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Abstract

Position n points uniformly at random in the unit square S, and consider the Voronoi
tessellation of S corresponding to the set η of points. Toss a fair coin for each cell in
the tessellation to determine whether to colour the cell red or blue. Let HS denote
the event that there exists a red horizontal crossing of S in the resulting colouring. In
1999, Benjamini, Kalai and Schramm conjectured that knowing the tessellation, but
not the colouring, asymptotically gives no information as to whether the event HS

will occur or not. More precisely, since HS occurs with probability 1/2, by symmetry,
they conjectured that the conditional probabilities P(HS |η) converge in probability
to 1/2, as n → ∞. This conjecture was settled in 2016 by Ahlberg, Griffiths, Morris
and Tassion. In this paper we derive a stronger bound on the rate at which P(HS |η)
approaches its mean. As a consequence we strengthen the convergence in probability
to almost sure convergence.
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1 Introduction

In a seminal paper from 1999, Benjamini, Kalai and Schramm [6] introduced the
concept of noise sensitivity for Boolean functions. The study of sensitivity and stability
of Boolean functions rapidly grew into a new area of research, and two books cover
much of the early development [11, 14]. Benjamini, Kalai and Schramm [6] outlined
methods for the study of noise sensitivity, connecting noise sensitivity to influences of
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On the rate of convergence in quenched Voronoi percolation

bits and revealment of algorithms, and these methods remain central to this day. Using
these methods, the authors gave examples of noise sensitive Boolean functions, most
significantly functions encoding crossing events in Bernoulli percolation on Z2.

In [6], a set of conjectures was presented that has been leading much of the develop-
ment since. One of these conjectures concerned stronger quantitative bounds on the
noise sensitivity of crossings in Bernoulli percolation, which would have implications
for the study of so-called ‘exceptional times’ in dynamical percolation. Such bounds
were first obtained by Schramm and Steif [16], then by Garban, Pete and Schramm [10]
and more recently Tassion and Vanneuville [18]. In another direction, the study of noise
sensitivity was extended to percolation models in the continuum by Ahlberg, Broman,
Griffiths and Morris [2], Ahlberg and Baldasso [1], Vanneuville [21], and most recently
Last, Peccati and Yogeshwaran [12]. One of the conjectures from [6] concerned such a
continuum model, known as Voronoi percolation, and that conjecture has motivated the
current work.

Let S := [− 1
2 ,

1
2 ]2 be the unit square. Position n points independently and uniformly

at random in S. Let η denote the resulting set of positions. The Voronoi tessellation of S
with respect to η is the division (V (u))u∈η of S, where the cell V (u) consists of all point
of S closer to u than to any other point in η, i.e.

V (u) :=
{
x ∈ S : ‖u− x‖2 ≤ ‖v − x‖2 for every v ∈ η

}
,

where ‖ · ‖2 refers to Euclidean distance. Next, colour the cells of the tessellation ‘red’ or
‘blue’ with equal probability, independently of one another; denote by PS the resulting
measure. We denote by HS the event that there exists a red horizontal crossing in the
resulting colouring of S, i.e., a continuous path connecting the left-hand side of S to the
right-hand side and contained in the union of red cells.

A standard duality argument, due to the symmetry between red and blue, shows
that PS(HS) = 1/2. Benjamini, Kalai and Schramm [6] conjectured that knowing the
Voronoi tessellation, but not knowing the colouring of the cells, typically gives almost no
information of whether the colouring contains a red left-right crossing. More precisely,
they asked whether for every ε > 0 we have for all large n that

PS
(
|P(HS |η)− 1/2| > ε

)
< ε.

Ahlberg, Griffiths, Morris and Tassion [3] confirmed this conjecture. More precisely, they
showed that there exists c > 0 such that for all large n we have

PS
(
|P(HS |η)− 1/2| > n−c

)
< n−c. (1.1)

The approach of [3] would in fact still only give a bound of the form n−c for the
probability of a fixed deviation of P(HS |η) away from its mean. In this paper we prove a
stronger bound for the probability of a large deviation of this form, via estimates of its
moment generating function.

Theorem 1.1. There exists N ≥ 1 such that for all t > 0 and n ≥ N we have

PS
(
|P(HS |η)− 1/2| ≥ t

)
≤ 4 exp

(
− t e(log logn)2

)
.

As a straightforward corollary of the above theorem, which does not follow from the
work in [3], we obtain the following almost sure statement via the Borel-Cantelli Lemma.

Corollary 1.2. Suppose that we continue indefinitely to position points uniformly at
random in S. Then,

PS

(
lim
n→∞

P(HS |η) = 1/2
)

= 1.
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On the rate of convergence in quenched Voronoi percolation

Our method of proof is based on the same ideas that underlie the approach of [3].
However, the only results from [3] that we shall need are those in Sections 3.1 and 3.2
of that paper. In order to outline our method of proof, and to compare it to the approach
taken in [3], we shall proceed with a brief outline of noise sensitivity of Boolean functions.

1.1 Noise sensitivity of Boolean functions

A {0, 1}-valued function on the discrete cube {0, 1}n is known as a Boolean function.
There is a one-to-one correspondence between Boolean functions f : {0, 1}n → {0, 1}
and subsets of {0, 1}n via the mapping f 7→ {ω : f(ω) = 1}, and we shall henceforth
work with these subsets as it suits our purposes. We let P refer to uniform measure
on the discrete cube {0, 1}n, and E expectation with respect to P. (Note that this is
consistent with our convention to drop the subscript of PS when conditioning on η, as
the conditional measure corresponds to a uniform two-colouring of the tessellation.)

Given ω ∈ {0, 1}n we obtain a perturbation ωε of ω by independently re-randomizing
each bit with probability ε > 0. A sequence (An)n≥1 of events An ⊆ {0, 1}n, is said to be
noise sensitive if for every ε > 0, as n→∞,

E
[
1An(ω)1An(ωε)

]
− E

[
1An(ω)

]2 → 0.

One of the main achievements in [6] was the characterization of noise sensitivity for a
sequence of Boolean functions in terms of their influences. Given an event A ⊆ {0, 1}n we
define the influence of A with respect to the bits j = 1, 2, . . . , n as Infj(A) := P(1A(ω) 6=
1A(σjω)), where σj is the operator that replaces the jth bit ωj of ω by 1− ωj . A central
result in [6], which has come to be referred to as the BKS Theorem, states that a
sufficient condition for a sequence of events (An)n≥1 (or the sequence of indicators
corresponding to these events) to be noise sensitive is that

lim
n→∞

n∑
j=1

Infj(An)2 = 0. (1.2)

Also in [6], the authors devised a method based on algorithmic exploration of the bits
of ω, as a means to verify condition (1.2) in specific examples. This ‘algorithm method’
was later refined by Schramm and Steif [16]. A randomized algorithm is an algorithm
that sequentially queries bits of ω, and where the next bit queried is determined by some
probability measure depending on the information obtained thus far. An algorithm A is
said to determine an event A if, when the algorithm ends, it has determined whether
ω ∈ A or not. The revealment of A is defined as δ(A) := maxj P(A queries bit j). The
Revealment Theorem, due to Schramm and Steif [16], implies the following:1 For any
monotone event A ⊆ {0, 1}n and randomized algorithm A that determines A we have

n∑
j=1

Infj(A)2 ≤ δ(A). (1.3)

Combining (1.2) and (1.3) outlines the essence of the algorithm method from [6]: identi-
fication of an algorithm with low revealment that determines the event in question.

1.2 Outline of the argument

The approach taken in this paper is greatly inspired by that of [3]. One of the key
steps in the proof of (1.1) was an Efron-Stein-like inequality, linking the variance of

1Below, in the appendix, we offer a direct probabilistic proof of this version of the Revealment Theorem.
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P(HS |η) to the conditional influences of HS given η:

VarS
(
P(HS |η)

)
≤ ES

[∑
j∈η

Infj(HS |η)2
]
, (1.4)

where Infj(HS |η) := P
(
1HS (ω) 6= 1HS (σjω)|η

)
. Since the conditional measure P( · |η)

coincides with uniform measure on the discrete cube, (1.4) together with Chebyshev’s
inequality, allowed the authors of [3] to respond to the conjecture from [6] by describing
an algorithm with low revealment. Interestingly, it turns out that in order to do so, a key
ingredient is to show that, in the limit, the random variables P(HS |η) do not accumulate
mass at 0 or 1. That is, in order to prove that P(HS |η) approaches 1/2, a key first step
consists (roughly speaking, we will elaborate on this below) of proving that for every
ε > 0 there exists δ > 0 such that for all n ≥ 1

PS
(
P(HS |η) ∈ (δ, 1− δ)

)
> 1− ε. (1.5)

Once (1.1) has been obtained, it is tempting to try to repeat the argument, replac-
ing (1.5) by the sharper bound in (1.1), in order to obtain a stronger result. However,
since the sum of influences squared, with high probability, will decay at the inverse rate
of a low-degree polynomial, the inequality in (1.4) is unable to improve upon (1.1). To
improve upon (1.1), we will need a replacement for (1.4).

Our proof of Theorem 1.1 will consist of two main components. The first is a bound
on the sum of influences squared by means of an algorithm with low revealment. This
step is similar to the analogous step in [3], but more carefully quantified to serve our
needs. The second component is an exponential inequality, which substitutes (1.4), and
is derived via an estimate on the moment generating function of P(HS |η). The bound in
Theorem 1.1 will be obtained by iterated use of the above two steps. Already the first
iteration yields an improvement to (1.1), with a bound decaying at the inverse rate of an
arbitrarily high-degree polynomial, and an induction argument strengthens the bound
further.

There are two complications arising from the above iterative scheme. One of these
relates to the fact that the expression in (1.5) is not quite the input required to obtain
a bound on the revealment of a suitable algorithm. Instead we require the analogous
statement for P(HR|η), where R ⊆ S is a rectangle of aspect ratio 3 : 1. That means that
we will need to work in a greater generality in order to produce an output that can feed
into the next stage of the iteration. That is, in order to prove Theorem 1.1, we shall in
fact be required to prove a more general statement.

Given a rectangle R ⊆ R2 we let PR denote the probability measure corresponding
to the positioning n points uniformly at random in R, independently from one another,
and the subsequent uniform two-colouring the Voronoi cells with respect to the set of
points η. (The dependence on n is suppressed from the notation as we believe that no
confusion will arise.) In particular, for ρ > 0 and n ≥ 1, we let

R(ρ, n) :=
[
− 1

2

√
ρn,

1

2

√
ρn
]
×
[
− 1

2

√
n/ρ,

1

2

√
n/ρ

]
denote the rectangle with aspect ratio ρ and area n centered at the origin, and let
R(ρ) := R(ρ, 1).

We shall prove the following theorem.

Theorem 1.3. For every θ > 0 there exists N = N(θ) such that for every ρ ∈ [θ, 1/θ],
n ≥ N(θ) and t > 0 we have for any (axis parallel) rectangle R′ ⊆ R(ρ) of area at least θ
that

PR(ρ)

(
|P(HR′ |η)− PR(ρ)(HR′)| ≥ t

)
≤ 4 exp

(
− t e(log logn)2

)
.
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Note that Theorem 1.1 is obtained from Theorem 1.3 for ρ = 1 and R′ = R(1) = S. We
remark that a similar (but weaker) extension from squares to rectangles was obtained
also in [3].

The other complication of the iterative scheme is that the two pillars of the argument
are most easily derived in somewhat different settings. The step in which we bound the
sum of influences squared by means of a low-revealment algorithm is most conveniently
carried out when η is obtained as the positions of a Poisson point process on R2, due to
the spatial independence between disjoint regions. The step in which the bound on the
sum of influences squared is transformed into a bound on the deviations of P(HR|η) from
its mean will, on the other hand, be carried out for η consisting of n independent points.
That is, we shall be working with two different, but closely related, models. Alternatively,
which will facilitate comparison between the two models, it will be convenient to think
of them as two probability measures associated to the same measurable space.2

1.3 Poisson Voronoi percolation

In Poisson Voronoi percolation, R2 is partitioned into an ‘occupied’ and ‘vacant’ set
based on a two-colouring of the Voronoi tessellation of a unit rate Poisson point process.

Henceforth, we shall refer to the measure PR, in which η consists of n independently
chosen uniform positions in R, as the binomial model. Moreover, we let P∗ denote the
measure associated to a unit rate Poisson point process η on R2, and the subsequent
‘uniform’ two-colouring (more precisely, the cells are equally likely to be either red or
blue, independently of one another) of the Voronoi tessellation with respect to η, and refer
to this as the Poisson model. The two measures PR and P∗, on the measurable space we
can denote by (Ω,F), are supported on finite and infinite configurations η, respectively.
In either case, and for any rectangle R′, the event HR′ refers to the existence of a red
left-right crossing of R′ in the Voronoi tessellation of R2 with respect to η.

A fundamental theorem of Bollobás and Riordan [7] shows that the uniform colouring
is ‘critical’ for Poisson Voronoi percolation. Clearly, the existence of a left-right crossing
of a square has probability 1/2 for uniform colourings, and in [7] the authors showed
that, for non-uniform colourings, this probability tends rapidly to either zero or one as
the side length of the square increases. Building on their work, Tassion [17] established
a ‘box-crossing property’, showing that for every θ > 0 there exists c = c(θ) > 0 such
that for all ρ ∈ [θ, 1/θ] and n ≥ 1

c < P∗
(
HR(ρ,n)

)
< 1− c. (1.6)

We shall in this paper need to compare the binomial model to the Poisson models.
The need for comparison between the two models arose already in [3], but we shall here
need to be more careful as we shall need to pass back and forth between them repeatedly.
As a consequence of these comparison lemmas, which are presented in Section 2, we
will obtain from Theorem 1.3 an analogous result for Poisson Voronoi percolation.

Theorem 1.4. For every θ > 0 there exists N = N(θ) such that for every ρ ∈ [θ, 1/θ],
n ≥ N(θ) and t > 0 we have that

P∗
(
|P(HR(ρ,n)|η)− P∗(HR(ρ,n))| ≥ t

)
≤ 6 exp

(
− t e(log logn)2

)
.

Together with (1.6) we obtain from the above theorem that the quenched crossing
probabilities, in the Voronoi model, are bounded away from zero and one. (An analogous
statement can be deduced for the binomial model from Theorem 1.3 together with

2We have not been explicit what this measurable space is, but one can think of it as the space of locally
finite subsets of R2, or more formally as the space of locally finite counting measures on R2, equipped with a
suitable σ-algebra; see e.g. [13] for details.
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Proposition 3.1 below.) In fact, in Corollary 8.1 we prove the slightly sharper result that
for ρ ∈ [θ, 1/θ] and all large n we have

P∗
(
c/2 < P(HR(ρ,n)|η) < 1− c/2

)
≥ 1− exp

(
− e(log logn)2

)
.

A weaker bound of this kind was obtained already in [3], and put to use in the work
of Vanneuville [19, 20, 21] in a further study of quenched and annealed properties of
Poisson Voronoi percolation.

1.4 Spectral techniques, a brief comment

It is worth to mention that most studies of noise sensitivity in percolation has up
to this point (in part) rested upon spectral techniques and discrete Fourier analysis.
Spectral techniques is the basis for both the BKS Theorem and the original Schramm-
Steif Revealment Theorem (which we haven’t stated in full here), and consequently for
any study of noise sensitivity that rests on either of these two results. While spectral
techniques have proven to be very powerful, their strength sometimes come at the
cost of intuition. The first proof of noise sensitivity for Bernoulli percolation on Z2

without the use of spectral techniques came only recently, in the work of Tassion and
Vanneuville [18].

In the appendix we provide a proof of the version of the Revealment Theorem stated
in (1.3) which is probabilistic in nature. We emphasise that this version of the theorem
is weaker than the original, and on its own not sufficient to prove noise sensitivity e.g.
for Bernoulli percolation on Z2. However, this version of the Revealment Theorem
was sufficient, together with the variance-influence bound in (1.4), to settle the noise-
related conjecture regarding Voronoi percolation from [6]. Together with an exponential
inequality substituting (1.4), this version of the Revealment Theorem will be sufficient
also here. Hence, there proofs or the results of this paper, as well as the main results
of [3], are probabilistic in nature and does not rely on spectral techniques.

1.5 Open problems

The conjecture from [6], which has inspiered this work, concerns Poisson Voronoi
percolation in R2. There are other natural and well-studied models for percolation in
the continuum for which similar conjectures could be posed, e.g. Poisson Boolean and
confetti percolation. Let us exemplify what such a conjecture would entail in the context
of Boolean percolation.

Consider a Poisson point process of intensity λ > 0 in R2. Centered at the points
we place discs with radii drawn independently from some probability distribution. (The
radii could, for instance, take the values 1 and 2 with equal probability.) It is well-known
that there exists a critical value λc ∈ (0,∞) at which the probability of a horizontal
crossing of a large square consisting of overlapping discs remains bounded away from
zero and one; see [4]. In analogy to the results reported on here, we conjecture that
given the positions of the points, but not the radii of the discs, we have asymptotically
no information of whether a large square is crossed or not.

While most of the techniques of this paper and [3] should apply also to Poisson
Boolean percolation, settling the conjecture remains an open problem in this setting.
The main reason for this is that we are currently unaware of how to carry out the key
first step that corresponds to proving a version3 of (1.5). The proof (see [3, Section 3])
in the context of Voronoi percolation crucially rests on a colour-switching argument that
does not translate easily to Boolean or confetti percolation.

3For a precise statement of the version of (1.5) proved in [3], see (3.3)-(3.4) below.
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1.6 Outline of the paper

The remainder of this paper is organized as follows. In Section 2, we establish some
lemmas that will allow us to pass between the two models. In Section 3, we discuss
the box-crossing property for Poisson Voronoi percolation on which our work builds. In
Section 4, we provide the first of the two main pillars that our argument builds, and
provide a bound on the sum of influences squared via the analysis of an algorithm with
low revealment. In Section 5, we provide the second pillar, deducing a bound on the
deviations of P(HR|η) from its mean via the bound on the sum of influences squared and
an exponential inequality improving upon (1.4).

In Section 6, we first prove a preliminary version of Theorem 1.3 for rectangles
R′ ⊆ R that are contained strictly within R, and in Section 7, we prove a preliminary
version of Theorem 1.3 for arbitrary R′ ⊆ R. It is not essential to first consider rectangles
in the bulk of R in Section 6, and then arbitrary rectangles in Section 7, but we believe
that it will make the presentation easier to follow. In Section 8, we complete the proof of
Theorem 1.3 as a corollary of the result obtained in Section 7. Finally, in Section 9 we
prove Theorem 1.4, the analogous result in the Poisson version of the model.

2 Comparison between the two models

In this section we will prove a few lemmas comparing the binomial distribution to
the Poisson distribution. Although the lemmas merely compare the two distributions,
they will be used to compare the two models PR and P∗, and are therefore stated in
these terms. We shall generally make this comparison with R being a rectangle of area
n, because in this case, n, the number of points in the PR model is equal to the expected
number of points in the Poisson model P∗.

Let R′ ⊆ R be two rectangles. We will let FR′ denote the sub-σ-algebra of events that
are measurable with respect to the restriction of η to R′. Let Am denote the event that
the restriction of η to R′ has size m, i.e. Am := {|η ∩R′| = m}. Note, in particular, that
for any m = 0, 1, . . . , n the conditional measures PR( · |Am) and P∗( · |Am) coincide on
FR′ . This will be used repeatedly below, and we will simply write P( · |Am) for either of
the two.

Our first lemma gives an upper bound on the probability in the binomial model as a
multiple of that of the Poisson model, and states that the two probabilities differ by o(1)

as n→∞.

Lemma 2.1. Let R be any rectangle of area n and let R′ ⊆ R be any rectangle of area
n/2. For any event E ∈ FR′ we have

PR(E) ≤ 2P∗(E).

Proof. We will show, for all m = 0, 1, ..., n, that

PR(Am) ≤ 2P∗(Am). (2.1)

From (2.1) it follows that

PR(E) =

n∑
m=0

P(E|Am)PR(Am) ≤ 2

n∑
m=0

P(E|Am)P∗(Am) ≤ 2P∗(E).

We thus prove (2.1).
Note that since R′ has area n/2, which is half of that of R, we have

πm :=
PR(Am)

P∗(Am)
=

(
n

m

)
2−nm!

(n/2)me−n/2
=

n!

(n−m)!

en/2

2n−mnm
. (2.2)
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Note further that for m ≥ n/2 we have

πm+1

πm
= 2

n−m
n

≤ 1,

so πm takes it maximum for m ≤ n/2. Moreover, for m ≤ n/2, Stirling approximation
gives

πm≤
e√
2π

( n

n−m

)n−m+1/2 en/2−m

2n−m
≤ e√

2π

√
n

n−m

(
1− n/2−m

n−m

)n−m
en/2−m ≤ e√

π
≤2,

where we in the second-to-last step have used that (1− x) ≤ e−x. This proves (2.1).

The next lemma provides a bound in the opposite direction.

Lemma 2.2. Let R be any rectangle of area n and let R′ ⊂ R be any rectangle of area
n/2. For every E ∈ FR′ and n ≥ 36/P∗(E) we have

PR(E) ≥ P
∗(E)

4
e−3/P

∗(E).

Proof. Let 0 < a ≤
√
n/6 be a constant and let I := {m ∈ N : |m − n/2| ≤ a

√
n}. Then

Chebyshev’s inequality gives

P∗
( ⋃
m6∈I

Am

)
= P∗

(∣∣|η ∩R′| − n/2∣∣ > a
√
n
)
≤ 1

2a2
. (2.3)

We will show that for m ∈ I and a ≤
√
n/6 we have

PR(Am) ≥ 1

2
e−3a

2

P∗(Am). (2.4)

From (2.3) and (2.4) it follows that

PR(E) =

n∑
m=1

P(E|Am)PR(Am) ≥ 1

2
e−3a

2 ∑
m∈I

P(E|Am)P∗(Am) ≥ 1

2
e−3a

2
(
P∗(E)− 1

2a2

)
.

Setting a = P∗(E)−1/2 then gives the claimed bound for n ≥ 36/P∗(E).
Recall the definition of πm in (2.2). Stirling approximation similarly gives the lower

bound

πm ≥
√

2π

e

√
n

n−m

(
1− n/2−m

n−m

)n−m
en/2−m.

Using that 1− x ≥ exp(−x2 − x) for x ≤ 1/2, we obtain for m ∈ I and
√
n ≥ 6a that

πm ≥
√

2π

e
exp

(
− (n/2−m)2

n−m

)
≥
√

2π

e
exp

(
− a2n

n/2− a
√
n

)
≥
√

2π

e
exp(−3a2),

which proves (2.4).

Our final lemma gives a bound on the Poisson model in terms of the binomial model.

Lemma 2.3. For every rectangle R, E ∈ FR and N ≥ 1 we have

P∗(E) ≤ sup
n≥N

PR(E) + P∗(|η ∩R| < N).

Proof. This time, we let Bn := {|η ∩R| = n}. Then,

P∗(E) =
∑
n≥0

P(E|Bn)P∗(Bn) =
∑
n≥0

PR(E)P∗(Bn) ≤ sup
n≥N

PR(E) + P∗
( ⋃
n<N

Bn

)
,

as required.
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3 Crossing probabilities

RSW techniques, which make it possible to extend a crossing of a square to a crossing
of a rectangle, are central in order to understand critical behaviour of planar percolation
models. For Voronoi percolation, an RSW theory was developed by Tassion [17], building
on preliminary work of Bollobás and Riordan [7]. As a consequence, Tassion [17] derived
the box-crossing property for Poisson Voronoi percolation on R2, saying that for every
θ > 0 there exists c = c(θ) > 0 such that for all ρ ∈ [θ, 1/θ] and n ≥ 1

c < P∗
(
HR(ρ,n)

)
< 1− c. (3.1)

The box-crossing property was extended in [3] to tessellations of the half-plane H :=

[0,∞)×R, in which boundary effects arise. Let

R0(ρ, n) :=
[
0,
√
ρn
]
×
[
− 1

2

√
n/ρ,

1

2

√
n/ρ

]
denote the rectangle R(ρ, n) shifted so that its left side coincides with the vertical axis,
and for every R ⊆ H let H∗R denote the event of a red horizontal crossing of R with
respect to the Voronoi tessellation generated by the restriction of η to H. In [3], it was
proven that for every θ > 0 there exists c′ = c′(θ) > 0 such that for all ρ ∈ [θ, 1/θ] and
n ≥ 1

c′ < P∗
(
H∗R0(ρ,n)

)
< 1− c′. (3.2)

As mentioned in the introduction, as a key step in settling the conjecture from [6],
the authors of [3] derived a preliminary ‘quenched’ box-crossing estimate: For every
θ > 0 and ε > 0 there exists δ > 0 such that for all ρ ∈ [θ, 1/θ] and n ≥ 1

P∗
(
P
(
HR(ρ,n)|η

)
∈ (δ, 1− δ)

)
> 1− ε. (3.3)

The analogous statement was shown to hold also for the half-plane, in that for every
θ > 0 and ε > 0 there exists δ > 0 such that for all ρ ∈ [θ, 1/θ] and n ≥ 1

P∗
(
P
(
H∗R0(ρ,n)

|η
)
∈ (δ, 1− δ)

)
> 1− ε. (3.4)

The estimates in (3.3) and (3.4) will be key also in the present paper, and will be used to
get the induction argument, in the proof of our main theorem, started.

The box-crossing property for the half-plane (that is (3.2)) effectively provides infor-
mation about tessellations of other subsets of R2. We illustrate this fact, and the use
of the comparison lemmas from the previous section, by establishing a box-crossing
property for the binomial model.

Proposition 3.1. For every θ > 0 there exists c′′ = c′′(θ) and K = K(θ) such that for all
ρ ∈ [θ, 1/θ], n ≥ K and (axis parallel) rectangle R′ ⊆ R(ρ) of area at least θ we have

c′′ < PR(ρ)

(
HR′

)
< 1− c′′.

Proof. We will consider tessellations of R(ρ, n) is order to allow for comparisons between
PR(ρ,n) and P∗. Given a rectangle R ⊆ R(ρ, n), let H∗∗R denote the event of a red
horizontal crossing of R, and V ∗∗R the event of a red vertical crossing of R, in the Voronoi
tessellation of the restriction of η to R(ρ, n).

In the tessellation of a rectangle, we will see boundary effects from its four sides.
The restriction of this tessellation to a rectangle R′ ⊆ R(ρ, n) that is aligned with e.g.
the left side of R(ρ, n), but do not touch the other three sides of R(ρ, n), will (for large n)
coincide with that of a half-plane. This will allow us to deduce the claim of the proposition
from (3.2).
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We shall first consider R′ of the form R′ = [− 1
2

√
ρn, 12

√
ρn]×[−a2

√
n/ρ, a2

√
n/ρ], where

a ∈ (0, 1/4), and a < ρ is a fixed constant. Denote by S′ the square [−a2
√
n/ρ, a2

√
n/ρ]2,

and denote by R′1 the rectangle [− 1
2

√
ρn, a2

√
n/ρ]× [−a2

√
n/ρ, a2

√
n/ρ] and R′2 the reflec-

tion of R′1 in the vertical axis. Note that a red horizontal crossing of each of R′1 and R′2,
together with a red vertical crossing of S′, results in a red horizontal crossing of R′. That
is,

H∗∗R′1 ∩H
∗∗
R′2
∩ V ∗∗S′ ⊆ H∗∗R′ ,

so that by the FKG-inequality for Poisson Voronoi percolation (see e.g. [8, Lemma 8.3])

P∗
(
H∗∗R′

)
≥ P∗

(
H∗∗R′1

)
P∗
(
H∗∗R′2

)
P∗
(
V ∗∗S′

)
= P∗

(
H∗∗R′1

)2
P∗
(
V ∗∗S′

)
. (3.5)

Next, cover4 S′ by at most 2a2
√
n/ρ squares of area

√
n, and let En denote the event

that each square in the covering contains a point of η. Note that on En, the events VS′

and V ∗∗S′ are determined by the restriction of η to a 2n1/4-neighbourhood of S′, and thus
coincide. It follows that

P∗
(
V ∗∗S′

)
≥ P∗

(
V ∗∗S′ ∩ En

)
= P∗

(
VS′ ∩ En

)
≥ P∗

(
VS′
)
− P∗(En) ≥ 1

2
− 2a2

ρ

√
ne−

√
n ≥ 1

4
,

for large n (depending on a). An analogous argument, together with (3.2), shows that
there exists c′ = c′(a, θ) > 0 such that P∗(H∗∗R′1

) ≥ c′/2 for large n (depending on a and θ).

By (3.5) we obtain that P∗(H∗∗R′ ) ≥ (c′/2)2/4 for all large n.
Finally, we cover R′ by at most 2a

√
n squares of area

√
n, and let Fn denote the event

that each square in the cover contains a point of η. Again, P∗(H∗∗R′ ∩ Fn) ≥ (c′)2/32 for
large n, and Lemma 2.2 gives

PR(ρ,n)

(
HR′

)
= PR(ρ,n)

(
H∗∗R′

)
≥ PR(ρ,n)

(
H∗∗R′ ∩ Fn

)
≥ c′′,

where c′′ := (c′)2

128 e
−96/(c′)2 .

We have now established the lower bound of the proposition for R′ as defined
above. The same proof gives the same lower bound also for vertical translates R′′ =

(0, b2
√
n/ρ) +R′ of R′, as long as b ∈ [−(1− 2a), 1− 2a], so that R′′ do not touch the top or

bottom of R(ρ, n). Since for any rectangle R ⊆ R(ρ, n) of area at least θ will may choose
a and b (with a > 0 uniformly) such that a horizontal crossing of R′′ implies a horizontal
crossing of R, this establishes the lower bound of the proposition.

The upper bound follows from an analogous argument, by considering vertical cross-
ings of R(ρ, n).

4 Bound on the sum of influences squared

In this section we show how to obtain a bound on the sum of influences squared from
a bound on the crossing probability of a rectangle. We will follow a standard approach,
and our exposition is close to that of [3], with the exception that we quantify with greater
care the error bounds obtained.

Proposition 4.1. Suppose that there exist constants c, α > 0 and k, L ≥ 1 such that for
all n ≥ L

P∗
(
c < P(HR(3,n)|η) < 1− c

)
≥ 1− e−α(logn)

k

. (4.1)

Then, for every θ ∈ (0, 1), there exist constants ε = ε(c), L′ = L′(α, k) and L′′ = L′′(θ)

such that for all ρ ∈ [θ, 1/θ] and n ≥ max{L2, L′, L′′}

PR(ρ)

( n∑
j=1

Infj
(
HR(ρ,1/4)|η

)2 ≥ n−ε) ≤ e− α
200 (logn)

k+1

.

4By a covering of a set S ⊆ R2 we refer to a collection of subsets of S whose union equals S.
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Remark 4.2. In applications of Proposition 4.1 the maximum will generally be obtained
by the L2, so that we may take n = L2. See Remark 4.7 for details.

To prove the proposition, we will rely on the Revealment Theorem from [16] to bound
the sum of influences squared in terms of the revealment of a random algorithm. To
bound the revealment we need the following bound on the so-called one-arm event. Let
B(u, d) denote the `∞-ball u+ [−d, d]2, centered at u with radius d. Let Vu(a, b) denote
the event that there is a red path (contained in R(ρ, n)) connecting B(u, a) to B(u, b)c.

Lemma 4.3. Suppose that there exist constants c, α > 0 and k, L ≥ 1 such that (4.1)
holds for all n ≥ L. Then, there exist constants ε = ε(c), L′(α, k) and L′′(θ) such
that the following holds: For every ρ ∈ [θ, 1/θ] and u ∈ R(ρ, n/4) we have for n ≥
max{L2, L′(α, k), L′′(θ)} that

PR(ρ,n)

(
P
(
Vu(n1/4, n1/3)

∣∣η) ≥ n−ε) ≤ e− α
100 (logn)

k+1

.

As mentioned above, it will sometimes be convenient to work with the Poisson model,
due to its spatial independence property. For this reason we shall work with the Poisson
model for the bulk of the proof of the lemma. However, to better fit our later needs,
we convert to the binomial model in the end of the proof. To facilitate the comparison
between the two models, the lemma is stated in terms of a rectangle of area n.

Proof of Lemma 4.3. Fix u ∈ R(ρ, n/4). For each j ∈ N, let Aj denote the square
annulus, centered at u, with inner side-length 7j and outer side-length 3 · 7j , so that
Aj = u+[− 3

27j , 327j ]\[− 1
27j , 127j ]. Let Oj be the event that there is no red path connecting

the inner and outer boundaries of the annulus Aj , which by duality means that there
exists a blue circuit in Aj surrounding u. Let

J :=
{
j ∈ N : n1/4 ≤ 7j ≤ 1

2
n1/3

}
.

For j ∈ J , let D′j denote the event that P(Oj |η) > c4, where c > 0 is the constant
in (4.1), and let D′′j denote the event that for every z ∈ Aj there exists some point in η at

`2-distance at most n1/6 from z. Let

Dj := D′j ∩D′′j ,

and note that the events Dj are independent with respect to the Poisson model; Dj

depends on the restriction of η to a n1/6-neighbourhood of Aj , and for different j these
regions are disjoint.

For later reference, we specify L′(α, k) to be the least integer such that for all
n ≥ L′(α, k) we have

18n1/3 ≤ e 1
4n

1/3

and 3000 ≤ α(log n)k ≤ 1

4
n1/3. (4.2)

Next, observe that Aj can be covered by 4 rectangles with aspect ratio 3 : 1, in such a
way that (blue) crossings of each of these rectangles imply a (blue) circuit in Aj . Thus,
by the (Harris-)FKG inequality, combined with condition (4.1) and the union bound, we
have

P∗
(
P(Oj |η) ≤ c4

)
≤ 4e−α(logn)

k

for all n ≥ L2. (Note that for n ≥ L2 the area 3 · 72j ≥ 3n1/2 of each of these rectangles
exceeds L). We further observe that we may cover5 Aj by at most 18n1/3 squares of area

5Recall that by a covering of a set A ⊆ R2 we refer to a collection of subsets of A whose union equals A.
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1
2n

1/3, and that the event D′′j may fail only if one of these squares contains no point of η.
Consequently, using the union bound, we have

P∗(D′′j ) ≥ 1− 18n1/3e−
1
2n

1/3

≥ 1− e− 1
4n

1/3

≥ 1− e−α(logn)
k

, (4.3)

for all n ≥ L′(α, k). So, P∗(Dj) ≥ 1− 5e−α(logn)
k

, for n ≥ max{L2, L′(α, k)}.
Let J∗ = J∗(η) denote the subset of indices j ∈ J for which the event Dj occurs, and

let D∗ be the event that |J∗| ≥ |J |/2. Since |J | ≥ 1
24 log n, we have on the event D∗ that

P
(
Vu(n1/4, n1/3)|η

)
≤P

( ⋂
j∈J

Ocj

∣∣∣∣ η)≤P( ⋂
j∈J∗

Ocj

∣∣∣∣ η)=
∏
j∈J∗

P(Ocj |η)≤(1− c4)|J|/2≤n−ε,

for some ε = ε(c) > 0. Moreover, since the events Dj are independent with respect to
P∗, we have

P∗(D∗) ≥ 1− 2|J|
(
5e−α(logn)

k)|J|/2 ≥ 1− 20
1
48 logne−

α
48 (logn)

k+1

≥ 1− e− α
96 (logn)

k+1

, (4.4)

for all n ≥ max{L2, L′(α, k)} (so that, in particular, α(log n)k ≥ 6).
Finally, observe that, for some L′′(θ), we have D∗ ∈ FR(ρ,n/2) for n ≥ L′′(θ) (taking

n ≥ (16/θ)2 will suffice uniformly over ρ ∈ [θ, 1/θ]). By Lemma 2.1 we thus obtain (by the
choice of L′(α, k)) that

PR(ρ,n)

(
D∗
)
≥ 1− 2e−

α
96 (logn)

k+1

≥ 1− e− α
100 (logn)

k+1

,

for all n ≥ max{L2, L′(α, k), L′′(θ)}.

Proof of Proposition 4.1. We will rely on the Schramm-Steif Revealment Theorem, as
stated in (1.3). To this end, let η ∼ PR(ρ) be a set of n points. Suppose that A is a
random algorithm that, given η, queries the cells of the Voronoi tiling for their colour.
We shall denote by δ(A|η) the (conditional) revealment of A with respect to P( · |η). If
A determines whether the event HR(ρ,1/4) has occurred or not (with probability one),
then (1.3) gives that, almost surely,

n∑
j=1

Infj
(
HR(ρ,1/4)|η

)2 ≤ δ(A|η). (4.5)

The algorithm that we describe next is a version, due to Gady Kozma, of the algorithm
devised in [6], which we have further adapted to the continuum.

Definition 4.4 (The BKS-Kozma algorithm). Let A be the algorithm that, given η, queries
the cells of the Voronoi tessellation of R(ρ) for their colour, in order to detect a crossing
of R(ρ, 1/4), as follows:

(i) Choose a point in the middle third of the top side of R(ρ, 1/4) uniformly at random,
and let ` denote the vertical line segment that connects that point to the bottom
side of R(ρ, 1/4). Query every cell that intersects `, and declare these cells
explored.

(ii) Query any unexplored cell that has non-empty intersection with R(ρ, 1/4), and
that is adjacent to a previously explored red cell. Repeat this step until no further
cells of this kind exist.

Note that the algorithm detects all cells that are connected (within R(ρ, 1/4)) to the
line segment ` by a red path. In particular, the algorithm determines whether HR(ρ,1/4)

occurs or not.
The revealment of the above algorithm relates to the one-arm event in the following

sense. Cover R(ρ, 1/4) by m ≤ 8
√
n squares of area 1/(8

√
n), and let u1, u2, . . . , um

denote the centers of these squares.
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Claim 4.5. There exists L′′′ = L′′′(θ) so that for n ≥ L′′′, with probability at least
1− exp(−

√
n/16), we have

δ(A|η) ≤ max
1≤j≤m

P
(
Vuj (n

−1/4, n−1/6)
∣∣η)+O(n−1/6). (4.6)

Proof of claim. Let En be the event that every cell in the Voronoi tessellation of R(ρ) has
radius at most 1

2n
−1/4. We shall prove that (4.6) holds on the event En, and then bound

the probability that En fails.
On the event En, we argue that the probability for the cell of a point u ∈ η to be

queried is at most P
(
Vuj (n

−1/4, n−1/6)
∣∣η)+O(n−1/6), where uj is the center of the square

which contains u (according to the above covering of R(ρ, 1/4)). Indeed, either u is within
distance 2n−1/6 of `, which occurs with (conditional) probability at most O(n−1/6), or
there is a red path from a neighbouring cell of u to `. Since the cell of u has radius at
most 1

2n
−1/4, this implies that the event Vuj (n

−1/4, n−1/6) occurs, which has probability
P(Vuj (n

−1/4, n−1/6)|η), as required.
It remains to bound the probability that En fails. So, extend the covering of R(ρ, 1/4)

to a covering of squares of all of R(ρ) consisting of at most 16
√
n squares of area 1/(8

√
n).

Note that En occurs if each square in the covering of R(ρ) contains a point of η. A given
square is empty with PR(ρ)-probability(

1− 1/(8
√
n)
)n ≤ exp(−

√
n/8).

Hence, the conclusion of the lemma follows by the union bound, for large n.

Using Claim 4.5 and Lemma 4.3 we obtain the following bound on the revealment of
A: There exists ε = ε(c) < 1/6 such that

PR(ρ)

(
δ(A|η) > 2n−ε

)
≤ PR(ρ)

(
max

1≤j≤m
P
(
Vuj (n

−1/4, n−1/6)
∣∣η) > n−ε

)
+ e−

√
n/16

≤
m∑
j=1

PR(ρ)

(
P
(
Vuj (n

−1/4, n−1/6)
∣∣η) > n−ε

)
+ e−

√
n/16

≤ (8
√
n+ 1) exp

(
− α

100
(log n)k+1

)
,

for n ≥ max{L2, L′(α, k), L′′(θ), L′′′(θ)}. Using (4.2), the conclusion follows from (4.5).

Remark 4.6. Proposition 4.1 is stated for k ≥ 1, but holds also for k = 0 provided that
α ≥ 6, in order for (4.4) to hold.

Remark 4.7. Recall that L′(α, k) was defined as the least integer such that (4.2) holds
for all n ≥ L′(α, k). We shall later apply Proposition 4.1 iteratively, with α and L of

the form α = γk−1 and L = N2k−1

, where γ ∈ (0, 1) and N ≥ 1 are constants. For the
iterative scheme to be useful, we need to control the rate at which L′(γk−1, k) grows
with k. We claim that for every γ ∈ (0, 1) there exists N ≥ 1 such that

L′(γk−1, k) ≤ N2k−1

for all k ≥ 1. (4.7)

In order to verify (4.7), note that for the lower inequality in (4.2) it will suffice that
γ logN ≥ 3000. We claim that if N is the least integer such that logN ≥ 96, then also
4(log n)k ≤ n1/3 holds for all k ≥ 1 and n ≥ N2k−1

. Indeed, for n = N2k−1

the left-hand
side is bounded by 2k(k−1)+5k+2, whereas the right-hand side is at least

exp
(1

3
2k−1 logN

)
≥ exp(2k+4) ≥ (2k+4)2k

(2k)!
≥ 22k

2+4k 2k+4

(2k)2k
≥ 2k(k−1)+5k+2.
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Moreover, increasing n by a factor c increases the right-hand side by a factor c1/3,
whereas the left-hand side increases by a factor(

1 +
log c

log n

)k
≤ exp

(
k

log c

log n

)
≤ exp

( log c

logN

)
≤ exp

( 1

32
log c

)
= c1/32.

This shows that, for any γ ∈ (0, 1), there exists N = N(γ) such that L′(γk−1, k) ≤ N2k−1

.

5 Improved bound on deviations from the mean

In this section we will revisit the relation between variance and influence that in [3]
led to the Efron-Stein-like inequality in (1.4). We shall here aim for an exponential version
of (1.4) by estimating the moment generating function of the conditional probability of
crossing a rectangle.

Proposition 5.1. Let ρ ∈ (0,∞) be fixed and let R′ be any rectangle contained in R(ρ).
Note that R(1/ρ) is the rectangle obtained from R(ρ) by rotating the plane by π/2, and
let R′′ be the rectangle obtained from R′ by the same rotation. Suppose that there exist
ε, β > 0 and k,M ≥ 1 such that for all n ≥M

PR(ρ)

( n∑
j=1

Infj(HR′ |η)2 ≥ n−ε
)
≤ e−β(logn)

k

, (5.1)

PR(1/ρ)

( n∑
j=1

Infj(HR′′ |η)2 ≥ n−ε
)
≤ e−β(logn)

k

. (5.2)

Then, there exists M ′ = M ′(ε, β, k) such that for all n ≥ max{M,M ′} and t > 0 we have

PR(ρ)

(∣∣P(HR′ |η)− PR(ρ)(HR′)
∣∣ ≥ t) ≤ 4 exp

(
− t β

4
(log n)k

)
.

In order to describe our approach, let Z be any random variable whose moment
generating function E[eλZ ] exists (at least for small λ > 0). Define for λ > 0 the function

F (λ) := E
[
eλ(Z−E[Z])

]
.

Then, Markov’s inequality yields the bound

P
(
Z − E[Z] ≥ t

)
≤ F (λ) · e−λt, for λ > 0.

This expression is the basis for various Chernoff-like concentration bounds. With Z :=

P(HR′ |η), our aim will be to show that F is bounded for suitable values of λ > 0, based
on the relation between variance and influence explored in [3]. That is, we will aim
to specify λ (as a function of n) as large as we can, while F (λ) remains bounded by a
constant. This approach is in [9] accredited to Aida and Stroock [5], and our presentation
is influenced by the exposition in [9, pages 70-71].

Lemma 5.2. Let Z := P(HR′ |η). For all λ > 0 we have

VarR(ρ)

(
eλZ/2

)
≤ λ2

4
ER(ρ)

[
eλZ

n∑
j=1

eλ·Infj(HR′ |η)Infj(HR′ |η)2
]
. (5.3)

Proof. Label the points in η arbitrarily by η1, η2, . . . , ηn, and let Fm be the σ-algebra
generated by the positions (which are independent and uniform within R(ρ)) of the
first m points. Consider the martingale (qm)m=1,2,...,n where qm := E

[
eλZ/2|Fm

]
. By

independence of martingale increments we have

VarR(ρ)

(
eλZ/2

)
=

n∑
m=1

VarR(ρ)

(
qm − qm−1

)
. (5.4)
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Write η− for the configuration obtained from η when ηm is removed, and let Z− :=

P(HR′ |η−). That is, Z− is the conditional probability that the colouring of the tessellation
based on the n − 1 points in η− results in a red crossing of R′. Following [3], we next
claim that

VarR(ρ)

(
qm − qm−1

)
≤ ER(ρ)

[(
eλZ/2 − eλZ

−/2
)2]

. (5.5)

To see this, note that by conditioning on Fm−1, the conditional variance formula gives

VarR(ρ)

(
qm − qm−1

)
= ER(ρ)

[
Var(qm|Fm−1)

]
.

Moreover,

Var(qm|Fm−1) = Var
(
E
[
eλZ/2 − eλZ

−/2
∣∣Fm]∣∣∣Fm−1) ≤ E[E[eλZ/2 − eλZ−/2∣∣Fm]2∣∣∣Fm−1],

which by Jensen’s inequality is at most E
[
(eλZ/2 − eλZ−/2)2

∣∣Fm−1], and (5.5) follows.
We next claim that, almost surely, for all λ > 0

∣∣eλZ/2 − eλZ−/2∣∣ ≤ λ

2
eλZ/2 eλ·Infm(HR′ |η)/2 Infm(HR′ |η). (5.6)

To see this, first observe that, almost surely,

|Z − Z−| = |P(HR′ |η)− P(HR′ |η−)| ≤ Infm(HR′ |η). (5.7)

This is due to the fact that adding a red point will only increase the probability for HR′ ,
and adding a blue point will only decrease the probability; the difference between the
two is simply the influence of the newly added point.

We consider the case Z ≥ Z− first, and observe that by the Mean Value Theorem

eλZ/2 − eλZ
−/2 ≤ λ

2
eλZ/2 |Z − Z−| ≤ λ

2
eλZ/2 Infm(HR′ |η),

almost surely. When Z < Z−, we similarly obtain, almost surely, that

eλZ/2 − eλZ
−/2 ≤ λ

2
eλZ

−/2 |Z − Z−| ≤ λ

2
eλ(Z+Infm(HR′ |η))/2 Infm(HR′ |η),

which yields (5.6).
The lemma now follows by combining (5.4)-(5.6).

Proof of Proposition 5.1. Let Z := P(HR′ |η) and let

F (λ) := ER(ρ)

[
exp

(
λ(Z − ER(ρ)[Z])

)]
.

Note that by multiplying both sides in (5.3) by exp(−λER(ρ)[Z]) we obtain the expression

F (λ)− F (λ/2)2 ≤ λ2

4
e−λER(ρ)[Z]ER(ρ)

[
eλZ

n∑
j=1

eλ·Infj(HR′ |η) Infj(HR′ |η)2
]
. (5.8)

Let Bn :=
{∑n

j=1 Infj(HR′ |η)2 > n−ε
}
. For 0 < λ < nε/2, the right-hand side in (5.8) is

further bounded by

eλ2

4nε
F (λ) +

λ2

4
e−λER(ρ)[Z]ER(ρ)

[
eλZ

n∑
j=1

eλ·Infj(HR′ |η) Infj(HR′ |η)2 1Bn

]
.
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Since influences are probabilities, they are bounded by 1. For monotone events, the sum
of influences squared are again bounded by 1. (This follows e.g. by (1.3).) Consequently,
we obtain the following further upper bound on the right-hand side of (5.8)

eλ2

4nε
F (λ) +

λ2e2λ

4
e−λER(ρ)[Z]PR(ρ)(Bn) ≤ λ2

4

( e
nε

+ e2λPR(ρ)(Bn)
)
F (λ).

Under condition (5.1), the event Bn occurs with probability at most exp(−β(log n)k). So,
for n ≥M and 0 < λ < β

3 (log n)k we note that, since e−x ≤ x−2 for x > 0,

e2λPR(ρ)(Bn) ≤ exp
(2β

3
(log n)k − β(log n)k

)
≤ exp

(
− β

3
(log n)k

)
≤ 9

β2(log n)2k
.

Let M ′ = M ′(ε, β, k) be the least integer such that nε/2 ≥ β(log n)k for all n ≥M ′(ε, β, k).
With this, equation (5.8) yields that for n ≥ max{M,M ′} and 0 < λ < β

3 (log n)k we have

F (λ)− F (λ/2)2 ≤ 3λ2

β2(log n)2k
F (λ),

which after rearrangements takes the form

F (λ) ≤ F (λ/2)2
(

1− 3λ2

β2(log n)2k

)−1
. (5.9)

Claim 5.3. For n ≥ max{M,M ′} and 0 < λ ≤ β
4 (log n)k we have F (λ) ≤ 2.

Proof of claim. Let a = 3(β(log n)k)−2. By iterated use of (5.9) we obtain

F (λ) ≤ F (λ/2)2(1− aλ2)−1 ≤ . . . ≤ F (λ/2m)2
m
m−1∏
j=0

(
1− aλ2

22j

)−2j
.

Since log x ≤ x− 1, we find that

lim
m→∞

2m log
(
F (λ/2m)

)
≤ lim
m→∞

2m
(
F (λ/2m)− 1

)
=lim
x↓0

λF ′(x)=λER(ρ)

[
Z − ER(ρ)[Z]

]
=0.

Consequently, and further using that aλ2 ≤ 1/4 in the given range, and also that
3/4 ≤

(
1− 1/(4n)

)n
for all n ≥ 1, we obtain

F (λ) ≤
∞∏
j=0

(
1− aλ2

22j

)−2j
≤
∞∏
j=0

((
1− 1

4 · 22j
)−22j)2−j

≤
∞∏
j=0

(3/4)−2
−j

= (4/3)2 ≤ 2,

as required.

We may finally specify λ = β
4 (log n)k and apply Markov’s inequality to obtain

PR(ρ)

(
Z − ER(ρ)[Z] > t

)
≤ F (λ) e−λt ≤ 2 exp

(
− t β

4
(log n)k

)
.

For a bound on deviations below the mean, we note that

−
(
Z − ER(ρ)[Z]

)
= (1− Z)− ER(ρ)[1− Z] = P(Hc

R′ |η)− PR(ρ)(H
c
R′).

We then let η′ ∼ PR(1/ρ) and note that by duality, and since cells are blue and red with
equal probability, the above is equal to P(HR′′ |η′) − PR(1/ρ)(HR′′) in distribution. By
repeating the above proof with Z ′ := P(HR′′ |η′) in place of Z, via a completely analogous
calculation we obtain, using (5.2) in place of (5.1), that

PR(ρ)

(
Z − ER(ρ)[Z] < −t

)
= PR(1/ρ)

(
Z ′ − ER(1/ρ)[Z

′] > t
)
≤ 2 exp

(
− t β

4
(log n)k

)
.

Combining the two bounds completes the proof of the proposition.
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Remark 5.4. Recall that M ′ = M ′(ε, β, k) was defined as the least integer for which
nε/2 ≥ β(log n)k holds for all n ≥ M ′(ε, β, k). We shall later apply Proposition 5.1

iteratively for β and M of the form β = γk−1 and M = N2k−1

, where γ ∈ (0, 1) and N ≥ 1

are constants, which ε is kept constant. For this to work, we need to make sure that for
every ε > 0 there is an N large, so that M ′(ε, γk−1, k) ≤ N2k−1

. This can be done in an
analogous way as in Remark 4.7.

6 Crossings of rectangles far from the boundary

In this section we take a large step towards a proof of Theorem 1.3 by proving
a preliminary result for rectangles R′ ⊆ R(ρ) contained in the bulk. By considering
rectangles in the bulk, which do not align with any of the sides of the larger rectangle,
we avoid effects of the tessellation that occur close to the boundary. In the next section
we show how to deal with these effects, and provide a preliminary version of Theorem 1.3
for arbitrary rectangles. Concluding the proof of Theorem 1.3 will then be a matter of
optimizing the constants, which we save for our final section.

Theorem 6.1. There exists γ > 0 such that for every θ > 0 there exists N = N(θ)

such that the following holds: Let γk := γk−1 and Nk := N2k−1

. Then, for every k ≥ 1,
ρ ∈ [θ, 1/θ], n ≥ Nk and t > 0 we have

PR(ρ)

(∣∣P(HR(ρ,1/4)|η)− PR(ρ)(HR(ρ,1/4))
∣∣ ≥ t) ≤ 4 exp

(
− t γk(log n)k

)
.

Recall from (3.1) that there exists c > 0 such that c ≤ P∗(HR(3,n)) ≤ 1− c for all n ≥ 1.
Cover the rectangle R(3, n) by at most 2

√
n squares of area

√
n, and let En denote the

event that each of these squares contains a point of η. On the event En both η and its
restriction to R(3, 2n) produce the same tessellation on R(3, n). Since En occurs with
probability tending to one, if follows by Lemma 2.2 that for some c′ > 0 and K ≥ 1 we
have for n ≥ K that

PR(3,4n)

(
HR(3,n) ∩ En

)
≥ c′ and PR(3,4n)

(
Hc
R(3,n) ∩ En

)
≥ c′.

Thus, PR(3,4n)

(
HR(3,n)

)
≥ c′ and PR(3,4n)

(
Hc
R(3,n)

)
≥ c′ for n ≥ K, which after rescaling

yields
c′ ≤ PR(3)

(
HR(3,1/4)

)
≤ 1− c′. (6.1)

(Alternatively, note that (6.1) also follows from Proposition 3.1.)

Proof of Theorem 6.1. The proof will proceed by induction, applying Propositions 4.1
and 5.1 in each step. Note that we may without loss of generality assume that θ ≤ 1/3.
We first prove the theorem for k = 1, and then proceed with the induction step.

Base step: By (3.3) we know that there exists δ > 0 such that for all n ≥ 1

P∗
(
δ ≤ P(HR(3,n)|η) ≤ 1− δ

)
≥ 1− e−800. (6.2)

Then, by Proposition 4.1 and Remark 4.6 (applied with k = 0, α = 800 and L = 1), there
exist δ′ = δ′(δ) > 0 and N ′ = N ′(θ) ≥ 1 such that for all ρ ∈ [θ, 1/θ] and n ≥ N ′

PR(ρ)

( n∑
j=1

Infj(HR(ρ,1/4)|η)2 > n−δ
′
)
≤ e−4 logn.

Since the above holds for both ρ and 1/ρ, we obtain from Proposition 5.1 (applied
with k = 1, β = 4 and M = N ′) there exists N ′′ = N ′′(δ′) such that for ρ ∈ [θ, 1/θ],
n ≥ max{N ′, N ′′} and t > 0,

PR(ρ)

(∣∣P(HR(ρ,1/4)|η)− PR(ρ)(HR(ρ,1/4))
∣∣ ≥ t) ≤ 4e−t logn,
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as required.
Interlude: In preparation for the induction step we shall fix some parameters. Let

c′ > 0 and K ≥ 1 be such that (6.1) holds for n ≥ K. Fix θ ≤ 1/3 and let ε = ε(c′/2) and
L′′ = L′′(θ) be as in Proposition 4.1. Set γ = c′/3200 and let N ′′′ ≥ 1 be the least integer
(which exists, due to Remarks 4.7 and 5.4) such that

γ log n ≥ 6, (log n)k ≤ n1/8 and (log n)k ≤ nε/2 for all k ≥ 1 and n ≥ (N ′′′)2
k−1

. (6.3)

Finally, set N := max{K,L′′, N ′, N ′′, N ′′′}.
Induction step: Suppose the statement of the theorem is true for k = `, so that for

ρ = 3, n ≥ N` = N2`−1

and t > 0 we have

PR(3)

(∣∣P(HR(3,1/4)|η)− PR(3)(HR(3,1/4))
∣∣ ≥ t) ≤ 4e−tγ`(logn)

`

.

Taking t = c′/2, and recalling (6.1), leaves us with

PR(3)

(c′
2
≤ P(HR(3,1/4)|η) < 1− c′

2

)
≤ 4e−

c′
2 γ`(logn)

`

,

for n ≥ N`. Next, Lemma 2.3 (with R replaced by R(3, 4n) and N by n) gives for n ≥ N`

P∗
(c′

2
≤ P(HR(3,n)|η) < 1− c′

2

)
≤ 4e−

c′
2 γ`(logn)

`

+ P∗
(
|η ∩R(3, 4n)| < n

)
≤ e− c

′
4 γ`(logn)

`

,

where we have used that P∗
(
|η ∩ R(3, 4n)| < n

)
≤ e−n ≤ e−(logn)

`

for n ≥ N`. We are
now set to apply Proposition 4.1 (for α = c′γ`/4, k = ` and L = N`) to obtain that (since
N ≥ max{L′′, N ′′′}) for n ≥ N`+1

PR(ρ)

( n∑
j=1

Infj(HR(ρ,1/4)|η)2 > n−ε
)
≤ exp

(
− c′γ`

800
(log n)`+1

)
.

Finally, applying Proposition 5.1 (for β = c′γ`/800, k = ` + 1, ε = ε and M = N`+1) we
obtain (since N ≥ N ′′′) for all ρ ∈ [θ, 1/θ], n ≥ N`+1 and t > 0

PR(ρ)

(∣∣P(HR(ρ,1/4)|η)− PR(ρ)(HR(ρ,1/4))
∣∣ ≥ t) ≤ 4 exp

(
− t c

′γ`
3200

(log n)`+1
)
.

It follows that the theorem holds also for k = `+ 1, and the proof is complete.

7 Crossings of arbitrary rectangles

In order to prove Theorem 1.3 we need to extend Theorem 6.1 to include rectangles
touching the boundary.

Theorem 7.1. There exist γ > 0 such that for every θ > 0 there exists N = N(θ) such

that the following holds: Let γk = γk−1 and Nk = N2k−1

. Then, for every k ≥ 1, t > 0,
ρ ∈ [θ, 1/θ] and n ≥ Nk we have for any (axis parallel) rectangle R′ ⊆ R(ρ) of area at
least θ that

PR(ρ)

(∣∣P(HR′ |η)− PR(ρ)(HR′)
∣∣ ≥ t) ≤ 4e−tγk(logn)

k

.

Note that the aspect ratio of R′ lies in the interval [θ2, 1/θ2].
The proof of Theorem 7.1 is mostly a straightforward adaptation of the proof of

Theorem 6.1, so we shall only outline the proof and highlight the distinctions. There
are two main modifications required. The first is a version of Proposition 4.1 generating
a bound on the sum of influences squared also when the interior rectangle is aligned
with the boundary. In order to obtain this, the proposition will have to require a stronger
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assumption, involving bounds on the crossing probabilities of rectangles in a Voronoi
tessellation of a half-plane. The second modification is that apart from (3.3), we shall
need also (3.4), in order to get the induction machine started.

The version of Proposition 4.1 we require is the following. Recall that H∗R denotes
event of a red horizontal crossing of R ⊆ H = [0,∞) × R in the Voronoi tessellation
generated by η ∩H.

Proposition 7.2. Suppose there exist constants α, c > 0 and k, L ≥ 1 such that for n ≥ L
we have

P∗
(
c < P(HR(3,n)|η) < 1− c

)
≥ 1− e−α(logn)

k

, (7.1)

P∗
(
c < P(H∗R0(3/2,n)

|η) < 1− c
)
≥ 1− e−α(logn)

k

. (7.2)

Then, for every θ > 0 there exist constants ε = ε(c), L′ = L′(α, k) and L′′ = L′′(θ) such
that for all ρ ∈ [θ, 1/θ], n ≥ max{L2, L′, L′′} and (axis parallel) rectangle R′ ⊆ R(ρ) of
area at least θ, we have

PR(ρ)

( n∑
j=1

Infj(HR′ |η)2 ≥ n−ε
)
≤ e− α

200 (logn)
k+1

.

As with Proposition 4.1, the proof will consist of an estimate on the one-arm event in
combination with an application of the Schramm-Steif Revealment Theorem. It is for the
former of the two that we require the additional assumption, so that we can bound the
arm event not only in the bulk, but also for points close to the boundary.

Lemma 7.3. Under the assumptions of Proposition 7.2, there exist ε = ε(c), L′(α, k) and
L′′(θ) such that for all ρ ∈ [θ, 1/θ] and u ∈ R(ρ, n) we have for n ≥ max{L2, L′(α, k), L′′(θ)}
that

PR(ρ,n)

(
P
(
Vu(n1/4, n1/3)|η

)
≥ n−ε

)
≤ e− α

100 (logn)
k+1

.

Proof. The proof is analogous to the proof of Lemma 4.3, with minor modifications for
the case when u is close to the boundary. In fact, we shall distinguish between three
cases depending on whether u is close to a corner, close to a side, or within the bulk
of the rectangle R(ρ, n). We define being close to a corner as being within (Euclidean)
distance n19/60 of two of the sides; being close to a side as being within distance n17/60

of one of the sides, but at distance at least n19/60 to the remaining sides; and being in
the bulk as being at distance at least n17/60 to all sides of R(ρ, n). (It is convenient to
think of the interval [1/4, 1/3] split into five intervals with endpoints 1/4 = 15/60, 16/60,
17/60, 18/60, 19/60 and 1/3 = 20/60.)

Case 1: corner. Let x denote one of the corners of R(ρ, n) and consider u within
Euclidean distance n19/60 of the two sides associated with the corner, so that u is within
`∞-distance n19/60 of x. Consider the annuli Aj = x + [− 3

27j , 327j ] \ [− 1
27j , 127j ] for j in

J ′ := {j ∈ N : 4n19/60 ≤ 7j ≤ 1
2n

1/3}. Only a quarter of these annuli are contained within
R(ρ, n). Hence, the absence of a red crossing from the inner to the outer boundary of Aj ,
which we again denote by Oj , will in this case corresponds to a blue path connecting two
sides of R(ρ, n) within Aj . The quarter of Aj contained within R(ρ, n) can be covered
by two rectangles with aspect ratio 3

2 : 1, in such a way that a crossing of each of
these rectangles imply said connection between the two sides. Thus, Harris’ inequality
and (7.2) give

P∗
(
P(Oj |η) < c2

)
< 2e−α(logn)

k

,

for all n ≥ L2. Proceeding as before provides a bound on the conditional probability of
Vu(n19/60, n1/3) of the correct order, valid uniformly over all corner points.
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Case 2: side. Next, let u ∈ R(ρ, n) be any point within Euclidean distance n17/60 to
the boundary of R(ρ, n), but at `∞-distance at least n19/60 to a corner, and let y denote
the boundary point closest to u. Consider Aj = y + [− 3

27j , 327j ] \ [− 1
27j , 127j ] for j in

J ′′ := {j ∈ N : 4n17/60 ≤ 7j ≤ 1
2n

18/60}. Note that only half of Aj is contained inside
R(ρ, n), and that this half can be covered by three rectangles, two of ratio 3

2 : 1 and one
of ratio 3 : 1, such that a blue crossing of each of these impedes a red crossing from the
inner to the outer boundary of Aj; the event denoted by Oj . Again, Harris’ inequality,
combined with both (7.1) and (7.2), gives

P∗
(
P(Oj |η) < c3

)
< 3e−α(logn)

k

,

for all n ≥ L2. Proceeding as before results in a bound on the conditional probability of
the event Vu(n17/60, n18/60).

Case 3: bulk. For points in the bulk of the rectangle straightforward adaptations of the
proof of Lemma 4.3 will provide a bound on the conditional probability of Vu(n1/4, n16/60)

of the correct order.
The three different cases described above require minimal modification from one

another (which in each case may give rise to slightly different values of the involved
constants). Together, they complete the proof of the lemma.

Proof of Proposition 7.2. The proof is a straightforward adaptation of the proof of Propo-
sition 4.1, using R′ instead of R(ρ, 1/4) and Lemma 7.3 instead of Lemma 4.3.

Proof of Theorem 7.1. The proof will proceed by induction, much like the proof of Theo-
rem 6.1. Note that we may without loss of generality assume that θ ≤ 1/3. We first prove
the theorem for k = 1, and then proceed with the induction step.

Base step: By (3.4) we know that there exists δ > 0 such that for all n ≥ 1

P∗
(
δ ≤ P(H∗R0(3/2,n)

|η) ≤ 1− δ
)
≥ 1− e−800.

Together with (6.2), Proposition 7.2 and Remark 4.6 (applied with k = 0, α = 800 and
L = 1), there exist δ′ = δ′(δ) > 0 and N ′ = N ′(θ) ≥ 1 such that for all ρ ∈ [θ, 1/θ], n ≥ N ′
and any rectangle R′ ⊆ R(ρ) of area at least θ

PR(ρ)

( n∑
j=1

Infj(HR′ |η)2 > n−δ
′
)
≤ e−4 logn. (7.3)

Since rotation of R(ρ) by π/2 results in R(1/ρ), we obtain from Proposition 5.1 (applied
with k = 1, β = 4 and M = N ′) there exists N ′′ = N ′′(δ′) such that for ρ ∈ [θ, 1/θ],
n ≥ max{N ′, N ′′} and t > 0,

PR(ρ)

(∣∣P(HR′ |η)− PR(ρ)(HR′)
∣∣ ≥ t) ≤ 4e−t logn,

as required.
Interlude: In preparation for the induction step we shall fix some parameters. Fix

θ ≤ 1/3. Let c′′ > 0 and K ≥ 1 be such that (6.1) holds for n ≥ K. Let ε = ε(c′′/2) and
L′′ = L′′(θ) be as in Proposition 7.2. Set γ = c′′/3200 and let N ′′′ ≥ 1 be the least integer
(which exists, due to Remarks 4.7 and 5.4) such that

γ log n ≥ 6, (log n)k ≤ n1/8 and (log n)k ≤ nε/2 for all k ≥ 1 and n ≥ (N ′′′)2
k−1

. (7.4)

Finally, let N := max{K,L′′, N ′, N ′′, N ′′′}.
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Induction step: Suppose the statement of the theorem is true for k = `. Setting
R′ = R(3, 1/4) and t = c′′/2 we obtain, just as in the proof of Theorem 6.1, that for n ≥ N`

P∗
(c′′

2
≤ P(HR(3,n)|η) < 1− c′′

2

)
≥ 1− e− c

′′
4 γ`(logn)

`

.

Instead, setting R′ = [−
√

3/2,−
√

3/4]×[−1/(4
√

3), 1/(4
√

3)], so thatR′ is a 3
2 : 1 rectangle

aligned with the left side of R(3), leads in an analogous manner to the bound, for n ≥ N`,

P∗
(c′′

2
≤ P(H∗R0(3/2,n)

|η) < 1− c′′

2

)
≥ 1− e− c

′′
4 γ`(logn)

`

,

where c′′ is the constant of Proposition 3.1. And indeed, this argument relies on Proposi-
tion 3.1, which gives a bound on the annealed crossing probability.

Now, Proposition 7.2 (for α = c′′γ`/4, k = ` and L = N`) gives (as N ≥ max{L′′, N ′′′})
for n ≥ N`+1 and any axis parallel rectangle R′ ⊆ R(ρ) of area at least θ that

PR(ρ)

( n∑
j=1

Infj(HR′ |η)2 > n−ε
)
≤ exp

(
− c′′γ`

800
(log n)`+1

)
.

Finally, applying Proposition 5.1 (for β = c′′γ`/800, k = `+ 1 and M = N`+1) we obtain
(since N ≥ N ′′′) for all ρ ∈ [θ, 1/θ], n ≥ N`+1, t > 0 and any axis parallel rectangle
R′ ⊆ R(ρ) of area at least θ that

PR(ρ)

(∣∣P(HR′ |η)− PR(ρ)(HR′)
∣∣ ≥ t) ≤ 4 exp

(
− t c

′′γ`
3200

(log n)`+1
)
.

Hence, the theorem holds also for k = `+ 1, and the proof is complete.

8 Optimizing the rate of decay

Completing the proof of Theorem 1.3 is now a matter of verification.

Proof of Theorem 1.3. Let γ > 0 and N = N(θ) be as in Theorem 7.1. For n ≥ 1, let k(n)

denote the integer such that

N2k(n)−1

< n ≤ N2k(n)

.

The upper inequality implies that

k(n) ≥ log log n− log logN

log 2
≥ 4

3
log log n,

for n larger than some N ′ ≥ N . Theorem 7.1 thus gives that

PR(ρ)

(
|P(HR′ |η)− PR(ρ)(HR′)| ≥ t

)
≤ 4 exp

(
− tγk(n)(log n)k(n)

)
≤ 4 exp

(
− tγk(n)(2k(n)−1 logN)m(log n)k(n)−m

)
,

for any integer m, and n ≥ N ′. Taking m large, so that γ2m > 1, leads to the further
upper bound

4 exp
(
− t(log n)k(n)−m

)
≤ 4 exp

(
− t(log n)log logn

)
= 4 exp

(
− t e(log logn)2

)
for all n sufficiently large.

In the next section we shall prove Theorem 1.4, which is an analogue of Theorem 1.3
for the Poisson model. However, let us illustrate already here that a weaker statement
follows easily from Theorem 1.3 through comparison.
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Corollary 8.1. For every θ > 0 there exists c = c(θ) > 0 and N = N(θ) ≥ 1 such that for
all ρ ∈ [θ, 1/θ] and n ≥ N we have

P∗
(
c < P(HR(ρ,n)|η) < 1− c

)
≥ 1− exp

(
− e(log logn)2

)
.

Proof. Let c′ be as in (6.1) and let ρ ∈ [θ, 1/θ]. From (the proof of) Theorem 1.3 for
sufficiently large n (depending on θ) we have

PR(ρ)

(c′
2
≤P(HR(ρ,1/4)|η)≤1− c

′

2

)
≥1−4 exp

(
− c
′

2
e

7
6 (log logn)2

)
≥1− 1

2
exp

(
−e(log logn)2

)
.

Lemma 2.3 thus gives, for such values of n, that

P∗
(c′

2
< P(HR(ρ,n)|η) < 1− c′

2

)
≥ 1− 1

2
exp

(
− e(log logn)2

)
− P∗

(
|η ∩R(ρ, 4n)| < n

)
≥ 1− 1

2
exp

(
− e(log logn)2

)
− e−n

≥ 1− exp
(
− e(log logn)2

)
,

as required.

9 Rate in the Poisson model

In this section we prove Theorem 1.4, which provides a version of Theorem 1.3 in
the Poisson setting. We saw already in the previous section how to derive a weaker
statement through comparison. In order to obtain the full statement of Theorem 1.4, we
shall need to complement the comparison lemma with an argument showing that the
probability of crossing a given rectangle changes very little when adding a small number
of points.

Throughout the paper we have used n to denote the number of points when the point
set η is chosen in the binomial model, but let this number be implicit in the notation.
In this section we shall need to compare probabilities for crossing a fixed rectangle
for different numbers of points. We shall therefore need to make the number of points
considered explicit in our notation, and write PR(ρ,n),m for the probability measure by
which η is selected as a set of m uniformly random points in the rectangle R(ρ, n). As
before we write R(ρ) for R(ρ, 1).

The first step will be a lemma which states that the crossing probability in this model
does not change quickly as m changes, which may be of some interest on its own.

Lemma 9.1. There exists a constant c > 0 such that for every θ > 0 there exists
N0 = N0(θ) such that the following holds for all ρ ∈ [θ, 1/θ] and n ≥ N0: For every m
satisfying |m − n| < n1/2+c and every (axis parallel) rectangle R′ ⊆ R(ρ) with area at
least θ we have ∣∣PR(ρ),m(HR′) − PR(ρ),n(HR′)

∣∣ < n−c.

Remark 9.2. This crossing probability is believed to be stable over much larger intervals.
In particular, if Voronoi percolation exhibits conformal invariance, then the crossing
probability converges as the number of point increases.

Proof. We shall prove that adding a single point has very little effect. Specifically, we
shall prove that there exists a constant c > 0 such that for n large and any m with
|m− n| < n1/2+c we have∣∣PR(ρ),m(HR′) − PR(ρ),m−1(HR′)

∣∣ < n−(1/2+2c). (9.1)

The lemma then follows immediately using the triangle inequality.
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Let η denotes a set of m uniformly random points in R(ρ), and let η− be obtained by
removing one point uniformly at random. We then have∣∣PR(ρ),m(HR′) − PR(ρ),m−1(HR′)

∣∣ =
∣∣ER(ρ),m

[
P(HR′ |η)− P(HR′

∣∣η−)
]∣∣

≤ ER(ρ),m

[∣∣P(HR′ |η)− P(HR′ |η−)
∣∣]

≤ ER(ρ),m

[
1

m

m∑
i=1

Infi(HR′ |η)

]
,

where the final inequality follows from (5.7) and the fact that η− is obtained by removing
a randomly chosen point.

Note further that

1

m

m∑
i=1

Infi(HR′ |η) ≤
(

1

m

m∑
i=1

Infi(HR′ |η)2
)1/2

by the Cauchy-Schwarz inequality. Recall that for monotone events the sum of influences
squared are bounded by 1. (This follows e.g. by (1.3).) Moreover, by (7.3) there exists
c′ > 0 such that the sum of influences squared is at most m−c

′
with probability at least

1−m−c′ , when m is large. It follows, using Jensen’s inequality, that for large values of m

∣∣PR(ρ),m(HR′) − PR(ρ),m−1(HR′)
∣∣ ≤ ER(ρ),m

[
1

m

m∑
i=1

Infi(HR′ |η)2
]1/2

≤ 2m−(1/2+c
′/2).

Setting c = c′/8 this proves (9.1) in the given range on m and n, as required.

We shall deduce from Lemma 9.1 that the probabilities of crossing a large rectangle
is the two models are close when the actual number of points in the binomial model is
close to the expected number of points in the Poisson model. More precisely, we shall
establish that for some c > 0 we have∣∣PR(ρ,2n),m(HR(ρ,n))− P∗(HR(ρ,n))

∣∣ < 6n−c (9.2)

whenever ρ ∈ [θ, 1/θ] and |m− 2n| < n1/2+c, provided that n is sufficiently large.
To this end, let c > 0 and N0(θ) be as in Lemma 9.1 and fix θ > 0. We then have∣∣PR(ρ,2n),m(HR(ρ,n))− PR(ρ,2n),2n(HR(ρ,n))

∣∣ < n−c

whenever ρ ∈ [θ, 1/θ], |m− 2n| < n1/2+c and n ≥ N0(θ).
Cover R(ρ, 2n) by squares of area ρn/1000, and let F be the event that every square

contains a point of η. An argument similar to the one that appears in the proof of
Claim 4.5 shows that the probability of F c is exponentially small in n with respect to
both P∗ and PR(ρ,2n),m when m ≥ n. And so, writing E for the event HR(ρ,n) ∩ F , we
have both |P∗(HR(ρ,n))− P∗(E)| < n−c and∣∣PR(ρ,2n),m(E)− PR(ρ,2n),2n(E)

∣∣ < 2n−c (9.3)

whenever |m− 2n| < n1/2+c and n is large. As in Section 2, we may express the Poisson
probability by conditioning on the number of points of η in the rectangle. Let Am be the
event that |η ∩R(ρ, 2n)| = m. Since E is measurable with respect to points and colours
inside R(ρ, 2n) we have

P∗(E) =
∑
m≥0

P(E|Am)P∗(Am)

=
∑
m≥0

PR(ρ,2n),m(E)P∗(Am) .
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Since P∗ puts mass at most exp(−nc) that the (Poisson distributed) number of points
falls outside the interval 2n± n1/2+c, we have from (9.3) (applied twice) that∣∣PR(ρ,2n),m(E)− P∗(E)

∣∣ < ∣∣PR(ρ,2n),2n(E)− P∗(E)
∣∣+ 2n−c < 5n−c

whenever |m− 2n| < n1/2+c and n is large, and so (9.2) follows.

Proof of Theorem 1.4. Fix θ > 0 and let pn(t) := exp
(
− t e(log logn)2

)
. Without loss of

generality, we may in the following suppose that t ≤ 1. Consequently, P∗(F c) ≤ pn(t),
where F is the event defined earlier in this section, and P∗ puts mass at most pn(t) that
the number of points in R(ρ, 2n) falls outside the interval 2n± n1/2+c, for all sufficiently
large n.

We have

P∗
(
|P(HR(ρ,n)|η)− P∗(HR(ρ,n))| > t

)
≤ P∗

(
{|P(HR(ρ,n)|η)− P∗(HR(ρ,n))| > t} ∩ F

)
+ P∗(F c)

≤
∑
m≥0

P∗
(
{|P(HR(ρ,n)|η)− P∗(HR(ρ,n))| > t} ∩ F

∣∣Am)P∗(Am) + pn(t)

≤ max
|m−2n|≤n1/2+c

PR(ρ,2n),m

(
{|P(HR(ρ,n)|η)− P∗(HR(ρ,n))| > t} ∩ F

)
+ 2pn(t).

For t < 12n−c the upper bound in the theorem is trivial, since pn(t) > 1 for large n, so
there is nothing to prove. For t ≥ 12n−c we obtain from (9.2) the further upper bound

max
{
PR(ρ,2n),m

(
{|P(HR(ρ,n)|η)− PR(ρ,2n),m(HR(ρ,n))| > t/2} ∩ F

)
: m ≥ n

}
+ 2pn(t),

which by Theorem 1.3 is no larger than 6pn(t).

A The revealment theorem

Here, in this appendix, we shall provide a short elementary and probabilistic proof of
the version of the Schramm-Steif revealment theorem as presented in (1.3). The proof
is similar to that of an inequality due to O’Donnell and Servedio [15]. For notational
convenience during the proof we phrase the result in terms of subsets of the cube
{−1, 1}n.

Proposition A.1. Let A ⊆ {−1, 1}n be a monotone event and let A be a (randomized)
algorithm that determines A. Then, for any subset J ⊆ [n] we have∑

j∈J
Infj(A)2 ≤ max

j∈J
P(A queries j).

Note that the proposition gives a bound on the sum of influences squared over a
subset J of the bits. It thus extends and simplifies a precursor to the Schramm-Steif
Revealment Theorem which is due to Benjamini-Kalai-Schramm; see [11, Theorem 12.52]
for a precise statement.

Proof. Let f : {−1, 1}n → {−1, 1} be the function that takes the value 1 for ω ∈ A and
−1 for ω 6∈ A. Then f is monotone (increasing) and we have Infj(A) = E[fωj ] for each
j = 1, 2, . . . , n. We thus obtain

∑
j∈J

Infj(f)2 =
∑
j∈J

Infj(f)E[fωj ] = E

[
f
∑
j∈J

Infj(f)ωj

]
= E

[
f E

[∑
j∈J

Infj(f)ωj

∣∣∣∣F]],
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where we have written F for the information revealed by the algorithm. Applying
Cauchy-Schwartz gives us that

∑
j∈J

Infj(f)2 ≤
(
E[f2]E

[
E

[∑
j∈J

Infj(f)ωj

∣∣∣∣F]2])1/2

.

Since there is no information regarding the state of the bits not queried by the algorithm
in F , the square of the right-hand side in the above expression can be rewritten as

E

[(∑
j∈J

Infj(f)ωj1{A queries j}

)2]
= E

[ ∑
i,j∈J

Infi(f)Infj(f)ωiωj1{A queries i and j}

]
.

When the algorithm first queries one of i and j it has no information regarding the other.
Consequently, the ‘off diagonal’ entries of the double sum will be zero, so that(∑

j∈J
Infj(f)2

)2

≤
∑
j∈J

Infj(f)2P(A queries j) ≤ max
i∈J

P(A queries i)
∑
j∈J

Infj(f)2.

Rearranging the two sides gives the claimed result.
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