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microscopic external field*
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Abstract

We examine the behavior of the 2-spin spherical Sherrington-Kirkpatrick model with
an external field by analyzing the overlap of a spin with the external field. Previ-
ous research has noted that, at low temperature, this overlap exhibits dramatically
different behavior in the presence of an external field as compared to the model
with no external field. The transition between those two settings was examined in a
recent physics paper by Baik, Collins-Woodfin, Le Doussal, and Wu as well as a recent
math paper by Landon and Sosoe. Both papers focus on the setting in which the
external field strength, h, approaches zero as the dimension, N , approaches infinity.
In particular, the paper of Baik et al studies the overlap with a microscopic external
field (h ∼ N−1/2) but without a rigorous proof. This paper aims to give a proof of
that result. The proof involves representing the generating function of the overlap
as a ratio of contour integrals and then analyzing the asymptotics of those contour
integrals using results from random matrix theory.
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1 Introduction

1.1 Model set-up and notations

The 2-spin spherical Sherrington-Kirkpatrick (SSK) spin glass model involves a spin
variable σ = (σ1, · · · , σN ) in SN−1, the sphere of radius

√
N in RN :

SN−1 = {σ ∈ RN : ‖σ‖ =
√
N}.

The SSK model with external field is defined by the Hamiltonian

H(σ) = −1

2

N∑
i,j=1

Mij σi σj −h
N∑
i=1

gi σi = −1

2
σ ·Mσ − hg · σ (1.1)
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Overlaps of SSK with microscopic field

where g is a standard Gaussian random vector and M is an N ×N random symmetric
matrix from the Gaussian orthogonal ensemble (GOE). More specifically, for i ≤ j, the
variables Mij are independent centered Gaussian random variables with variance 1

N for
i < j and 2

N for i = j. By the symmetry condition, Mij = Mji for i > j.
The Gibbs measure for this model is

p(σ) =
1

ZN
e−βH(σ) for σ ∈ SN−1 (1.2)

where the parameter β > 0 denotes the inverse temperature and is also written β = 1
T .

The partition function ZN is given by

ZN =

∫
SN−1

e−βH(σ)dωN (σ) (1.3)

where ωN is the normalized uniform measure on SN−1. Since M and g are random, the
Gibbs measure is a random measure. We use the notation

〈A〉 =

∫
A(σ)dp(σ) (1.4)

to denote the expectation of A with respect to the Gibbs measure where A depends on σ.
Since the Gibbs measure depends on M and g, the Gibbs expectation 〈A〉 is a function of
M and g.

Overlaps are of particular interest in the study of SSK and other spin glass models.
In this paper we focus on the overlap of a spin with the external field, denoted by M,
and briefly discuss the overlap with a replica, denoted by R. These are defined as

M =
g · σ
N

and R =
σ(1) · σ(2)

N
(1.5)

where σ is chosen randomly according to the Gibbs measure and σ(1),σ(2) are two
independent copies (or replicas) of σ, chosen from the Gibbs measure with the same
values for M and g.

We denote the eigenvalues of M and their corresponding unit eigenvectors by

λ1 ≥ λ2 ≥ · · · ≥ λN and u1,u2, ...,uN .

Many calculations will involve the inner product of the external field with an eigenvector.
For this purpose, we introduce the notation

ni = g · ui. (1.6)

1.2 Background

The SSK model was first studied by Kosterlitz, Thouless and Jones [15] as a continuous
analog of the model with Ising spins (σ ∈ {−1,+1}N ) that was introduced by Sherrington
and Kirkpatrick [22]. Some of the most influential early work on these models focused
on calculating the limiting free energy (as N →∞) for the SK model, SSK model and the
more general p-spin models. A formula for the limiting free energy of the SK model (as
well as the more general p-spin case) was first established by Parisi [21], and analogous
formulas for spherical models were developed by Kosterlitz et al [15] for the SSK model
and by Crisanti and Sommers [8] for p-spin spherical models. These formulas were later
proven rigorously by Talagrand [26, 25].

The SSK model allows for certain the types of analysis that are not possible with the
SK model. In particular, the partition function for SSK has an equivalent formulation
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as a contour integral, which we describe in more detail in Section 3.1. This contour
integral representation of ZN was first observed by [15] and was later used by Baik and
Lee [3] to analyze the free energy of SSK with zero external field up to fluctuations for
both the high temperature (T > 1) and low temperature (T < 1) cases. They also used
this method to analyze the free energy of several related models [4, 5, 6].

Overlaps are useful in terms of studying the distribution of spins (see, for example,
[24] for a discussion of the geometry of the Gibbs measure in p-spin spherical models
without external field). In the case of SSK with h = 0, the overlap with a replica
concentrates around the values ±(1− T )+ [20]. The contour integral representation of
the partition function can be used to study the fluctuations of this overlap. In particular,
Nguyen and Sosoe [19] find that, at high temperature and zero external field, the overlap
with a replica converges to a centered Gaussian distribution. Landon and Sosoe [16]
extend this analysis to the low temperature case and find that the overlap with a replica
is no longer normally distributed but instead converges to a mean zero, bimodal random
variable whose distribution can be expressed explicitly as a function of the GOE Airy
point process.

The aforementioned results all indicate that, in the h = 0 setting, the SSK model
displays a phase transition at temperature T = 1. However, this transition does not occur
in the case where we have fixed positive external field strength h > 0 [15, 8, 25, 7]. In
that case, the overlap concentrates around a positive value, q(h), for all temperatures
[20].

Since the low temperature case reveals a striking contrast between the SSK model
with h = 0 and the one with h > 0, it is interesting to consider the behavior of the low
temperature model when h → 0 as N → ∞. This question has been considered in the
physics context by Fyodorov and le Doussal [13] who examine the free energy of SSK
with external field and find transitional regimes at scalings h ∼ N−1/6 and h ∼ N−1/2 in
the zero temperature case (see also [10, 14]). We refer to these scalings as mesoscopic
and microscopic respectively.

Recent papers by Landon and Sosoe [17] and by Baik, Collins-Woodfin, le Doussal,
and Wu [2] have computed the distribution of the overlap with the external field as
well as the overlap with a replica at the transitional scalings h ∼ N−1/6 and h ∼ N−1/2

for T < 1. (Both papers also analyze free energy, but that will not be discussed in the
current paper). At the microscopic scaling, both papers find that the overlap with a
replica concentrates around the values ±(1− T ), as it does in the h = 0 case. However,
the mean is no longer zero, but positive, and the mean increases as hN1/2 increases.
We note that both papers use a similar method of representing the overlap in terms
of contour integrals. The difference is that, while [17] is mathematically rigorous, [2]
does not provide all the details of the argument but instead focuses on the physical
implications.

In addition to the overlap with a replica, it is also interesting to study the overlap
with the external field. This quantity is used by physicists to study magnetism and
susceptibility (for example [15, 9]), which will be discussed further in Section 2.1. Both
[17] and [2] analyze the overlap with the external field at the macroscopic (h = O(1))
and mesoscopic scalings. The paper [2] also analyzes this overlap at the microscopic
scaling by providing a non-rigorous computation of the moment generating function
for the overlap. Their computation suggests that, in its leading order, the overlap is
distributed like the sum of two independent random variables, one of which is Bernoulli
and one of which is Gaussian, and both are of order N−1/2. Providing a rigorous proof of
this result will be the focus of the current paper.
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1.3 Scope and organization of this paper

As mentioned above, the goal of the current paper is to provide a rigorous proof of the
formula conjectured in [2] for the distribution of the overlap with the external field at the
microscopic scaling. Although some intermediate steps of [2] are rigorous, many details
are omitted and, most notably, they do not provide rigorous proofs for the asymptotics of
the integrals. We follow similar steps to those used in [2], but fill in the missing details
and supply the rigorous asymptotic analysis of the integrals. Furthermore, we provide
more specificity regarding the probability with which the results hold. The authors of [2]
conjecture that the formula holds with a probability that tends to 1 as N →∞. We show
that it holds with probability at least 1−N−ε for any sufficiently small ε > 0.

The proof in this paper utilizes the contour integral representation of the partition
function as well as many results from random matrix theory. The asymptotic evaluation
of the contour integral associated with the overlap requires a choice of the contour. The
papers [17] and [2] use the steepest-descent contour. We found it simpler to use an
explicit contour that agrees with the true steepest-descent contour only locally.

Finally, we note that our method can also be used to compute the moment generating
function for the overlap with a replica, as conjectured in [2]. However, we do not provide
the details of that proof, since the result is proved via a different method in [17].

Section 2 summarizes the main theorem to be proved in this paper and its implications.
In Section 3 we provide the notations and prerequisites that we will use throughout
the paper including some lemmas that were implied but not rigorously proven in [2].
Section 4 provides the proof of Theorems 2.1 following similar steps as in [2] but filling
in some details and providing more specificity about the probability with which results
hold. Section 5 provides the detailed computations for the decay of the contour integrals
outside a certain neighborhood of the critical point. This is the most technical part of the
paper and supplies key computations that were not addressed in [2]. The lemma in this
section is used in the proof in Section 4. Finally, Section 6 provides a brief description of
how this approach can be applied to the analysis of the overlap of two replicas.

2 Summary of main theorem

This paper focuses on the proof of Theorem 2.1, which provides the moment generat-
ing function for the overlap M. It is important to note that this overlap involve two types
of randomness. First, we have randomness from the choice of M and g, which we refer
to jointly as the “disorder sample.” Second, we have randomness from the choice of spin
variable. For the results in this paper, we fix an arbitrary disorder sample so that M is a
random variable depending on a fixed disorder sample and random spin variable. The
moment generating function in Theorem 2.1 provides the distribution of M as a function
of the fixed disorder sample.

This result is valid for an arbitrary disorder sample, subject to certain constraints
that hold with high probability. In particular, for any sufficiently small ε > 0, the event Eε
(defined in Section 3.3) provides a set of conditions on M and g that are sufficient for
Theorem 2.1 to hold. Section 3.3 provides a detailed description of the event Eε along
with a proof that

P(Eε) ≥ 1−N−ε/10 for all sufficently small ε > 0 and all sufficiently large N . (2.1)

Theorem 2.1. Given T < 1 with h = HN−1/2 for some some fixed H ≥ 0 and n1 as
defined in (1.6), we have the following asymptotic formula for the moment generating
function of M, the overlap with the external field. This formula holds on the event Eε
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(which has probability at least 1−N−ε/10) for any sufficiently small ε > 0 and ξ = O(1).

〈eξ
√
NM〉 = eHξ+

Tξ2

2

cosh
(

(H + Tξ)|n1|
√

1−T
T

)
cosh

(
H|n1|

√
1−T
T

) (
1 +O(N−

1
21 + ε

7 )
)
. (2.2)

Note that the leading term on the right-hand side is the product of two terms implying
that it is the moment generating function of a sum of two independent random variables.
The exponential term is the moment generating function of a Gaussian random variable.
For the ratio of the cosh functions, we note that the moment generating function of a
shifted Bernoulli random variable that takes values 1 and −1 with probabilities P and
1− P respectively is Pet + (1− P )e−t. The ratio of cosh functions in Theorem 2.1 is of
this form with t = ξ|n1|

√
1− T and

P =
e
H
T |n1|

√
1−T

e
H
T |n1|

√
1−T + e−

H
T |n1|

√
1−T

. (2.3)

Hence, for any large N , we can conclude that, on the event Eε, the scaled overlap
√
NM

behaves in its leading order like the independent sum of a Gaussian random variable
(with mean H and variance T ) and a shifted Bernoulli random variable (which takes
values |n1|

√
1− T and −|n1|

√
1− T with probability P and 1 − P respectively for the

value of P stated above).
We can use Theorem 2.1 to obtain various information about the overlaps, including

formulas for all moments of M. Of particular interest are the first moment (Gibbs
expectation) and the variance with respect to the Gibbs measure. Since M is of order
N−1/2 in the case of a microscopic external field, we examine the scaled overlap M

√
N .

For the expectation, we get

〈M
√
N〉 = H + |n1|

√
1− T tanh

(
H|n1|

√
1− T
T

)
+O

(
N−

1
21 + ε

3

)
(2.4)

and for the variance with respect to the Gibbs measure, we get

Var(M
√
N) = T + n2

1(1− T )

(
1− tanh2

(
H|n2

1|
√

1− T
T

))
+O

(
N−

1
21 + ε

3

)
, (2.5)

where both of these formulas hold on the event Eε.

2.1 Application to magnetization and susceptibility

One important application of Theorem 2.1 is that it confirms the conjectures of [2]
regarding magnetization and susceptibility. Magnetization is defined to be 〈M〉, the
Gibbs average of the overlap with the external field. Susceptibility is the magnetization
per unit external field strength, given by

X =
〈M〉
h

. (2.6)

It follows from Theorem 2.1 that, on the event Eε, when T < 1 and h = HN−1/2 for H
constant, the susceptibility is

X = 1 +
|n1|
√

1− T
H

tanh

(
H|n1|

√
1− T
T

)
+O(N−

1
21 + ε

3 ). (2.7)

Of particular interest in the physics literature is the zero external field limit of the
susceptibility. Cugliandolo, Dean, and Yoshino [9] discuss two ways to taking this limit,
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namely limh→0 limN→∞ X and limN→∞ limh→0 X (the first of these was also considered
by [15]). Our results for the microscopic external field give a different way of calculating
the second of these limits. In particular, since n1 ∼ N (0, 1) for all N , we can compute

lim
H→0

lim
N→∞

h=HN−1/2

X D= 1 +
ν2(1− T )

T
for T < 1 and ν ∼ N (0, 1) (2.8)

where
D
= denotes equality in distribution. This confirms the conjecture of [2]. It is also

consistent with [9], which found that, after imposing the constraint |n1| = 1,

lim
N→∞

lim
h→0
X =

1

T
for T < 1 [9]. (2.9)

By removing this constraint on |n1| and applying Theorem 2.1, we are able to show
that the limiting susceptibility is not constant, as the result from [9] might suggest, but
rather it is a random variable whose distribution is given explicitly in (2.8). The paper
[2] contains some further conjectures about the zero external field limit of differential
susceptibility, which can also be verified using Theorem 2.1.

2.2 Comparison with the results of [2] and [17]

Theorem 2.1 is similar to Result 8.6 from [2] but we provide a more precise statement
of the result as well as a rigorous proof. In particular, we specify bounds for the order
of the subleading term and the probability with which the result holds. The proof of
Theorem 2.1 can be found in Section 4. An additional lemma needed in the proof is
included in section 5.

A similar approach can also be used to obtain a moment generating function for the
overlap of two replicas. In other words, we can adapt the methods from Sections 4 and
5 to prove a rigorous version of Result 10.6 from [2]. This will be discussed further in
Section 6. We do not provide the details of that proof because a comparable result was
obtained via a different method in [17] (see Theorem 2.14).

3 Preliminaries

3.1 Contour integral representations

Recall that the partition function ZN is defined by the surface integral

ZN =

∫
SN−1

e−βH(σ)dωN (σ). (3.1)

It was shown by Kosterlitz, Thouless and Jones [15] that this surface integral can be
rewritten as a contour integral of the form

ZN = CN

∫ γ+i∞

γ−i∞
e
N
2 G(z)dz with CN =

Γ(N/2)

2πi(Nβ/2)N/2−1
(3.2)

where

G(z) = βz − 1

N

N∑
i=1

log(z − λi) +
h2β

N

N∑
i=1

n2
i

z − λi
(3.3)

and the contour is a vertical line intersecting the real axis at any γ > λ1. This result
can be extended in a straightforward way to obtain contour integral representations for
generating functions of overlaps [2, 17]. The results we use are given in the following
lemma and a proof can be found in [2].
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Lemma 3.1 ([2]). For real parameter η, the moment generation function of the overlaps
is

〈eβηM〉 =

∫
e
N
2 GM(z)dz∫
e
N
2 G(z)dz

(3.4)

where each contour is a vertical line passing to the right of all singularities and the
function GM(z) is defined as follows:

GM(z) := βz − 1

N

N∑
i=1

log(z − λi) +
(h+ η

N )2β

N

N∑
i=1

n2
i

z − λi
(3.5)

Note that GM(z) is G(z) with h replaced by h+ ηN−1.

3.2 Preliminaries from random matrix theory and probability

In this section we present a few classical results from random matrix theory as well
as some specific convergence results for certain functions of eigenvalues that we will
use throughout the paper.

Semicircle Law

For every bounded, continuous function f(x), we have the following convergence of the
empirical distribution of eigenvalues of M [18]:

1

N

N∑
i=1

f(λi)→
∫
f(x)dσscl(x) where dσscl(x) =

√
4− x2

2π
1x∈[−2,2]dx (3.6)

with probability 1 as N →∞.

Eigenvalue Rigidity

For i = 1, 2, · · · , N , we let λ̂i denote the classical location of the ith eigenvalue, defined
by ∫ 2

λ̂i

dσscl(x) =
i

N
. (3.7)

We set λ̂0 = 2. The rigidity result [12, 11] states that, for any δ > 0 and D > 0 and
sufficiently large N ,

P

(
N⋂
i=1

{
|λi − λ̂i| ≤ N−

2
3 +δ (min{i,N + 1− i})−1/3

})
≥ 1−N−D (3.8)

Airy Point Process

Define the rescaled eigenvalues

ai := N2/3(λi − 2). (3.9)

As N → ∞, the rescaled eigenvalues converge in distribution to the GOE Airy point
process [27, 23]. We denote this as {αi}∞i=1 satisfying

{ai} ⇒ {αi}. (3.10)

Heuristically, we expect that, for 1� i� N ,

ai ≈ αi ≈ −
(

3πi

2

)2/3

(3.11)
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since the semicircle law is asymptotic to
√

2−x
π dx as x → 2. The above approximation

and the rigidity property suggest that,

ai � −i2/3 as i,N →∞ satisfying i ≤ N. (3.12)

For proofs throughout this paper, we need a more rigorous version of the approximation
above, which we obtain in the following lemma.

Lemma 3.2. (adapted from [16]) There exist some integer K and some c > 0, which do
not depend on N such that, for all k > K, we have

P

 ⋃
N2/5≥j≥k

{
a1 − aj ≥ cj2/3

} ≥ 1− 2

k1/2
. (3.13)

Proof. In line (6.33) of [16], Landon and Sosoe obtain the result that there exists some
K1 (not depending on N ) such that, for all k > K1,

P

 ⋂
N2/5≥j≥k

{
N2/3(λj − 2) ≤ −

(
3πj

2

)2/3

+
1

10
j2/3

} ≥ 1− 1

k1/2
. (3.14)

(Note that the original statement of this inequality in the arxiv version of [16] contains
a typo, but the result above is what follows from the preceding lines of [16] and we
confirmed this with the authors.) Next, we observe that there exists some K ′ such that,
for all k > K ′, we have

P

(
N2/3(2− λ1) ≤ 1

10
k2/3

)
≥ 1− 1

k1/2
(3.15)

for N sufficiently large. This comes from the fact that the GOE Tracy-Widom distribution
has sub-exponential tails. Neither K1 nor K ′ depends on N , so we take K to be the
maximum of these two values and, combining (3.14) and (3.15), we conclude the desired
result.

Special sums

There are a few sums that will be particularly important throughout this paper. Below
we present some convergence results for these sums, which depend upon the random
matrix properties described above.

In particular, for m = 1, 2, · · · , we consider sums of the form

1

N

N∑
i=2

1

(λ1 − λi)m
. (3.16)

We need an asymptotic formula for m = 1 as N →∞. This was obtained recently in [16].
Landon and Sosoe proved that

ΞN := N1/3

(
1

N

N∑
i=2

1

λ1 − λi
− 1

)
⇒ Ξ (3.17)

for a random variable Ξ as N →∞. The limiting random variable Ξ can be expressed in
terms of the GOE Airy kernel point process as

Ξ = lim
n→∞

 n∑
i=2

1

α1 − αi
− 1

π

∫ ( 3πn
2 )

2/3

0

dx√
x

 (3.18)
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where the limit exists almost surely.
We also need another version of the result (3.17) where the constant numerators are

replaced n2
i :

N1/3

(
1

N

N∑
i=2

n2
i

λ1 − λi
− 1

)
⇒ lim

n→∞

 n∑
i=2

ν2
i

α1 − αi
− 1

π

∫ ( 3πn
2 )

2/3

0

dx√
x

 (3.19)

where νi are i.i.d standard Gaussians, independent of the GOE Airy point process αi.
This follows from (3.17) and the fact that

1

N2/3

N∑
i=2

n2
i − 1

λ1 − λi
⇒

∞∑
i=2

ν2
i − 1

α1 − αi
(3.20)

which is a convergent series due to Kolmogorov’s three series theorem and Lemma 3.2.
Next, we have two lemmas concerning the convergence of special sums.

Lemma 3.3. For any δ > 0,

1

N

N∑
i=2

1

λ1 − λi
= 1 +O(N−

1
3 +δ) and

1

N

N∑
i=2

n2
i

λ1 − λi
= 1 +O(N−

1
3 +δ) (3.21)

with probability at least 1−N−δ/2. (This lemma is adapted from a similar result in [17]).

Proof. Define an event

Eδ :=
{
λ1 − λ2 ≥ N−

2
3 (1+δ)

}
∩

{
N⋂
i=1

{
|λi − λ̂i| ≤ N−

2
3 +δ (min{i,N + 1− i})−1/3

}}
.

(3.22)
The first equation in (3.21) holds on this event, which we can see by writing

1

N

N∑
i=2

1

λ1 − λi
=

1

N

Nδ/3∑
i=2

1

λ1 − λi
+

1

N

N∑
i=Nδ/3+1

1

λ1 − λi

= O(N−
1
3 +δ) +

(
1 +O(N−

1
3 +δ)

) (3.23)

where, for the first sum, we use λ1 − λi ≥ N−
2
3 (1+δ) and, for the second sum, we use

eigenvalue rigidity and the semicircle law. The second equation in (3.21) also holds on
Eδ using the same reasoning along with the fact that the sum in (3.20) is convergent. It
remains only to show that

P(Eδ) ≥ 1−N−δ/2. (3.24)

From Lemma 3.4 from [16], we have

P(λ1 − λ2 ≥ N−
2
3 (1+δ)) ≥ 1−N− 2

3 δ+δ
′

(3.25)

for any δ′ > 0. This, along with (3.8), implies the lemma.

We also consider a similar class of sums with a larger exponent in the denominator
and get the following lemma.

Lemma 3.4. For any δ > 0

N∑
i=2

1

(a1 − ai)m
= O(Nδ) and

N∑
i=2

n2
i

(a1 − ai)m
= O(Nδ), m ≥ 2, (3.26)

with probability at least 1−N− δ
3m .
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Proof. To prove the first of these inequalities we consider the event

Fδ,m =
{
a1 − a2 > N−

δ
2m

}
∩

{
N⋂
i=1

{
|λi − λ̂i| ≤ N−

2
3 +δ (min{i,N + 1− i})−1/3

}}
(3.27)

The event
{
a1 − a2 > N−

δ
2m

}
occurs with probability at least 1−N− δ

2m+e′ for any δ′ > 0

(see [16] Lemma 3.4). Using this fact along with the eigenvalue rigidity result (3.8), we
can conclude that the event Fδ,m occurs with probability at least 1 − N− δ

3m . Now we
show that the first inequality in (3.4) holds on the event Fδ,m. In particular, on that event,
we have

N∑
i=2

1

(a1 − ai)m
=

bNδ/2c∑
i=2

1

(a1 − ai)m
+

N∑
i=bNδ/2c+1

1

(a1 − ai)m

< Nδ/2 · 1

(N−
δ

2m )m
+ 2

N∑
i=bNδ/2c+1

1

(−ai)m

≤ Nδ + 2

N∑
i=bNδ/2c+1

1

(−âi)m

(
1 +
|ami − âmi |

(−ai)m

)

< Nδ + 4

N∑
i=bNδ/2c+1

1

(−âi)m

(3.28)

The summation in the last line is well approximated by the integral

N−
2m
3 +1

∫ λ̂bNδ/2c+1

−2

1

(2− x)m
dσscl(x) < 4N−

2m
3 +1

∫ λ̂bNδ/2c+1

−2

1

(2− x)m−
1
2

dx (3.29)

Using the approximation 2− λ̂bNδ/2c+1 ≈ cN−
2
3 + δ

3 from (3.11), we see that the right hand

side of the inequality above is of order N−mδ/3. Thus
∑N
i=2

1
(a1−ai)m = O(Nδ) on the

event Fδ,m. Because ni are standard Gaussians, the sum
∑N
i=2

n2
i

(a1−ai)m has the same
order with comparable probability.

Chi-squared distributions

One quantity that we make use of throughout this paper is n1 = uT1 g. We note that n1

has a standard normal distribution which means that n2
1 has a chi-squared distribution

with one degree of freedom. We prove many results that hold on the event where n2
1 is

roughly of order 1. More specifically, we have the following lemma

Lemma 3.5. For any sufficiently small δ > 0,

P
(
N−δ < n2

1 < δ logN
)
≥ 1−N−δ/2 (3.30)

The proof of this lemma is straightforward from the probability density function
for chi-squared random variables. We note for the purpose of future results that n1 is
independent of the eigenvalues of M .
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3.3 Defining the event on which our result holds

For any ε > 0, we define an event Eε as follows:

Eε :=
{
N−ε < n2

1 < ε logN
}
∩{

1

N

N∑
i=2

1

λ1 − λi
= 1 +O(N−

1
3 +ε) and

1

N

N∑
i=2

n2
i

λ1 − λi
= 1 +O(N−

1
3 +ε)

}

∩

{
N∑
i=2

1

(a1 − ai)m
≤ Nε and

N∑
i=2

n2
i

(a1 − ai)m
≤ Nε for m = 2, 3

}
(3.31)

Lemma 3.6. For ε > 0 sufficiently small and N sufficiently large,

P(Eε) ≥ 1−N−ε/10 (3.32)

Proof. The event Eε as defined above is the intersection of three events, each with
probability close to 1. For sufficiently large N , we know from Lemma 3.5 that the first
event in the intersection has probability at least 1 −N−ε/2 and, from Lemma 3.3, the
second event in the intersection has probability at least 1−N−ε/2. The third event in the
intersection is actually composed of two events, the one for m = 2 and the one for m = 3.
By Lemma 3.4, these hold with probability 1−N−ε/6 and 1−N−ε/9 respectively. Putting
these together, we see that, even if the complements of all of these events are disjoint,
we have P(Eε) ≥ 1−N−ε/10 for any sufficiently small ε > 0 and sufficiently large N .

Throughout the rest of this paper, we will prove various results assuming that we are
on the event Eε. We can then conclude that those results hold with probability at least
1−N−ε/10.

4 Proof of Theorem 2.1

In the proof of Theorem 2.1, we make use of Lemma 3.1, which can be restated as
follows:

〈eβξ
√
NM〉 = e

N
2 (GM(γM)−G(γ))

∫ γM+i∞
γM−i∞ e

N
2 (GM(z)−GM(γM))dz∫ γ+i∞

γ−i∞ e
N
2 (G(z)−G(γ))dz

(4.1)

where

GM(z) = βz − 1

N

N∑
i=1

log(z − λi) +
(h+ ξ√

N
)2β

N

N∑
i=1

n2
i

z − λi
(4.2)

and we use γ and γM to denote critical points of G(z) and GM(z) respectively, which
satisfy γ > λ1 and γM > λ1. In the next two lemmas, we show that these critical points
are unique and we compute upper and lower bounds for them. After accomplishing
this, we turn to the more delicate task of computing the integrals in the formula for the
generating function of M. This is more difficult for h ∼ N−1/2 than in the other scaling
regimes because the critical point is very close to a branch point. Since a straightforward
application of Taylor approximation and steepest descent analysis does not work in this
case, we directly compute the integral in a neighborhood of the critical point and then
show that the tails of the integral are of smaller order.

4.1 Critical point analysis

We begin by computing the critical point γ of G(z). In [2], the authors use the ansatz
that γ = λ1 + pN−1 with N−δ < p < N δ for any δ > 0 and sufficiently large N on some
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event whose probability tends to 1 as N →∞. Without making any assumption about
the order of p, we set

γ = λ1 + pN−1 (4.3)

and then prove that the order of p indeed satisfies the ansatz of [2] (in fact we prove
something more precise). In particular, we can define p via the formula for G′(z) and
prove the following lemma.

Lemma 4.1. There exists a unique p > 0 satisfying the equation

G′(λ1 + pN−1) = β − 1

N

N∑
i=1

1

λ1 + pN−1 − λi
− H2β

N2

N∑
i=1

n2
i

(λ1 + pN−1 − λi)2
= 0 (4.4)

and, for any sufficiently small ε > 0 and sufficiently large N , we have T < p < ε logN on
the event Eε, which occurs with probability at least 1−N−ε/10.

Proof. The existence and uniqueness of p can be seen from the fact that, for x ∈ (λ1,∞),
the function G′(x) is monotonically increasing with G′(x)→ β as x→∞ and G′(x)→ −∞
as x → λ1. Having established that (4.4) has a unique solution p > 0, we turn to the
task of bounding p. On the event Eε, the last sum in equation (4.4) is O(N−

2
3 +ε) for any

sufficiently small ε > 0. From this, we get

β − 1

N

N∑
i=2

1

λ1 − λi
− 1

p
− H2βn2

1

p2
+O(N−

2
3 +ε) < 0 < β − 1

p
− H2βn2

1

p2
(4.5)

on Eε. Further applying definition of Eε to the sum on the left hand side and rearranging
terms, we get

β − 1 +O(N−
1
3 +ε) <

1

p
+
H2βn2

1

p2
< β. (4.6)

Hence, on Eε, the expression 1
p +

H2βn2
1

p2 is bounded above and below by order 1 quantities.

The upper bound ensures that p > 1
β = T (note this is not a sharp bound). The

lower bound on 1
p +

H2βn2
1

p2 ensures that p = O(ε logN) provided that |ni| = O(ε logN).

Since |ni| < (ε logN)1/2 for sufficiently large N on Eε, we can definitely ensure that
|ni| < Cε logN for any constant C and sufficiently large N .

Having proved the lemma, we apply the bounds on the order of p to equation (4.4)
and conclude that p satisfies

β − 1− 1

p
− H2βn2

1

p2
+O(N−

1
3 +ε) = 0 (4.7)

with probability 1 − N−ε/10. We note that, when h = HN−1/2, the equation for GM is
same as the one for G with H replaced by H + ξ. Thus γM = λ1 + pMN

−1 where pM > 0

solves the equation

β − 1− 1

pM
− (H + ξ)2βn2

1

p2
M

+O(N−
1
3 +ε) = 0, (4.8)

and the lemma below follows by the same reasoning as in the lemma above.

Lemma 4.2. There exists a unique pM > 0 satisfying the equation

G′M(λ1+pMN
−1) = β− 1

N

N∑
i=1

1

λ1 + pMN−1 − λi
− (H + ξ)2β

N2

N∑
i=1

n2
i

(λ1 + pMN−1 − λi)2
= 0

(4.9)
and, for any sufficiently small ε > 0 and sufficiently large N , we have T < pM < ε logN

on the event Eε, which occurs with probability at least 1−N−ε/10.
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4.2 Contour integral computation

We now consider the ratio of the integrals in the formula (3.4). For the integral in the
numerator, we have the following lemma.

Lemma 4.3. For fixed H > 0 with h = HN−1/2 and T < 1∫
e
N
2 (GM(z)−GM(γM))dz

=
2i
√

2πpMe
−(β−1)pM+ 1

2

N
√
β − 1

cosh
(

(H + ξ)|n1|
√
β(β − 1)

)(
1 +O(N−

1
21 + ε

7 )
)

(4.10)

on the event Eε, which occurs with probability at least 1 − N−ε/10 for any sufficiently
small ε > 0.

Proof. To compute this integral, we need a formula for N(GM(z) − GM(γM)) in terms
of u where z = γM + uN−1. We will begin by focusing on the central portion of the
integral and then we will handle the tails separately. When we are on the event Eε and
|u| = o(N

1
3−ε), we get the following computation:

N(GM(z)− GM(γM)) = N(GM(z)− GM(γM)− G′M(γM)uN−1)

= −
N∑
i=1

[
log

(
1 +

uN−1

γM − λi

)
− uN−1

γM − λi

]
+

(H + ξ)2β

N

N∑
i=1

n2
iu

2N−2

(γM + uN−1 − λi)(γM − λi)2

= − log

(
1 +

u

pM

)
+

u

pM
+O

 N∑
j=2

|u|2N−2

(γM − λj)2


+

(H + ξ)2βn2
1u

2

(pM + u)p2
M

+O

 N∑
j=2

|u|2N−3

(γM − λj)3

 .

(4.11)

Using properties of the event Eε, the quantity in the last line above can be simplified as
follows:

= − log

(
1 +

u

pM

)
+

u

pM
+

(H + ξ)2βn2
1u

2

(pM + u)p2
M

+O(|u|2N− 2
3 +ε)

= − log

(
1 +

u

pM

)
+ (β − 1 +O(N−

1
3 +ε))(u− pM) + 1 +

(H + ξ)2βn2
1

(pM + u)
+O(|u|2N− 2

3 +ε)

= − log

(
1 +

u

pM

)
+ (β − 1)(u− pM) + 1 +

(H + ξ)2βn2
1

(pM + u)
+O

(
(|u|+ 1)N−

1
3 +ε
)
.

(4.12)

Now, set g(u) = 1
2

(
− log

(
1 + u

pM

)
+ (β − 1)(u− pM) + 1 +

(H+ξ)2βn2
1

(pM+u)

)
and let 0 < δ <

1
6 −

ε
2 . Then we see that, on the event Eε,∫ γM+i∞

γM−i∞
exp

[
N

2
(GM(z)− GM(γM))

]
dz

=
1

N

(∫ iNδ

−iNδ
exp

(
g(u) +O

(
(|u|+ 1)N−

1
3 +ε
))

du+ integrals of tails

)
.

(4.13)

For the purposes of computing this, it helps to deform the contour by shifting it leftward
so that, instead of the vertical contour from γM − i∞ to γM + i∞, we consider a contour
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from λ1− i∞ to λ1 + i∞ which is a straight vertical line except near λ1 where it passes to
the right of λ1. The integral on this contour will be the same as on the original contour
and we get∫ λ1+i∞

λ1−i∞
exp

[
N

2
(GM(z)− GM(γM))

]
dz

=
1

N

(∫ iNδ

−iNδ
exp

(
g(u− pM) +O

(
(|u|+ 1)N−1/3

))
du+ integrals of tails

)

=
1

N

(∫ iNδ

−iNδ
exp(g(u− pM))

(
1 +O

(
(|u|+ 1)N−

1
3 +ε
))

du+ integrals of tails

)
.

(4.14)

Note that we have implemented a leftward shift of γM − λ1 with respect to z, which
corresponds to a leftward shift of pM with respect u. We make this shift in the integrand
rather than in the contour bounds, so the contour with respect to u is a vertical line
along the imaginary axis, but passing to the right of the origin. Next, we compute the
integral on the portion of the contour from −iNδ to iNδ. Call this portion of the contour
C. We define C more specifically (in terms of u) to be composed of three pieces:

• C1 is the straight line from −iNδ to −ipM.

• C2 is the semicircle given by pMeiθ with θ ∈ [−π2 ,
π
2 ].

• C3 is the straight line from ipM to iNδ.

We show that exp(g(u − pM)) is bounded on C1, C2, C3 by bounding the real part of
g(u− pM). On C1 and C3, we have

Re(g(u− pM)) = −1

2
log

(
|u|
pM

)
− 2pM(β − 1) + 1 < 1. (4.15)

On C2, we have

Re(g(pMe
iθ − pM)) =− 1

2
log(|eiθ|) + (β − 1) · Re(pMe

iθ − 2pM) + 1 + Re

(
(H + ξ)2βn2

1

pMeiθ

)
<1 +

(H + ξ)2βn2
1

pM
.

(4.16)

Since the real part of g(u − pM) is bounded, the magnitude of exp(g(u − pM)) is also
bounded by some constant (call it c) so we have∫

C1

exp(g(u− pM))
(

1 +O
(

(|u|+ 1)N−
1
3 +ε
))

du

=

∫ −ipM

−iNδ
exp(g(u− pM))

(
1 +O

(
(|u|+ 1)N−

1
3 +ε
))

du

=

∫ −ipM

−iNδ
exp(g(u− pM))du+O(c · 2N2δ− 1

3 +ε)

=

∫
C1

exp(g(u− pM))du+O(N2δ− 1
3 +ε).

(4.17)

Similarly, we have∫
C3

exp(g(u− pM))
(

1 +O
(

(|u|+ 1)N−
1
3 +ε
))

du =

∫
C3

exp(g(u− pM))du+O(N2δ− 1
3 +ε).

(4.18)
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Finally, for C2, we get∫
C2

exp(g(u− pM))
(

1 +O
(

(|u|+ 1)N−
1
3 +ε
))

du

=

∫ π/2

−π/2
exp(g(pMe

iθ − pM))
(

1 +O
(
N−

1
3 +ε
))

pMieiθdθ

=

∫ π/2

−π/2
exp(g(pMe

iθ − pM))pMieiθdθ +O
(
pMcπN

− 1
3 +ε
)

=

∫
C2

exp(g(u− pM))du+O(N−
1
3 +ε).

(4.19)

Thus, we conclude that, on the event Eε, for any 0 < δ < 1
6 −

ε
2 ,

∫ iNδ

−iNδ
exp(g(u− pM))

(
1 +O

(
(|u|+ 1)N−

1
3 +ε
))

du

=

∫ iNδ

−iNδ
exp(g(u− pM))du+O(N2δ− 1

3 +ε). (4.20)

We use lemma 5.1 to show that the integral of the tails has order O(N−δ/3). This has
the same order as O(N2δ− 1

3 +ε) when δ = 1
7 (1− 3ε), which is positive for any 0 < ε < 1

3 .
Since we are free to choose any 0 < δ < 1

6 −
ε
2 , we set δ = 1

7 (1− 3ε) and get∫
e
N
2 (GM(z)−GM(γM))dz =

1

N

(∫ iNδ

−iNδ
exp(g(u− pM))du+O

(
N−

1
21 + ε

7

))

=
1

N

(∫ iNδ

−iNδ

√
pM
u
e

(β−1)(u−2pM)

2 + 1
2 +

(H+ξ)2βn2
1

2u du+O
(
N−

1
21 + ε

7

))

=
p

1/2
M e−(β−1)pM+ 1

2

N

(∫ iNδ

−iNδ

1√
u
e

(β−1)u
2 +

(H+ξ)2βn2
1

2u du+O
(
N−

1
21 + ε

7

))
.

(4.21)

The integral
∫

0++iR
1√
u

exp
(

(β−1)u
2 +

(H+ξ)2βn2
1

2u

)
du can be evaluated using the contour

integral formula for the modified Bessel function (see e.g. [1]):∫
0++iR

1√
w
eaw+ b

w dw = 2πi

(
b

a

)1/4

I− 1
2
(2
√
ab) =

2i
√
π√
a

cosh(2
√
ab). (4.22)

Since this integral converges, the integral in the last line of equation (4.21) must
converge to the same value. Furthermore, the tails of the integral in (4.22) beyond
order Nδ only contribute O(N−δ/2) to the value of the integral. This can be seen by

applying integration by parts to the integral i
∫∞
Nδ

1√
iy
ei(ay− by )dy where the factor 1√

y e
− ib
y

is differentiated and the factor eiay is integrated. This gives us O(N−δ/2), which is less
than O(N−

1
21 + ε

7 ) since δ = 1
7 (1− 3ε). Hence, we conclude that, on the event Eε,∫

e
N
2 (GM(z)−GM(γM))dz

=
2i
√

2πpMe
−(β−1)pM+ 1

2

N
√
β − 1

cosh
(

(H + ξ)|n1|
√
β(β − 1)

)(
1 +O(N−

1
21 + ε

7 )
)
. (4.23)

We now return to the task of computing the moment generating function of M using
the formula in line (4.1). The integral in the denominator of that formula can be viewed
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as a special case of the numerator in which ξ = 0 and pM is replaced with p. Therefore,
on the event Eε,∫

e
N
2 (GM(z)−GM(γM))dz∫
e
N
2 (G(z)−G(γ))dz

=

√
pM
p
e−(β−1)(pM−p)

cosh
(

(H + ξ)|n1|
√
β(β − 1)

)
cosh

(
H|n1|

√
β(β − 1)

) (
1 +O(N−

1
21 + ε

7 )
)
. (4.24)

To compute the moment generating function of M from the formula (4.1), it remains
only to evaluate the factor e

N
2 (GM(γM)−G(γ)), which is also computed in [2] (see section

8.6 of that paper). Although we require more precision for the order of the sub-leading
term than is provided in [2], this can easily be achieved by repeating their steps using
the assumptions that hold on the event Eε and carefully tracking the order of each term.
This yields the result

N(GM(γM)− G(γ)) =− log(
pM
p

) + 2(β − 1)(pM − p) + (2Hξ + ξ2)β +O(N−
1
3 +ε).

(4.25)
Thus we can conclude that

〈eβξ
√
NM〉 = e

(2Hξ+ξ2)β
2

cosh
(

(H + ξ)|n1|
√
β(β − 1)

)
cosh

(
H|n1|

√
β(β − 1)

) (
1 +O(N−

1
21 + ε

7 )
)
. (4.26)

Replacing βξ by ξ and using T = 1/β, we obtain the result stated in Theorem 2.1.

5 Integral Approximation Lemmas

The proof of Theorems 2.1 in the preceding section required us to compute a contour
integral. In that computation, we relied on the fact that the dominant contribution to the
integral comes from a neighborhood of the critical point. In this section, we prove that
fact by providing an upper bound for the value of the integral outside of a neighborhood
of the critical point and showing that the upper bound shrinks to zero as N →∞. This is
the most technical part of the contour integral computations.

Lemma 5.1. Tail approximation for overlap with external field when h = H−1/2 and
T < 1: For any δ > 0,∫ i∞

iNδ
exp

[
N

2
(GM(λ1 + uN−1)− GM(γM))

]
du = O(N−δ/3) as N →∞ (5.1)

on the event Eε.

Proof. First, observe that we are using a vertical contour with real part equal to λ1 as
opposed to the original contour, which had real part equal to γ. This is due to a contour
deformation that we did when computing the integral on the central portion of the
contour. To show that the integrals of the tails tend to zero, we deform the contour yet
again. Instead of the vertical line contour given by λ1 + i(Nδ + t)N−1 with t ∈ [0,∞), we
consider the contour C4 given by λ1−f(t)N−1 +i(Nδ+t)N−1 where f(t) = (t+1)∆−1 for
some 0 < ∆ < 1

3 . We briefly comment on this choice of contour: In order to show decay
of the tails of the integral, we want the real part of z(t) to approach −∞ as t → ±∞.
However, in order to control the integrand, we want the real part of |z(t) − λ1| to be
smaller than λ1 − λ2 when |t| < N . We choose f(t) = (t+ 1)∆ − 1 because we also need
f(0) = 0 and f ′(t) bounded.
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To bound
∫ i∞

iNδ
exp[N2 (GM(λ1 + uN−1)− GM(γM))]du we observe that∣∣∣∣ ∫ i∞

iNδ
exp

[
N

2
(GM(λ1 + uN−1)− GM(γM))

]
du

∣∣∣∣
=

∫ ∞
0

∣∣∣∣(f ′(t) + i) exp

[
N

2
(GM(λ1 + (−f(t) + i(Nδ + t))N−1)− GM(γM))

] ∣∣∣∣dt
≤
∫ ∞

0

∣∣∣∣− ∆

(t+ 1)1−∆
+ i

∣∣∣∣ · ∣∣∣∣ exp

[
N

2
(GM(λ1 + (−f(t) + i(Nδ + t))N−1)− GM(γM))

] ∣∣∣∣dt
≤
∫ ∞

0

√
2

∣∣∣∣ exp

[
N

2
(GM(λ1 + (−f(t) + i(Nδ + t))N−1)− GM(γM))

] ∣∣∣∣dt
(5.2)

Thus, it suffices to show
∫∞

0
| exp

[
N
2 (GM(λ1 + (−f(t) + i(Nδ + t))N−1)− GM(γM))

]
|du =

O(N−δ/3). We use the notation GM(z) = A(z) +B(z) where

A(z) = βz − 1

N

N∑
j=1

log(z − λj) B(z) =
(H + ξ)2β

N2

N∑
j=1

n2
j

z − λj
(5.3)

We begin by noting that∫ ∞
0

∣∣∣∣exp

[
N

2
(GM(z(t))− GM(γM))

]∣∣∣∣ dt
≤
∫ ∞

0

∣∣∣∣exp

[
N

2
(A(z(t))−A(γM))

]∣∣∣∣ · ∣∣∣∣exp

[
N

2
(B(z(t))−B(γM))

]∣∣∣∣dt (5.4)

Therefore, in order to show that the integral on the tail has order O(N−δ/3), it is enough
two prove the following two things:

•
∫∞

0

∣∣exp
(
N
2 (A(λ1 − f(t)N−1 + i(Nδ + t)N−1)−A(γM))

)∣∣dt = O(N−δ/3) and

•
∣∣exp

(
N
2 (B(λ1 − f(t)N−1 + i(Nδ + t)N−1)−B(γM))

)∣∣ is bounded for t > 0.

The integral in the first bullet point can be rewritten as∫ ∞
0

∣∣∣∣exp

(
N

2
(A(λ1 − f(t)N−1 + i(Nδ + t)N−1)−A(γM))

)∣∣∣∣dt
=

∫ ∞
0

exp

(
Nβ

2
(λ1 − f(t)N−1 − γM)

)

·

∣∣∣∣∣∣exp

−1

2

N∑
j=1

log

(
λ1 − f(t)N−1 + i(Nδ + t)N−1 − λj

γM − λj

)∣∣∣∣∣∣dt
(5.5)

and this can be further simplified as

=

∫ ∞
0

exp

(
−β(pM + f(t))

2

)

·

∣∣∣∣∣∣exp

−1

2

N∑
j=1

log

(
λ1 − f(t)N−1 + i(Nδ + t)N−1 − λj

γM − λj

)∣∣∣∣∣∣dt
=

∫ ∞
0

exp

(
−β(pM + f(t))

2

)
· exp

−1

2

N∑
j=1

log

∣∣∣∣λ1 − f(t)N−1 + i(Nδ + t)N−1 − λj
γM − λj

∣∣∣∣
dt

(5.6)
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We begin by showing that this integral restricted to the interval [2(γM − λN )N,∞) is of
order O(e−N/2). If we integrate over just the first factor in the expression above, we get∫ ∞

2(γM−λN )N

exp

(
−β(pM + f(t))

2

)
dt

= exp

(
−β(pM − 1)

2

)∫ ∞
2(γM−λN )N

exp

(
− (t+ 1)∆

2

)
dt

=O(exp(−N∆))

(5.7)

In the last equality above, we used the fact (see Lemma 4.2) that pM > T on the event
Eε. Since this integral converges, it suffices to show that

exp
[
− 1

2

∑N
j=1 log

∣∣∣λ1−f(t)N−1+i(Nδ+t)N−1−λj
γM−λj

∣∣∣] is of order O(e−N/2) for t ≥ 2(γM − λN )N .

exp

−1

2

N∑
j=1

log

∣∣∣∣λ1 − f(t)N−1 + i(Nδ + t)N−1 − λj
γM − λj

∣∣∣∣


≤ exp

−1

2

N∑
j=1

log

∣∣∣∣ (Nδ + t)N−1

γM − λj

∣∣∣∣
 ≤ exp

−1

2

N∑
j=1

log

∣∣∣∣2(γM − λN )

γM − λj

∣∣∣∣


≤ exp

[
−N

2
log(2)

]
< e−N/2

(5.8)

Next, we show that the integral is of order O(N−δ/3) on the interval [0, 2(γM − λN )N ].
For t in this interval we have

exp

−1

2

N∑
j=1

log

∣∣∣∣λ1 − f(t)N−1 + i(Nδ + t)N−1 − λj
γM − λj

∣∣∣∣


= exp

−1

2

N∑
j=1

log

∣∣∣∣a1 − aj − f(t)N−1/3 + i(Nδ + t)N−1/3

pMN−1/3 + a1 − aj

∣∣∣∣
 .

(5.9)

To obtain an upper bound for this quantity, we begin with the j = 1 term and observe
that

exp

[
−1

2
log

∣∣∣∣−f(t) + i(Nδ + t)

pM

∣∣∣∣] ≤ exp

[
−1

2
log

∣∣∣∣Nδ

pM

∣∣∣∣] ≤ (pMNδ

)1/2

. (5.10)

For the summation of the j ≥ 2 terms, we get

exp

−1

2

N∑
j=2

log

∣∣∣∣a1 − aj − f(t)N−1/3 + i(Nδ + t)N−1/3

pMN−1/3 + a1 − aj

∣∣∣∣


≤ exp

−1

4

N∑
j=2

log

∣∣∣∣ (a1 − aj − f(t)N−1/3)2 + (Nδ + t)2N−2/3

(pMN−1/3 + a1 − aj)2

∣∣∣∣


≤ exp

−1

4

N∑
j=2

log

∣∣∣∣1 +
−2(f(t) + pM)(a1 − aj)N−1/3 − p2

MN
−2/3 + (Nδ + t)2N−2/3

(pMN−1/3 + a1 − aj)2

∣∣∣∣
 .

(5.11)

Because −p2
MN

−2/3 + (Nδ + t)2N−2/3 > 0, the last line of this inequality is bounded
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above by

exp

−1

4

N∑
j=2

log

∣∣∣∣1− 2(f(t) + pM)(a1 − aj)N−1/3

(pMN−1/3 + a1 − aj)2

∣∣∣∣


≤ exp

−1

4

N∑
j=2

log

∣∣∣∣1− 2(f(t) + pM)N−1/3

a1 − aj

∣∣∣∣


≤ exp

1

4

N∑
j=2

(
2(f(t) + pM)N−1/3

a1 − aj
+

(
2(f(t) + pM)N−1/3

a1 − aj

)2
)

= exp

f(t) + pM
2

N∑
j=2

N−1/3

a1 − aj
+ ((f(t) + pM)N−1/3)2

N∑
j=2

1

(a1 − aj)2

 .

(5.12)

Next, using the properties of the event Eε, we see that the last line above has upper
bound

exp

[
f(t) + pM

2

(
(1 +O(N−

1
3 +ε)) +O(N−

2
3 +∆+ε)

)]
= exp

[
f(t) + pM

2

(
1 +O(N−

1
3 +ε)

)]
. (5.13)

Combining this with the upper bound from the j = 1 term in (5.10), we conclude that

exp

−1

2

N∑
j=1

log

∣∣∣∣λ1 − f(t)N−1 + i(Nδ + t)N−1 − λj
γM − λj

∣∣∣∣


≤
(pM
Nδ

)1/2

exp

[
f(t) + pM

2

(
1 +O(N−

1
3 +ε)

)]
. (5.14)

Finally, plugging this back into the original integral, we get∫ 2(γM−λN )N

0

∣∣∣∣exp

(
N

2
(A(λ1 − f(t)N−1 + i(Nδ + t)N−1)−A(γM))

)∣∣∣∣dt
≤
∫ 2(γM−λN )N

0

exp

(
−β(pM + f(t))

2

)
·
(pM
Nδ

)1/2

exp

[
f(t) + pM

2
(1 +O(N−

1
3 +ε))

]
dt

=
(pM
Nδ

)1/2
∫ 2(γM−λN )N

0

exp

[
−β − 1 +O(N−

1
3 +ε)

2
· (f(t) + pM)

]
dt

(5.15)

Since β > 1, there exists some C ′′ > 0 such that the integral is bounded above by

(pM
Nδ

)1/2
∫ 2(γM−λN )N

0

exp
[
−C ′′((t+ 1)∆ − 1)

]
dt

= O

((pM
Nδ

)1/2
)

= O

((
ε logN

Nδ

)1/2
)

= O(N−δ/3) (5.16)

Lastly, it remains to show that
∣∣exp

(
N
2 (B(λ1 − f(t)N−1 + i(Nδ + t)N−1)−B(γM))

)∣∣ is
bounded and it suffices to show that Re

(
N
2 (B(λ1 − f(t)N−1 + i(Nδ + t)N−1)−B(γM))

)
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is bounded above.

Re

[
N

2
(B(λ1 − f(t)N−1 + i(Nδ + t)N−1)−B(γM)]

)

= Re

N
2
· (H + ξ)2β

N2

N∑
j=1

(
n2
j

λ1 − f(t)N−1 + i(Nδ + t)N−1 − λj
−

n2
j

γM − λj

) (5.17)

We observe that the real part of the j = 1 term in the summation is negative and,

furthermore,
∑N
j=2(− n2

j

γM−λj ) is negative. Removing these terms, we see that the quantity
above has upper bound

Re

 (H + ξ)2β

2N

N∑
j=2

n2
j

λ1 − f(t)N−1 + i(Nδ + t)N−1 − λj


=

(H + ξ)2β

2N

N∑
j=2

n2
j (λ1 − f(t)N−1 − λj)

(λ1 − f(t)N−1 − λj)2 + (Nδ + t)2N−2
.

(5.18)

Now consider two cases. For t < N , the expression in the last line is bounded above by

(H + ξ)2β

2N

N∑
j=2

n2
j

λ1 − f(t)N−1 − λj
=

(H + ξ)2β

2

N∑
j=2

n2
jN
−1/3

a1 − aj − f(t)N−1/3
(5.19)

This will be O(1) because
∑N
j=2

n2
jN
−1/3

a1−aj = 1 + O(N−
1
3 +ε) on the event Eε and, for

sufficiently small ε, we have f(t)N−1/3 < 1
2 (a1 − a2) since f(t)N−1/3 = O(N∆− 1

3 ) where
∆ < 1

3 and a1 − a2 > N−ε/3 on Eε.
In the case where t ≥ N , we instead use the upper bound

(H + ξ)2β

2N

N∑
j=2

n2
j (λ1 − λj)

(Nδ + t)2N−2
≤ (H + ξ)2β

2N

N∑
j=2

4n2
j (5.20)

Since n2
j are i.i.d. chi-squared random variables, this sum is O(1) with overwhelming

probability.

6 Applying this method to the overlap of two replicas

Using a method similar to the proofs in Sections 4 and 5, we can prove Theorem 6.1
for R, the overlap of two replicas (this is a rigorous re-formulation of Result 10.6 from
[2]). The generating function for the overlap with a replica involves a double integral
rather than a single integral, but we can use the same contour as in Sections 4 and 5
for both integrals and then transform to polar coordinates in order to prove the desired
decay properties outside a neighborhood of the critical point. While our method works
to prove this theorem, we do not provide the details here because it also follows from
Theorem 2.14 of [17], as we explain below.

Theorem 6.1. Given T < 1 and h = HN−1/2 for some some fixed H ≥ 0, we have the
following asymptotic formula for the moment generating function of R, the overlap with
a replica. This formula holds on the event Eε (which has probability at least 1−N−ε/10)
for any sufficiently small ε > 0 and ξ = O(1).

〈eξ
R

1−T 〉 =
cosh

(
2
√

1−TH|n1|
T

)
eξ + e−ξ

cosh
(

2
√

1−TH|n1|
T

)
+ 1

+O(N−
1
21 + ε

7 ) (6.1)
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Note that the leading order term on the right hand side is the moment generating
function of a shifted Bernoulli random variable that takes values 1 and−1 with probability
P and 1− P respectively, where

P =
cosh

(
2
√

1−TH|n1|
T

)
cosh

(
2
√

1−TH|n1|
T

)
+ 1

. (6.2)

Thus, for large N , we can conclude that, on the event Eε, the overlap R behaves in its
leading order like a shifted Bernoulli random variable. This conclusion also follows from
Theorem 2.14 of [17], which states that, for sufficiently small ε > 0, there exists ε1 > 0

such that with probability at least 1−N−ε1 and all t > 0,〈
1{|N−1σ(1)·σ(2)∓(1−β−1)|≤t}

〉
=

1

2
± 1

2
tanh2

(√
v2

1θ(β − 1)

)
+NεO

(
t+N−2/3+εt−2 +N−1/3

)
. (6.3)

While their theorem is formulated and proved in a different manner than Theorem 6.1,
their result implies ours.
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