pε,N := LP̂
(
ϑε,N , BN , φ(µN ), ζN ,Λ

N
)
∈ P

(
CnW × C` × CnW × CnW ×M

(
(PnU )2

))
.

As [b̂ε, âε] are bounded, again it is straightforward to check that (Pε,N )N∈N∗ is rela-
tively compact for the Wasserstein metricWp. Denote by Pε,∞ the limit of a sub–sequence
of (Pε,N )N∈N∗ . Therefore, under Theorem 2.1, by applying similar techniques to those
used in step 2.2 of proof of Theorem 5.6, one gets for all (f, t) ∈ C2

b (Rn;R)× [0, T ], one
gets

〈f, βt〉 =

∫
Rn
f(y)ν(dy) +

∫ t

0

∫
Rn
Aεrf

[
B, βµ, βζ , β

]
(x)βr(dx)dr, Pε,∞–a.e., (A.8)

where (β,B, βµ, βζ , β) is the canonical element on CnW ×C` ×CnW ×CnW ×M
(
(PnU )2. Using

a countable family of (f, t), we can deduce Pε,∞–a.e. equation (A.8) is true for all
(f, t) ∈ C2

b (Rn;R)× [0, T ]. By Theorem A.6, one has β = Φε
(
B, βµ, βζ , β

)
where Φε is the

function used in equation (5.20). Also

LPε,∞
(
B, βµ, βζ , β

)
= lim
N→∞

LPε,N
(
B, βµ, βζ , β

)
= lim
N→∞

LP̂
(
B,φ(µ), ζN ,Λ

N)
= LQ

(
B,φ(µ), ζ,Λ

)
.
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Then LPε,∞
(
β,B, βµ, βζ , β

)
= LQ

(
µε, B, φ(µ), ζ,Λ

)
. This result is true for any limit of any

sub–sequence of (Pε,N )N∈N∗ , consequently (Pε,N )N∈N∗ converges and

lim
N→∞

LP̂
(
ϑε,N , BN , φ(µN ), ζN ,Λ

N)
= LQ

(
µε, B, φ(µ), ζ,Λ

)
.

Last approximation: Let us consider for all (ε,N) ∈ (0,∞) × N∗, the F̂–adapted
Rn–valued continuous process Xε,N := X strong solution of: X0 = ξ, for all s ∈ [0, T ]

dXs =∫
(PnU )2

∫
U

b̂(s,Xs, B
N , φ(µ̂ε,N ), ζN , m̂ε,N

s [m], ν̄, u)Hε(Zε,Ns ,m)(du)Λ
N

s (dm,dν̄)ds+RsdWs

with

Rs :=(∫
(PnU )2

∫
U

σ̂σ̂>(s,Xs, B
N , φ(µ̂ε,N ), ζN , m̂ε,N

s [m], ν̄, u)Hε(Zε,Ns ,m)(du)Λ
N

s (dm,dν̄)

)1/2

where recall that Hε(x,m)(du) :=
∫
Rn
m(du,dy) Gε(x−y)

(m(U,dz))(ε)(x)
and

m̂ε,N
r [m](dz,du) := EP̂

[
Hε(Zε,Nr ,m)(du)δXε,Nr (dz)

∣∣∣ĜNr ] and µ̂ε,Nr := LP̂(Xε,N
r |ĜNr ).

Combining Proposition A.5 and the techniques applied in step 3 of Proof of Proposition
5.6, one gets

lim
ε→0

lim
N→∞

EP̂
[

sup
t∈[0,T ]

|Xε,N
t − Zε,Nt |p

]
= 0

and

lim
ε→0

lim
N→∞

EP̂
[ ∫ T

0

∫
PnU
Wp(m̂

ε,N
r [m],m)Λ

N

r (dm,PnU )dr

]
= 0.

Similarly, lim sup
ε→0

lim sup
N→∞

EP̂
[

sup
s∈[0,T ]

Wp

(
φ(µ̂ε,N ), φs(µ

N )
)]

= 0. Xε,N is the process we

are looking for.

A.2 Regularization by convolution and consequence

This part presents results about the approximation of Borel measurable functions
through a sequence of “smooth” functions. The main point is that this approximation
is achieved via a convolution. The convolution is realized by a probability measure
constructed by an SDE process. Before presenting the main results, we start by recalling
an equivalence result coming from [18, Proposition 4.2].

Let (Ω,F,F ,P) be a filtered probability space supporting W a Rn–valued F–Brownian
motion and ξ a F0–random variable verifying EP[|ξ|p] <∞, (bt, σt)t∈[0,T ] R

n×Sn bounded
predictable process such that there exists θ > 0 satisfying [σt][σt]

> ≥ θIn×n. For all
t ∈ [0, T ], denote by

Xt = ξ +

∫ t

0

bsds+

∫ t

0

σsdWs, P–a.e.

the following proposition is just an application of [18, Proposition 4.2] (see also [21])

Proposition A.1 (equivalence of measures). With the previous considerations, the
measure n on Rn × [0, T ] defined by

n(dx, dt) := P ◦ (Xt)
−1(dx)dt

is equivalent to the Lebesque measure on Rn × [0, T ].
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Approximation by convolution We set G ∈ C∞(Rn;R) with compact support sat-
isfying G ≥ 0, G(x) = G(−x) for x ∈ Rn, and

∫
Rn
G(y)dy = 1. Let us introduce

Gε(x) := ε−nG(ε−1x) for all x ∈ Rn.
Let Xk be the process defined by

Xk
t = ξ +

∫ t

0

bkrdr +

∫ t

0

σkrdWr for all t ∈ [0, T ], P–a.e.,

where there exists D > 0 s.t. for all k and t, |σkt | + |bkt | ≤ D, P–a.e., [σkt ][σkt ]> ≥ θIn×n,
P–a.e. In addition EP[|ξ|p] < ∞ where p ≥ 1. Also, we take (nt)t∈[0,T ] ∈ CnW such that
nt(dx)dt is equivalent to the Lebesgue measure on [0, T ]×Rn, and for the weak topology,

lim
k→∞

LP(Xk
t ) = nt for each t ∈ [0, T ].

The following proposition shows that it is possible to approach some bounded measur-
able functions via smooth functions (bounded derivative functions) by using the marginal
distributions of Xk. We consider (εk)k∈N∗ ⊂ (0,∞) such that lim

k→∞
εk = 0. We pose

Gk(x) = Gεk(x) and for π ∈ P(Rn), π(k)(x) :=
∫
Rn
Gk(x− y)π(dy), for all x ∈ Rn.

Proposition A.2 (regularization by convolution). For any bounded Borel measurable
function ϕ : [0, T ] × Rn × Rn → Rq, such that for all (t, z) ∈ [0, T ] × Rn, ϕ(t, ., z) : y ∈
Rn → ϕ(t, y, z) ∈ Rq is continuous, one has

lim
k→∞

∫ T

0

∫
Rn

∣∣∣ ∫
Rn
ϕ(t, x, y)

Gk(t, x− y)

(nt)(k)(x)
nt(dy)− ϕ(t, x, x)

∣∣∣nt(dx)dt = 0 (A.9)

and

lim
k→∞

∫ T

0

∣∣∣∣EP[ ∫
Rn
ϕ(t,Xk

t , y)
Gl(t,X

k
t − y)

(nt)(k)(Xk
t )

nt(dy)

]
−
∫
Rn
ϕ(t, x, x)nt(dx)

∣∣∣∣dt = 0.

Proof. Mention that, as nt(dx)dt is equivalent to the Lebesgue measure on [0, T ]×Rn,
there exists Borel measurable function c : [0, T ]×Rn → R such that c(s, z) > 0 dt⊗ dx

a.e. (s, z) ∈ [0, T ]×Rn, and nt(dx)dt = c(t, x)dxdt.
First, let us prove the result (A.9). If

Ak :=

∫ T

0

∫
Rn

∣∣∣ ∫
Rn
ϕ(t, x, y)

Gk(x− y)

(nt)(k)(x)
nt(dy)− ϕ(t, x, x)

∣∣∣nt(dx)dt,

one finds that∣∣∣Ak − ∫ T

0

∫
Rn

∣∣∣ ∫
Rn

{
ϕ(t, x, y)− ϕ(t, x, x)

}
Gk(x− y)c(t, y)dy

∣∣∣dxdt
∣∣∣

=
∣∣∣ ∫ T

0

∫
Rn

∣∣∣ ∫
Rn

{
ϕ(t, x, y)− ϕ(t, x, x)

}
Gk(x− y)c(t, y)dy

∣∣∣( c(t, x)

(nt)(k)(x)
− 1
)

dxdt
∣∣∣

≤ K
∣∣∣ ∫ T

0

∫
Rn

∫
Rn
Gk(x− y)c(t, y)dy

∣∣∣ c(t, x)

(nt)(k)(x)
− 1
∣∣∣dxdt

∣∣∣
= K

∣∣∣ ∫ T

0

∫
Rn

(nt)
(k)(x)

∣∣∣ c(t, x)

(nt)(k)(x)
− 1
∣∣∣dxdt

∣∣∣
≤ K

∣∣∣ ∫ T

0

∫
Rn

∣∣∣c(t, x)− (nt)
(k)(x)

∣∣∣dxdt
∣∣∣

= K
∣∣∣ ∫ T

0

∫
Rn

∣∣∣c(t, x)−
∫
Rn
Gk(x− y)c(t, y)dy

∣∣∣dxdt
∣∣∣→k→∞= 0, (A.10)
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where the first inequality is true because ϕ is bounded and the last result is obtained by
the classical result of approximation by convolution.

Now, for all (t, y, δ) ∈ [0, T ] × Rn × R∗+, v(t, y, δ) := supz||y−z|≤δ |ϕ(t, y, y) − ϕ(t, z, y)|,
notice that limδ→0 v(t, y, δ) = 0. Observe that∫ T

0

∫
Rn

∣∣∣ ∫
Rn

{
ϕ(t, x, y)− ϕ(t, y, y)

}
Gk(x− y)c(t, y)dy

∣∣∣dxdt

=

∫ T

0

∫
Rn

∣∣∣ ∫
Rn

{
ϕ(t, x, y)− ϕ(t, y, y)

}(
1|x−y|≤δ + 1|x−y|>δ

)
Gk(x− y)c(t, y)dy

∣∣∣dxdt

≤
∫ T

0

∫
Rn
v(t, y, δ)

∫
Rn

1|x−y|≤δGk(x− y)c(t, y)dydxdt

+K

∫ T

0

∫
Rn

∫
Rn

1|x−y|>δGk(x− y)c(t, y)dydxdt

≤
∫ T

0

∫
Rn
v(t, y, δ)

∫
Rn
Gk(x− y)c(t, y)dydxdt+K T

∫
Rn

1|z|>δGk(z)dz

≤
∫ T

0

∫
Rn
v(t, y, δ)c(t, y)dydt+K T

∫
Rn

1|z|>δGk(z)dz,

it is well known, for each δ > 0, limk→∞
∫
Rn

1|z|>δGk(z)dz = 0, one gets that

lim sup
k→∞

∫ T

0

∫
Rn

∣∣∣ ∫
Rn
{ϕ(t, x, y)− ϕ(t, y, y)}Gk(x− y)c(t, y)dy

∣∣∣dxdt

≤ lim
δ→0

∫ T

0

∫
Rn
v(t, x, δ)c(t, x)dxdt = 0, (A.11)

the last inequality is true because of Lebesgue’s dominated convergence theorem. Finally,
one has that

lim sup
k→∞

Ak

= lim sup
k→∞

∫ T

0

∫
Rn

∣∣∣ ∫
Rn
{ϕ(t, x, y)− ϕ(t, x, x)}Gk(x− y)c(t, y)dy

∣∣∣dxdt

= lim sup
k→∞

∫ T

0

∫
Rn

∣∣∣ ∫
Rn
ϕ(t, x, y)c(t, y)Gk(x− y)dy −

∫
Rn
ϕ(t, x, x)Gk(x− y)c(t, y)dy

∣∣∣dxdt

= lim sup
k→∞

∫ T

0

∫
Rn

∣∣∣ ∫
Rn
ϕ(t, y, y)c(t, y)Gk(x− y)dy −

∫
Rn
ϕ(t, x, x)Gk(x− y)c(t, y)dy

∣∣∣dxdt

≤ lim sup
k→∞

∫ T

0

∫
Rn

∣∣∣ ∫
Rn
ϕ(t, y, y)c(t, y)Gk(x− y)dy − ϕ(t, x, x)c(t, x)

∣∣∣dxdt

+ lim sup
k→∞

∫ T

0

∫
Rn

∣∣∣ϕ(t, x, x)c(t, x)−
∫
Rn
ϕ(t, x, x)Gk(x− y)c(t, y)dy

∣∣∣dxdt

≤ lim sup
k→∞

∫ T

0

∫
Rn

∣∣∣ ∫
Rn
ϕ(t, y, y)c(t, y)Gk(x− y)dy − ϕ(t, x, x)c(t, x)

∣∣∣dxdt

+ lim sup
k→∞

K

∫ T

0

∫
Rn

∣∣∣c(t, x)−
∫
Rn
Gk(x− y)c(t, y)dy

∣∣∣dxdt = 0,

where the first equality derived from (A.10), the third equality follows from (A.11) and
we find 0 because of approximation by convolution result. Therefore limk→∞Ak = 0,
then the first assertion is proved.
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For the second point, let k0 ∈ N∗, one has that

Sk(ϕ) :=

∫ T

0

∣∣∣∣EP[ ∫
Rn
ϕ(t,Xk

t , y)
Gk(t,Xk

t − y)

(nt)(k)(Xk
t )

nt(dy)

]
−
∫
Rn
ϕ(t, x, x)nt(dx)

∣∣∣∣dt
≤∫ T

0

∣∣∣∣EP[ ∫
Rn
ϕ(t,Xk

t , y)
Gk(t,Xk

t − y)

(nt)(k)(Xk
t )

nt(dy)−
∫
Rn
ϕ(t,Xk

t , y)
Gk0(t,Xk

t − y)

(nt)(k0)(Xk
t )

nt(dy)

]∣∣∣∣dt
+

∫ T

0

∣∣∣∣EP[ ∫
Rn
ϕ(t,Xk

t , y)
Gk0(t,Xk

t − y)

(nt)(k0)(Xk
t )

nt(dy)

]
−
∫
Rn
ϕ(t, x, x)nt(dx)

∣∣∣∣dt.
By [21, Chapter 2 Section 3 Theorem 4] and Markov inequality, for each R > 0, there

exists a constant C > 0 depending only on (D, θ, T,R) satisfying

Sk(ϕ)

≤

C

∫ T

0

∫
Rn

∣∣∣ ∫
Rn
ϕ(t, x, y)

Gk(t, x− y)

(nt)(k)(x)
nt(dy)

−
∫
Rn
ϕ(t, x, y)

Gk0(t, x− y)

(nt)(k0)(x)
nt(dy)

∣∣∣n1|x|≤Rdxdt

+ T
EP[supt∈[0,T ] |Xk

t |p]
Rp

+

∫ T

0

∣∣∣∣EP[ ∫
Rn
ϕ(t,Xk

t , y)
Gk0(t,Xk

t − y)

(nt)(k0)(Xk
t )

nt(dy)

]
−
∫
Rn
ϕ(t, x, x)nt(dx)

∣∣∣∣dt.
By using the first statement of the proposition (see proof above), there exists a sub–
sequence (kj)j∈N∗ ⊂ N∗ such that: a.e. (s, z) ∈ [0, T ]×Rn,

lim
j→∞

∣∣∣∣ ∫
Rn
ϕ(s, z, y)

Gkj (t, x− y)

(nt)(kj)(x)
nt(dy)− ϕ(s, z, z)

∣∣∣∣ = 0, nt(dx)dt.

As nt(dx)dt is equivalent to the Lebesgue measure on [0, T ]×Rn,

lim
j→∞

∣∣∣∣ ∫
Rn
ϕ(s, z, y)

Gkj (t, x− y)

(nt)(kj)(x)
nt(dy)− ϕ(s, z, z)

∣∣∣∣ = 0, dt⊗ dxa.e.(s, z) ∈ [0, T ]×Rn.

All these observations allow us to say, by Lebesgue’s dominated convergence theorem

lim sup
k0→∞

lim sup
k→∞

∫ T

0

∫
Rn

∣∣∣ ∫
Rn
ϕ(t, x, y)

Gk(t, x− y)

(nt)(k)(x)
nt(dy)

−
∫
Rn
ϕ(t, x, y)

Gk0(t, x− y)

(nt)(k0)(x)
nt(dy)

∣∣∣n1|x|≤Rdxdt = 0.

Finally, combining the previous result with the weak convergence, lim
k→∞

LP(Xk
t ) = nt

for each t ∈ [0, T ], and an obvious application of the first statement of the proposition,
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one gets

lim sup
k→∞

Sk(ϕ)

≤ lim sup
k0,k→∞

C

∫ T

0

∫
Rn

∣∣∣ ∫
Rn
h(t, x, y)

Gk(t, x− y)

(nt)(k)(x)
nt(dy)

−
∫
Rn
h(t, x, y)

Gk0(t, x− y)

(nt)(k0)(x)
nt(dy)

∣∣∣n1|x|≤Rdxdt

+ lim sup
l0→∞

∫ T

0

∣∣∣ ∫
Rn

∫
Rn
h(t, x, y)

Gl0(t, x− y)

(nt)(l0)(x)
nt(dy)nt(dx)dt

−
∫ T

0

∫
Rn
h(t, x, x)nt(dx)

∣∣∣dt
+ T

supk>0E
P[supt∈[0,T ] |Xk

t |p]
Rp

≤ T
supk>0E

P[supt∈[0,T ] |Xk
t |p]

Rp
,

as supk>0E
P[supt∈[0,T ] |Xk

t |p] <∞, by taking R→∞, we deduce the result.

The next result is essentially an application of Theorem A.2. It states the result
of Theorem A.2 under a form usually used in the paper. Let us consider the map
(b̂, σ̂) : [0, T ] × Rn × PnU × PnU × U → Rn × Sn and q̂ ∈ M((PnU )2) s.t. q̂t(Znt × PnU ) = 1

dt–for almost every t ∈ [0, T ]. Recall that lim
k→∞

L(Xk
t ) = nt in Wp for all t ∈ [0, T ]. We

pose nkt := L(Xk
t ).

Corollary A.3. One has that

lim
k→∞

[∫ T

0

∫
(PnU )2

[ ∫
Rn

∣∣Kk(r, x,m,m′)
∣∣pnkr (dx)

+Wp

(
Hk(z,m)(du)nkr (dz),m(du,dz)

)p]
q̂r(dm,dm

′)dr

]
= 0,

where

Kk(s, x,m, ν̄)

:=∫
Rn×U

[
b̂, σ̂σ̂>

](
s, y,m, ν̄, u

)
H
k
(x,m)(dy,du)−

∫
U

[
b̂, σ̂σ̂>

](
s, x,m, ν̄, u

)
Hk(x,m)(du),

with

H
k
(x,m)(dy,du) := m(dy,du)

Gk(x− y)

(m(U,dz))(k)(x)

and

Hk(x,m)(du) :=

∫
Rn
H
k
(x,m)(du,dy).

Proof. As q̂t(Znt × PnU ) = 1 dt–almost surely t ∈ [0, T ], using convex inequality and
Proposition A.2,

lim
k→∞

∫ T

0

∫
(PnU )2

∫
Rn

∣∣Kk(r, x,m, ν̄)
∣∣pnkr (dx)q̂r(dm,dν̄)dr
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≤ lim sup
k→∞

∫ T

0

∫
(PnU )2

∫
Rn

∫
Rn×U

∣∣∣[b̂, σ̂σ̂>](r, x,m, ν̄, u)

−
[
b̂, σ̂σ̂>

]
(r, y,m, ν̄, u)

∣∣∣pGk(x− y)

(nr)(k)(x)
my(du)nr(dy)nkr (dx)q̂r(dm,dν̄)dr

= 0.

For all bounded continuous function h : Rn × U → R, using Proposition A.2 again,

lim
k→∞

∫ T

0

∫
(PnU )2

∣∣∣ ∫
Rn×U

h(x, u)Hk(x,m)(du)nkr (dx)

−
∫
Rn×U

h(z, u)m(dz,du)
∣∣∣q̂r(dm,dν̄)dr

≤ lim
k→∞

∫ T

0

∫
(PnU )2

∫
Rn

∣∣∣ ∫
Rn×U

h(x, u)my
r(du)

Gk(y − x)

(nr)(k)(x)
nr(dy)

−
∫
Rn×U

h(z, u)m(dz,du)
∣∣∣nkr (dx)q̂r(dm,dν̄)dr = 0,

similarly to [34, Theorem 1.1.2.], one finds a countable family of bounded continu-
ous functions (hk)k∈N∗ characterizing the weak convergence, therefore by Lebesgue’s
dominated convergence,

lim
k→∞

∑
q≥0

∫ T

0

∫
(PnU )2

1

2q

∣∣∣ ∫
Rn×U

hq(x, u)Hk(x,m)(du)nkr (dx)

−
∫
Rn×U

hq(z, u)m(dz,du)
∣∣∣q̂r(dm,dν̄)dr = 0,

then limk→∞
∫ T

0

∫
(PnU )2

∆
(
Hk(z,m)(du)nkr (dz),m(du,dz)

)
q̂r(dm,dν̄)dr = 0, where ∆ is

the metric characterizing the weak convergence on PnU . As [b̂, σ̂] are bounded and
ν ∈ Pp′(Rn), for (r,m) ∈ [0, T ]× PnU ,

lim
K→∞

sup
k∈N∗

∫
|z|+ρ(u0,u)≥K

|z|p + ρ(u0, u)p Hk(z,m)(du)nkr (dz) = 0.

This is enough to conclude that

lim
k→∞

∫ T

0

∫
(PnU )2

Wp

(
Hk(z,m)(du)nkr (dz),m(du,dz)

)
q̂r(dm,dν̄)dr = 0.

Consequence of the regularization: a continuity property Now, we want to pro-
vide some properties satisfying by a regularized map. Let ψ : [0, T ]×Rn × C` × (CnW)2 ×
(PnU )2 × U −→ Rj be a Borel function, with j ∈ N∗. For each ε > 0, one defines
the function ψε : C` × (CnW)2 × P((PnU )2) × [0, T ] × Rn −→ Rj as follows: for every
(t, x,b, π, β, q) ∈ [0, T ]×Rn × C` × (CnW)2 × P((PnU )2)

ψε[b, π, β, q](t, x)

:=

∫
(PnU )2

∫
Rn

∫
U

ψ(t, y,bt∧·, πt∧·, βt∧·,m, ν̄, u)
Gε(x− y)

(m(dz, U))(ε)(x)
m(du,dy)q(dm,dν̄),

where for every m ∈ PnU , (m(dz, U))(ε)(x) :=
∫
Rn
Gε(x− y)m(dy, U).

Notice that ∣∣ψε[b, π, β, q](t, x)
∣∣ ≤ sup

z′,b′,ζ′,m′,ν′,u′

∣∣ψ(t, z′,b′, ζ ′,m′, ν̄′, u′)
∣∣,
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for all (b, π, β, q, t, x). Then if ψ is bounded, ψε is bounded uniformly in ε > 0. Also, given
(t,b, π, β, q), for each ε > 0, the function Rn 3 x → ψε[b, π, β, q](t, x) ∈ Rj belongs to
C∞b (Rn), hence the name of regularization.

Under additional conditions, we have shown in the previous Theorem A.2, in some
sense, “ limε→0 ψ

ε = ψ” (see Proposition A.2 for more details). The next result checks
that given ε > 0, the map ψε satisfies a general continuity property.

Proposition A.4. For any ψ : [0, T ] × Rn × C` × (CnW)2 × (PnU )2 × U −→ R and φ :

[0, T ]×Rn → R two bounded continuous functions. For each ε > 0, the function

(
b, ϑ, π, β, q

)
∈ C` × (CnW)3 ×M

(
(PnU )2

)
−→

∫ T

0

∫
Rn
ψε[b, π, β, qt](t, x)φ(t, x)ϑt(dx)dt ∈ R

is continuous.

Proof. Let (bk, ϑk, πk, βk, qk)k∈N ⊂ C`×(CnW)3×M((PnU )2) and (b, ϑ, π, β, q) ∈ C`×(CnW)3×
M((PnU )2) verifying lim

k
(bk, ϑk, πk, βk, qk) = (b, ϑ, π, β, q). Notice that,

∫ T

0

∫
Rn
ψε[b, π, β, qt](t, x)φ(t, x)ϑt(dx)dt

=

∫ T

0

∫
Rn

∫
(PnU )2

∫
Rn×U

ψ(t, y,bt∧·, πt∧·, βt∧·,m, ν̄, u)
Gε(x− y)

(m(dz, U))(ε)(x)
m(du,dy)qt(dm,dν̄)φ(t, x)ϑt(dx)dt

=

∫ T

0

∫
Rn

∫
C`×(CnW)2

∫
(PnU )2

∫
Rn×U

ψ(t, y, g, e, e′,m, ν̄, u)φ(t, x)Hε(x,m)(du,dy)qt(dm, dν̄)ϑt(dx)Ψt(dg,de, de
′)dt,

where

Hε(x,m)(du,dy) :=
Gε(x− y)

(m(dz, U))(ε)(x)
m(du,dy)

and

Ψt(dg,de, de
′)dt := δ(bt∧·,πt∧·,βt∧·)(dg,de, de

′)dt.

Next, we define

Zk(du,dy,dm,dν̄,dg,de,de′,dx, dt)

:=
1

T
Hε(x,m)(du,dy)qkt (dm, dν̄)ϑkt (dx)δ(bkt∧·,πkt∧·,βkt∧·)(dg,de, de

′)dt

and

Z(du,dy,dm,dν̄,dg,de,de′,dx,dt)

:=
1

T
Hε(x,m)(du,dy)qt(dm, dν̄)ϑt(dx)Ψt(dg,de, de

′)dt.

Then (Zk)k∈N is a sequence of probability measures belonging to P
(
U ×Rn × (PnU )2 ×

C`× (CnW)2×Rn× [0, T ]
)
. As lim

k
(bk, ϑk, πk, βk, qk) = (b, ϑ, π, β, q), it is straightforward to

see that (Zk)k∈N is relatively compact in P
(
U×Rn×(PnU )2×C`×(CnW)2×Rn× [0, T ]

)
and

each sub–sequence converges to Z, therefore (Zk)k∈N converges to Z in a weak sense.
As the function (t, y,b, e, e′,m, ν̄, u, x) ∈ [0, T ] × Rn × C` × (CnW)2 × (PnU )2 × U × Rn →
ψ(t, y,bt∧·, e, e

′,m, ν̄, u)φ(t, x) ∈ Rn is bounded continuous, we can conclude.
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A.3 Some properties of Fokker–Planck equation

Let us recall a useful result on square root of matrices. Denote by S+
n the set of

symmetric positive definite matrices of dimension n ∈ N∗. The principal square root
function is denoted by: f : Q ∈ S+

n 7→ f(Q) := Q1/2 ∈ S+
n .

Proposition A.5. [19, Theorem 6.2] There exists a constant C(n) depending only of the
dimension n ∈ N∗ such that for any (A,B) ∈ S+

n × S+
n

|f(A)− f(B)| ≤ C(n)
[
λmin(A)1/2 + λmin(B)1/2

]−1|A−B|,

where λmin(·) is the smallest eigenvalue.

Let E and E′ be two Polish spaces and [b, a] : [0, T ] × Rn × C([0, T ];E) ×M(E′) →
Rn×Sn×n be a bounded Borel functions s.t.: for all (t, π, q̂) ∈ [0, T ]×C([0, T ];E)×M(E′),

the function x ∈ Rn → [b, a](t, x, πt∧·, q̂t∧·) ∈ Rn × Sn×n belongs to C2
b (Rn) and a ≥ ρIn,

(A.12)

for a certain ρ > 0.
Also, let us introduce, for all ϕ ∈ C2(Rn), Ltϕ[π, q̂](x) := 1

2Tr
[
a(t, x, π, q̂t∧·)∇2ϕ(x)

]
+

b(t, x, π, q̂t∧·)
>∇ϕ(x).

Lemma A.6. Let ν ∈ Pp(Rn). There exists a Borel function Z : C([0, T ];E)×M(E′)→ CnW
s.t. if (Ω,F,F ,P) is a filtered probability space supporting (µt)t∈[0,T ] a E–valued F–

adapted continuous process and (Λ̂t)t∈[0,T ] a P(E′)–valued F–predictable process, then,

the unique P(Rn)–valued (σ{µt∧·, Λ̂t∧·})t∈[0,T ]–adapted continuous process (ϑt)t∈[0,T ]

solution of: ϑ ∈ Cn,pW , and for all (t, f) ∈ [0, T ]× C2
b (Rn),

〈f, ϑt〉 =

∫
Rn
f(y)ν(dy) +

∫ t

0

∫
Rn
Lrf [µ, Λ̂](x)ϑr(dx)dr, P–a.e. (A.13)

satisfies

ϑt = Zt(µt∧·, Λ̂t∧·), for all t ∈ [0, T ], P–a.e.

Proof. For the uniqueness of (A.13), as the coefficients [b, a] verify (A.12), by a slight
extension of (proof of) Theorem 5.2, one gets that equation (A.13) has at most one
solution.

Let W be a Rn–valued (P,F) Brownian motion and ξ be a F0–random variable of law
ν, in addition, (ξ,W ) are P–independent of (µ, Λ̂). Next, let us show the existence and
find the function Z. Combining (A.12) and Theorem A.5, for any (t, π, q̂), the application

x ∈ Rn →
(
a(t, x, πt∧·, q̂t∧·)

)1/2 ∈ Sn×n is Lipshitz, with a Lipschitz constant depends only
on a. Therefore, there exists the Rn–valued F–adapted process X unique strong solution
of

Xs = ξ +

∫ s

0

b(r,Xr, µ, Λ̂)dr +

∫ s

0

(
a(r,Xr, µ, Λ̂)

)1/2
dWr for all s ∈ [0, T ].

It is well known that Xt = Ht(ξ,Wt∧·, µt∧·, Λ̂t∧·), for all t ∈ [0, T ], P–a.e. where
H : Rn × Cn × C([0, T ];E)×M(E′)→ Cn is a Borel function (independent of P).

Denote by G := (Gt)t∈[0,T ] the filtration defined by Gt := σ{µt∧·, Λ̂t∧·}, for all t ∈ [0, T ].

As (ξ,W ) are P–independent of (µ, Λ̂), one has that: for all t ∈ [0, T ], LP(Xt∧·|Gt) =

LP(Xt∧·|GT ), P–a.e. then by [10, Lemma A.1], the process (βt)t∈[0,T ] is a P(Rn)–valued
G–adapted continuous process where β : (t, ω) ∈ [0, T ] × Ω → LP(Xt|Gt)(ω) ∈ P(Rn),
and by Itô’s formula (βt)t∈[0,T ] is solution of equation (A.13). In addition, there exists a
Borel function (independent of P) Z : C([0, T ];E)×M(E′)→ CnW such that: P–a.e., for
all t ∈ [0, T ], βt = Zt(µt∧·, Λ̂t∧·).
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