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Abstract

This paper seeks to further explore the distribution of the real roots of random
polynomials with non-centered coefficients. We focus on polynomials where the typical
values of the coefficients have power growth and count the average number of real
zeros. Almost all previous results require coefficients with zero mean, and it is non-
trivial to extend these results to the general case. Our approach is based on a novel
comparison principle that reduces the general situation to the mean-zero setting.
As applications, we obtain new results for the Kac polynomials, hyperbolic random
polynomials, their derivatives, and generalizations of these polynomials. The proof
features new logarithmic integrability estimates for random polynomials (both local
and global) and fairly sharp estimates for the local number of real zeros.
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1 Introduction and statement of results

This paper seeks to further explore the distribution of the real roots of random
algebraic polynomials

pn(z) = a0 + a1z + · · ·+ anz
n, z ∈ C,

where the coefficients a0, . . . , an are independent real-valued random variables with finite
means and finite variances. We are particularly interested in the average number of real
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Random polynomials with coefficients of polynomial growth

roots of such polynomials. This problem has attracted many mathematicians’ attention
since previous centuries, initially out of theoretical curiosity, but has recently found
applications in statistical physics and finance [10, 29, 28, 30]. It was reported in [34] that
during the 18th century Waring considered the distribution of the real roots for random
polynomials of low degrees. It however took quite a while until the first (but rather
crude) estimates for the number of real roots for random polynomials were established,
in a result of Bloch and Polya at the beginning of the 20th century [1]. Various authors
subsequently worked on this problem, leading to significant developments during 1940s-
1970s, with seminal contributions of Kac [17], Littlewood and Offord [19, 20, 21],
Ibragimov and Maslova [12, 14, 15, 13, 22, 23], among others. Recently, there has been
a renewed interest in this problem [6, 16, 11, 2, 9, 31, 32, 5, 8, 27], in particular Tao
and Vu [33] developed a new framework to study the real roots of random polynomials,
adapting their methods from random matrix theory. See also [25, 3, 4, 26] for some
further development of the methods in [33].

Despite the large number of prior studies, only a very few are about random polyno-
mials with non-centered coefficients, namely when the coefficients may have nonzero
means. Furthermore, these studies often require very restrictive assumptions of alge-
braic nature on the relationship between the mean, the variance, and the underlying
index of the coefficients. Ibragimov and Maslova [14, 15] in 1970s considered random
polynomials with iid coefficients of nonzero mean (these are known as Kac polynomials).
They showed that the expected number of real roots for the Kac random polynomials is
essentially reduced to a half if the iid coefficients have a (common) nonzero mean. In [4],
a joint work with Oanh Nguyen and Van Vu, using different methods we strengthened
and generalized this result to random polynomials where the mean and the variance of
the coefficient aj are linearly dependent and furthermore they are algebraic polynomials
of j.

In this paper, we consider an innovative approach that circumvents the needs for
algebraic constraints between the mean and the variance of the coefficients and does not
require any algebraic dependence on the underlying index. In particular, this approach
offers some explanation for the interaction between the mean and the variance of random
polynomials. We focus on generalized Kac polynomials, an important class where the
typical values of the coefficients are comparable to a fixed power of the underlying index.
We will discuss below the technical details of our set up.1

For convenience of notation, we write aj = bj + cjξj where

bj = E[aj ] and |cj | =
√
V ar[aj ].

Note that we do not assume cj ≥ 0 and prefer to leave the setup in this generality for the
convenience of the proof. Let ρ ∈ R. For the typical values of |aj | to be comparable to
(1 + j)ρ, it is natural to assume that E[aj ] = O((1 + j)ρ) and (V ar[aj ])

1/2 is comparable
to (1 + j)ρ, so that there is a significant range of values for |aj | about the size of (1 + j)ρ.
The following condition essentially describes these assumptions. For technical reasons,
below we will need ρ > −1/2.

Condition 1.1. Assume that for some ε0, C0, N0 > 0 and ρ > −1/2 it holds that
(i) E|ξj |2+ε0 ≤ C0 for all 0 ≤ j ≤ n;
(ii) |bj |, |cj | ≤ C0(1 + j)ρ for all j;
(iii) |cj | ≥ 1

C0
(1 + j)ρ for N0 ≤ j ≤ n−N0.

We note that bj and cj may depend on n. Without loss of generality, we may assume
that 0 < ε0 ≤ 1 throughout the paper. The implicit constants in this paper are allowed to

1It may be possible that the current approach will be applicable to some other classes of random functions
(such as those studied in [26]), however this will not be explored in this paper and left for further studies.
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Random polynomials with coefficients of polynomial growth

depend on the implicit constants in Condition 1.1, which include ρ, ε0, C0, N0.
We now mention several examples that satisfy Condition 1.1. Via Stirling’s formula,

it can be seen that the coefficients of hyperbolic random polynomials2

pξ,L,n(z) = ξ0 +
√
Lξ1z + · · ·+

√
L . . . (L+ n− 1)

n!
ξnz

n (1.1)

satisfy the above condition; here L > 0 and ξj ’s are independent with unit variance. In
particular, if L = 1 we recover the Kac random polynomials. In fact, we may generate
other examples satisfying Condition 1.1 by taking finite linear combinations of hyperbolic
polynomials and their derivatives. Now, while our approach works with more general
polynomials, even for the polynomials considered in [4, 14, 15] we are also able to obtain
significantly new results.

1.1 Notational conventions

Throughout the paper, for any function q : R→ C we let Nq denote the number of its
real roots, and let Nq(I) be the number of roots inside I ⊂ R. Note that these numbers
could be∞, but they are never negative.

By A .t1,..., B we mean A = Ot1,...(B), in other words there is a finite constant C
such that |A| ≤ CB and the constant C is allowed to depend on the parameters t1, . . . .
Sometimes we will simply write A . B (without mentioning the parameters t1, . . . ) when
C is an absolute consatnt or if it is clear from the context what C could depend on. When
both A . B and B . A hold we will write A ≈ B, and we use the same convention for
A ≈t1,... B.

The reciprocal polynomial for a polynomial pn of degree n is p∗n(z) := znpn(1/z).

1.2 Statement of results

To study Npn , we write
pn(z) = mn(z) + rn(z)

where mn(z) = Epn(z) is a deterministic polynomial and rn = pn − mn is a random
polynomial with zero mean. Our heuristics is the following idea: locally, between mn

and rn, the dominant component will dictate the behavior of pn and hence will have a
stronger influence on the number of real zeros of pn.

Our main result, Theorem 1.2 is an estimate for the number of real roots of pn inside
an arbitrary interval, demonstrating the following comparison principle:

(i) if mn dominates rn then on average there are very few real roots for pn, as |mn| is
typically bigger than |rn|.

(ii) if mn is dominated by rn then on average the number of real roots of pn is the
same as the number of real roots of rn plus a bounded term.

In the statement of Theorem 1.2, we will be more precise about the meaning of
“dominated” and “dominates”. Here we make some preliminary remarks. First, since
rn is random with zero mean, it makes sense to use the standard deviation (V ar[rn])1/2

as an indicator for the size of rn, and this heuristics is also used for derivatives of rn.
For t ≥ 1, to compare mn and rn it turns out to be more convenient to work with the
reciprocal polynomials m∗n and r∗n.

In the following, we say that J is an enlargement for I = (a, b) if it is obtained by
extending I to the left and to the right a little bit: generally speaking this means there is
an absolute constant c > 0 such that the added length to the right is bounded below by

c(
∣∣∣1− |b|∣∣∣+ 1

n ) and the added length to the left is bounded below by c(
∣∣∣1− |a|∣∣∣+ 1

n ).

2For discussions about the importance of random hyperbolic polynomials in statistical physics, we refer the
reader to the beautiful lecture notes [10].
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There are special cases when the enlargement requirement could be made less
stringent (without affecting our main results below): if |1− |b|| is bounded below by any
positive absolute constant then there is no need to extend I to the right and we may use
b as the right endpoint for J , and similarly if |1− |a|| is bounded below by any positive
absolute constant then we may take a as the left endpoint for J . These improvements
are made possible with the aid of Lemma 2.2.

We note that the above notion of enlargement can also be similarly defined for half
open/half closed/closed/infinite intervals. In all cases, the following will be true: if J is
an enlargement of I then it also qualifies as an enlargement of any subintervals of I.

Theorem 1.2 (Comparison principle). There is a constant 0 < C < ∞ such that the
following holds. Assume that the coefficients of pn satisfy Condition 1.1 and are real
valued. Let I ⊂ R be an interval whose endpoints may depend on n and assume that J is
an enlargement of I.

Let m∗n(t) = tnmn( 1
t ) and r∗n(t) = tnrn( 1

t ) for t 6= 0.
(1) Assume that

• if t ∈ J ∩ [−1, 1] then |mn(t)| > C| log(1− |t|+ 1
n )|1/2

√
V ar[rn(t)],

• if t ∈ J \ [−1, 1] then |m∗n( 1
t )| > C| log(1− 1

|t| + 1
n )|1/2

√
V ar[r∗n( 1

t )].

Then ENpn(I) = O(1).

(2) Let φ : [0, 1]→ [0, 1] such that
∫ c

1/n
φ(t)
t dt = O(1) for some c > 0.

Assume that for each k = 0, 1 we have the uniform estimates:

• if t ∈ J ∩ [−1, 1] then |m(k)
n (t)| . φ(1− |t|+ 1

n )

√
V ar[r

(k)
n (t)],

• if t ∈ J \ [−1, 1] then |(m∗n)
(k)

( 1
t )| . φ(1− 1

|t| + 1
n )
√
V ar[(r∗n)

(k)
( 1
t )],

and for k = 2 the weaker estimates without φ also hold on J ∩ [−1, 1] and J \ [−1, 1].
Then ENpn(I) = ENrn(I) +O(1).

We note that Theorem 1.2 is more useful near ±1, since under Condition 1.1 it can be
shown (using a standard argument of Ibragimov and Maslova) that ENpn(I) = O(1) if I
is bounded away from ±1 (see Lemma 2.2).

In Theorem 1.2, for technical reasons we need to assume that the domination re-
lationship (between mn and rn) is effective on an enlargement J of I, however if pn
is a Gaussian random polynomial then the conclusions hold with J = I and some of
the conditions could be weakened, see Section 12. The proof of the Gaussian case in
Section 12 will also shed more light on the motivation for the assumptions on mn and rn
in the statement of Theorem 1.2. One of the main technical ingredients in our proof is a
new result about universality for the correlation of the roots of pn, see Section 3.

Using Theorem 1.2, we could derive new results about the real roots of non-centered
random polynomials (with coefficients of power growth) from analogous results for
centered random polynomials, which in turn were studied extensively in [4]. Below, we
summarize several sample results that can be obtained in this direction (although this
list is by no means comprehensive).3 The sample results will further demonstrate the
following observation from [4]: we may extract asymptotic estimates for the number of
real roots of a random polynomial from asymptotic information about its coefficients. This
phenomenon was first observed in [4] for random polynomials with centered coefficients
of polynomial growth.

Below, following [4], we define a generalized polynomial of j ∈ Z+ to be a finite linear
combination of hyperbolic coefficients hL(j) := L(L+1)...(L+j−1)

j! , L > 0. Its degree is

3A more thorough discussion about possible applications is included in Section 2, where these sample
results will be derived from Theorem 1.2.
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defined to be Lmax − 1, where Lmax is the biggest L in the combination. If we requires L
to be integer then this notion is the same as the classical notion of polynomials. Note that
(via Stirling’s formula) a generalized polynomial of degree δ is asymptotically comparable
to jδ.

Our first sample result is about random hyperbolic polynomials (1.1).

Theorem 1.3. Let pn be the hyperbolic random polynomial pξ,L,n given by (1.1) where
ξj are independent with a common nonzero mean and variance 1 and uniformly bounded
(2 + ε) moments for some ε > 0.

ThenENpn =
(1 +

√
L) log n

2π
+O(1),

and for any k ≥ 1 we haveEN
p
(k)
n

=
(1 +

√
L+ 2k) log n

2π
+ o(log n).

Theorem 1.3 is a special case of the following more general result.

Theorem 1.4. Assume that the coefficients of pn satisfy Condition 1.1. Assume further-
more that there are ρ1 < ρ− 1/2 < ρ2 such that |bj | & jρ2 +O(1) and

|bj+1 − bj | = O((j + 1)ρ1).

Then for any C > 0 we haveENpn = ENrn(1− 1

C
, 1 +

1

C
) +O(1),

in particular ENpn grows like log n as n → ∞. Furthermore, if for some C we have
cj = (C + o(1))jρ as j →∞ then

ENpn =
1 +
√

2ρ+ 1

2π
log n+ o(log n).

In particular, if c2j is a generalized polynomial of j then

ENpn =
1 +
√

2ρ+ 1

2π
log n+O(1).

Theorem 1.3 may be derived from Theorem 1.4 as follows. Letting ρ = (L− 1)/2, we
note that for the set up of Theorem 1.3 we will have bj = cjµ for some µ 6= 0, and by

Stirling’s formula cj =
√

L(L+1)...(L+j−1)
j! = (CL + o(1))(1 + j)ρ. On the other hand,

|bj+1 − bj | = |µcj ||
√

(L+ j)/(j + 1)− 1| = O((j + 1)−1cj) = O((j + 1)ρ−1).

Using Theorem 1.4, it follows that ENpn = ENrn(1 − 1
C , 1 + 1

C ), and thus using [4] we
obtain the desired conclusions. We may argue similarly to get the desired asymptotics
for EN

p
(k)
n

.
Below is a class of random polynomials where the deterministic component mn is

dominated by the random component rn.

Theorem 1.5. Assume Condition 1.1 and assume that for some ρ′ < ρ − 1/2 we have
|bj | = O((1 + j)ρ

′
). Then there are finite positive constants C1 and C2 such that

C1 log n+O(1) ≤ ENpn ≤ C2 log n+O(1).

Furthermore if for some C we have cj = (C+ o(1))jρ as j →∞ then we could take C1, C2

to be 1+
√

2ρ+1
π + o(1). In particular, if c2j is a generalized polynomial of j then we could

let C1, C2 = 1+
√

2ρ+1
π .

Finally, we mention a simple class of random polynomials where mn dominates rn,
leading to very few real zeros for the random polynomial.
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Theorem 1.6. Assume Condition 1.1. Suppose furthermore that for some ρ′ ∈ (ρ− 1
2 , ρ]

and some ρ′′ < ρ′ the following holds: for odd j we have bj = O((1 + j)ρ
′′
) and for even j

we have bj & (1 + j)ρ
′ −O(1). Then

ENpn = O(1).

Furthermore, the above estimate holds true if we interchange the role of odd and even
j’s in the above assumptions.

1.3 Outline of the paper

In the next section, we discuss the applications of Theorem 1.2 and the proof for
the sample results mentioned above. In the rest of the paper, we prove Theorem 1.2.
Our proof of Theorem 1.2 uses universality estimates for the correlation functions of
the real roots of pn, see Section 3. Using these estimates, we could reduce the proof of
Theorem 1.2 to the Gaussian setting. The Gaussian case of Theorem 1.2 will be examined
using the Kac-Rice formula, see Section 12.

2 Sample applications of the comparison principle

In this section, we discuss several applications of Theorem 1.2 and present the
proofs for Theorem 1.4, Theorem 1.5, and Theorem 1.6. We will use the following basic
computation about power series.

Lemma 2.1. For any α > −1 and β > −1 and any c > 0 and C > 1 the following holds:
(i) If 1

C ≤ t ≤ 1− c
n then

∑n
j=1(n+ 1− j)βjαtj ≈α,β,c,C nβ(1− t)−α−1.

(ii) If |1− t| ≤ c/n then
∑n
j=1(n+ 1− j)βjαtj ≈α,β,c,C nα+β+1.

Proof of Lemma 2.1. Note that if 1−c/n ≤ t ≤ 1+c/n then 1, t, . . . , tn are all comparable
to 1, therefore

∑n
j=1(n + 1− j)βjαtj ≈

∑n
j=1(n + 1− j)βjα ≈ nα+β+1. Here, to see the

last estimate we may split the sum into 1 ≤ j ≤ n/2 and n/2 < j ≤ n, and use the fact
that for the first range n+ 1− j ≈ n and for the second range j ≈ n. This proves part (ii),
and furthermore in part (i) we may assume that 1/C ≤ t ≤ 1− c/n where c is sufficiently
large. We now discuss the proof of part (i) under this assumption.

We consider first the case β = 0. By Taylor’s theorem, we have (1 − t)−α−1 =

1 + (α + 1)t + · · · + (α+1)...(α+n)
n! tn + En(t), where the error term En(t) is nonnegative.

Now, note that (α+ 1) . . . (α+ j)/j! ≈ jα, therefore

n∑
j=1

jαtj . (1− t)−α−1.

For the other direction of the estimate, it suffices to establish that the error term En(t)

is smaller than fraction of (1 − t)−α−1 when c is sufficiently large. Here we use the
Lagrange form of the error term, which says that for some s ∈ (0, t) we have

En(t) = (1− s)−α−n−2 (α+ 1) . . . (α+ n+ 1)

(n+ 1)!
(t− s)n+1

. (1− s)−α−n−2(n+ 1)α(t− s)n+1

= (1− t)−α−1(1− 1− t
1− s

)n+1(
1− t
1− s

)α+1(n+ 1)α

The desired estimate then follows from the fact that (1−v)nvαnα is a decreasing function
for v ∈ [α/n, 1], and

(1− c/n)n(c/n)αnα ≤ e−ccα
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and e−ccα could be made arbitrarily small by choosing c sufficiently large.
We now consider the general situation. We have

n/2∑
j=1

(n+ 1− j)βjαtj ≈ nβ
n/2∑
j=1

jαtj ≈ nβ(1− t)−(α+1).

Thus it remains to show that the remaining summation over n/2 < j ≤ n is O(nβ(1 −
t)−(α+1)) (note that this summation is nonnegative). For these j’s we note that j is
comparable to n. Since β > −1 we may choose 1 < p < ∞ depending on β such that
βp > −1. Let q = p/(p− 1) be its conjugate exponent. Then using Hölder’s inequality we
have

n∑
j=n/2

(n+ 1− j)βjαtj . (

n∑
j=n/2

(n+ 1− j)pβ)1/p(

n∑
j=n/2

jqαtqj)1/q

. nβ+1/p(

n∑
j=n/2

jqαtqj)1/q

≈ nβ(

n∑
j=n/2

jq(α+1)−1tqj)1/q

. nβ((1− t)−q(α+1))1/q = nβ(1− t)−(α+1).

This completes the proof of Lemma 2.1.

Let C > 0 be a sufficiently large constant and let AC = {z ∈ R : ||z| − 1| > 1/C}. In
the applications of Theorem 1.2, we will need the following estimate.

Lemma 2.2. For any C > 0 we have ENpn(AC) = OC(1).

We include a proof of Lemma 2.2 using an argument of Ibragimov–Maslova [13] (see
also [4] where a simpler version of Lemma 2.2 was proved). We’ll need the following
estimate, which will also be used later in the proof of Theorem 1.2.

Lemma 2.3. For any δ0 < 1 there is p0 ∈ (0, 1) such that for any α we have maxj P(|ξj −
α| ≤ δ0) ≤ 1− p0.

Proof of Lemma 2.3. Let δ0 < 1 and let 0 ≤ j ≤ n.
We first consider |α| > 3. Without loss of generality assume α > 3, the case α < −3 is

can be treated similarly. Then

P(|ξj − α| ≤ δ0) ≤ P(ξj ≥ α− δ0)

≤ (α− δ0)−2E|ξj |2 ≤ 1/4.

Thus we may take any p0 ≤ 3/4 for |α| > 3.
We now consider |α| ≤ 3. Then E|ξj − α|2+ε0 = OC0,ε0(1). Therefore,

E|ξj − α|2 ≤ δ2
0P(|ξj − α| ≤ δ0) + E[|ξj |21|ξj−α|>δ0 ]

≤ δ2
0P(|ξj − α| ≤ δ0) + (E|ξj − α|2+ε0)

2
2+ε0

(
P(|ξj − α| > δ0)

) ε0
2+ε0

.

Let x = P(|ξj − α| > δ0) ≥ 0. Since E|ξj − α|2 = 1 + |α|2 ≥ 1, we obtain

0 < 1− δ2
0 ≤ C1x

ε0
2+ε0 − δ2

0x

for some C1 = C1(C0, ε0) where C0 and ε0 are as in Condition 1.1. Thus by examining
the function C1x

ε0/(2+ε0) − δ2
0x of x, it is follows that there is some p0 = p0(δ0, C1, ε0) ∈

(0, 1) such that any x ∈ [0, 1] that satisfies the above inequality must be inside [p0,∞).
Consequently P(|ξj − α| ≤ δ0) ≥ p0, as desired.
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Proof of Lemma 2.2. It suffices to show that for r1 < 1 we have Npn(−r1, r1) = Or1(1)

and Np∗n(−r1, r1) = Or1(1). We will show in detail the first estimate, and comment on the
needed changes for the second estimate.

Take any r2 ∈ (r1, 1). Let δ0, p0 be as in Lemma 2.3. From Condition 1.1, let j0 be
such that cj ≈ (1 + j)ρ for j0 ≤ j ≤ n− j0. Define

Ak := {|ξj +
bj
cj
| ≤ δ0, ∀j0 ≤ j ≤ k − 1} ∩ {|ξk +

bk
ck
| > δ0}

for each j0 ≤ k ≤ n− j0, and define An−j0+1 = {|ξj +
bj
cj
| ≤ δ0,∀j0 ≤ j ≤ n− j0}.

For k = n− j0 + 1 it is clear that we have E[1AkNpn(−r1, r1)] ≤ npn−2j0
0 = O(1).

For j0 ≤ k ≤ n− j0, we have P(Ak) ≤ pk−j00 , thus it suffices to show that

E[1AkNpn(−r1, r1)] . k(log k)P(Ak),

On the event Ak, we have |p(k)
n (0)| = k!|bk + ckξk| & k!|ck| & (k+ 1)ρ, thus using Jensen’s

formula we have

Npn(−r1, r1) ≤ 1 + k +N
p
(k)
n

(−r1, r1) ≤ 1 + k +O
(

sup
|z|=r2

log |p(k)
n (z)|

)
.

Let n0 be an integer larger than max(0, ρ). Using convexity and Jensen’s inequality, we
have

1

P(Ak)
E[1AkNpn(−r1, r1)] . 1 + k + log

(
P(Ak)−1E[ sup

|z|=r2
|p(k)
n (z)|]

)
. 1 + k + log

( n−k∑
i=0

(i+ 1) . . . (i+ k + n0)ri2

)
≤ 1 + k + log(

(k + n0)!

(1− r2)k+1+n0
)

. 1 + k log k.

To estimate ENp∗n(−r1, r1), we proceed similarly, and the following estimate will be
needed:

E sup
|z|=r2

|p∗(k)
n (z)| .r2,ρ (n+ 1− k)ρ((2k + 1)!)1/2(1− r2

2)−(k+1),

where r2 ∈ (r1, 1). To see this estimate, we note that

E sup
|z|=r2

|p∗(k)
n (z)| ≤

∑
i>(n−k)/2

(n+ 1− k − i)ρ(i+ 1) . . . (i+ k)ri2,

then we split the sum into i ≤ (n − k)/2 and i > (n − k)/2 and argue as in the proof
of Lemma 2.1. The treatment of i ≤ (n − k)/2 is entirely similar as before, but for
i > (n− k)/2 we actually need to be more careful (than the proof of Lemma 2.1) about
the dependence on k of the implicit constant. We include the details below. By Cauchy–
Schwartz we have∑

i>(n−k)/2

≤ (
∑

i>(n−k)/2

(n+ 1− k − i)2ρ)1/2(
∑

i>(n−k)/2

(i+ 1)2 . . . (i+ k)2r2i
2 )1/2

. (n+ 1− k)ρ+1/2(
∑

i>(n−k)/2

(i+ 1)2 . . . (i+ k)2r2i
2 )1/2

. (n+ 1− k)ρ(
∑

i>(n−k)/2

(i+ 1) . . . (i+ 2k + 1)r2i
2 )1/2

. (n+ 1− k)ρ((2k + 1)!)1/2(1− r2
2)−(k+1).
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We now divide the discussion of the applications of Theorem 1.2 into three sections,
corresponding to whether mn is always small, or always large, or mixed large/small, in
comparison to rn.

2.0.1 Small mean

Here the mean mn will be completely dominated by rn. We first state a corollary of
Theorem 1.2 in this direction, before proving Theorem 1.5.

Corollary 2.4. Let φ : [0, 1]→ [0, 1] such that
∫ c

1/n
φ(t)
t dt = O(1) for some c > 0. Assume

Condition 1.1 and assume that there is a constant C > 1 such that for 1/C ≤ |t| ≤ 1 and
0 ≤ k ≤ 1 we have

|m(k)
n (t)| . φ(1 +

1

n
− |t|)(1 +

1

n
− |t|)−(ρ+k+ 1

2 ), (2.1)

|m∗(k)
n (t)| . nρφ(1 +

1

n
− |t|)(1 +

1

n
− |t|−(k+ 1

2 ),

and assume that the weaker estimates without φ also hold true for k = 2. Then there are
finite positive constants C1 and C2 such that

C1 log n+O(1) ≤ ENpn ≤ C2 log n+O(1).

Furthermore if for some C we have cj = (C+ o(1))jρ as j →∞ then we could take C1, C2

to be 1+
√

2ρ+1
π + o(1). In particular, if c2j is a generalized polynomial of j then we could

let C1, C2 = 1+
√

2ρ+1
π .

Thanks to [4], the zero-mean case (i.e. bj = 0 for all j) of the above corollary
already holds true. Thus, using Lemma 2.2 and Theorem 1.2, Corollary 2.4 is a simple
consequence of the following estimates√

V ar[r
(k)
n (t)] ≈ (1 +

1

n
− |t|)−(ρ+k+ 1

2 ), (2.2)√
V ar[r∗

(k)
n (t)] ≈ nρ(1 +

1

n
− |t|)−(k+ 1

2 ),

which follows from elementary computations (see Lemma 2.1 for details).
We now prove Theorem 1.5. Since ρ > −1/2, we may assume without loss of generality

that ρ′ > −1. Using Lemma 2.1, for |t| ≤ 1 we then have

|m(k)
n (t)| . (1 +

1

n
− |t|)−(ρ′+k+1), |m∗(k)

n (t)| . nρ
′

(1− |t|+ 1
n )k+1

,

which clearly implies (2.1). Thus Theorem 1.5 follows from Corollary 2.4.

2.0.2 Large mean

Here near ±1 the mean mn will always dominate rn. As before, we state a corollary of
Theorem 1.2 before proving Theorem 1.6.

Corollary 2.5. Let ϕ : (0,∞) → [0,∞) be such that ϕ(t) → ∞ as t → 1/n. Assume
Condition 1.1 and assume that there is a constant C > 1 with the following properties:
for 1− 1

C ≤ |t| ≤ 1 we have

|mn(t)| & ϕ(1 +
1

n
− |t|)(1 +

1

n
− |t|)−(ρ+ 1

2 ), (2.3)

|m∗n(t)| & nρϕ(1 +
1

n
− |t|)(1 +

1

n
− |t|)− 1

2 . (2.4)

Then ENpn = O(1).
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This corollary follows immediately from (2.2) and Theorem 1.2 and Lemma 2.2. We
now apply this corollary with ϕ(t) = t−ε to prove Theorem 1.6. By splitting mn =

mn,odd +mn,even and using Lemma 2.1 to treat each of them individually, we obtain (for
1− 1/C ≤ |t| ≤ 1)

mn(t) ≈ (1 + 1/n− |t|)−(ρ+1+ε), m∗n(t) ≈ (n+ 1)ρ
′

1 + 1/n− |t|
&

nρ

(1 + 1
n − |t|)

ε+ 1
2

where ε = ρ′ + 1/2− ρ > 0. Thus Theorem 1.6 follows from Corollary 2.5.

2.0.3 Mixed case

Here we consider the mixed situation, where mn is dominated by rn on a part of the
real line and dominates rn elsewhere. In our opinion this is the most interesting case.
Here we describe a simple scenario, which applies to random Kac polynomials with
non-centered coefficients (considered in [15]) as well as linear combination of derivatives
of a random Kac polynomial (considered in [4]), and also hyperbolic random polynomials
with non-centered coefficients (Theorem 1.3 of the current paper). In this scenario, mn

is dominated by rn near −1 while being the dominant component near 1. (Note that due
to symmetry we could also state a symmetric version where the roles of 1 and −1 are
interchanged.)

Corollary 2.6. Let ϕ : (0,∞)→ [0,∞) be such that ϕ(t)→∞ as t→ 1/n. Let φ : [0, 1]→
[0, 1] such that

∫ c
1/n

φ(t)
t dt = O(1) for some c > 0. Assume Condition 1.1 and assume that

there is a constant C > 1 with the following properties:
(i) for 1− 1

C ≤ t ≤ 1 we have

|mn(t)| & ϕ(1 +
1

n
− t)(1 +

1

n
− t)−(ρ+ 1

2 ), (2.5)

|m∗n(t)| & nρϕ(1 +
1

n
− t)(1 +

1

n
− t)− 1

2 ,

(ii) for −1 ≤ t ≤ −1 + 1
C and for each k = 0, 1 we have

|m(k)
n (t)| . φ(1 +

1

n
+ t)(1 +

1

n
+ t)−(ρ+k+ 1

2 ), (2.6)

|m∗(k)
n (t)| . nρφ(1 +

1

n
+ t)(1 +

1

n
+ t)−(k+ 1

2 ).

and the weaker estimates without φ also hold true for k = 2. Then

ENpn = ENrn(1− 1/C, 1 + 1/C) +O(1)

and in particular there are constants C1, C2 > 0 such that

C1 log n+O(1) ≤ ENpn ≤ C2 log n+O(1).

Furthermore if for some C we have cj = (C+ o(1))jρ as j →∞ then we could take C1, C2

to be 1+
√

2ρ+1
2π + o(1). In particular, if c2j is a generalized polynomial of j then we could

take C1 = C2 = 1+
√

2ρ+1
2π .

Now, it was shown in [4] that ENrn(1−1/C, 1+1/C) grows like log n, and furthermore

if cj = (C + o(1))jρ then ENrn(1− 1/C, 1 + 1/C) = 1+
√

2ρ+1
2π log n+ o(log n), and the error

term could also be improved to O(1) if c2j is a generalized polynomial of j. Thus,
Corollary 2.6 is an immediate consequence of Theorem 1.2 and (2.2).
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We now discuss the proof of Theorem 1.4. From the given assumption it follows that
bj are of the same sign for j & 1, so without loss of generality we may assume that bj > 0

for j & 1. Now, using bj & jρ2 and ρ2 > ρ− 1/2 one may show that mn(t) dominates rn(t)

near 1. Indeed, by elementary computations (see Lemma 2.1), for t ∈ [1−1/C, 1] we have

mn(t) & (1 +
1

n
− t)−(ρ2+1) & (1 +

1

n
− t)ε

√
V ar[rn(t)],

m∗n(t) & nρ2(1 +
1

n
− t)−1 & (1 +

1

n
− t)ε

√
V ar[r∗n(t)].

We now show that mn is dominated by rn near −1. To see this, let k ≥ 0 and we use
discrete integration by parts to write

(k!)−1m(k)
n (t) = bk(1 + t+ · · ·+ tn−k) +

n∑
j=k+1

((j
k

)
bj −

(
j − 1

k

)
bj−1

)
(tj−k + · · ·+ tn−k)

and uniformly over j1 ≤ j2 we have tj1 + · · · + tj2 = O(1) for −1 ≤ t ≤ −1 + 1
C . On the

other hand, using the given hypothesis we may estimate(
j

k

)
bj −

(
j − 1

k

)
bj−1 =

(
j

k

)
(bj − bj−1) + bj−1

(
j − 1

k − 1

)
= O((j + 1)ρ1+k) +O((j + 1)ρ+k−1).

Without loss of generality we may assume ρ1 > ρ− 1. Since |t|k ∼ 1, we obtain

|m(k)
n (t)| .

∑
j

(j + 1)ρ1+k|t|j . (1− |t|+ 1

n
)−(ρ1+k+1)

. (1 +
1

n
− |t|)ε

√
V ar[r

(k)
n (t)],

where ε = ρ− ρ1 − 1
2 > 0.

Similarly, for m∗n we may estimate, with the assistance of Lemma 2.1,

(k!)−1m∗(k)
n (t) = bn−k(1 + · · ·+ tn−k) +

+

n∑
j=k+1

((j
k

)
bn−j −

(
j − 1

k

)
bn−j+1

)
(tj−k + · · ·+ tn−k)

.
∑
j

(j + 1)k(n− 1 + j)ρ1 |t|j +
∑
j

(j + 1)k−1(n+ 1− j)ρ|t|j

. nρ1(1 +
1

n
− |t|)−k−1 + nρ(1 +

1

n
− |t|)−k

. (1− |t|+ 1

n
)ε
√
V ar[r∗

(k)
n (t)].

Thus Theorem 1.4 follows from Corollary 2.6.

3 Correlation functions: background and main estimates

In this section, we summarize our main results about correlation functions for pn and
p∗n. These estimates are key ingredients in the proof of Theorem 1.2 and the proof for
these estimates will be presented in subsequent sections.

We first recall some background about correlation functions, following [33, 4]. While
there is a more general theory of correlation functions for random point processes, see
for instance [10], our discussion will specialize to the context of the roots of random
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polynomials. Let Z denote the multi-set of the (complex) roots of pn, where a root of
multiplicity m will be identified as m different elements.

For k ≥ 1, we say that a Borel measure dσ on Ck is the k-point correlation measure for
the (complex) roots of pn if the following equality holds for any continuous and compactly
supported function φ : Ck → C:

E
∑

α1,...,αk∈Z
φ(α1, . . . , αk) =

∫
z∈Ck

φ(z)dσ(z).

Here, the summation on the left hand side (inside the expectation) is over all ordered k-
tuples of different elements of Z. The existence of such a measure is a simple application
of the Riesz representation theorem. In the literature, it is common (see e.g. [33]) to
define the k-point correlation function as the density of dσ with respect to the Lebesque
measure (which exists for instance in Gaussian settings [10] or more generally smooth
distributions), here we will work with correlation measures to allow for more generality.

When pn is a real polynomial (i.e. with real-valued coefficients), the set of complex
zeros for pn is symmetric with respect to the real line, and there may be a nontrivial
probability that pn has at least one real root. Thus, for such polynomials we will define
the mixed complex-real correlation measures for the roots as follows. Let m ≥ 1 and
k ≥ 0 and let dσ be a measure on Rm× (C \R)k. We say dσ is the (m, k)-point correlation
measure for Z if the following two conditions hold:

(i) dσ is symmetric under complex conjugations: for any measurable A ⊂ Rm×(C\R)k,
it holds that ρ(A) = ρ(A′) where A′ is one of the k sets obtained from A by taking
conjugate in one fixed coordinate;

(ii) for any compactly supported continuous φ : Rm × Ck → C we have

E
∑

αi∈Z∩R

∑
βj∈Z∩C+

φ(α1, . . . , αm, β1, . . . , βk) =

∫
(w,z)∈Rm×Ck+

φ(w, z)dσ(w, z).

Here, the summations on the left hand side are over ordered tuples of different elements
of Z. If dσ has a density with respect to the Lebesgue measure, such density is classically
called the (m, k)-point correlation function [33], which will then be invariant under
taking complex conjugation of any variable.

We now define the admissible local sets where comparison estimates for the correla-
tion measures will be proved. These are sets where the expected number of complex
roots for pn could be as small as a bounded constant O(1). For random polynomials with
centered-coefficients, the structure of these sets is well-known and has been exploited
by previous authors, here we will use the same structure for random polynomials with
non-centered coefficients, following [4].

Let δ > 0 that may depend on n. Define

I(δ) =

{
{z ∈ C : 1− 2δ ≤ |z| ≤ 1− δ}, δ ≥ 1

10n ;

{z ∈ C : 1− 1
2n ≤ |z| ≤ 1 + 1

2n}, δ < 1
10n ;

(3.1)

Define IR(δ) = I(δ) ∩R and define IC+
(δ) = I(δ) ∩ C+.

Let p∗n(z) := znpn(1/z) be the reciprocal polynomial of pn.
Below, we say that two (possibly complex valued) random variables ξj and ξ̃j have

matching moments to up to second order if

ERe(ξj)
αIm(ξj)

β = ERe(ξ̃j)
αIm(ξ̃j)

β (3.2)

for any 0 ≤ α, β ≤ 2 such that α + β ≤ 2. Note that if one of ξj , ξ̃j is real valued then
this matching condition will force the other to be real-valued. The Gaussian analogue of
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pn(z) =
∑
j(bj +cjξj)z

j if Gj is defined to be pn,G(z) =
∑
j(bj +cjGj)z

j where G0, . . . , Gn
are independent Gaussian and Gj and ξj have matching moments up to the second order.

Our main result about the mixed complex-real (m, k)-point correlation functions for
the roots of pn is stated below, here m ≥ 1 and k ≥ 0. In Theorem 3.1, we consider a
real random polynomials whose coefficients satisfy Condition 1.1, and we let dσ and dσ∗

denote the (m, k)-point correlation measures for the roots of pn and p∗n. The Gaussian
analogues of these two correlation measures will be denoted by dσG and dσ∗G.

In the following, it is understood that all implicit constants may depend on the implicit
constants in Condition 1.1.

Theorem 3.1. Given 0 < c < c̃ < 1, we could find C1, α1 > 0 such that the following holds
for any 1

n . δ ≤ 1
C1

and any (x, z) = (z1, . . . , zm, zm+1, . . . , zm+k) ∈ IR(δ)m × IC+
(δ)k:

Let φδ be supported on BR(0, cδ)m ×BC(0, cδ)k such that as a function on Rm+2k it is
in C3k+2 and furthermore sup |∂αφδ| ≤ δ−|α| up to order |α| ≤ 3k + 2.

Let J ⊂ IR(δ) + (−c̃δ, c̃δ) be such that for any 1 ≤ j ≤ m+ k the following holds4:

• if sign(Re(zj)) ≥ 0 and |Im(zj)| ≤ c̃δ then (|zj | − c̃δ, |zj |+ c̃δ) ⊂ J .

• if sign(Re(zj)) < 0 and |Im(zj)| ≤ c̃δ then (−|zj | − c̃δ,−|zj |+ c̃δ) ⊂ J .

(i) Assume that |m′′n| .
√
V ar[r′′n] uniformly on J , or |mn| > C1| log(1 + 1

n

− |t|)| 12
√
V ar[rn] for all t ∈ J . Then∫

Rm×Ck+
φδ(y − x,w − z)[dσ(y, w)− dσG(y, w)] = O(δα1).

(ii) Assume that |m∗′′n| .
√
V ar[r∗n

′′] uniformly on J , or |m∗n| > C1| log(1 + 1
n −

|t|)| 12
√
V ar[r∗n] for all t ∈ J . Then∫

Rm×Ck+
φδ(y − x,w − z)[dσ∗(y, w)− dσ∗G(y, w)] = O(δα1).

Our proof will use the following result for the k-point complex correlation functions,
where k ≥ 1. In Theorem 3.2, we consider a (possibly complex valued) random polynomial
pn whose coefficients satisfy Condition 1.1. Below we let dσ and dσ∗ denote the k-point
correlation measures for the zeros of pn and p∗n, and let dσG and dσ∗G be their Gaussian
analogues.

Theorem 3.2. Given any 0 < c < 1, we could find constants C1, α1 > 0 such that the
following holds for any 1

n . δ ≤ 1
C1

and any z ∈ I(δ)k:

Let φδ be supported on BC(0, cδ)k such that as a function on R2k it is C3k+2 and
furthermore sup |∂αφδ| ≤ δ−|α| up to order |α| ≤ 3k + 2.

Then ∫
Ck
φδ(w − z)[dσ(w)− dσG(w)] = O(δα1),∫

Ck
φδ(w − z)[dσ∗(y, w)− dσ∗G(y, w)] = O(δα1).

4Note that the interval J = IR(δ) + (−c̃δ, c̃δ) has this property, although in the applications we may work
with much thinner intervals (which is allowed if c̃ is small).
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Our Theorem 3.2 slightly generalizes [4, Theorem 2.3]. Here we point out an example
outside the scope of [4]. Recall that in [4, Theorem 2.3] it is assumed that pn(z) =

c0ξ0 + c1ξ1z + · · ·+ cnξnz
n where ξj are independent with unit variance (but could have

nonzero means). In our setting, with pn(z) = a0 + a1z + · · · + anz
n, if aj is a nonzero

constant with probability 1 (which is allowed to happen for j = O(1) or j ≥ n − O(1)

according to Condition 1.1) then it is not possible to write aj = cjξj where ξj of variance
1.

We will prove Theorem 3.2 using an adaptation of the proof of [4, Theorem 2.3]. We
take this as an opportunity to provide a more streamlined presentation of the argument
in [4], in particular in the proof we will prove new estimates involving log integrability
of random polynomials and bounds on the local number of roots, which could be of
independent interests.

4 Local anti-concentration inequalities

In this section we will prove several anti-concentration inequalities for random
polynomials whose coefficients satisfy Condition 1.1. We will use these estimates later
in the proof of Theorem 3.2. Below, let qn = (n + 1)−ρp∗n be the normalized reciprocal
polynomial for pn. Recall that

I(δ) =

{
{z ∈ C : 1− 2δ ≤ |z| ≤ 1− δ}, if δ ≥ 1

10n ;

{z ∈ C : 1− 1
2n ≤ |z| ≤ 1 + 1

2n}, if δ < 1
10n .

Our first set of estimates is contained the following theorem:

Theorem 4.1. Let 0 ≤ c < 1. Then there are constants C1, α1 > 0 such that the following
holds for any 1

n . δ ≤ 1
C1

and any |z| ∈ I(δ) + (−cδ, cδ) and any t > 0:

sup
u
P(|pn(z)− u| ≤ t) . (tδρ)α1 + e−α1nδ, (4.1)

sup
u
P(|qn(z)− u| ≤ t) . tα1 + e−α1nδ. (4.2)

Now, if δ ≈ 1/n then Theorem 4.1 does not give us much information: the right
hand sides of (4.1) and (4.2) are now comparable to 1, therefore these estimates hold
automatically. In this range of δ, the following set of estimates is more useful. Below, let
log+(x) = max(0, log x).

Theorem 4.2. Let 0 ≤ c < 1. Then there is a constant C1 > 0 such that the following
holds for any 1

n . δ ≤ 1
C1

and any |z| ∈ I(δ) + (−cδ, cδ) and any t > 0:

sup
u
P(|pn(z)− u| ≤ t) . n−1/2 + δ1/2 log

−1/2
+ (

1

tδρ
), (4.3)

sup
u
P(|qn(z)− u| ≤ t) . n−1/2 + δ1/2 log

−1/2
+ (

1

t
). (4.4)

As a corollary of Theorem 4.1 and Theorem 4.2, we obtain

Corollary 4.3. Let 0 ≤ c < 1. Then there is a constant C1 > 0 such that the following
holds for any 1

n . δ ≤ 1
C1

and any |z| ∈ I(δ) + (−cδ, cδ): for any 0 < α2 <
1
2 there is a

constant C2 such that

P(log |pn(z)| ≤ −C2| log δ|) . δα2 .

P(log |qn(z)| ≤ −C2| log δ|) . δα2 .

Proof of Corollary 4.3. Below we only prove the claimed estimate for log |pn|, and the
same argument specialized to the case ρ = 0 can be applied to log |qn|. Using Theorem 4.1
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and Theorem 4.2, for any λ > 0 we have

P(log |pn(z)| ≤ (ρ− λ)| log δ|) . min(δα1λ + e−α1nδ, n−1/2 + λ−1/2(
δ

| log δ|
)1/2).

Thus, for any δ ∈ [α2

α1

logn
n , 1

C1
] we have

P (log |pn(z)| ≤ −(
α2

α1
− ρ)| log δ|) . δα2 + e−α2 logn . δα2 .

On the other hand, for any 1
n . δ ≤ α2

α1

logn
n we have

P (log |pn(z)| ≤ −(
α2

α1
− ρ)| log δ|) . n−1/2 + δ1/2| log δ|−1/2 . δα2 .

4.1 Proof of Theorem 4.1

Recall that pn(z) =
∑
j(bj + cjξj)z

j . Using Condition 1.1, we may find j0 ≥ 0 and
M0 > 0 such that

|cj | ≤M0(1 + j)ρ (4.5)

for all j, while |cj | ≥M−1
0 (1 + j)ρ for j0 ≤ j ≤ n− j0.

We first prove (4.1). Since the left hand side of (4.1) is O(1), we may assume without
loss of generality that δ > B

n for a large absolute constant B. In particular, we will have
1− (2 + c)δ ≤ |z| ≤ 1− (1− c)δ, thus |z|N ≤ (1− (1− c)δ)N .

Now, there is a constant c′ > 0 depending only on c such that (1− (1− c)δ)1/δ < 1− c′
for all δ > 0. Therefore, we may choose j0 ≤ N ≈ 1/δ such that |z|N is very small. In
particular, we may choose such N so that |z|N < 2−(ρ+2)M−2

0 . Now, observe that, thanks
to (4.5),

|ckN/c(k+1)N | ≥ 2−(ρ+1)M−2
0

for any 1 ≤ k ≤ (n− j0)/N . Therefore,

|cNzN | ≥ 2|c2Nz2N | ≥ · · · ≥ 2`−1|c`Nz`N | (4.6)

for any 1 ≤ ` ≤ [n−j0N ] ≈ nδ.
We now recall the following anti-concentration bound:

Claim 4.4. Let ε0, C0 > 0. Then there are constants α2, C2 > 0 such that the following
holds for any ` ≥ 1: If ξ1, . . . , ξ` are independent with zero mean and unit variance
satisfying E|ξj |2+ε0 < C0, then for any lacunary sequence |d1| ≥ 2|d2| ≥ · · · ≥ 2`−1|d`| we
have:

sup
u
P(|

m∑
j=1

djξj − u| ≤ |d`|) ≤ C2e
−α2`.

For a proof of this now-standard bound, see e.g. [33, Lemma 9.2] or [4, Lemma 4.2].
We apply the above anti-concentration bound to dj = cjNz

jN and to the random variables
ξN , . . . , ξ(`−1)N . By absorbing the remaining terms in pn(z) into the concentration point
u, it follows that

sup
u
P(|pn(z)− u| ≤ |c`Nz`N |) = O(e−α2`), (4.7)

for any 1 ≤ ` ≤ `N := [(n − j0)/N ]. To obtain the desired estimate (4.1) from this
inequality, we will choose ` to depend on t, and this choice is explained below.

First, note that |z|1/δ ≥ (1− (2 + c)δ)1/δ, which is uniformly bounded away from 0 and
since N ≈ 1/δ, we may find a constant α3 > 0 such that |zN | ≥ e−α2/2. It follows that

|c`Nz`N | & (`N)ρe−α3`/2 & Nρe−α3` & δ−ρe−α3`
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For convenience, let C3 > 0 be such that |c`Nz`N | ≥ 1
C3
δ−ρe−α3`. We then let ` to be the

integer such that
1

C3
e−α3(`+1) ≤ tδρ < 1

C3
e−α3`.

Now, since the left hand side of (4.1) is O(1) we may assume without loss of generality
that ` ≥ 1. To check that this ` will lead us to (4.1), we divide the consideration into two
cases:

Case 1: 1 ≤ ` ≤ `N .
It follows from the above constraint on ` that e−` = O((tδρ)1/α3). In this range of `

we may use (4.7), and obtain

sup
u
P(|pn(z)− u| ≤ t) ≤ P(|pn(z)| ≤ 1

C3
δ−ρe−α3`)

≤ sup
u
P(|pn(z)− u| ≤ |c`Nz`N |)

. e−α2` = O((tδρ)α2/α3).

Thus by ensuring α1 ≤ α2/α3 we obtain (4.1).
Case 2: ` > `N .
Here (4.7) is not available, however we observe that the LHS of (4.1) is nondecreasing

with respect to t. Therefore, using the case ` = `N of Case 1, we obtain

sup
u
P(|pn(z)− u| ≤ t) ≤ sup

u
P(|pn(z)− u| ≤ |c`N z`NN |) . e−α2`N .

Since `N ≈ nδ, the last estimate can be bounded above by O(e−α1nδ) for some α1 > 0.
This completes the proof of (4.1).

We now discuss the proof of (4.2), which will follow the same argument. For conve-
nience of notation, we let qn(x) = (e0 + d0ξ̃0) + (e1 + d1ξ̃1)x+ · · ·+ (en + dnξ̃n)xn, where
ej = bn−j(n + 1)−ρ, dj = cn−j(n + 1)−ρ and ξ̃j = ξn−j . It is clear that ej . 1 and dj ≈ 1

for j0 ≤ j ≤ n/2, therefore we may apply the special case ρ = 0 of (4.1) to the random
polynomial d0ξ̃0 + · · · + d[n/2]ξ̃[n/2]x

[n/2]. The desired estimate for qn then follows by
absorbing the other terms into the concentration point u.

4.2 Proof of Theorem 4.2

Below we only prove (4.3), and (4.4) can be obtained from (4.3) by arguing as in the
proof of Theorem 4.1 in the last section.

The proof uses the following generalization of a lemma of Erdös (for a proof see [4,
Lemma 4.1]):

Claim 4.5. Let ε0, C0 > 0. Then there is a constant C > 0 such that the following
holds for any m ≥ 1: If ξ1, . . . , ξm are independent and supj E|ξj |2+ε0 < C0 then for any
d1, . . . , dm ∈ C we have

sup
u
P(|d1ξ1 + · · ·+ dmξm − u| ≤ min |dj |/C) ≤ C/

√
m.

Let n− j0 ≥ m ≥ 2j0, where j0 = O(1) is such that |cj | is comparable to (1 + j)ρ for
j0 ≤ j ≤ n− j0 (thanks to Condition 1.1). Applying the above estimate to dj = cjz

j for
m/2 ≤ j ≤ m, it follows that

sup
u
P(|pn(z)− u| ≤ min

m/2≤j≤m
|cjzj |/C) = O(1/

√
m)

Now, we may choose C ≥ 1 be sufficiently large such that δ ≥ 1/(Cn). For any z ∈
I(δ) + (−cδ, cδ), it holds that |z| ≥ 1− 2Cδ, therefore

min
m/2≤j≤m

|cjzj | & mρ(1− 2Cδ)m & mρe−2Cmδ & δ−ρe−3Cmδ.
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Collecting estimates, for C > 0 large enough we will have

sup
u
P(|pn(z)− u| ≤ 1

C
δ−ρe−Cmδ) = O(m−1/2), (4.8)

for any integer m ∈ [2j0, n− j0]. To obtain the desired estimate (4.3) from this inequality,
we will choose m suitably depending on t > 0. We will choose m to be the integer such
that

1

C
e−C(m+1)δ < tδρ ≤ 1

C
e−Cmδ.

Now, since the LHS of (4.3) is O(1), we may assume without loss of generality that
m ≥ 2j0. To show that this choice would give us (4.3), we divide the consideration into
two cases:

Case 1 : 2j0 ≤ m ≤ n − j0. For such m we may use (4.8). We note that, as a
consequence of the above constraint on m, we will have mδ & log+( 1

tδρ ). Consequently,

sup
u
P(|pn(t)− u| ≤ t) . m−1/2 . δ1/2 log

−1/2
+ (

1

tδρ
).

Case 2 : m ≥ n− j0 + 1. Here we will use monotonicity of the left hand side of (4.3)
(as a function of t). Since we now have t < 1

C δ
−ρe−C(n−j0)δ, it follows that

sup
u
P(|pn(z)− u| ≤ t) ≤ sup

u
P(|pn(z)− u| ≤ 1

C
δ−ρe−C(n−j0)δ) . n−1/2.

This completes our proof of Theorem 4.2.

5 Logarithmic integrability of random polynomials

This section is devoted to establishing several estimates about the integrability of
log |pn| and log |p∗n|, which will be used to prove bounds for the number of local real roots
of pn in subsequent sections. Throughout this section, we’ll assume that the coefficients
of pn satisfy Condition 1.1. For convenience, let qn := (n+ 1)−ρp∗n.

5.1 Logarithmic integrability on the unit disk

We start with an estimate about integrability on the unit disk B(0, 1) = {|z| ≤ 1}. We
view this as a global estimate.

Theorem 5.1. There are absolute constants C, c > 0 and an event F of exponentially
decaying probability P(F ) = O(e−cn) such that the following holds:

E[1F c

∫
B(0,1)

| log |pn(w)||qdw] ≤ (Cq)Cq(log(n+ 2))Cq (5.1)

for all q ≥ 1, and the analogous estimate also holds for qn.

We note that the exclusion of an exceptional set of exponentially decaying probability
is important. To see this, suppose that bj = 0 for all j, then pn(x) ≡ 0 on the event
F = {ξj = 0 ∀j}, which has an exponentially decaying probability P(F ) = O(pn) if for
some fixed p ∈ (0, 1) we have P(ξj = 0) ≥ p for all j. Such event must be excluded to
ensure any integrability for | log |pn|| on B(0, 1).

Without loss of generality we may assume that n ≥ 3 in the proof. Given such a
condition, the right hand side of (5.1) is a strictly increasing function of the implicit
constant C, which will be convenient in the proof.

To start, we note that the estimate (5.1) follows from a slightly weaker estimate:
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Proposition 5.2. There is an event F of exponentially decaying probability P(F ) =

O(e−cn) (for some fixed c > 0) such that the following holds: for any ε > 0, there is a
constant C = C(ε) such that

E[1F c

∫
B(0,1)

| log |pn(w)||qdw] ≤ (Cq)CqnC(log(n+ 2))(1+ε)q (5.2)

for all q ≥ 1, and the analogous estimate also holds for qn.

Indeed, the key observation here is that the the implicit constant C does not depend
on q. If (5.2) holds, using Holder’s inequality we have, for any p ≥ 1:

E[1F c

∫
B(0,1)

| log |pn(w)||qdw] ≤
(
E
[
1F c
(∫

B(0,1)

| log |pn(w)||qdw
)p])1/p

≤ π1− 1
p

(
E[1F c

∫
B(0,1)

| log |pn(w)||pqdw]
)1/p

≤ π1− 1
p

(
(Cpq)CpqnC(log n)(1+ε)pq

)1/p

= π1− 1
p (Cpq)CqnC/p(log n)(1+ε)q

The desired conclusion (5.1) then follows by choosing p = log n.

The main ingredient in the proof of Proposition 5.2 is a result of Nazarov-Nishry-Sodin
[24, Corollary 1.2] for random Fourier series, summarized below:

Proposition 5.3. [24] There is an absolute constant C > 0 such that the following
holds: Let rε(z) =

∑
j εjdjz

j where dj are deterministic with
∑
j |dj |2 = 1 and εj are

independent Rademacher random variables. Then for any p > 0

E[

∫ 2π

0

∫ 1

0

| log |rε(reiθ)||pdrdθ] ≤ (Cp)6p.

Our proof will actually use the following simple extension of Proposition 5.3.

Lemma 5.4. There is an absolute constant C > 0 such that the following holds for any
m : B(0, 1)→ C measurable with M :=

∫ 2π

0

∫ 1

0
|m(reiθ)|2drdθ <∞: Let rε(z) =

∑
j εjdjz

j

where dj are deterministic with
∑
j |dj |2 = 1 and εj are independent Rademacher random

variables. Then for any p > 0 we have

E

∫ 2π

0

∫ 1

0

| log |m(reiθ) + rε(re
iθ)||pdrdθ . (Cp)7p(M + 1).

In Lemma 5.4, we could in fact replace the constant 7 by any constant bigger than 6

(for our applications any absolute constant would suffice).

5.1.1 Proof of Lemma 5.4

To prove Lemma 5.4, we will use the following crude estimate. For convenience of
notation, let f(z) = m(z) + rε(z) and let |.| denote the Lebesgue measure of measurable
subsets of [0, 1]× [0, 2π].

Claim 5.5. There is an absolute constant C > 0 such that for any p > 0 and λ ≥ 0 we
have

E|{(r, θ) : log |f(reiθ)| > λ}| . (1 + λ)−p(Cp)p(M + 1).
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Indeed, E|{(r, θ) : log |m(reiθ) + rε(re
iθ)| > λ}|

. e−2λ
(
E

∫ ∫
|m(reiθ)|2drdθ + E

∫ ∫
|rε(reiθ)|2drdθ

)
. e−2λ(M +

∫ ∫ ∑
j

|dj(reiθ)j |2drdθ)

. e−2λ(M + 1).

Now, let h ≥ 1 be integer such that h− 1 < p ≤ h, we then have

e2λ ≥ (1 + 2λ)h/h! > (1 + λ)hh−(h−1)

≥ (1 + λ)p(p+ 1)−p & (1 + λ)pp−p.

This competes the proof of Claim 5.5.

In the proof of Lemma 5.4, we will use another estimate, which in turn is a conse-
quence of Proposition 5.3.

Claim 5.6. There is an absolute constant C such that for any p > 0 and λ ≥ 0 we have

E|{(r, θ) : log |f(reiθ)| < −λ}| . (1 + λ)−p(Cp)6p.

Since the left hand side of the above estimate is always bounded above by 2π and
since pp ≥ e−1/e for any p > 0, we may assume λ > 1 without any loss of generality. For
such λ, it suffices to show that

E|{(r, θ) : log |f(reiθ)| < −λ}| . (λ− 1

2
ln 2)−p(Cp)6p.

Let ε′j be iid copies of εj , such that ε′0, . . . , ε
′
n, ε0, . . . , εn are independent Rademacher

random variables. Let ηj = (εj−ε′j)/
√

2, which are also independent Rademacher random
variables. We have(

P(log |f(reiθ)| < −λ)
)2

= P(|m(reiθ) + rε(re
iθ)| < e−λ, |m(reiθ) + rε′(re

iθ)| < e−λ)

≤ P(|rε(reiθ)− rε′(reiθ)| < 2e−λ)

≤ (λ− 1

2
ln 2)−2pE| log |rη(reiθ)||2p. (5.3)

Thus, E|{(r, θ) : | log |f(reiθ)| < −λ}|

=

∫ 2π

0

∫ 1

0

P(log |f(reiθ)| < −λ)drdθ (by Fubini’s theorem)

.
(∫ 2π

0

∫ 1

0

(
P(log |f(reiθ)| < −λ)

)2

drdθ
)1/2

(by Hölder’s inequality)

. (λ− 1

2
ln 2)−p

(∫ 2π

0

∫ 1

0

E| log |rη(reiθ)||2pdrdθ
)1/2

(by (5.3))

. (λ− 1

2
ln 2)−p(Cp)6p (using Proposition 5.3 with 2p and choosing a large C).

This completes the proof of Claim 5.6.

EJP 26 (2021), paper 144.
Page 19/45

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP719
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Random polynomials with coefficients of polynomial growth

We are now ready to start the proof of Lemma 5.4. We combine Claim 5.6 and
Claim 5.5 and estimate

E

∫ 2π

0

∫ 1

0

| log |f(reiθ)||pdrdθ

= p

∫ ∞
0

λp−1E|{(r, θ) : | log |f(reiθ)|| > λ}|dλ

. (M + 1)p

∫ ∞
0

λp−1(1 + λ)−7p/6(Cp)7pdλ

. (Cp)7p(M + 1)

∫ ∞
0

p(1 + λ)−(1+p/6)dλ

. (Cp)7p(M + 1).

This completes the proof of Lemma 5.4.

5.1.2 Proof of Proposition 5.2

We now start the proof of (5.2) for log |pn|. For convenience of notation, we denote
pn,ξ(w) =

∑
j(bj + cjξj)w

j to keep track of the dependence of pn on the vector of
coefficients ξ = (ξ0, . . . , ξn). Let

Fξ = {σ(ξ) < n−1}, where σ(ξ) = (
∑
j

|cjξj |2)1/2.

We first show that P(F ) = O(e−cn) for some c > 0. Since ξj are independent and
|cj | ≈ jρ & n−1/2 for n−O(1) ≥ j ≥ O(1), it suffices to show that that there are constants
δ0 > 0 and p0 > 0 such that P(|ξj | < δ0) ≤ 1− p0 for all j. This was proved in Lemma 2.3.

We now divide the remaining of the proof into two cases: the simpler case when ξj
are symmetric for each j, and the general case where no symmetry is assumed.
Case 1: Symmetric coefficients.

Assume that for each j the distributions of ξj and −ξj are the same.
Let ε0, . . . , εn be independent Rademacher random variables that are independent

from ξ0, . . . , ξn, and let ξ̃j = εjξj . Thanks to symmetry, pξ,n has the same distribution as

pξ̃,n. Note that σ(ξ) = σ(ξ̃), therefore Fξ̃ = Fξ and is independent of εj . Thus it suffices
to show that, for any C > 0 large enough,

Eξ,ε[1F cξ

∫
B(0,1

| log |pn,ξ̃(w)||qdw] . (Cq)CqnC(log n)q.

Note that on the event F cξ we have σ(ξ) ≥ n−1, which implies | log σ(ξ)| < log(n2σ(ξ)).
Conditioning on this event and using Lemma 5.4, we obtain

Eε[

∫
B(0,1)

| log |pn,ξ̃||
q] = Eε[

∫
B(0,1)

| log |mn(w) +
∑
j

cjξjεjw
j ||qdw]

. 2qEε

[
| log σ(ξ)|q +

∫
B(0,1)

| log |mn(w)

σ(ξ)
+
∑
j

cjξj
σ(ξ)

εjw
j ||qdw

]
.

[
2q logq(n2σ(ξ)) + (Cp)7p(M + 1)

]
where M =

∫ 2π

0

∫ 1

0

|mn(reiθ)

σ(ξ)
|2drdθ . n2 sup

w∈B(0,1)

|mn(w)|2 . nC ,

here C depends on ρ. Thus, it remains to show that

Eξ[logq(n2σ(ξ))] ≤ (Cq)qnC logq(n+ 1)

EJP 26 (2021), paper 144.
Page 20/45

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP719
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Random polynomials with coefficients of polynomial growth

for some C > 0 (independent of q). This estimate in turn follows from concavity of logq(x)

on (eq,∞) and Jensen’s inequality:

Eξ[logq(eq + n2σ(ξ))] ≤ logq(E[eq + n2σ(ξ)])

. logq(eq + nC) . (Cq)q(log n)q.

Case 2: General coefficients.
We now drop the assumption that the distribution of ξj ’s are symmetric. To show

(5.1), it suffices to show that, for C = C(ε) > 0 large enough,∫
B(0,1)

P(F cξ ∩ {` ≤ | log |pn,ξ(w)|| ≤ `+ 1})dw (5.4)

. (1 + `)−q(Cq)CqnC(log n)(1+ε)q

for any ` ≥ 0 and any q ≥ 1. Since the left hand side of (5.4) is O(1), this estimate
holds trivially for ` = O(1). Thus, we will assume below that ` ≥ 1, in particular we may
replace (1 + `)−q by `−q on the right hand side without any loss of generality.

Now, let c′ = c/(2q). We divide the proof of (5.4) into two parts, depending on whether
` ≤ ec′n or ` ≥ ec′n.

Smaller `’s: For ` ≤ ec′n, we have `−q ≥ e−cn/2, thus it suffices to show that∫
B(0,1)

P(| log |pn,ξ(w)|| ≥ `)dw . e−cn/2 + `−q(Cq)CqnC(log n)q. (5.5)

Now, {| log |pn,ξ(w)|| ≥ `)} = {log |pn,ξ(w)| ≥ `)} ∪ {log |pn,ξ(w)| ≤ −`)}, and∫
B(0,1)

P(log |pn,ξ(w)| ≥ `)dw . e−2`

∫
B(0,1)

E|pn,ξ(w)|2dw

. e−2`nC . `−q(Cq)qnC .

Thus, it remains to show that
∫
P(log |pn,ξ(w)| ≤ −`) is bounded by the right hand side of

(5.5).
Let ξ̃j be iid copy of ξj that are independent of each other and of other ξj ’s. Let

ηj = 1√
2
(ξj − ξ̃j), then ηj is symmetric with mean zero and variance 1. We also have

E|ηj |2+ε0 = O(C0) uniform over j, thanks to Condition 1.1. One could easily show that
P(Fη) = O(e−cn) (with the same c as in the estimate for P(Fξ), although this it not
important – we could refine the constant c for Fξ so that these two exceptional sets share
the same constant from the beginning of the proof).

Now, using Hölder’s inequality, we obtain∫
B(0,1)

P(log |pn,ξ(w)| ≤ −`)dw

. (

∫
B(0,1)

P(log |pn,ξ(w)|, log |pn,ξ̃(z)| ≤ −`)dw)1/2

. (

∫
B(0,1)

P(log |pn,η(w)| ≤ −`+
1

2
ln 2)dw)1/2

. e−cn/2 + (

∫
B(0,1)

P(F cη ∩ {log |pn,η(w)| ≤ −`+
1

2
ln 2})dw)1/2

. e−cn/2 + (`− 1

2
ln 2)−q

(
E[1F cη

∫
B(0,1)

| log |pn,η(w)|2qdw]
)1/2

.

Let C be sufficiently large, then using the known estimates for the symmetric case,
which applies to pη,n and 2q, we may generously estimate the last display by

. e−cn/2 + (`/2)−q(2Cq)CqnC/2(log n)q.
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This completes the proof of (5.4) for this range of `.

Larger j’s: For ` ≥ ec
′n, we proceed as follows. Let ε0, . . . , εn be independent

Rademacher random variables that are independent from ξj ’s. Let ξ̃j = εjξj and consider
the symmetrized variant of pn,ξ, namely

pn,ξ̃(z) :=
∑
j

(bj + cjεjξj)z
j

Using Hölder’s inequality, for any p, q ≥ 1 we have∫
B(0,1)

P(F cξ ∩ {` ≤ | log |pn,ξ(w)|| ≤ `+ 1})dw

. `−(1+ε)q
(
Eξ[1F cξ

∫
B(0,1)

| log |pn,ξ(w)||(1+ε)pqdw]
)1/p

≤ `−(1+ε)q2(n+1)/p(EξEε[1F cξ

∫
B(0,1)

| log |pξ̃,n(w)||(1+ε)pqdw])1/p

Here, in the last estimate we used the fact that pn,ξ is equal to pn,ξ̃ with probability

2−(n+1). Observe that Fξ = Fξ̃. Thus, using the (known) estimate for the symmetric case,
we can further estimate the last display by

. `−(1+ε)q2n/p
(

(Cpq)CpqnC(log n)(1+ε)pq
)1/p

= `−(1+ε)q2n/p(Cpq)CqnC/p(log n)(1+ε)q.

Since `εq ≥ ec
′nqε = ecnε/2, it follows that by taking p ≥ max(1, (cε)−1 ln 4) we have

`−εq2n/p ≤ 1 and we obtain the desired estimate.

This completes the proof of the desired estimate (5.2) for log |pn| of Proposition 5.2.

We now discuss the proof for the analogous estimate for log |qn|. For convenience
of notation, let p∗n(x) =

∑
j(b
∗j + c∗j ξ̃j)x

j where b∗j = bn−j , c∗j = cn−j , and ξ̃j = ξn−j . In

particular, m∗n(x) =
∑
j b
∗
jx
j . We similarly let

F ∗ξ = {(n+ 1)−ρσ∗(ξ) < n−1}

where σ∗(ξ) = (
∑
j |c∗j ξ̃j |2)1/2. Using Condition 1.1, we have |c∗j | ≈ (n + 1)ρ for O(1) ≤

j ≤ n/2, therefore by the same argument as before we obtain P(F ∗ξ ) = O(e−cn) for some
c > 0. Now, the proof of the symmetric case is entirely the same as before once we verify
that on F ∗ξ it holds that ∫ 2π

0

∫ 1

0

|m
∗
n(reiθ)

σ∗(ξ)
|2drdθ = O(nC).

But this is clear using Condition 1.1. Finally, the proof of the general case follows from
the symmetric case as long as we could verify that

∫
B(0,1)

E|qn(w)|2 = O(nC), which
again is clear from Condition 1.1.

5.2 Logarithmic integrability on local sets

In this section we will prove a probabilistic upper bound regarding the local inte-
grability of log |pn| and log |qn| where qn = (n+ 1)−ρp∗n. This is an estimate on a ball of
radius comparable to the scale δ with center near I(δ). All implicit constants below may
depend on the implicit constants in Condition 1.1.
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Theorem 5.7. Let 0 ≤ c, c′ < 1 be such that c + c′ < 1 and let C1 > 0 be big enough
depending on c, c′. Then for any α0 ∈ (0, 1/2) and 1

n . δ ≤ 1
C1

and z ∈ I(δ) + (−cδ, cδ)
there is an event F with probability O(δα0) such that the following estimate holds
uniformly over 1 ≤ p <∞:

1F c

∫
B(z,c′δ)

| log |pn(w)||pdw ≤ (Cp)pδ2| log δ|2p,

and the analogous estimate also holds if we replace pn by qn = (n+ 1)−ρp∗n.

As a consequence Theorem 5.7, we obtain

E[1F c

∫
B(z,c′δ)

| log |pn(w)||pdw] ≤ (Cp)pδ2| log δ|2p,

(and the analogous estimate for qn), which is reminiscent of Theorem 5.1.
Using Lemma 2.1, we have the following probabilistic estimates for log |pn|:

Lemma 5.8. Let 0 ≤ c < 1. For 1
n . δ < 1

5 it holds for any ε > 0 and s ∈ R that

P( sup
|w|∈I(δ)+(−cδ,cδ)

log |pn(w)| > s) .ε e−2sδ−2(ρ+1+ε),

P( sup
|w|∈I(δ)+(−cδ,cδ)

log |qn(w)| > s) .ε e−2sδ−2(1+ε).

Proof of Lemma 5.8. Recall that pn(w) = a0 + a1w+ · · ·+ anw
n and E|aj |2 = O((1 + j)2ρ)

thanks to Condition 1.1. Using Lemma 2.1 and Cauchy-Schwartz, for any ε > 0 and
w ∈ I(δ) + (−cδ, cδ) we have

|pn(w)| . (

n∑
j=0

(1 + j)2ρ+1+2ε|w|2j)1/2(

n∑
j=0

(1 + j)−2ρ−1−2ε|aj |2)1/2

. δ−(ρ+1+ε)(

n∑
j=0

(1 + j)−2ρ−1−2ε|aj |2)1/2.

Since E(
∑n
j=0(1 + j)−2ρ−1−2ε|aj |2) = O(

∑
j≥0(1 + j)−1−2ε) = O(1), we obtain

E[ sup
|z|∈I(δ)+(−δ/2,δ/2)

|pn(z)|2] . δ−2(ρ+1+ε).

The desired probabilistic estimate for log |pn| then follows immediately.
Now, the proof of the claimed probabilistic estimate for log |qn| is similar. For conve-

nience of notation, let Mε = (
∑n
j=0(n + 1 − j)−2ρ(1 + j)−1−2ε|an−j |2)1/2. Using Cauchy

Schwarz and Lemma 2.1 we have, for ε > 0 and w ∈ I(δ) + (−cδ, cδ):

|qn(w)| . (n+ 1)−ρ
( n∑
j=0

(n+ 1− j)2ρ(1 + j)1+2ε|w|2j
)1/2

Mε

. δ−(1+ε)Mε.

Again, E[M2
ε ] .

∑n
j=0(1 + j)−1−2ε = O(1), and the desired estimate follows immediately.

5.2.1 Proof of Theorem 5.7

We will only show the proof for the claimed estimate for log |pn|, and the same argument
works for log |qn|. Fix z ∈ I(δ) + (−cδ, cδ). Let C1 > 0 be big enough so that Corollary 4.3
holds.
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Thanks Corollary 4.3, we may assume that

log |pn(z)| ≥ −C2| log δ| (5.6)

for some C2 > 0 large. Let c′′ ∈ (c′, 1 − c). Then for w ∈ B(z, c′′δ) we have |w| ∈
I(δ) + (−(c+ c′′)δ, (c+ c′′)δ), so thanks to Lemma 5.8, it holds with probability 1−O(δα0)

that

sup
w∈B(z,c′′δ)

log |pn(w)| ≤ C3| log δ| (5.7)

for C3 > 0 large.
Below, we will condition on the event where (5.6) and (5.7) hold, on which we will

show that

(δ−2

∫
B(z,c′δ)

| log |pn(w)||pdw)1/p . p| log δ|2.

Now, the integrand | log |pn|| will blowup near the zeros of pn, however only logarith-
mically. The above assumptions on log |pn| will ensure that there are not many such zeros
near z, and the main part of the argument is to control the zero-free part of pn using
properties of subharmonic functions.

More specifically, let ` := Npn(B(z, c′′δ)) be the number of zeros of pn in B(z, c′δ). As
a consequence of Jensen’s formula, we have

` .c′,c′′ ( sup
w∈B(z,c′′δ)

log |pn(w)| − log |pn(z)|) . | log δ|,

Now, let u1, . . . , u` be the zeros of pn in B(z, c′δ). LetQn(w) = pn(w)/((w−u1) . . . (w−u`)),
this is a (random) polynomial having no zeros inside B(z, c′δ), we view Qn as the zero-free
part of pn. It follows that, for any p ≥ 1,

(δ−2

∫
B(z,c′δ)

| log |pn(w)||p)1/p

≤ (δ−2

∫
B(z,c′δ)

| log |Qn(w)||p)1/p +
∑̀
i=1

(δ−2

∫
B(z,c′δ)

| log |w − ui||p)1/p

. (δ−2

∫
B(z,c′δ)

| log |Qn(w)||p)1/p + `p| log δ|.

Since ` = O(| log δ|), it remains to bound the integral involving Qn. In fact, we will
show that | log |Qn(w)|| = O(| log δ|2) uniformly on B(z, c′δ), which is a stronger estimate.
To see this, we first show that log |Qn| satisfies inequalities similar to (5.6) and (5.7).
Indeed, note that log |Qn(w)| : B(0, c′′δ)→ R ∪ {−∞} is a subharmonic function, and by
the maximum principle it achieves its maximum on the boundary. It follows that

sup
w∈B(z,c′′δ)

log |Qn(w)| ≤ sup
w: |w−z|=c′′δ

log |Qn(w)|

≤ sup
w: |w−z|=c′′δ

log |pn(w)|+ sup
w: |w−z|=c′′δ

∑̀
i=1

log
1

|w − ui|

. | log δ|+ `| log(δ)| . | log δ|2.

On the other hand, since |z − ui| ≤ c′δ ≤ 1 for all i = 1, . . . , `, we also have

log |Qn(z)| = log |pn(z)|+
∑̀
i=1

log
1

|z − ui|
≥ log |pn(z)| ≥ −C2| log δ|.
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Thus we have verified that Qn satisfies inequalities similar to (5.6) and (5.7). Now, let
h(w) := C| log δ|2 − log |Qn(w)| for a big constant C such that h is nonnegative (and
harmonic) on B(z, c′′δ). Note that

0 ≤ h(z) ≤ C| log δ|2 + C2| log δ| = O(| log δ|2).

Using Harnack’s inequality, for any w ∈ B(z, c′δ) we have

0 ≤ h(w) ≤ c′′δ + c′δ

c′′δ − c′δ
h(z) = O(h(z)) = O(| log δ|2).

It follows that | log |Qn(w)|| ≤ O(| log δ|2) + |h(w)| = O(| log δ|2) for any w ∈ B(z, c′δ), as
desired.

6 Counting local real roots

In this section, we will use the log integrability estimates and the anti concentration
estimates from previous sections to establish several estimates for the local number of
real roots for pn.

For each U ⊂ C and any function f analytic on a neighborhood of U , let Nf (U) denote
the number of roots of f inside U .

In this section, we assume that the coefficients of pn satisfy Condition 1.1, and all
implicit constants may depend on the implicit constants in Condition 1.1.

Theorem 6.1. Let 0 ≤ c, c′ < 1 be such that c + c′ < 1. Then there are constants
C1, C2, C3 > 0 such that the following holds: for any 1

n . δ ≤ 1
C1

and any |z| ∈ I(δ) +

(−cδ, cδ) and any M > 0 and any event E we have

E[1ENpn(B(z, c′δ))k] .k,M δM + | log δ|C2kP(E). (6.1)

The analogous estimate also holds for Nqn = Np∗n . Furthermore, for δ ≥ C3 log n/n we
could take C2 = 1.

It follows from Theorem 6.1 that the number of roots of pn and p∗n on IR(δ) are at
most logarithmic away from O(1). We state a useful corollary, when Ec = ∅.
Corollary 6.2. Let 0 ≤ c, c′ < 1 be such that c + c′ < 1. Then there are constant s
C1, C2, C3 > 0 such that for any 1

n . δ ≤ 1
C1

and any |z| ∈ I(δ) + (−cδ, cδ) we have

E[Npn(B(z, c′δ))k] .k | log δ|C2k. (6.2)

Furthermore, for δ ≥ C3 log n/n we could take C2 = 1.

We will divide the proof of Theorem 6.1 into two cases, depending on whether δ is
small or large. More specifically, we will consider first δ ≥ C3 log n/n for some sufficiently
large constant C3, this is the large scale setting. Then we will consider the case when
1
n . δ . log n/n and refer to this as the small scale setting.

6.1 Larger scales

We will use the following sublevel set estimate.

Lemma 6.3. Let 0 ≤ c, c′ < 1 be such that c+ c′ < 1. Let C > 0 be sufficiently large. Let
δ ∈ [C logn

n , 1
C ] and assume that |z| ∈ I(δ) + (−cδ, cδ). Then uniformly over λ > C| log δ|

we have

P(Npn(B(z, c′δ)) > λ) . e−λ/C + e−nδ/C ,

P(Nqn(B(z, c′δ)) > λ) . e−λ/C + e−nδ/C .
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Let C3 be large compared to the constant C from Lemma 6.3. Using Lemma 6.3,
we will prove (6.1) for δ > C3 log n/n. We will only show the details for Npn , the
same argument could be applied to Nqn . Now, for brevity let N = Npn(B(z, c′δ)) and
F = {N ≥ C3| log δ|}. Since N ≤ n trivially, we obtain

E(Nk1F ) = k

∫
t>0

tkP(N1F > t)
dt

t

.
∫
t.| log δ|

tkP(F )
dt

t
+

∫
| log δ|.t.n

tk[e−nδ/C + e−t/C ]
dt

t

. | log δ|kP(F ) + nke−nδ/C +

∫
t&| log δ|

tk−1e−t/Cdt

. | log δ|k(δC3/C + n−C3/C) + nk−C3/C + δC3/(4C) .M δM

if C3 is sufficiently larger than CM . It follows that

E(Nk1E) . | log δ|kP(E) + E(Nk1F )

. | log δ|kP(E) + δM , as desired.

6.1.1 Proof of Lemma 6.3

Let c′′ ∈ (c′, 1− c). Using Jensen’s formula, we have

Npn(B(z, c′δ)) ≤ sup
w∈B(z,c′′δ)

log |pn(w)| − log |pn(z)|

thereforeP(Npn(B(z, c′δ)) > λ) ≤

≤ P( sup
w∈B(z,c′′δ)

log |pn(w)| > λ/2) + P(|pn(z)| ≤ e−λ/2). (6.3)

For the first term on the right hand side of (6.3), we apply Lemma 5.8 with s = λ/2

and note that e2s is a lot larger than any given power of (1/δ).

For the second term on the right hand side of (6.3), we use Theorem 4.1 with t = e−λ/2

and use the assumption that λ ≥ C log(1/δ) (where C is very large) to get the desired
estimate.

The proof for Nqn is entirely similar.

6.2 Smaller scales

We now consider the smaller (and more critical) range 1
n . δ . logn

n . Here we will
use Theorem 5.1 (from Section 5) about the log integrability of pn and qn, which shows
that there is an event F with probability P(F ) = O(e−cn) such that for any q ≥ 1 we have

E[1F c

∫
B(0,1)

| log |pn(w)||qdw] . (Cq)Cq(log n)Cq, (6.4)

where C is sufficiently large, and the analogous estimate also holds for log |qn|. We will
use these estimates to show the desired estimates for log |pn| in this range of δ, and the
argument for log |qn| is entirely similar.

To start, note that E[Npn(B(z, c′δ))k1E∩F ] . nkP(F ) = O(nke−cn)

which is OM (δM ) for any M > 0. Thus, we may assume without loss of generality that
E ⊂ F c. For convenience, denote U = B(z, c′δ) and Ω := B(z, c′′δ) where c′′ ∈ (c′, 1− c).
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Let φ be a smooth function such that 1B(0,c′) ≤ φ ≤ 1B(0,c′′) and let φδ(.) = φ(./δ) denote
the L∞-preserving dilation of φ. We now use Green’s formula

φ(0) = − 1

2π

∫
C

(log |w|)∆φ(w)dw

where dw is the Lebesgue measure on C. It follows that

Npn(U) ≤
∑
α∈Z

φδ(z − α) = − 1

2π

∫
C

(log |pn(w)|)∆φδ(zj − w)dw

thereforeNpn(U) . δ−2

∫
Ω

| log |pn(w)||dw.

Consequently, using Hölder’s inequality, the following holds for any p ≥ 1

E[Npn(U)k1E ] . δ−2kE[1E(

∫
Ω

| log |pn||)k]

. δ−2kP(E)1−1/p
(
E[1E(

∫
Ω

| log |pn(w)||dw)kp]
)1/p

. δ−2kP(E)1−1/p
(
|Ω|kp−1E[1E

∫
Ω

| log |pn(w)||kpdw]
)1/p

.

Recall that E ⊂ F c and note that Ω ⊂ B(0, 1) and |Ω| = O(δ2). Therefore, using (6.4) for
q = kp, we obtain

E[Npn(U)k1E ] . δ−2kP(E)1−1/p|Ω|k−
1
p (Ckp)Ck logCk n

.k δ−2/pP(E)1−1/ppCk(log n)Ck.

Choosing p = log n ≈ log(1/δ), then δ−1/p = O(1), therefore

E[Npn(U)k1E ] . P(E)1− 1
p | log δ|(2C)k.

Now, if P(E) ≤ δ2M , then it is clear that the last right hand side is O(δM ). If P(E) ≥ δ2M

then it is clear that P(E)1/p & 1, consequently

E[Npn(U)1E ] . P(E)| log δ|2Ck.

This completes the proof of Theorem 6.1.

7 Lindeberg swapping and Tao-Vu replacement estimates

Our goal in this section is to establish the following result, which is a simple extension
of a replacement estimate in Tao–Vu [33] to non-centered polynomials.

Lemma 7.1. For any C, ε, C0 > 0 there is 0 < C1 <∞ so that the following holds.
Let ξ0, . . . , ξn, G0, . . . , Gn be independent with E|ξj |2+ε < C and E|Gj |2+ε < C such

that ξj and Gj have matching moments up to second order, for at least n− C indices j.
Let δ ∈ (0, 1), α1 > 0, w1, . . . , wm ∈ I(δ), and F : Rm → C be such that

(i) m . δ−α1 , and |∂βF | ≤ δ−α1 for |β| ≤ 3;
(ii) for all 1 ≤ i ≤ m and 0 ≤ j ≤ n it holds that |cjwji | . δC1α1(

∑
j |cjw

j
i |2)1/2.

Then |EF (log |pn,ξ(w1)|, . . . , log |pn,ξ(wm)|)
− EF (log |pn,G(w1)|, . . . , log |pn,G(wm)|)| . δC0α1 ,

where the implicit constant may depend on α1, C0, C1, ε.
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Without loss of generality we may assume that Gj are Gaussian for all j. Following
[33], we will prove Lemma 7.1 using the Lindeberg swapping argument. The following
basic estimate captures some ideas of this argument.

Lemma 7.2 (Basic Lindeberg swapping). Let ε, C > 0. Assume that ξ1, . . . , ξn and
ξ̃1, . . . , ξ̃n are independent such that maxj E|ξj |2+ε ≤ C and maxj E|ξ̃j |2+ε ≤ C.

Assume that ξj and ξ̃j have matching moments up to second order for any j 6∈ J0.
Here J0 is a subset of {1, . . . , n}.

Assume that H : Cn → C, such that, as a function on R2n, H ∈ C3. Then for some C̃
finite positive depending on C and ε we have:

|EH(ξ1, . . . , ξn)− EH(ξ̃1, . . . , ξ̃n)| ≤ C̃
(
M1−ε

2 M ε
3 + |J0|2/3‖H‖2/3supM

1/3
3

)
.

Here viewing as a function on R2n we let Mi :=
∑n
j=1

∑i
m=0 ‖(∂2j−1)i−m(∂2j)

mH‖sup.

Proof. Let H1 = H(ξ1, . . . , ξn), and let Hj+1 be obtained from Hj by swapping ξj with ξ̃j .
We then estimate the left hand side by

∑
j |E(Hj −Hj−1)|.

Let j 6∈ J0. We view H(. . . , wj , . . . ) as a function of Re(wj) and Im(wj), denoted by fj .
For convenience, let Mj,i :=

∑i
m=0 ‖(∂1)i−m(∂2)mfj‖sup.

We consider approximation of fj(x, y) using Taylor expansion around (0, 0) up to
second order terms. By simple interpolation, the error term in this approximation is
bounded above O(max(|x|2+ε, |y|2+ε)M ε

j,3M
1−ε
j,2 ). Since ξj and ξ̃j are independent from

the others and have matching moments up to second order and since E|ξj |2+ε ≤ C,

E|ξ̃j |2+ε ≤ C, it follows from direct examination that

E[Hj+1 −Hj ] = O(M ε
j,3M

1−ε
j,2 ).

Summing these estimates over j 6∈ J0 and using Hölder’s inequality, we obtain∑
j 6∈J0

|E[Hj+1 −Hj ]| . (
∑
j

Mj,3)ε(
∑
j

Mj,2)1−ε = M ε
3M

1−ε
2 .

Now, let j ∈ J0. Again we view H as a function fj of Re(wj) and Im(wj) and
approximate it by Taylor expansion around (0, 0) up to first order terms. We similarly
obtain |E[Hj+1 −Hj ]| . Mj,1(E|ξj | + E|ξ̃j |) = O(Mj,1). Using Kolmogorov’s inequality
[18] and a simple application of Hölder’s inequality we obtain∑

j∈J0

|E[Hj+1 −Hj ]| .
∑
j∈J0

Mj,1 .
∑
j∈J0

M
2/3
j,0 M

1/3
j,3 . |J0|2/3‖H‖2/3supM

1/3
3 .

We now prove Lemma 7.1. Let σ(z) =
√
V ar[pn,ξ(z)] = (

∑
0≤j≤n |cjzj |2)1/2. Let

F̃ : Rm → C be defined by F̃ (u1, . . . , um) = F (u1 + log σ(w1), . . . , um + log σ(wm)). Then
we also have |∂αF̃ | . δ−α1 for all partial derivatives of order |α| ≤ 3.

Let M = C2 log(1/δ) for some large constant C2 > 0 to be chosen later.
We perform a decomposition of F̃ = F1 + F2 where F1 = φF̃ and F2 = (1 − φ)F̃ ,

where φ is constructed below. Then φ : Rm → R is a smooth function supported on
{(x1, . . . , xm) ∈ Rm : minxj ≥ −(M + 1)} and equals 1 on {(x1, . . . , xm) ∈ Rm : minxj ≥
−M}, such that ‖∂αφ‖∞ . m|α| for any multi-index α.

We plan to apply Lemma 7.2 to

H(ξ0, . . . , ξn) = F1(log f(w1), . . . , log f(wm)), f(z) := |pn(z)|/σ(z),

Now, |∂αF1| . m3δ−α1 . δ−4α1 for |α| ≤ 3. Via explicit computations,

∂

∂Re(ξk)
log |f(z)| = Re(

ckz
k

pn(z)
),

∂

∂Im(ξk)
log |f(z)| = −Im(

ckz
k

pn(z)
).
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Now, on the support of F1 we have | ckw
k
j

pn(wj)
| . eM

|ckwkj |
σ(wj)

. Thus, for x, y ∈ {Re(ξk), Im(ξk)}
we have

|( ∂
∂x

)(
∂

∂y
)H| .

m∑
`,j=1

|(∂`∂j)F1||
ckw

k
j

pn(wj)
|| ckw

k
`

pn(w`)
|+

m∑
j=1

|∂jF1|
|ckwkj |2

|pn(wj)|2

. e2Mδ−4α1

m∑
`,j=1

|
ckw

k
j

σ(wj)
|| ckw

k
`

σ(w`)
|.

Summing over k and using Cauchy Schwartz, we obtain

M2 . e2Mδ−4α1

m∑
`,j=1

(

n∑
k=1

|ckwkj |2

σ(wj)2
)1/2(

n∑
k=1

|ckwk` |2

σ(w`)2
)1/2 . e2Mδ−6α1 .

Similarly, we estimate the third partial derivatives for H and use these estimates to
bound M3. Here we will arrive at trilinear sums, so using the assumption |cjwjk/σ(wk)| =
O(δC1α1) we eventually obtain

M3 . δ−4α1e3M
∑
`,j,h

∑
k

|
ckw

k
j

σ(wj)
|| ckw

k
`

σ(w`)
|| ckw

k
h

σ(wh)
| . e3Mδ(C1−7)α1 .

Now, we may assume ε ≤ 1. Via Lemma 7.2, we have the generous bound

|EF1(log f(w1), . . . )− EF1(log fG(w1), . . . )| . e3Mδ(C1ε−11)α1 .

We now reset H(ξ0, . . . , ξn) := (1 − φ)(log f(w1), . . . , log f(wm)). The partial deriva-
tives of (1 − φ) are O(1) and are supported in min(log f(w1), . . . , log f(wm)) ≥ −M − 1.
Consequently, via the same consideration as before, we obtain

|E
[
F2(log f(w1), . . . , log f(wm))

]
| . E[δ−α1H(ξ0, . . . , ξn)]

. |E[δ−α1H(G0, . . . , Gn)]|+O(e3Mδ(C1ε−11)α1)

. δ−α1

m∑
j=1

P(
|pn,G(wj)|√
V ar[pn,G(wj)]

< e−M ) +O(e3Mδ(C1ε−11)α1)

. δ−2α1e−M +O(e3Mδ(C1ε−11)α1),

here we have used the fact that pn,G(wj) is Gaussian and m = O(δ−α1). Collecting
estimates, we obtain

|EF (log |pn,ξ(w1)|, . . . )− EF (log |pn,G(w1)|, . . . )| . δ−2α1e−M + e3Mδ(C1ε−11)α1 .

We choose M = C2α1 log(1/δ) where C2 ≥ C0 + 2, and C1 > (11 + 3C2 + C0)/ε, then it is
clear that the last right hand side is O(δC0α1), as desired. This completes the proof of
Lemma 7.1.

8 Proof of universality for complex correlation functions

In this section we prove Theorem 3.2. Following the framework developed by Tao-Vu
[33], we will use the Monte Carlo sampling method (summarized in Lemma 8.1) and the
Lindeberg swapping argument (implemented in Lemma 7.1). Below, we will only prove
the desired estimates for the correlation functions of pn. The same argument could be
applied to qn = (n+ 1)−ρp∗n to get the desired estimates for p∗n.

We will actually show the desired estimates when φδ has the tensor structure, namely
φδ(w) = φ1,δ(w1) . . . φk,δ(wk), furthermore for such φδ we will only need to assume that
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each φj,δ, viewed as a function on R2, is continuously differentiable up to second order
and furthermore |∂αφj,δ| ≤ O(δ−|α|) for |α| ≤ 2. The reduction from general (i.e. non
tensor) φδ to this special set up could be carried out as follows: First, let c′ ∈ (c, 1), and
let φj,δ be smooth and supported inside BC(0, c′δ) such that φj,δ = 1 on BC(0, cδ), and
as a function on R2 it is C2 and satisfies the derivative bound |∂αφj,δ| ≤ O(δ−|α|) up to
order 2. We may write

φδ(w1, . . . , wk) = φ1,δ(w1) . . . φk(wk)φ(w1, . . . , wk)

= φ1(w1) . . . φk(wk)
∑

n=(n1,...,nk)∈Zk
cne

i4πδ−1n·w

=
∑

n=(n1,...,nk)∈Zk
cn1,...,nk(φ1(w1)e4πin1w1/δ) . . . (φk(wk)e4πinkwk/δ)

using the multiple Fourier series expansion of φ on the polydisk BC(0, δ)k. By standard
stationary phase estimates, if φδ is Cm then |cn| .m (1 + |n1|+ · · ·+ |nk|)−m, while

∂α[φj(wj)e
4πinjwj/δ] = O(δ−|α|(1 + |nj |)|α|),

therefore if m is large enough depending on k, say m ≥ 3k + 2, then we could write φ as
a linear average of tensor-type functions with the properties mentioned earlier.

Thus, we may now assume that φ has the tensor structure. Let z = (z1, . . . , zk) ∈ I(δ)k

be fixed (no implicit constants will depend on zj ’s). Recall that Z denotes the multi-set
of zeros of pn. By definition,∫

Ck
φδ(z − w)dσ(w) = E

∑
α1,...,αk∈Z

φ1,δ(z1 − α1) . . . φk,δ(zk − αk)

where the sum is over non repeated tuples of k elements of the zero sets of pn. An
application of the inclusion-exclusion formula will allow us to rewrite the last right hand
side as a linear combination of terms, and each term is a product of finitely many sum of
the following type

X =
∑
α∈Z

φj,δ,X(zj − α),

where 1 ≤ j ≤ k is fixed and φj,δ,X is a function supported in BC(0, cδ) such that, as a
function on R2, it is C2 and its partial derivatives up to order 2 are bounded accordingly.

Consequently, it suffices to show that, for a sequence Xi1 , . . . , Xi` of the above type,

|EXi1 . . . Xi` − EXG,i1 . . . XG,i` | = O(δc)

(uniform over all choices of 1 ≤ ` ≤ k and 1 ≤ i1 < · · · < i` ≤ k), for some c > 0. Without
loss of generality, we may assume that ` = k and i1 = 1,..., ik = k, and for brevity we will
omit the dependence on Xj in the notation and simply write Xj =

∑
α φj,δ(zj − α) below.

Let α0 > 0 be a sufficiently small constant that may depend on the underlying implicit
constants in Condition 1.1. By a standard construction, we could find ϕ : Ck → C such
that φ supported on B(0, 2δ−α0) and ϕ(w1, . . . , wk) = w1 . . . wk on B(0, δ−α0), furthermore
|ϕ(w1, . . . , wk)| ≤ |w1 . . . wk| for any w1, . . . , wk, and (as a function on R2k) ϕ will be in C2

with |∂αϕ(w)| . δ−kα0 for any (partial) derivatives of order up to 2.
Let C > 0 is sufficiently large and let 1

n . δ ≤ 1
C . We first use Theorem 5.7 and

Lemma 5.8 to conclude that for any 0 < c′ < 1/2 there is an event E = E(δ, α0, z1, . . . , zk)

with probability P(E) = Oc′,α0
(δc
′
) such that on T = Ec the following holds for each

j = 1, 2, . . . , k:

sup
w:|w−zj |≤cδ

log |pn(w)| . | log δ|,

1

δ2

∫
B(zj ,cδ)

| log |pn(w)||2dw . | log δ|4.
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We now use Green’s formula, which says that the following holds for any φ compactly
supported in C2(R2)

φ(0) = − 1

2π

∫
C

(log |w|)∆φ(w)dw

where dw is the Lebesgue measure. It follows that, for each 1 ≤ j ≤ k, we have

Xj =
∑
α∈Z

(− 1

2π
)

∫
C

log |w − α|∆φj,δ(zj − w)dw

= − 1

2π

∫
C

(log |pn(w)|)∆φj,δ(zj − w)dw. (8.1)

Thus, using Hölder’s inequality and using the above properties of T , we obtain |Xj | .
| log δ|2 on the event T . By ensuring that δ < 1/C for C sufficiently large, it follows that
|Xj | < δ−α0 on the event T . Now, outside T we still have |φ(X1, . . . , Xk)| ≤ |X1 . . . Xk|,
therefore

EX1 . . . Xk = Eϕ(X1, . . . , Xk) +O(max
j
E[|Xj |k1E ]). (8.2)

We now use Monte Carlo sampling to approximate the integral form (8.1) of Xj with
a discrete sum.

Lemma 8.1 (Monte Carlo sampling). Let (X,µ) be a probability space and let f ∈
L2(X,µ). Assume that w1, . . . , wm are drawn independently from X using the distribution
µ. Then for S = 1

m (f(w1) + · · ·+ f(wm)) we have ES =
∫
X
fdµ and

P(|S − ES| ≥ λ) ≤ 4

mλ2

∫
X

|f |2dµ.

Now, ∆φj,δ is supported inside B(0, cδ) and is bounded above by O(δ−2).

Let wj,i be uniformly chosen from B(0, cδ) (independent of each other and of the
coefficients of pn), here 1 ≤ i ≤ m and 1 ≤ j ≤ k. Using (8.1) and Lemma 8.1, it follows
that

P(|Xj −
1

m

m∑
i=1

aj,i log |pn(wj,i)|| > λ) . m−1λ−2δ−2

∫
B(zj ,cδ)

| log |pn(w)||2dw,

where aj,i = − 1
2c

2δ2∆φj,δ(zj − wj,i). Note that |aj,i| = O(1).

Now, on the event T , the right hand side in the last display isO(m−1λ−2| log δ|4). Using
the above estimate, we now show that all Xj ’s could be replaced by the corresponding
averages at a total small cost:

Claim 8.2. Let w = (w11, . . . , w1m, . . . , wk1, . . . , wkm). Then

|Eϕ(X1, .., Xk)− Eϕ(
1

m

m∑
i=1

a1,i log |pn(w1,i)|, ..,
1

m

m∑
i=1

ak,i log |pn(wk,i)|)| = O(δα0),

where the expectation is taken over w and ξ = (ξ0, . . . , ξn).

To see this, let λ = δ(k+1)α0 . Then on the product probability space generated
by ξ = (ξ0, . . . , ξn) and wj = (wj,1, . . . , wj,m) it holds with probability 1 − P(T c) −
Ok(m−1δ−(2k+3)α0) that

∣∣∣Xj −
1

m

m∑
i=1

aj,i log |pn(wj,i)|
∣∣∣ . δ(k+1)α0 ,
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for all j = 1, . . . , k. Now, letting m ≈ δ−(3k+4)α0 and choosing α0 sufficiently small (so
that in particular c > (k + 1)α0)), it follows that the following inequality holds with
probability 1−O(δ(k+1)α0):

|ϕ(X1, . . . , Xk)− ϕ(
1

m

m∑
i=1

a1,i log |pn(w1,i)|, . . . )| = O(δα0).

(Here we’ve used the assumption that the first order partial derivatives of ϕ is bounded
above by O(δkα0)).) On the event that this estimate does not hold (which has probability
O(δ(k+1)α0)), we have the crude bound O(δ−kα0) for the left hand side of the above
display, here we have used the assumption that |φ(w1, . . . , wk)| ≤ |w1 . . . wk| and φ is
supported on BC(0, 2δ−α0)k. Collecting estimates, the desired estimate of Claim 8.2
follows immediately.

On the event E, we note that Xj . Npn(B(zj , cδ)) and similarly Xj,G .
Npn,G(B(zj , cδ)). Consequently, using (8.2) and Claim 8.2 we obtain

|EX1 . . . Xk − EX1,G . . . Xk,G| = (8.3)

= |Eϕ(
1

m

m∑
i=1

a1,i log |pn(w1,i)|, . . . )− Eϕ(
1

m

m∑
i=1

a1,i log |pn,G(w1,i)|, . . . )|+

+O(
∑
j

E[1ENpn(B(zj , cδ))
k]) +O(

∑
j

E[1ENpn,G(B(zj , cδ))
k]) +O(δα0).

Using Theorem 6.1, the two terms involving Npn(B(zj , cδ)) and Npn,G(B(zj , cδ)) are
bounded by O(| log δ|Ckδα0), which in turn is bounded by O(δα0/2).

Thus, it remains to bound the first term on the right hand side of (8.3). Here we use
Lindeberg swapping, or more precisely Lemma 7.1. Below we only discuss swapping of
1
m

∑m
i=1 log |pn(w1,i)| with its Gaussian analogue 1

m

∑m
i=1 a1,i log |pn,G(w1,i)|; the swapping

of the other k−1 averages can be done similarly. Now, by conditioning on other variables
and treating them as parameters, we may let

F (u1, . . . , um) = φ(. . . ,
1

m
(a1,iu1 + · · ·+ a1,mum), . . . ).

It remains to show that

EF (log |pn(w1,1)|, . . . , log |pn(w1,m)|)− EF (log |pn,G(w1,1)|, . . . , log |pn,G(w1,m)|)
. δα0 .

We can check that |∂βF | . 1
m|β|

δ−kα0 for any partial derivatives up to order 3. Note that

m ≈ δ−(3k+4)α0 by choice and α0 could be chosen arbitrarily small. Therefore, in order
to show the estimate in the last display via Lemma 7.1, it remains to show that for some
uniform constant c > 0 (independent of α0) the following holds

|cjwji | . δc
√
V ar[pn(wi)]

for any 1 ≤ i ≤ m and any 0 ≤ j ≤ n. To see this, note that 1− |wi| ≈ δ and cj ’s satisfy
Condition 1.1, therefore√

V ar[pn(wi)] & (
∑
j

j2ρ|wi|2j)1/2 &
√

(1− |wi|2)−2ρ−1 & δ−ρ−1/2,

while |cjwji | . (1 + j)ρ(1− δ)j . Via examination of the function xρ(1− δ)x over x ∈ [0,∞),
we could show that |cjwji |/

√
V ar[pn(wi)] . δρ+

1
2 + δ1/2, thus we could take any 0 < c ≤

min(ρ+ 1
2 ,

1
2 ). (Recall the assumption that ρ > −1/2).
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9 Counting local non-real roots

In this section, we will prove several estimates for the local number of non-real
roots of pn near the real line. These estimates play an essential role in the next section,
where the proof of Theorem 3.1 will be presented. Recall that we write pn = mn + rn
where mn(z) =

∑
j bjz

j is the deterministic component and rn =
∑
j cjξjz

j is the random
component. We divide the analysis into two scenarios.

Scenario 1: mn is “small” compared to rn. This scenario generalizes the special
case mn = 0 considered in in [4], where it was shown that with high probability rn has
no non-real local root. Here we will show that a similar conclusion holds even with the
addition of a “small” deterministic component mn.

Lemma 9.1. Let ε0 > 0 be sufficiently small and let c ∈ [0, 1). Then for C = C(ε0, c) > 0

sufficiently large the following holds for any 1
n . δ ≤ 1

C and η := δ1+ε0 and any x ∈
IR(δ) + (−cδ, cδ).

(i) Assume that on B(x, 2η) we have |m′′n| .
√
V ar[r′′n].

Then for any κ < 2 we have P(Npn(B(x, η)) ≥ 2) = Oε0,κ((η/δ)κ).

(ii) Assume that on B(x, 2η) we have |m∗′′n| .
√
V ar[r∗n

′′].

Then for any κ < 2 we have P(Np∗n(B(x, η)) ≥ 2) = Oε0,κ((η/δ)κ).

Scenario 2: mn is “large” compared to rn. Here we will show that with high
probability pn has no local roots in a neighborhood of the real line.

Lemma 9.2. Let ε0 > 0 be sufficiently small and let c ∈ [0, 1). Let κ > 0. Then for
C,C ′ > 0 sufficiently large the following holds for any 1

n . δ ≤ 1
C and η := δ1+ε0 and any

x ∈ IR(δ) + (−cδ, cδ).
(i) Assume that on B(x, 2η) we have |mn| > C ′| log δ|1/2

√
V ar[rn].

Then P(Npn(B(x, η)) ≥ 1) = O((η/δ)κ).

(ii) Assume that on B(x, 2η) we have |m∗n| > C ′| log δ|1/2
√
V ar[r∗n].

Then P(Np∗n(B(x, η)) ≥ 1) = Oε0,C0,κ((η/δ)κ).

9.1 Proof of Lemma 9.1

9.1.1 Proof of Lemma 9.1, part (i)

Here we prove part (i) and we will discuss the modifications for part (ii) later. For
convenience, let

X = Npn(B(x, η)), XG = Npn,G(B(x, 2η)).

Step 1. Reduction to Gaussian: We’ll use Theorem 3.2 in this step. Let c̃ ∈ (c, 1).
Let η1, . . . , be an enumeration of the (complex) roots of pn and let η1,G, . . . be an

enumeration of the (complex) roots of pn,G, both enumerated with multiplicity.
Let ε1 > 0 be small to be chosen later. Let ϕ : C → [0, 1] be smooth supported on

B(0, 2) such that ϕ(z) = 1 if |z| ≤ 1. We have

P(X ≥ 2) ≤ E
∑
i 6=j

ϕ(
ηi − x
η

)ϕ(
ηj − x
η

).

We now discuss the set up required to apply Theorem 3.2. Since x ∈ IR(δ) + (−cδ, cδ),
we may write x = x0 + α where x0 ∈ IR(δ) and |α| ≤ cδ. We then let

φδ(z, w) := δLε0ϕ(
z − α
η

)ϕ(
w − α
η

)
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which is defined on C2, and here L = O(1) is a sufficiently large absolute constant (in
particular independent of ε0) so that all required derivative bounds (from Theorem 3.2)
for φδ are satisfied. Now, supp(φδ) ⊂ BC(α, 2η)2 ⊂ BC(0, c̃δ)2 if we require δ < 1/C with
C > 0 sufficiently large depending on ε0, c, and c̃. It then follows from Theorem 3.2 (and
the definition of correlation functions) that for some α0 > 0 (independent of L, ε0) the
following holds:

E
∑
i 6=j

φδ(ηi − x0, ηj − x0) = E
∑
i 6=j

φδ(ηi,G − x0, ηj,G − x0) +O(δα0 ).

Unraveling the notation, we obtain

E
∑
i6=j

ϕ(
ηi − x
η

)ϕ(
ηj − x
η

) ≤ E
∑
i 6=j

ϕ(
ηi,G − x

η
)ϕ(

ηj,G − x
η

) +O(δα0δ−Lε0)

≤ E[XG(XG − 1)] +O(δα0−Lε0)

≤ δ−2ε1P(XG ≥ 2) + E[X2
G1XG>δ−ε1 ] +O(δα0−Lε0).

Using Corollary 6.2 and observing that XG ≤ Npn,G(B(z, δ/9)), we have

P(XG > δ−ε1) .m δmε1 | log δ|O(m)

for any m ≥ 1, so by choosing m large we have a bound of Oε1,M (δM ) for any M > 0.
Using Theorem 6.1, it follows that

E[X2
G1XG>δ−ε1 ] .M δM + | log δ|O(1)P(XG > δ−ε1) . δM/2.

Collecting estimates, we obtain

P(X ≥ 2) ≤ δ−2ε1P(XG ≥ 2) +O(δα0−2Lε0)

≤ δ−2ε1P(XG ≥ 2) +O(δκε0)

by choosing ε0 small. So it remains to show that P (XG ≥ 2) . δκε0+2ε1 . Since ε1 could be
chosen very small, it suffices to show that P (XG ≥ 2) . δκ

′ε0 for some κ′ ∈ (κ, 2), which
is essentially the Gaussian analogue of the desired estimate.

Step 2. Proof for Gaussian. We will show that, with high probability pG,n is close to
its linear approximation at x, namely L(z) := pn,G(x) + p′n,G(x)(z − x).

P( min
z∈∂B(x,2η)

|L(z)| ≤ max
z∈∂B(x,2η)

|E(z)|) = O(δκε0). (9.1)

Using Rouché’s theorem and linearity of L, (9.1) implies the desired estimate. Now, to
show (9.1), we will prove two estimates.

Claim 9.3. The following holds uniformly over t > 0:

P( min
z∈∂B(x,2η)

|L(z)| ≤ tδ2 sup
ξ∈B(x,2η)

√
V ar[r′′n(ξ)]) = O(t).

Claim 9.4. For some α0 > 0 the following holds uniformly over t > 0:

P( max
z∈∂B(x,2η)

|E(z)| > tη2 sup
ξ∈B(x,2η)

√
V ar[r′′n(ξ)]) = O(e−α0t

2

)

The desired estimate (9.1) then follows from choosing t = (η/δ)κ in Claim 9.3 and
choosing t = M | log δ|1/2 (with M large) in Claim 9.4. Here we need κ < 2.
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9.1.2 Proof of Claim 9.3

Since L is linear with real coefficients and since x ∈ R, minz∈∂B(x,2η) |L(z)| is achieved
at z = x− 2η or z = x+ 2η. Consequently, for any t > 0 we have

P( min
z∈∂B(x,2η)

|L(z)| ≤ t) ≤ P(|L(x+ 2η)| ≤ t) + P(|L(x− 2η)| ≤ t)

.
t√

V ar[L(x+ 2η)]
+

t√
V ar[L(x− 2η)]

,

here we have used the fact that L(x+ 2η) and L(x− 2η) are Gaussian. Using Lemma 2.1
and Condition 1.1, we have V ar[rn(x)] ≈ δ4 supξ∈B(x,2η) V ar[r

′′
n(ξ)]. Therefore it remains

to show that for any s ∈ {−2η, 2η} we have√
V ar[L(x+ s)] &

√
V ar[rn(x)]. (9.2)

Now, since ξj are independent, we have
√
V ar[L(x+ s)] = ‖cj(xj + sjxj−1)nj=0‖l2 .

If δ ≥ 1
10n then by definition we have 1 − |x| ≈ δ. Therefore, using the triangle

inequality and Lemma 2.1 and Condition 1.1 we obtain√
V ar[L(x+ s)] ≥ ‖(cjxj)nj=0‖l2 − |s|‖(cjjxj−1)nj=0‖l2

≥
√
V ar[rn(x)]− 2η

√
V ar[r′n(x)].

Using Lemma 2.1 and Condition 1.1, it follows that V ar[r′n(x)] ≈ δ−2V ar[rn(x)]. Since
η � δ, the desired estimate (9.2) follows immediately.

Now, if 1
n . δ < 1

10n we have |s| ≤ 2η < 1/(2n). Therefore, uniformly over 0 ≤ j ≤ n

we have |xj + sjxj−1| & |x|j , which implies the desired estimate (9.2).

9.1.3 Proof of Claim 9.4.

To estimate maxz∈∂B(x,2η) |E(z)|, we first estimate the mean and the variance of E(z). We
will show that

|EE(z)| . η2 sup
ξ∈B(x,2η)

√
V ar[r′′n(ξ)], (9.3)

V ar[E(w)] . η4 sup
ξ∈B(x,2η)

V ar[r′′n(ξ)] (9.4)

uniformly over z ∈ B(x, 2η) and w ∈ B(x, 3η).
For (9.4), let w ∈ B(x, 3η). By the mean value theorem, we have

V ar[E(w)] =

n∑
j=0

|cj |2|wj − xj − j(w − x)xj−1|2

. η4 sup
ξ∈B(x,3η)

V ar[r′′n(ξ)].

By ensuring C = C(ε0, c) is large, for any ξ ∈ B(x, 3η) we have ξ ∈ I(δ) + (−c′δ, c′δ) for
c′ = (1 + c)/2 < 1. Using Lemma 2.1, it follows that

sup
ξ∈B(x,3η)

V ar[r′′n(ξ)] . sup
ξ∈B(x,2η)

V ar[r′′n(ξ)], which implies (9.4).

For (9.3), again by the mean value theorem we have

|EE(z)| = |mn(z)−mn(x)−m′n(x)(z − x)|
. η2 sup

ξ∈B(x,2η)

|m′′n(ξ)|

. η2 sup
ξ∈B(x,2η)

√
V ar[r′′n(ξ)] (by the given assumption)
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Now, we combine (9.3) and (9.4) to prove Claim 9.4. For convenience of notation, let
q(z) := E(z) − EE(z). Without loss of generality, we may assume that t is much larger
than the implicit constants in the last estimate for |EE(z)| and in (9.3). It follows from
(9.3) and (9.4) that

P( max
z∈∂B(x,2η)

|E(z)| ≥ tη2 sup
ξ∈B(x,2η)

√
V ar[r′′n(ξ)])

≤ P( max
z∈∂B(x,2η)

|q(z)| ≥ (t/2)η2 sup
ξ∈B(x,2η)

√
V ar[r′′n(ξ)])

≤ P( max
z∈∂B(x,2η)

|q(z)| & t sup
ξ∈B(x,2η)

√
V ar[E(ξ)]).

Using Cauchy’s theorem, for z ∈ ∂B(x, 2η) we have

|q(z)| .
∫
∂B(x,3η)

|q(w)|d|w|
η

. sup
w∈B(x,3η)

√
V ar[q(w)]

∫
∂B(x,3η)

|q(w)|√
V ar[q(w)]

d|w|
η

where d|w| is the arclength measure along the integration contour ∂B(x, 3η). Note that
V ar[q(z)] = V ar[E(z)]. It follows that, for some c > 0, we have

P( max
z∈∂B(x,2η)

|q(z)| ≥ t sup
ξ∈B(x,3η)

√
V ar[E(ξ)])

. e−ct
2

E exp(

∫
∂B(x,3η)

|q(w)|
2
√
V ar[q(w)]

d|w|
η

)2

. e−ct
2

∫
∂B(x,3η)

E exp(
|q(w)|2

4V ar[q(w)]
)
d|w|
η

(by convexity)

. e−ct
2

(since
q(w)√

V ar[q(w)]
is normalized Gaussian).

9.1.4 Proof of Lemma 9.1, part (ii)

Our proof of part (ii) of Lemma 9.1 is entirely similar to that of the proof of part
(i), where the key ingredients is the fact that uniformly over ξ ∈ B(x, 3η) we have√
V ar[r∗

(m)
n (ξ)] ≈m (1 + n)ρδ−(2m+1)/2 for any m ≥ 0, which in turn is a consequence of

Condition 1.1 and Lemma 2.1.

9.1.5 Proof of Lemma 9.2, part (i)

We will proceed in a similar fashion as in the proof of Lemma 9.1. The reduction to the
Gaussian setting can be done similarly by using universality estimates for the 1-point
correlation function of the complex zeros of pn from Theorem 3.2 and estimates proved
in Theorem 6.1 and Corollary 6.2.

We now discuss the proof for the Gaussian setting. The given assumption clearly
implies that mn has no zero in B(x, 2η). Thus, using Rouché’s theorem it suffices to show
that

P ( sup
ξ∈∂B(x,2η)

|rn,G(ξ)| ≥ inf
z∈∂B(x,2η)

|mn(ξ)|) = O(δκε0).

Using Cauchy’s theorem and arguing as in the proof of Claim 9.4, we obtain

P( sup
ξ∈∂B(x,2η)

|rn,G(ξ)| ≥ λ sup
ξ∈B(x,3η)

√
V ar[rn,G(ξ)]) . e−α0λ

2

,
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for some α0 > 0 and any λ > 0. Using Lemma 2.1 and Condition 1.1, we also have

sup
ξ∈B(x,3η)

√
V ar[rn,G(ξ)] ≈ inf

ξ∈B(x,3η)

√
V ar[rn,G(ξ)].

Thus, using the given hypothesis we obtain, for some c′ > 0,

P( sup
ξ∈∂B(x,2η)

|rn,G(ξ)| ≥ t inf
ξ∈B(x,2η)

|mn(ξ)|)

. P( sup
ξ∈∂B(x,2η)

|rn,G(ξ)| & C ′t| log δ|1/2 sup
ξ∈B(x,3η)

√
V ar[rn,G(ξ)])

. e−c
′(C′t)2| log δ|.

Let t = 1 in the last estimate. Then for any κ > 0 we could choose C0 ≈
√
κ but large

such that this estimate is bounded above by O((η/δ)κ), as desired.

9.1.6 Proof of Lemma 9.2, part (ii)

The proof is entirely similar to part (i).

10 Proof of universality for real correlation functions

Below we prove part (i) of Theorem 3.1, and the same argument may be used to prove
part (ii) of this theorem (details will be omitted).

Let x = (x1, . . . , xm) ∈ IR(δ)m and z = (zm+1, . . . , zm+k) ∈ IC+(δ)k. For convenience
of notation write zj = xj + iyj for all j. Then for j ≤ m we have yj = 0 and xj ∈ I(δ),
while for j > m we have yj > 0. Note that xj and yj may not be inside IC(δ) for j > m.

Arguing as in the proof of Theorem 3.2, it suffices to show that

|E(

m+k∏
j=1

Xj)− E(

m+k∏
j=1

XG,j)| . δc, where Xj =

{∑
α∈Z∩R Fj,δ(α− zj), j ≤ m;∑
α∈Z∩C+

Hj,δ(α− zj), j > m.

(XG,j are Gaussian analogues), and Fj,δ and Hj,δ satisfy the following conditions:

(i) for each j ≤ m, Fj,δ is in C2(R), supported in (−cδ, cδ) such that |F (`)
j,α| ≤ 1 for

` = 0, 1, 2.
(ii) for each j > m, Hj,δ is supported on BC(0, cδ) and is also C2(R2) with |∂αHj,δ| ≤

δ−|α| for any |α| ≤ 2.
Let ε0 > 0 be sufficiently small, as required by Lemma 9.1 and let η = δ1+ε0 .
Let c′ ∈ (0, 1) be small such that c+ c′ < c̃.
Let Φ : R→ R be a bump function supported on [−c′, c′] with Φ(0) = 1.
Let Ψ : R→ [0, 1] be a smooth function supported on {x ≥ c′/2} such that Ψ(x) = 1 if

x ≥ c′.
Let L = O(1) be sufficiently large. Let K1,δ, . . . ,Km+k,δ : C→ C be defined by

Kj,δ(x+ iy) =

{
δLε0Fj,δ(x)Φ(y/η), j ≤ m,
δLε0Hj,δ(x+ iy)Ψ((y + yj)/η), j ≥ m+ 1.

One could check that K1,δ, . . . ,Km+k,δ are supported on B(0, (c + c′)δ) and are C2(R2)

with ∂α derivatives bounded by O(δ−|α|) for any multi-index |α| ≤ 2.
Applying Theorem 3.2 for test functions of tensor-product type, it follows that for

some α0 > 0 (which does not depend on ε0) we have

|E(

m+k∏
j=1

Yj)− E(

m+k∏
j=1

YG,j)| . δα0 , where Yj(z) :=
∑
z∈Z

Kj,δ(z − zj).
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Letting Zj := δ−Lε0Yj and making sure ε0 < c0/(Lm+ Lk), it remains to show

E|
m+k∏
j=1

Xj −
m+k∏
i=1

Zj | = O(δα1)

for some α1 > 0. Since Xj , Zj ≤ Npn(B(zj , cδ)), using Corollary 6.2 we have

E|Xj |m+k,E|Zj |m+k . | log δ|O(m+k).

Via Holder’s inequality, it therefore suffices to show that for some c > 0 we have

E|Xj − Zj |m+k . δc.

Now, for each 1 ≤ j ≤ m+ k let

Sj = {t ∈ R : |t− sign(Re(zj))|zj || ≤ (c+ c′)δ} × [−c′η, c′η].

We first show that if Xj − Zj 6= 0 then |Im(zj)| ≤ (c+ c′)δ and

|Xj − Zj | . |Z ∩ (Sj \R)|. (10.1)

Indeed, we first consider 1 ≤ j ≤ m. Then zj = xj ∈ IR(δ). Therefore,

Xj − Zj =
∑

α∈Z∩R
Fj,δ(α− xj)−

∑
α∈Z

Fj,δ(Re(α)− xj)Φ(Im(α)/η)

= −
∑

α∈Z\R

Fj,δ(Re(α)− xj)Φ(Im(α)/η) (since Φ(0) = 1).

Since both Fj,δ and Fj,δ are bounded, it suffices to show that any α that contributes to
the sum must be in Sj . Indeed, for such α we have |Re(α)− xj | < cδ and |Im(α)| < c′δ,
which implies the desired claim.

We now consider m+ 1 ≤ j ≤ m+ k. We have

Xj − Zj =
∑

α∈Z∩C+

Hj,δ(α− zj)−
∑
α∈Z

Hj,δ(α− zj)Ψ(Im(α)/η).

Since Ψ is supported on [c′/2,∞) in the second summation we could further assume that
α ∈ C+. We obtain

Xj − Zj =
∑

α∈Z∩C+

Hj,δ(α− zj)(1−Ψ(Im(α/η))).

For any contributing α, it holds that |Im(α)| < c′η, therefore

|Im(zj)| ≤ |Im(α)|+ |Im(α)− Im(zj)| < (c+ c′)δ.

In particular, |Re(zj)| ≥ |zj | − |Im(zj)| ≥ 1 − O(δ) and this can be made very large
compared to δ. Now,

|Re(α)−Re(zj)| ≤ |α− zj | ≤ cδ

thereforeRe(α) has the same sign asRe(zj). Thus it remains to show that ||Re(α)|−|zj || ≤
(c+ c′)δ. Now, using the triangle inequality this follows from

||Re(α)| − |zj || ≤ ||α| − |zj ||+ |Im(α)| ≤ |α− zj |+ |Im(α)| ≤ (c+ c′)δ.

This completes the proof of (10.1).
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Now, the strip Sj could be covered by O(δ−ε0) sets of the form B(x, η) with center x
inside (sign(Re(zj))|zj | − (c+ c′)δ, sign(Re(zj))|zj |+ (c+ c′)δ). Since c+ c′ < c̃ and since
Im(zj)| ≤ (c+ c′)δ, it follows that for such x the ball B(x, 2η) would be inside the interval
J where the given hypothesis on the relationship between mn and rn holds. Now, since
pn is a real polynomials its complex roots are symmetric about the real axis. Thus, using
the small ball estimates proved in Lemma 9.1 (if mn is small compared to rn) or the
small ball estimates proved in Lemma 9.2 (if mn is large compared to rn) with κ = 3/2,
together with an union bound, we obtain

P (|Z ∩ (Sj \R)| ≥ 1) = O(δ−ε0δ3ε0/2) = O(δε0/2).

Now, since |Z ∩ (Sj \R)| is a nonnegative integer, by Theorem 6.1 we have

E|Xj − Zj |m+k . E[1|Z∩(Sj\R)|≥1Npn(B(zj , cδ))
m+k]

. δε0/2| log δ|O(m+k) . δε0/3.

This completes the proof of Theorem 3.1.

11 Reduction of Theorem 1.2 to Gaussian polynomials

In this section, using Theorem 3.1 we will reduce Theorem 1.2 to Gaussian random
polynomials. The proof of Theorem 1.2 for Gaussian polynomials will be discussed in the
next section.

Let BC = {1 − 1
C ≤ |t| ≤ 1 + 1

C }. Using Lemma 2.2, to reduce Theorem 1.2 to the
Gaussian setting, it suffices to show that

|ENn(I ∩BC)− ENG,n(I ∩BC)| = O(1).

Thus without loss of generality we may assume that I ⊂ [1 − 1/C, 1 + 1/C] or I ⊂
[−1 − 1/C,−1 + 1/C]. Below, we will only consider the first case, and we may use the
same argument for the other case.

Let ε > 0 be a very small absolute constant. Recall the definition of I(δ) from (3.1)
and the paragraph after (3.1). Let ĨR(δ) = {z : 1/z ∈ IR(δ)}.

Note that we may cover I using intervals IR(2m) and ĨR(2`) where 1
n . 2m . 1

C and
1
n . 2` . 1

C . Let M and L be respectively the sets of m and ` such that I(2m) and Ĩ(2`)

intersect I. Clearly, nearby covering intervals have comparable lengths. Thus, we may
construct a sequence of functions ϕm, ψ` (similar to a partition of unity) such that ϕm is
supported on (1 + ε)I(2m) and ψ` is supported on (1 + ε)Ĩ(2`), and furthermore

(i) |∂αψ`| . 2|α|` and |∂αϕm| . 2|α|m for any partial derivatives, and
(ii) γ(y) :=

∑
m∈M ϕm(y) +

∑
`∈L ψ`(y) is equal to 1 for all y ∈ I and is supported

inside I ∪ Il ∪ Ir where Il, Ir are two intervals from the covering that contain endpoints
of I.

Now, we could shrink the endpoint intervals Il and Ir by factors comparable to 1

(if necessary) so that I remains covered by the new collection of intervals, and at the
same time (1 + 2ε)Il, (1 + 2ε)Ir are subsets of the assumed enlargement J of I. The given
definition of enlargement ensures that the shrinking of these intervals could be done.
We may redesign the bump functions φm and ψ` associated with Il and Ir such that they
will still be supported inside (1 + ε)Il and (1 + ε)Ir, respectively.

It follows from Theorem 3.1 that, for some α1 > 0,

|E
∑

α∈Z∩R
ϕm(α)− E

∑
α∈ZG∩R

ϕm(α)| = |
∫
R

ϕm(y)[dσ(y)− dσG(y)]| . 2mα1 ,

|E
∑

α∈Z∩R
ψ`(α)− E

∑
α∈ZG∩R

ψ`(α)| = |
∫
R

ψ`(y)[dσ(y)− dσG(y)]| . 2`α1 .
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Summing the last two estimates over m and `, we obtain

|E
∑

α∈Z∩R
γ(α)− E

∑
α∈ZG∩R

γ(α)| = O(1).

Now, |ENn(I)− E
∑
α∈Z∩R γ(α)| = O(ENn(Il ∪ Ir)). For the local intervals Il and Ir,

we will show that ENn(Il) = O(1) and ENn(Ir) = O(1). Since the details are entirely
similar we will only discuss the estimate for ENn(Il). Since (1+ ε)Il ⊂ J the enlargement
of I, we may construct a bump function φ adapted to Il that equals 1 on Il but vanishes
outside (1 + ε/2)Il, in particular its support is strictly contained inside J . Let dρ be the
1-point correlation measure for the real root of pn and dρG be its Gaussian analogue. By
Theorem 3.1, we obtain

ENn(Il) ≤
∫
φdρ =

∫
φdρG +O(1) ≤ ENn,G((1 + ε/2)Il) +O(1)

Then assuming that the Gaussian case of Theorem 1.2 is known and using the fact that J
remains an enlargement of (1 + ε/2)Il, we obtain

|ENn,G((1 + ε/2)Il)| ≤ |ENrn,G((1 + ε/2)Il)|+O(1) = O(1)

here in the last estimate we may use Proposition 12.2 in the next section (which is a
consequence of explicit Gaussian computations in [4]).

This completes the proof of the reduction of Theorem 1.2 to Gaussian polynomials.

12 Proof of Theorem 1.2 for Gaussian polynomials

In this section we prove Theorem 1.2 for the Gaussian polynomial pn(t) =
∑n
j=0(bj +

cjξj)t
j where ξj are iid normalized Gaussian, and throughout the section we will assume

that bj and cj satisfy Condition 1.1.
Let mn = E[pn] and rn(t) =

∑
j cjξjt

j and let P = V ar[rn(t)], Q = V ar[r′n(t)], and
R = Cov[rn(t), r′n(t)], and S = PQ−R2.

We recall the following Kac-Rice formula [7, Corollary 2.1]. Let erf(x) =
∫ x

0
e−t

2

dt.
Then ENn(a, b) = I1(a, b) + I2(a, b) where

I1(a, b) =

∫ b

a

S1/2

πP
exp(−m

2
nQ+m′ 2n P − 2mnm

′
nR

2S
)dt (12.1)

I2(a, b) =
√

2

∫ b

a

|m′nP −mnR|
πP3/2

exp(−m
2
n

2P
)erf(

|m′nP −mnR|√
2PS

)dt. (12.2)

We will also work with the normalized reciprocal polynomial p∗n(t) = m∗n(t) + r∗n(t),
and we will denote by I∗1 , I∗2 , P∗,Q∗,R∗,S∗ the analogous quantities.

Using Lemma 2.2, we may assume without loss of generality that I ⊂ {1− c ≤ |t| ≤
1 + c} for a (small) absolute constant c > 0. By breaking up I into I>1 and I≤1 and notice
that Npn(I>1) = Np∗n(K) where K = {1/t, t ∈ I>1} we may reduce the consideration to
I ⊂ {1− c ≤ |t| ≤ 1}.

Now, using Lemma 2.1, we have

Corollary 12.1. Assume that bj and cj satisfy Condition 1.1. Then for any c ∈ (0, 1) it
holds uniformly over 1− c ≤ |t| ≤ 1 that

P(t) ≈ (1 + 1/n− |t|)−(2ρ+1), P∗(t) ≈ (n+ 1)2ρ(1 + 1/n− |t|)−1,

Q(t) ≈ (1 + 1/n− |t|)−(2ρ+3), Q∗(t) ≈ (n+ 1)2ρ(1 + 1/n− |t|)−3,

|R(t)| ≈ (1 + 1/n− |t|)−(2ρ+2), R∗(t) ≈ (n+ 1)2ρ(1 + 1/n− |t|)−2.
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On the other hand, by the classical Kac formula, ρn(t) := S1/2

πP is the density for the

real root distribution of rn(t) =
∑
j cjξjt

j , and similarly ρ∗n(t) := S∗1/2
πP∗ is the density for

the real root distribution of r∗n(t), and both of them can be easily bounded by O(n) by
elementary inspection. Note that the Gaussian density for rn(t) =

∑
j cjξjt

j (and for its

reciprocal polynomial) was studied5 in [4], and we summarize the known estimates for
them from [4, Lemma 10.3, Lemma 10.6] in the following proposition.

Proposition 12.2. Assume that cj satisfy Condition 1.1. Let c > 0 be small. Then
uniformly over 1− c ≤ |t| ≤ 1− c′/n we have

S(t) ≈ P(t)2(1− |t|)−2, S∗(t) ≈ P∗(t)(1− |t|)−2,

and uniformly over 1− c′/n ≤ |t| ≤ 1 + c′/n we have

S(t) . n2P(t)2, S∗(t) . n2P∗(t).

In fact, in the original setting considered in [4] it was required that cj ≈ (1 + j)ρ for
all O(1) ≤ j ≤ n, so it is a little stricter than our setting O(1) ≤ j ≤ n− O(1), however
the computation in the Gaussian setting in [4] is not affected much with our slightly
more relaxed assumption. We omit the details.

12.1 Estimates for I2

We will show that, under the hypothesis of Theorem 1.2 about the relative relation
between mn and rn on I, we will always have I2(I) = O(1). We separate the proof into
two cases, depending on whether mn dominates rn or is dominated by rn.

First, we consider the situation when the deterministic component mn dominates the
random component rn on I.

Lemma 12.3. Let c > 0. There is a constant C > 0 such that the following holds. Let
I ⊂ {1− c ≤ |t| ≤ 1} be an interval whose endpoints may depend on n.

(i) Assume that|mn(t)| ≥ C| log(1 +
1

n
− |t|)|1/2

√
V ar[rn(t)] for t ∈ I.

ThenI2(I) = O(1).

(ii) Assume that|m∗n(t)| ≥ C| log(1 +
1

n
− |t|)|1/2

√
V ar[r∗n(t)] for t ∈ I.

ThenI∗2 (I) = O(1).

Proof. Using Lemma 2.1 and Corollary 12.1 we have

|m′nP −mnR|
P3/2

.
|m′n|
P1/2

+
|mnR|
P3/2

. (1 +
1

n
− |t|)−3/2

and by the given hypothesis |mn(t)|2/P ≥ 2C ′| log(1 + 1
n − |t|)| where C ′ is comparable

to C2. Therefore

I2(I) .
∫
I

(1− |t|+ 1

n
)C
′−3/2dt

so if C is big enough then C ′ > 5/2 and the last integral is O(1), as desired.
The consideration for I∗2 (I) is entirely similar.

We now consider the situation when mn is dominated by rn.
Recall that φ : (0, 1)→ [0, 1] is such that the following holds for some c > 0:∫ c

1/n

φ(t)

t
dt = O(1). (12.3)

5In fact, in [4] it was required that |cj | ∼ (1 + j)ρ for O(1) ≤ j ≤ n, however the Gaussian computations in
[4] can be easily modified to work with the weaker assumption O(1) ≤ j ≤ n−O(1) in the current paper.
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Lemma 12.4. Let c > 0 and let φ : (0, 1) → R+ satisfy (12.3). Let I ⊂ {1 − c ≤ |t| ≤ 1}
be an interval whose endpoints may depend on n.

(i) Assume that the following holds uniformly over t ∈ I.

|mn(t)| . φ(1− |t|+ 1

n
)
√
V ar[rn(t)],

|m′n(t)| . φ(1− |t|+ 1

n
)
√
V ar[r′n(t)].

ThenI2(I) = O(1).

(ii) Under the analogous assumptions, we also have I∗2 (I) = Oε(1).

Proof. Using the given hypothesis and using Corollary 12.1, we have

|m′nP −mnR|
P3/2

. φ(1− |t|+ 1

n
)(
Q1/2

P1/2
+
R
P

) .
φ(1− |t|+ 1

n )

1− |t|+ 1
n

.

Since exp(−m2
n/P) ≤ 1, we obtain

I2(I) .
∫ 1

1−c

φ(1− t+ 1
n )

1− t+ 1
n

dt ≤
∫ c+1/n

1/n

φ(t)

t
dt = O(1).

This completes the proof of part (i). The second part (ii) can be proved similarly.

12.2 Estimates for I1

Here we will also divide the consideration into two cases, depending on whether mn

is dominant or rn is dominant.
The following result addresses the situation when mn is dominated by rn.

Lemma 12.5. Assume that φ : (0, 1)→ R+ satisfies (12.3). Let c > 0 and let I ⊂ {1− c ≤
|t| ≤ 1} be an interval whose endpoints may depend on n.

(i) Assume that uniformly over t ∈ I we have

|mn(t)| ≤
√
φ(1− |t|+ 1

n
)
√
V ar[rn(t)],

|m′n(t)| ≤
√
φ(1− |t|+ 1

n
)
√
V ar[r′n(t)]

ThenI1(I) =

∫
I

ρn(t)dt+O(1).

(ii) Under analogous assumptions, a similar estimate holds for I∗1 (I).

The following result deals with the situation when mn dominates rn.

Lemma 12.6. Let c > 0 and let I ⊂ {1− c ≤ |t| ≤ 1} be an interval whose endpoints may
depend on n.

(i) Assume that uniformly over t ∈ I we have

|mn(t)| & | log(1− |t|+ 1

n
)|1/2

√
V ar[rn(t)].

ThenI1(I) = O(1).

(ii) Under analogous assumptions, a similar estimate holds for I∗1 (I).

The proof of these results are based on the following technical estimate. For conve-

nience, let T (t) =
m2
n

P +
m′ 2n
Q , and define T ∗(t) analogously. Recall that ρn(t) := S1/2

πP is

the density for the real root distribution of rn(t), and ρ∗n := S∗1/2
πP∗ is the density for the

real root distribution for r∗n.
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Lemma 12.7. Let c > 0 be sufficiently small and let c′ > 0 be sufficiently large. Then
there are finite absolute constants C1, C2 > 0 that may depend on c, c′ such that the
following holds for any interval I whose endpoints may depend on n.

(i) If I ⊂ {1− c′/n ≤ |t| ≤ 1 + c′/n} then I1(I) = O(1) and I∗1 (I) = O(1).
(ii) If I ⊂ {1− c ≤ |t| ≤ 1− c′/n} then∫

I

ρn(t)e−C1T (t)dt ≤ I1(I) ≤
∫
I

ρn(t)e−C2T (t)dt,

and the analogous estimate holds for I∗1 (I).

Proof. (i) Since PQ ≥ R2, it follows that m2
nQ+m′ 2n P − 2mnm

′
nR ≥ 0, so

I1(I) .
∫
||t|−1|.1/n

ρn(t)dt = O(1).

The estimate for I∗1 is proved similarly.
(ii) Let 1− c ≤ |t| ≤ 1− c′/n. From Corollary 12.1 and Proposition 12.2, we obtain

P1/2Q1/2 − |R| = S
P1/2Q1/2 + |R|

& (1− |t|)−(2d+2) & |R|.

In other words for some C > 0 we have P1/2Q1/2 ≥ (1 + C)|R|. Consequently, by the
geometric mean inequality we have

m2
nQ+m′ 2n P − 2mnm

′
nR ≈ m2

nQ+m′ 2n P.

Now, by Corollary 12.1 and Proposition 12.2 we have S ≈ PQ. It follows that

m2
nQ+m′ 2n P − 2mnm

′
nR

S
≈ m2

nQ+m′ 2n P
PQ

= T (t).

The desired estimate then follows from the definition (12.1) of I1.
The proof for I∗1 (t) is completely analogous.

We now use Lemma 12.7 to prove Lemma 12.5 and Lemma 12.6. Below we will show
only the proof for the desired estimates for I1, the same argument works for I∗1 . We start
with the case when mn is dominated by rn: under the assumptions of Lemma 12.5 we
have T (t) . φ(1− |t|+ 1

n ). Using 1 ≥ e−x ≥ 1− x for x ≥ 0 and using Proposition 12.2, it
follows that

|I1(I)−
∫
I

ρn(t)dt| . |
∫
I

ρn(t)T (t)dt| .
∫ 1

1−c

φ(1− t+ 1
n )

1− t+ 1
n

dt = O(1).

Now in the case when mn dominates rn: under the assumptions of Lemma 12.6 we have
T (t) & | log(1+ 1

n−|t)|, while ρn(t) . (1+ 1
n−|t|)

−1 thanks to Proposition 12.2. Therefore,
for some c′′ > 0 we have

I1(t) .
∫ 1

1−c

1

1− t+ 1
n

e−c
′′| log(1−t+ 1

n )|dt =

∫ c+1/n

1/n

uc
′′−1du = O(1).
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