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Abstract

We locate the critical threshold pc ∼ 1/
√
3n logn at which it becomes likely that the

complete graph Kn can be obtained from the Erdős–Rényi graph Gn,p by iteratively
completing copies of K4 minus an edge. This refines work of Balogh, Bollobás and
Morris that bounds the threshold up to multiplicative constants.
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1 Introduction

Triangles play an important role in networks. For instance, the concept of triadic
closure (see, e.g., Simmel [13] and Granovetter [9]) from social network theory is the
observation that if there are edges (e.g., representing friendship) between vertices
x, y and x, z, then the edge between y, z (if not already present) is likely to be added
eventually (e.g., once x finds an opportunity to introduce y and z). This gives rise to the
special case H = K3 of the process called H-graph bootstrap percolation introduced by
Bollobás [6] (under the name of weak saturation). Let 〈G〉H denote the graph obtained
from G by iteratively completing copies of H minus an edge. A graph G is said to
H-percolate if all missing edges are eventually added, that is, if 〈G〉H is the complete
graph on the vertices of G.

Following Balogh, Bollobás and Morris [4], we suppose that the underlying network
is the Erdős–Rényi [8] graph, that is, the random subgraph Gn,p of the complete graph
Kn where edges are included independently with probability p. The critical threshold, at
which Gn,p is likely to H-percolate, is defined formally as

pc(n,H) = inf {p > 0 : P(〈Gn,p〉H = Kn) ≥ 1/2} .

A graph K3-percolates if and only if it is connected, so this case follows by the classical
work [8]. In this article, we focus on the next case, H = K4. This is a stricter version
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of triadic closure, where an edge between u, v is added only if u and v are incident to
triangles that share an edge (e.g., people become friends if they have mutual friends
who are friends). In [4], pc(n,K4) is estimated up to multiplicative constants. Our main
result locates the sharp threshold.

Theorem 1.1. The critical K4-percolation threshold on the Erdős–Rényi graph Gn,p
satisfies pc(n,K4) ∼ 1/

√
3n log n.

1.1 Outline

The upper bound is proved in [2], via a connection with classical 2-neighbor bootstrap
percolation [12, 7, 11], which we now explain. In this model, vertices are “infected” if
they have at least 2 infected neighbors. Suppose that some set I of vertices in a graph
G = (V,E) are initially infected. Let 〈I,G〉2 denote the set of eventually infected vertices.
If all vertices are eventually infected, 〈I,G〉2 = V , we say that I is contagious for G. It is
easy to see (by induction) that if some edge in G is contagious, then G will K4-percolate.
Therefore, the upper bound in Theorem 1.1 follows since, as shown in [2], 1/

√
3n log n is

the sharp threshold for the existence of such a seed edge in Gn,p.
To prove the lower bound in Theorem 1.1, we essentially show that none of the other

ways in which Gn,p can percolate are more likely. The analysis is somewhat involved, as
there are many ways in which percolating subgraphs of Gn,p can “merge” (see Section 2
below) to form larger percolating subgraphs. Similar issues are involved, for instance,
with the pioneering work of Holroyd [10].

The key to overcoming this difficulty is to observe that, for any graph G (larger than
a single edge) that K4-percolates, the minimum degree of G is at least 2 (no isolated
vertices or pendant edges) and its subgraph C ⊂ G obtained by successively deleting
vertices of degree 2 also K4-percolates. We call C the core of G. The case that C is
a single edge (a seed edge) is described above. Otherwise, C has minimum degree at
least 3, in which case we call C a 3-core. Hence, a percolating graph G is either a seed
graph, or else it has a 3-core. In either case, the vertex set V (C) is contagious for G.
See Section 3.1 for more details.

There are two other main ingredients in the proof of the lower bound. First, by a
detailed combinatorial analysis, based on the clique process (see Section 2 below) intro-
duced in [4], we (roughly speaking) show that there are at most (2/e)qq!qq percolating
3-cores of size q (that is, on q vertices). See Section 3 for the precise estimates. Then,
with this at hand, we utilize the following tail estimates [3] (which complement the
central limit theorems in [11]).

Let P (q, k) denote the probability that for a given set I ⊂ [n] (independent of Gn,p) of
size q, we have that |〈I,Gn,p〉2| ≥ k.

Lemma 1.2 ([3]). Fix α > 0 and put p =
√
α/(n log n). Let ε ∈ [0, 1) and β ∈ [βε, 1/α],

where βε = (1 −
√

1− ε)/α. Put kα = α−1 log n and qα = (2α)−1 log n. Suppose that
q/qα → ε and k/kα → αβ as n→∞. Then P (q, k) = nξ+o(1), where

ξ = −αβ
2

2
+

{
(2αβ − ε)(2α)−1 log(e(αβ)2/(2αβ − ε)) β ∈ [βε, ε/α)

β log(αβ)− ε(2α)−1 log(ε/e) β ∈ [ε/α, 1/α].

This follows by the main result in [3], setting r = 2 and replacing the parameters
ϑ, α, β therein with kα, ε, αβ, respectively.

Using this, together with the upper bound (2/e)qq!qq for percolating 3-cores of size
q, we argue (see Section 4.1) that, when p is sub-critical, the expected number of
percolating subgraphs of Gn,p of size k = β log n, for β ∈ [βε, 1/α], with a core of size
q ≤ (3/2) log n is bounded by nµ+o(1), where

µ(α, β) = 3/2 + β log(αβ)− αβ2/2.
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The almost sure non-existence of percolating 3-cores of size q ≥ (3/2) log n in Gn,p is
handled separately (see Section 4.2), by showing that such a graph would have to be
created through a highly unlikely merging of other graphs of “macroscopic” size. This
leads to the following result, yielding the lower bound in Theorem 1.1.

(In this work, the size of a graph is its number of vertices, not its number of edges.)

Theorem 1.3. Fix α ∈ (0, 1/3) and put p =
√
α/(n log n). With high probability the

largest cliques in 〈Gn,p〉K4
are of size (β∗ + o(1)) log n, where µ(α, β∗) = 0.

1.2 Discussion

The critical window for the connectivity of Gn,p is well-understood. With high proba-
bility Gn,p is connected (hence K3-percolating) if and only if it has no isolated vertices. If
p = (log n+ ε)/n, Gn,p will K3-percolate with probability exp(−e−ε)(1 + o(1)), as n→∞.
It would be interesting to obtain similarly detailed information for K4-percolation.

For all r ≥ 5, pc(n,Kr) is estimated up to poly-logarithmic factors in [4]. More
recently [5], the threshold pc(n,H) has been located up to constant factors, for all H in a
certain class of “reasonably balanced” graphs, which includes all such Kr. Interestingly,
the connection with classical bootstrap percolation described above does not lead to the
critical threshold when r ≥ 5. Instead, near pc, Gn,p percolates in some other way, that is
not yet fully understood.

Although H-percolation can, in general, behave quite differently than the present
case H = K4, we think the ideas in this work will be useful in improving the bounds for
pc in other cases of interest.

2 The clique process

The clique process, introduced in [4], describes the K4-percolation dynamics in a way
that is amenable to analysis. In this section, we recall some basic observations about
this process which we will require. See [4] for the proofs.

Definition 2.1. Three graphs Gi = (Vi, Ei) form a triangle if there are distinct vertices
x, y, z such that x ∈ V1 ∩ V2, y ∈ V1 ∩ V3 and z ∈ V2 ∩ V3. If |Vi ∩ Vj | = 1 for all i 6= j, we
say that they form exactly one triangle.

In [4] the following observation is made.

Lemma 2.2. Suppose that Gi = (Vi, Ei) percolate.

(i) If the Gi form a triangle then G1 ∪G2 ∪G3 percolates.
(ii) If |V1 ∩ V2| ≥ 2 then G1 ∪G2 percolates.

This leads to the following process.

Definition 2.3. A clique process for a graph G is a sequence (Ct)τt=0 of sets of subgraphs
of G such that:

(i) C0 = E(G) is the edge set of G.
(ii) For each t < τ , Ct+1 is obtained from Ct by either (a) merging two subgraphs

G1, G2 ∈ Ct with at least two common vertices, or (b) merging three subgraphs
G1, G2, G3 ∈ Ct that form exactly one triangle.

(iii) Cτ is such that no further operations as in (ii) are possible.

The reason for the name is that (by induction), for any t ≤ τ and H ∈ Ct, H percolates
(on its vertex set V (H)), and hence 〈H〉K4 is a clique in 〈G〉K4 . Let us also mention here
that this terminology mirrors that of the so-called “rectangle process” used in [10] and
other works about bootstrap percolation on grids.

The description above is slightly modified from that presented in [4], as we note
that if three percolating graphs form more than one triangle, then they can be merged
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by applying Lemma 2.2(ii) twice. Therefore, for convenience, we reserve the use of
Lemma 2.2(i) in any clique process for the case that exactly one triangle is formed. This
simplifies the combinatorial analysis in Lemma 3 below.

Finally, let us record the following observation, see [4].

Lemma 2.4. Let G be a finite graph and (Ct)τt=0 a clique process for G. For each t ≤ τ ,
Ct is a set of edge-disjoint, percolating subgraphs of G. Furthermore, 〈G〉K4

is the
edge-disjoint, triangle-free union of cliques

⋃
H∈Cτ 〈H〉K4

. Hence G percolates if and only

if Cτ = {G}. In particular, Cτ = C′τ ′ for any two clique processes (Ct)τt=0 and (C′t)τ
′

t=0 for G.

2.1 Consequences

The following consequences of Lemma 2.4, derived in [4] using the clique process,
play a crucial role in the current work.

Lemma 2.5. If G = (V,E) percolates then |E| ≥ 2|V | − 3.

This result was first proved in [6]. A proof by the clique process is given in [4].

Definition 2.6. We call |E| − (2|V | − 3) the excess of a graph G = (V,E). A graph is
edge-minimal if its excess is 0.

To prove Lemma 2.5, the following observations are made in [4].

Lemma 2.7. Suppose that Gi = (Vi, Ei) are edge-disjoint, percolating graphs.
(i) If the Gi form exactly one triangle, then the excess of G1 ∪G2 ∪G3 is the sum of

the excesses of the Gi.
(ii) If |V1 ∩ V2| = m ≥ 2, then the excess of G1 ∪G2 is the sum of the excesses of the

Gi, plus 2m− 3 > 0.

Hence, if G is an edge-minimal percolating graph, then every step of any clique
process for G involves merging three subgraphs that form exactly one triangle. The
simplest example of this is when two of the Gi are a single edge sharing a common vertex
(leading one to the connection with 2-neighbor bootstrap percolation). If all steps of a
clique process for G are of this form, then G is a seed graph, as defined in Section 1.1
above.

Finally, since at most three subgraphs are merged in any step of a clique process, a
Aizenman–Lebowitz [1] type condition follows, see [4].

Lemma 2.8. Let G be a graph and k ≥ 1. If G has no percolating subgraphs of size
k′ ∈ [k, 3k] then G has no percolating subgraphs larger than k.

3 Combinatorial bounds

We first address the issue of estimating the number of percolating graphs with various
structural properties. Most crucially, we require reasonably sharp estimates for the
number of percolating graphs with few vertices of degree 2. The proofs of the main
results in this section Lemmas 3.7 and 3.8 are fairly straightforward, but rather laborious.
As such, we only sketch the main ideas in the proofs in this section. Detailed proofs
appear in Appendices A and B below.

3.1 Structure of percolating graphs

We first make some simple, but critical, observations about the structure of percolat-
ing graphs. Informally, we note (as discussed in Section 1) that a percolating graph G
has a percolating core C that is either a single edge or a graph of minimum degree at
least 3 (see Lemma 3.3 below). Once C percolates (by the K4-percolation dynamics) the
full percolation of G can be completed by successively adding vertices according to the
2-neighbor dynamics.
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We first observe that if a vertex of degree 2 is removed from a percolating graph, the
resulting subgraph still percolates.

Lemma 3.1. Suppose that G percolates and v ∈ V (G) is of degree 2. Then the subgraph
Gv ⊂ G induced by V − {v} percolates.

Let us remark that in [6] a closely related result is proved. Namely, if 3 ≤ r < 7, and
v is of minimum degree d = r − 2 + p in a Kr-percolating graph G with the minimum
possible number of edges, then Gv can be made into a Kr-percolating graph by adding at
most p edges to it. Indeed, this is how it is shown (by induction) in [6] that (r−2)k−

(
r−1
2

)
is the minimum possible number of edges in a Kr-percolating graph (for these particular
values of r).

Lemma 3.1 follows easily using the clique process.

Proof. Recall that, in each step of the clique process, edge-disjoint percolating graphs
are merged to form a larger percolating graph. Consider the first time in the process
that (at least) one of the edges e1, e2 incident to v is involved in a merge. In this step,
in fact, both e1, e2 are merged with some other percolating graph G′, since percolating
graphs (larger than a single edge) have minimum degree at least 2. If this is the last step
of the clique process, the result is immediate since then G′ = Gv. Otherwise, in the last
step of the clique process, one of the (two or three) graphs being merged contains e1, e2
and all other graphs involved do not contain v. Hence the result follows by induction on
the size of G.

Recall (see Section 1.1) that 〈I,G〉2 is the set of vertices eventually infected by the
2-neighbor dynamics on G, when I is initially infected.

Definition 3.2. Similarly, for a subgraph H ⊂ G, we let 〈H,G〉2 denote the subgraph of
G induced by 〈V (H), G〉2.

Note that, by Lemma 2.2(i) and induction, if H ⊂ G percolates then so does 〈H,G〉2.
Informally speaking, a percolating graph can be grown by adding vertices with (at least)
two neighbors in the graph. On the other hand, Lemma 3.1 says that if vertices of
degree 2 are removed from a graph then it still percolates. Hence we make the following
observation about the structure of percolating graphs.

Lemma 3.3. Let G be a percolating graph. Then either:
(i) G = 〈e,G〉2 for some edge e ∈ E(G), or else,

(ii) G = 〈C,G〉2 for some percolating C ⊂ G of minimum degree at least 3.
Furthermore:
(iii) the excess of G is equal to the excess of C.

Note that, in the first case, G is a seed graph and e is a seed edge. In the latter case,
C is the 3-core of G. If G = C, we say that G is a 3-core.

Proof. Recall (see Definition 2.6) that the excess of a graph G = (V,E) is its number of
edges |E| minus the minimum possible number of edges 2|V | − 3 in a percolating graph
of size |V |. Therefore, the excess of G is clearly equal to the excess of Gv, for any v ∈ V
of degree 2. (This is an easy special case of Lemma 2.7(i).) Hence part (iii) follows by a
simple induction.

Parts (i) and (ii) follow by Lemma 3.1 and induction, noting that if C is the subgraph
of G obtained by successively deleting vertices of degree 2, then V (G) = 〈V (C), G〉2 (and
hence G = 〈C,G〉2 in the notation of Definition 3.2) by the definition of the 2-neighbor
dynamics. That is, if we initially infect all vertices in C, then all vertices in G will be
infected eventually. To see this, note that we can simply infect all vertices outside of C
one at a time, in the time-reversed order in which they were deleted in obtaining C from
G.
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3.2 Basic estimates

In this section, we use Lemma 3.3 to obtain upper bounds for the number of percolat-
ing graphs of a given size.

Definition 3.4. We say that a percolating graph G is irreducible if removing any edge
from G results in a non-percolating graph.

In other words, an irreducible graph is minimal in the poset of percolating graphs.
Recall (see Definition 2.6) that a graph G of size k is edge-minimal if it has exactly 2k− 3

edges (the smallest possible number). Seed graphs, for instance, are irreducible and
edge-minimal. It is easy to see that all irreducible percolating graphs of size 2 < k ≤ 6

are seed graphs, and so, in particular, have a vertex of degree 2. There are, however,
irreducible percolating graphs of size k = 7 (and larger) with no vertices of degree 2,
see e.g. Figure 1.

Figure 1: The smallest irreducible percolating 3-core.

Clearly, a graph G percolates if and only if it has an irreducible percolating subgraph
G′ ⊂ G with V (G) = V (G′). Therefore, in proving Theorem 1.3, it suffices to restrict our
attention to irreducible graphs. Indeed, any percolating subgraph of Gn,p contains an
irreducible percolating subgraph on the same vertex set.

In bounding the possible number of irreducible percolating graphs G of a given size
k, the relevant quantities are its number i of vertices in G of degree 2, the size q of its
core C ⊂ G, and its number ` of excess edges. (Recall that, in this work, the size of
graph is its number of vertices.)

Definition 3.5. Let I`q(k, i) be the number of labelled, irreducible percolating graphs G
of size k with an excess of ` edges, i vertices of degree 2, and a core C ⊂ G of size q. For
convenience, we say that any such G “contributes” to I`q(k, i). If i = 0, and hence q = k,
we simply write C`(k) = I`k(k, 0). If ` = 0, we write Iq(k, i) and C(k).

Note that I2(k, i) is the number of labelled, irreducible (and edge-minimal) seed
graphs of size k with i vertices of degree 2.

By Lemma 3.3(iii), if a graph G contributes to I`q(k, i) then its core has excess `. As
noted above, there are no irreducible 3-cores on q ≤ 6 vertices. Hence I`q(k, i) = 0 if
2 < q ≤ 6.

Definition 3.6. We let I`(k, i) =
∑
q I

`
q(k, i) denote the number of labelled, irreducible

percolating graphs G of size k, with an excess of ` edges and i vertices of degree 2. If
` = 0, we write I(k, i).

We obtain the following estimates for I`(k, i), assuming the excess is ` ≤ 3. The
method of proof could presumably (with additional work) provide bounds for larger `,
however, quite fortunately, percolating graphs with a larger excess can be dealt with
using less accurate estimates (see Lemma 4.3 below).

Lemma 3.7. For all k ≥ 2, ` ≤ 3 and relevant i, we have that

I`(k, i) ≤ (2/e)kk!kk+2`+i.

In particular, C`(k) ≤ (2/e)kk!kk+2`.
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Note that, for small values of i (and all large enough k), this is much smaller than the
total number of seed graphs of size k, which in [2] is shown to be roughly equal to k!kk.

See Appendix A below for the proof. The argument is quite lengthy, as there are
several cases (increasing in `) to consider, depending on the nature of the last step in
the clique process. Before moving on, we sketch the main ideas.

First, we note that the cases i > 0 follow by a simple induction, since if G has
i vertices of degree 2, then removing such a vertex from G results in a graph with
j ∈ {i, i± 1} vertices of degree 2. Consideration of these cases leads to the constant 2/e.

The case of 3-cores (i = 0) is the “heart” of the proof. The following observations
are the key: If G is an irreducible percolating 3-core, then in the last step of a clique
process, either (i) three graphs G1, G2, G3 are merged that form exactly one triangle
on T = {v1, v2, v3}, or else (ii) two graphs G1, G2 are merged that share m ≥ 2 vertices
S = {v1, v2, . . . , vm}. In case (i), if some Gj has a vertex v of degree 2, then necessarily
v ∈ T , as else G would have a vertex of degree 2. In other words, if a percolating 3-core
is formed by merging three graphs with vertices of degree 2, then all such vertices
belong to the triangle that they form. On the other hand, in case (ii), it can be seen that
G1, G2 are 3-cores (no vertices of degree 2). Indeed, if some v ∈ S is of degree 2 in some
Gj , then (Gj)v percolates by Lemma 3.1, and so by Lemma 2.2 it would follow that G
minus some edge incident to v in Gj still percolates, in contradiction to the irreducibility
of G.

The above observations provide enough control over the combinatorics to allow for a
fairly simple (albeit lengthy) inductive proof of Lemma 3.7. These observations are also
utilized in the proof of Proposition 4.9 below.

3.3 Sharper estimates

Next, using Lemma 3.7 as a starting point, we obtain the following upper bounds for
I`q(k, i).

Lemma 3.8. Fix ε > 0. For some constant ϑ = ϑ(ε) ≥ 1, the following holds. For all
k ≥ 2, ` ≤ 3, and relevant q, i, we have that

I`q(k, i) ≤ ϑψε(q/k)kk!kk+2`+i

where

ψε(y) = max{3/(2e) + ε, (e/2)1−2yy2}.

Note that this lemma improves upon Lemma 3.7 only when ε < 1/(2e), as otherwise
ψε(y) ≥ 2/e for all y. On the other hand, for any given ε < 1/(2e), we have that ψε(y)

is non-decreasing and ψε(y) → 2/e as y ↑ 1. Indeed, ψε(y) = 3/(2e) + ε for y ≤ y∗ and
ψε(y) = (e/2)1−2yy2 for y > y∗, where

3/(2e) + ε = (e/2)1−2y∗y2∗. (3.1)

We define y0 = y∗(0) ≈ 0.819, and note that y∗(ε) ↓ y0, as ε ↓ 0.

The main ideas in the proof are as follows: First, we note that the case i = k − q
follows essentially directly by Lemma 3.7. We establish the remaining cases by induction,
noting that if a graph G contributes to I`q(k, i) and i < k − q, then there is a vertex v in G
of degree 2 with a neighbor that is not in the core C ⊂ G. It follows that either (1) there
is such a vertex v so that some neighbor of v is of degree 2 in Gv, or else (ii) there are
vertices u 6= w of degree 2 in G with a common neighbor that is not in C. Beyond these
observations, the proof is mostly calculus, see Appendix B below.
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4 Proof of Theorem 1.3

With our key Lemmas 1.2, 3.7 and 3.8 at hand, we turn to the proof of Theorem 1.3.
The argument is divided into two parts (Sections 4.1 and 4.2) where, respectively,
percolating subgraphs of Gn,p with small and large cores are considered.

4.1 Percolating subgraphs with small cores

First, we show that for sub-critical p, with high probability Gn,p has no percolating
subgraphs significantly larger that β∗ log n with a “small” (smaller than (3/2) log n) core.

Proposition 4.1. Fix α ∈ (0, 1/3) and put p =
√
α/(n log n). Then, for any δ > 0, with

high probability Gn,p has no irreducible percolating subgraphs G of size k ≥ (β∗+ δ) log n

with a core C ⊂ G of size q ≤ (3/2) log n.

First, we note that β∗ in Theorem 1.3 is well-defined.

Lemma 4.2. Fix α ∈ (0, 1/3). For β > 0, let

µ(α, β) = 3/2 + β log(αβ)− αβ2/2.

The function µ(α, β) is decreasing in β, with a unique zero β∗ ∈ (0, 3).

Proof. Differentiating µ(α, β) with respect to β, we obtain 1 + log(αβ) − αβ. Since
log x < x − 1 for all positive x 6= 1, we find that µ(α, β) is decreasing in β. Moreover,
since α < 1/3, we have that µ(α, 3) < (3/2)(3α− 1) < 0. The result follows, noting that
µ(α, β)→ 3/2 > 0 as β ↓ 0.

Recall that the bounds in Lemmas 3.7 and 3.8 apply only to graphs with an excess
of ` ≤ 3 edges. For graphs with larger excess, we will apply the following result, which
follows by an elementary union bound.

Lemma 4.3. Fix α ∈ (0, 1/3) and put p =
√
α/(n log n). Then with high probability Gn,p

contains no subgraphs of size k ≤ 2 log n and excess ` > 3. Similarly, with high probability
Gn,p contains no subgraphs of size k ≤ 9 log n and excess ` > 27.

Proof. The expected number of subgraphs of size k = β log n in Gn,p with an excess of `
edges is bounded by(

n

k

)( (
k
2

)
2k − 3 + `

)
p2k−3+` ≤

(
e3

16
knp2

)k (e
4
kp
)`−3

≤ nν log` n

where
ν(β, `) = −(`− 3)/2 + β log(αβe3/16).

Note that ν is convex in β, and that

2 log(2/3 · e3/16) ≈ −0.356 < 0

and
9 log(9/3 · e3/16) ≈ 11.934 < 12.

Therefore, since α < 1/3, it follows that ν(β, `) < −(` − 3)/2 if β ≤ 2, and ν(9, `) <

−(`− 27)/2 if β ≤ 9.
Altogether we find that the expected number of subgraphs of size k ≤ 2 log n and

excess ` > 3 is bounded by

2 log n ·
∑
`>3

n−(`−3)/2 log` n ≤ O(log5 n)√
n

∑
`≥0

(
log n√
n

)` ≤ O(log5 n)√
n

� 1.
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Similarly, the expected number of subgraphs of size k ≤ 9 log n and excess ` > 27 is
bounded by

O(log29 n)√
n

� 1.

Therefore, with high probability, no such subgraphs exist.

Definition 4.4. Let E`(q, k) denote the expected number of irreducible percolating cores
C ⊂ Gn,p of size q and excess ` such that |〈C,Gn,p〉2| ≥ k.

Combining Lemmas 1.2 and 3.7, we obtain the following estimate. Recall βε, kα, qα as
in Lemma 1.2, and µ in Lemma 4.2.

Lemma 4.5. Fix α ∈ (0, 1/3) and put p =
√
α/(n log n). Let ε ∈ [0, 3α] and β ∈ [βε, 1/α].

Suppose that q/qα → ε and k/kα → αβ as n → ∞. Then, for any ` ≤ 3, we have that
E`(q, k) ≤ nµε+o(1), where µε(α, β) = µ(α, β) for β ∈ [ε/α, 1/α], and

µε(α, β) = µ(α, β)− β log(αβ) +
ε

2α
log(ε/e) +

2αβ − ε
2α

log

(
e(αβ)2

2αβ − ε

)
for β ∈ [βε, ε/α].

Proof. Suppose that k ∼ β log n and q ∼ ε(2α)−1 log n. Then, for any ` ≤ 3, it follows by
Lemmas 1.2and 3.7 that

E`(q, k) ≤
(
n

q

)
C`(q)p2q−3+`P (q, k) ≤ q2`p`−3

(
2

e
qnp2

)q
P (q, k) ≤ nν+o(1)

where
ν = 3/2 + ε(2α)−1 log(ε/e) + ξε(α, β) = µε(α, β).

Having established Lemma 4.5, we aim to prove Proposition 4.1 by the first moment
method. We first show that, for some ε′ ∈ (0, 3α), with high probability there are no
irreducible percolating cores in Gn,p of size ε(2α)−1 log n, with ε ∈ [ε′, 3α]. We record
a slightly more general result, allowing for O(1) vertices of degree 2, as this will be
required in Section 4.2 below.

Lemma 4.6. Fix α ∈ (0, 1/3) and put p =
√
α/(n log n). Fix some i∗ ≥ 0. Define

ε∗ ∈ (0, 3α) implicitly by 3/2 + ε∗(2α)−1 log(ε∗/e) = 0. Then, for any η > 0, with high
probability Gn,p has no irreducible percolating subgraphs G of size

ε∗ + η

2α
log n ≤ k ≤ 3

2
log n

and i ≤ i∗ vertices of degree 2.

Proof. By Lemma 4.3, it suffices to consider subgraphs G with excess ` ≤ 3. By
Lemma 3.7, the expected number of such subgraphs of size k = ε(2α)−1 log n is bounded
by (

n

k

)
p2k−3+`I`(k, i) ≤ k2`+ip`−3

(
2

e
knp2

)k
≤ nν+o(1)

where ν(ε) = 3/2 + ε(2α)−1 log(ε/e). Since ν is decreasing in ε < 1, ν → 3/2 > 0 as
ε ↓ 0, and ν(3α) = (3/2) log(3α) < 0, ε∗ satisfying ν(ε∗) = 0 is well-defined. Noting that
ν(ε) ≤ ν(ε∗ + η) < 0 for all ε ∈ [ε∗ + η, 3α], the lemma follows by a simple union bound,
summing over all O(1) relevant values of i and all O(log n) relevant values of k.

Next, we use Lemma 4.5 to rule out the remaining cases ε ≤ ε∗ + η (where η > 0 is a
small constant, to be determined below). In order to apply Lemma 4.5, we first verify
that, for such ε, we have β∗ ≥ βε.
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Lemma 4.7. Fix α ∈ (0, 1/3). Let βε, β∗, ε∗ be as in Lemmas 1.2, 4.2 and 4.6. Then, for
some sufficiently small η(α) > 0, we have that β∗ ≥ βε for all ε ∈ [0, ε∗ + η].

Proof. By Lemma 4.2 and the continuity of µ(α, βε) in ε, it suffices to show that µ(α, βε) >

0, for all ε ∈ [0, ε∗]. Let δε = 1−
√

1− ε, so that βε = δε/α. Note that

µ(α, βε) = 3/2 + (2α)−1(2δε log δε − δ2ε).

Therefore, by the bound log x ≤ x− 1,

∂

∂ε
µ(α, βε) = (2α)−1(1 + log(δε)/(1− δε)) ≤ 0.

It thus suffices to verify that µ(α, βε∗) > 0. To this end note that, by the definition of ε∗
(see Lemma 4.6),

µ(α, βε∗) = (2α)−1(2δε∗ log δε∗ − δ2ε∗ − ε∗ log(ε∗/e)).

By Lemma 4.6, we have that ε∗ = δε∗(2 − δε∗) ∈ (0, 1), and so δε∗ ∈ (0, 1). Hence the
lemma follows if we show that ν(δ) > 0 for all δ ∈ (0, 1), where

ν(δ) = 2δ log δ − δ2 − δ(2− δ) log(δ(2− δ)/e).

Note that
ν(δ)/δ = δ log δ − (2− δ) log(2− δ) + 2(1− δ).

Differentiating this expression with respect to δ, we obtain log(δ(2− δ)) < 0, for all δ < 1.
Noting that ν(1) = 0, the lemma follows.

It can be seen that, for all sufficiently large ε < ε∗, we have that β∗ < ε/α, where
µε 6= µ. Therefore, we require the following bound.

Lemma 4.8. Fix α ∈ (0, 1/3). Let ε ∈ [0, 1) and βε, µε be as in Lemmas 1.2 and 4.5. Then
µε(α, β) ≤ µ(α, β), for all β ∈ [βε, 1/α].

Proof. Since µ(α, β) = µε(α, β) for β ∈ [ε/α, 1/α], we may assume that β < ε/α. Let
δ = αβ. Then

α(µ(α, β)− µε(α, β)) = δ log δ − ε

2
log(ε/e)− 2δ − ε

2
log

(
eδ2

2δ − ε

)
.

Differentiating this expression with respect to δ, we obtain

ε/δ − 1− log(δ/(2δ − ε)) ≤ 0,

by the inequality log x ≥ (x− 1)/x. Since µ(α, ε/α) = µε(α, ε/α), the lemma follows.

Finally, we prove the main result of this section.

Proof of Proposition 4.1. Let δ > 0 be given. By Lemma 4.2, we may assume without
loss of generality that β∗ + δ < 1/α.

Note that by Lemmas 3.3(iii) and 4.3, it suffices to show that with high probability
there are no irreducible percolating subgraphs of size k ≥ (β∗ + δ) log n with a core of
size q ≤ (3/2) log n and excess ` ≤ 3. Also note that, if such a subgraph exists, then by
Lemma 3.1 there is such a subgraph of size k = β log n for some β ∈ [β∗ + δ, 1/α].

Select η > 0 as in Lemma 4.7. By Lemma 4.6, with high probability there are no
percolating 3-cores of size

ε∗ + η

2α
log n ≤ q ≤ 3

2
log n.
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On the other hand, by the choice of η, Lemmas 4.5, 4.7 and 4.8 imply that for any
β ∈ [β∗, 1/α], ε ≤ ε∗ + η and ` ≤ 3, the expected number of irreducible percolating
subgraphs of size k = β log n with a core of size q = ε(2α)−1 log n and excess ` is bounded
by nµ+o(1), where µ = µ(α, β). Therefore (summing over all O(log2 n) relevant values of
k, q, `) we find, by Lemma 4.2 and a union bound, that with high probability there are no
irreducible subgraphs of size

(β∗ + δ) log n ≤ k ≤ 1

α
log n

with a core of size q ≤ (ε∗ + η)(2α)−1 log n and excess ` ≤ 3.
Altogether, it follows that, with high probability, there are no irreducible percolating

subgraphs of size k ≥ (β∗ + δ) log n with a core of size q ≤ (3/2) log n.

4.2 Percolating subgraphs with large cores

To complete the proof of Theorem 1.3, we rule out the existence of “large” (larger
than (3/2) log n) percolating 3-cores.

Proposition 4.9. Fix α ∈ (0, 1/3) and put p =
√
α/(n log n). Then with high probability

Gn,p has no irreducible percolating 3-cores C of size

(3/2) log n ≤ q ≤ 9 log n.

Before establishing a proof, we observe that Propositions 4.1 and 4.9 easily imply our
main result.

Proof of Theorem 1.3. Let δ > 0 be given. By Lemma 4.2, we may assume without loss
of generality that β∗ + δ < 3. Hence, by Lemmas 2.8 and 3.3, if Gn,p has a percolating
subgraph that is larger than (β∗ + δ) log n, then it has some irreducible percolating
subgraph G of size

(β∗ + δ) log n ≤ k ≤ 9 log n

with a core C ⊂ G of size q ≤ k. By Proposition 4.9, with high probability q ≤ (3/2) log n.
However then, by Proposition 4.1, with high probability Gn,p contains no such subgraphs
G. Therefore, with high probability, all percolating subgraphs of Gn,p are of size k ≤
(β∗ + δ) log n. On the other hand, as shown in [2], Gn,p has seed subgraphs larger than
(β∗ − δ) log n, completing the proof.

Turning now to the proof of Proposition 4.9, we first observe that Gn,p has no large
percolating subgraphs with small cores and few vertices of degree 2.

Lemma 4.10. Fix α ∈ (0, 1/3) and put p =
√
α/(n log n). Fix some i∗ ≥ 1. With high

probability Gn,p has no irreducible percolating subgraph G of size k ≥ (3/2) log n with a
core C ⊂ G of size q ≤ (3/2) log n and i ≤ i∗ vertices of degree 2.

This is essentially a straightforward consequence of Lemma 3.8.

Proof. By Lemma 3.3 and 4.3, we may assume that if Gn,p has an irreducible percolating
subgraph G of size k = β log n with a core of size q ≤ (3/2) log n, then G has excess ` ≤ 3.
By Proposition 4.1 and Lemma 4.2 and 4.6, we may further assume that β ∈ [3/2, 3] and
q = yk, where yβ ∈ [0, 3/2 − ε], for some ε > 0. Without loss of generality, we assume
that ε < 1/(2e) and log(3/(2e) + ε) < −1/2 (which is possible, since 1 + 2 log(3/(2e)) ≈
−0.189 < 0). By Lemma 3.8 and since α < 1/3, for some constant ϑ ≥ 1, the expected
number of such subgraphs G (for a given k, q, i) is bounded by(

n

k

)
p2k−3+`I`q(k, i) ≤ ϑk2`+ip`−3(knp2ψε(q/k))k � nν
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where
ν(β, ψε(y)) = 3/2 + β log(β/3) + β logψε(y).

Here, ψε(y) is as defined in Lemma 3.8, that is,

ψε(y) = max{3/(2e) + ε, (e/2)1−2yy2}.

Recall that ψε(y) = 3/(2e) + ε for y ≤ y∗ and ψε(y) = (e/2)1−2yy2 for y > y∗, where
y∗ = y∗(ε) is as defined by (3.1). Moreover, y∗ ↓ y0 as ε ↓ 0, where y0 ≈ 0.819.

Finally, observe that, for some δ > 0, ν(β, ψε(y)) < −δ for all relevant all β, y. This
follows by basic calculus, see Appendix C below. Hence the lemma follows by a simple
union bound, summing over all O(log2 n) relevant values of k, q, i.

Finally, we prove Proposition 4.9. The main idea is as follows: Suppose that Gn,p
has an irreducible percolating 3-core C of size k = β log n, for some β ∈ [3/2, 9]. By
Lemma 4.3, we can assume that its excess is ` ≤ 27. Hence, in the last step of a clique
process for C, either 2 or 3 percolating subgraphs are merged that have few vertices of
degree 2 (by the observations following Lemma 3.7 above). Therefore, by Lemma 4.10,
each of these subgraphs is either smaller than (3/2) log n, or else has a 3-core larger
than (3/2) log n. Hence, in proving Proposition 4.9, the key is to consider C in Gn,p of
minimal size larger than (3/2) log n. By Lemma 4.6, there is some β1 < 3/2 so that with
high probability Gn,p has no percolating subgraphs of size β log n with few vertices of
degree 2, for β ∈ [β1, 3/2]. Hence such a graph C, if it exists, is the result of the (unlikely)
event that 2 or 3 percolating graphs, all of which are smaller than β1 log n and have few
vertices of degree 2, are merged to form a percolating 3-core of size at least (3/2) log n.
Informally, this corresponds to a costly “macroscopic jump” in the clique process.

Proof of Proposition 4.9. By Lemma 4.6, there is some β1 < 3/2 so that with high proba-
bility Gn,p has no irreducible percolating subgraphs of size

β1 log n ≤ k ≤ 3

2
log n

with i ≤ 15 vertices of degree 2.
Suppose that Gn,p has an irreducible 3-core C of size k = β log n, for some β ∈ [3/2, 9].

By Lemma 4.3, we may assume that its excess is ` ≤ 27. Assume, moreover, that C is of
minimal size amongst such subgraphs. Then by Lemma 2.7 there are two possibilities
for the last step of a clique process for C:

(i) Three irreducible percolating subgraphs Gj , j ∈ {1, 2, 3}, are merged which form
exactly one triangle T = {v1, v2, v3}, such that for some ij ≤ 2 and kj , `j ≥ 0 with∑
kj = k + 3 and

∑
`j = `, the Gj contribute to I`j (kj , ij). If any ij > 0, the ij

vertices of Gj of degree 2 belong to T .
(ii) For some m ≤ (`+ 3)/2 ≤ 15, two percolating subgraphs Gj , j ∈ {1, 2}, are merged

that share exactly m vertices S = {v1, v2, . . . , vm}, such that for some kj , `j ≥ 0 with∑
kj = k +m and

∑
`j = `− (2m− 3), the Gj contribute to C`j (kj).

In either case, by the choice of C, all Gj have a core smaller than (3/2) log n. Hence,
by Lemmas 3.3 and 4.3, we may assume that each `j ≤ 3. Also, by Lemma 4.10 and the
choice of β1, we may further assume that all Gj are smaller than β1 log n.

Case (i). Let kj , `j be as in (i). Let kj − (j − 1) = εjk, so that
∑
εj = 1. Without loss

of generality we assume that k1 ≥ k2 ≥ k3. Hence ε1, ε2 satisfy 1/3 ≤ ε1 ≤ β1/β < 1 and
(1− ε1)/2 ≤ ε2 ≤ min{ε1, 1− ε1}. The number of 3-cores C as in (i) for these given values
kj , `j is bounded by(

k

k1, k2 − 1, k3 − 2

)(
k1
2

)
2!

(
k2 − 1

1

) 3∏
j=1

2∑
i=0

(
2

i

)
I`j (kj , i)(

kj
i

) .
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Applying Lemma 3.7 and the inequality k! < ek(k/e)k (and recalling `j ≤ 3), this is
bounded by (

k

k − k1

)(
k − k1
k3 − 2

)
(4ek8)3

(
2

e2

)k+3 3∏
j=1

k
2kj
j .

By the inequality
(
n
k

)
< (ne/k)k, and noting that

k
2kj
j ≤ (ek)2(j−1)(kj − (j − 1))2(kj−(j−1)),

we see that the above expression is bounded by (2e−2η(ε1, ε2)k2)kno(1), where

η(ε1, ε2) =

(
e

1− ε1

)1−ε1 ( (1− ε1)e

ε3

)ε3
ε2ε11 ε2ε22 ε2ε33

=
e1−ε1+ε3

(1− ε1)ε2
ε2ε11 ε2ε22 εε33 .

Therefore, since α < 1/3, the expected number of 3-cores C as in (i) for these given
values kj , `j is at most(

n

k

)
p2k−3

(
2

e2
η(ε1, ε2)k2

)k
no(1) = p−3

(
2

e
αβη(ε1, ε2)

)k
no(1) � nν

where

ν(β, ε1, ε2) =
3

2
+ β log

(
2

3e
βη(ε1, ε2)

)
.

In Appendix D it is shown, by basic calculus, that for some δ > 0, ν(β, ε1, ε2) < −δ for all
relevant β, ε1, ε2. Therefore, taking a union bound (summing over all O(log3 n) relevant
values of k, kj , `j) we find that with high probability Gn,p has no subgraphs C as in (i)
above.

The next case is similar. We only sketch the details.
Case (ii). Let kj , `j ,m be as in (ii). Let k1 = ε1k and k2 −m = ε2k, so that

∑
εj = 1.

Without loss of generality we assume that k1 ≥ k2. Hence ε1, ε2 satisfy 1/2 ≤ ε1 ≤ β1/β <
1 and ε2 = 1 − ε1. The number of 3-cores C as in (ii) for these given values kj , `j ,m is
bounded by (

k

k2 −m

)(
k1
m

)
m!

2∏
j=1

C`j (kj , i).

Therefore, arguing as in Case (i), we find that the expected number of 3-cores C as in (ii)
for these given values kj , `j ,m is at most is� nν , where ν = ν(β, ε1, 1− ε1) is as in Case
(i). Hence, once again, by taking a union bound (summing over all O(log2 n) relevant
values of k, kj , `j ,m) we find that with high probability Gn,p has no subgraphs C as in (i)
above.

The proof is complete.

A Basic estimates

Proof of Lemma 3.7. It is easily verified that the statement of the lemma holds for k ≤ 4.
For k > 4, we claim moreover that for all ` ≤ 3 and relevant i,

I`(k, i) ≤ Aζk
(
k

i

)
k!kk+2` (A.1)

where ζ = 2/e and A = 6/(ζ55!55). Since A < 1 and
(
k
i

)
≤ ki, the lemma follows.
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The constant A (appearing in (A.1) but not in Lemma 3.7) is used as a device in the
proof to control the case of 3-cores (i = 0), that can be formed by “merging” multiple
percolating graphs of “macroscopic” size.

The proof is by induction. By the choice of A, we note that (A.1) holds for k = 5.
Indeed, I`(5, i) ≤

(
5
i

)(
4
2

)
for i ∈ {1, 2, 3} and ` = 0, and I`(5, i) = 0 otherwise. Assume

that for some k > 5, (A.1) holds for all 4 < k′ < k, ` ≤ 3 and relevant i.
The case i > 0, where G has at least one vertex of degree 2 follows easily, and

elucidates the choice of ζ = 2/e.
Case 1 (i > 0). Suppose that G is a graph contributing to I`(k, i), where i > 0 and

` ≤ 3. Let v ∈ V (G) be the vertex of degree 2 in G of minimal index. By considering
which two of the k − i vertices of G of degree larger than 2 are neighbors of v, we find
that I`(k, i) is bounded from above by(

k

i

)(
k − i

2

) 2∑
j=0

(
2

j

)
I`(k − 1, i− 1 + j)(

k−1
i−1+j

) .

In this sum, j ∈ {0, 1, 2} is the number of neighbors of v that are of degree 2 in the
subgraph of Gv of G induced by V (G) − {v}. Applying the inductive hypothesis, we
obtain

I`(k, i) ≤ Aζk
(
k

i

)
k!kk+2` · 2

ζ

(
k − 1

k

)k
≤ Aζk

(
k

i

)
k!kk+2`,

as required.
The remaining cases deal with 3-cores G of size k, where i = 0. First, we establish

the case i = ` = 0 of edge-minimal 3-cores. The cases i = 0 and ` ∈ {1, 2, 3} are proved
by adapting this argument.

Case 2 (i = ` = 0). Let G be a graph contributing to C(k) = I(k, 0). Then, by
Lemma 2.7, in the last step of a clique process for G, three edge-minimal percolating
subgraphs Gj , j ∈ {1, 2, 3}, are merged which form exactly one triangle on some T =

{v1, v2, v3} ⊂ V (G). Moreover, each Gj has at most 2 vertices of degree 2, and if some
Gj has such a vertex v then necessarily v ∈ T (as else G would have a vertex of degree
2). Also if kj = |V (Gj)|, with k1 ≥ k2 ≥ k3, then (i)

∑3
j=1 kj = k+ 3, (ii) k1, k2 ≥ 4 and (iii)

k3 = 2 or k3 ≥ 4 (since if some kj = 3 or some kj = kj′ = 2, j 6= j′, then G would have a
vertex of degree 2).

Since the inductive hypothesis only holds for graphs with more than 4 vertices, it
is convenient to deal with the case k1 = 4 separately: Note that the only irreducible
percolating 3-cores of size k with k1 = 4 are of size k ∈ {7, 9}. These are the graph in
Figure 1 and the graph obtained from this graph by replacing the bottom edge with a
copy of K4 minus an edge. It is easy to verify that (A.1) holds if k ∈ {7, 9}, and so in the
arguments below we assume that k1 > 4 and k ≥ 8.

We take three cases, with respect to whether (i) k2 = 4, (ii) k2 > 4 and k3 ∈ {2, 4}, or
(iii) k3 > 4.

Case 2(i) (i = ` = 0 and k2 = 4). Note that if k2 = 4 then k3 ∈ {2, 4}. The number of
graphs G as above with k3 = 2 and k2 = 4 is bounded from above by(

k

k − 3

)(
k − 3

2

)
2!

(
3

1

) 2∑
i=0

(
2

i

)
I(k − 3, i)(

k−3
i

) .

Here the first binomial selects the vertices for the subgraph of size k1 = k − 3, the next
three factors select and order the vertices in the triangle T , and the rightmost factor
bounds the number of possibilities for the subgraph of size k1 = k − 3 (recalling that it
can have at most 2 vertices of degree 2, and if it contains any such vertex v, then v ∈ T ).
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Applying the inductive hypothesis (recall that we may assume that k1 > 4), the above
expression is bounded by

Aζkk!kk · (k − 3)k−1

kk
2

ζ3
≤ Aζkk!kk · 1

k

2

ζ3e3
.

Here, and throughout this proof, we use the fact that (k−xk )k−y ≤ e−x provided that
2y ≤ x < k and x > 0. To see this, note that (k−xk )k−y → e−x as k →∞, and

∂

∂k

(
k − x
k

)k−y
=

(
k − x
k

)k−y (
log

(
k − x
k

)
+
x(k − y)

k(k − x)

)
≥
(
k − x
k

)k−y
x(x− 2y)

2k(k − x)
≥ 0,

by the inequality log u ≥ (u2 − 1)/(2u) (which holds for u ∈ (0, 1]).
Similarly, the number of graphs G as above such that k1 = k2 = 4 is bounded by(

k

k − 5, 3, 2

)(
k − 5

2

)
2!

(
3

1

) 2∑
i=0

(
2

i

)
I(k − 5, i)(

k−5
i

) .

By the inductive hypothesis, this is bounded by

Aζkk!kk · (k − 5)k−3

kk
1

ζ5
≤ Aζkk!kk · 1

k5/2
√
k − 5

1

ζ5e5
.

Altogether, we find that the number of graphs G contributing to C(k) with k2 = 4,
divided by Aζkk!kk, is bounded by

γ1 =
1

8

2

ζ3e3
+

1

85/2
√

3

1

ζ5e5
< 0.04. (A.2)

Case 2(ii) (i = ` = 0, k2 > 4 and k3 ∈ {2, 4}). Note that in this case we may further
assume that k ≥ 9. For a given k1, k2 > 4, the number of graphs G as above with k3 = 2

(in which case k1 + k2 = k + 1) is bounded by(
k

k1, k2 − 1

)(
k1
2

)
2!

(
k2 − 1

1

) 2∏
j=1

2∑
i=0

(
2

i

)
I(kj , i)(

kj
i

) .

Applying the inductive hypothesis, this is bounded by

Aζkk!kk · 42Aζ k
k1+2
1 kk2+2

2

kk
.

Since k2 = k + 1− k1, we have that

∂

∂k1
kk1+2
1 kk2+2

2 = −kk1+1
1 kk2+1

2 (k1k2 log(k2/k1)− 2(k1 − k2)).

By the bound log x ≤ x− 1, we see that

k1k2 log(k2/k1)− 2(k1 − k2) ≤ −(k2 + 2)(k1 − k2) ≤ 0.

Hence, setting k1 to be the maximum relevant value k1 = k − 4 (when k2 = 5), we find

kk1+2
1 kk2+2

2

kk
≤ 57(k − 4)k−2

kk
≤ 1

k2
57

e4
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for all relevant k1, k2. Therefore, summing over the at most k/2 possibilities for k1, k2,
we find that at most

Aζkk!kk · 1

k

Aζ4257

2e4

graphs G with k3 = 2 and k2 > 4 contribute to C(k).
The case of k3 = 4 is very similar. In this case, for a given k1, k2 > 4 such that

k1 + k2 = k − 1, the number of graphs G as above is bounded by(
k

k1, k2 − 1, 2

)(
k1
2

)
2!

(
k2 − 1

1

) 2∏
j=1

2∑
i=0

(
2

i

)
I(kj , i)(

kj
i

) ,

which, by the inductive hypothesis, is bounded by

Aζkk!kk · 42

2

A

ζ

kk1+2
1 kk2+2

2

kk
.

Arguing as in the previous case, we see that the above expression is maximized when
k2 = 5 and k1 = k− 6. Hence, summing over the at most k/2 possibilities for k1, k2, there
are at most

Aζkk!kk · 1

(k − 6)k2
4A57

ζe6

graphs G that contribute to C(k) with k3 = 4 and k2 > 4.
We conclude that the number of graphs G that contribute to C(k) with k2 > 4 and

k3 ∈ {2, 4}, divided by Aζkk!kk, is bounded by

γ2 =
1

9

Aζ4257

2e4
+

1

3 · 92
4A57

ζe6
< 0.07. (A.3)

Case 2(iii) (i = ` = 0 and k3 > 4). In this case we may further assume that k ≥ 12.
For a given k1, k2, k3 > 4 such that k1 + k2 + k3 = k+ 3, the number of graphs G as above
is bounded by (

k

k1, k2 − 1, k3 − 2

)(
k1
2

)
2!

(
k2 − 1

1

) 3∏
j=1

2∑
i=0

(
2

i

)
I(kj , i)(

kj
i

) .

By the inductive hypothesis, this is bounded by

Aζkk!kk · 43A2ζ3
kk1+2
1 kk2+2

2 kk3+2
3

kk
.

As in the previous cases considered, the above expression is maximized when k2 = k3 = 5

and k1 = k − 7. Hence, summing over the at most k2/12 choices for the kj , we find that
at most

Aζkk!kk · 1

((k − 7)k)3/2
A2ζ343514

12e7

graphs G contribute to C(k) with k3 > 4. Hence, the number of such graphs, divided by
Aζkk!kk, is bounded by

γ3 =
1

(5 · 12)3/2
A2ζ343514

12e7
< 0.01. (A.4)

Finally, combining (A.2), (A.3) and (A.4), we find that

C(k)

Aζkk!kk
≤ γ1 + γ2 + γ3 < 0.12 < 1, (A.5)
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completing the proof of Case 2.
It remains to consider the cases i = 0 and ` ∈ {1, 2, 3}, corresponding to 3-cores G

with non-zero excess. In these cases, it is possible that only 2 subgraphs are merged in
the last step of a clique process for G. We prove the cases ` = 1, 2, 3 separately, however
they all follow by adjusting the proof of Case 2.

First, we note that if two graphs G1, G2 with at least 2 vertices in common are merged
to form an irreducible percolating 3-core G, then necessarily each Gj contains more
than 4 vertices. In particular, such a graph G contains at least 8 vertices. This allow us
to apply the inductive hypothesis in these cases (recall that we claim that (A.1) holds
only for graphs with more than 4 vertices), without taking additional sub-cases as in the
proof of Case 2. Moreover, as discussed below the statement of Lemma 3.7, in this case
we also have that the Gj are 3-cores.

Case 3 (i = 0 and ` = 1). If G contributes to C1(k), then by Lemma 2.7, in the last
step of a clique process for G, there are two cases to consider:

(i) Three percolating subgraphs Gj , j ∈ {1, 2, 3}, are merged which form exactly one
triangle T = {v1, v2, v3}, such that for some ij ≤ 2 and kj , `j ≥ 0 with

∑
kj = k + 3

and
∑
`j = 1, we have that Gj contributes to I`j (kj , ij). Moreover, if any ij > 0,

the ij vertices of Gj of degree 2 belong to T .
(ii) Two percolating subgraphs Gj , j ∈ {1, 2}, are merged that share exactly two

vertices S = {v1, v2}, such that for some kj with
∑
kj = k + 2, we have that the Gj

contribute to C(kj , ij).
We claim that, by the arguments in Case 2 leading to (A.5), the number of graphs G

satisfying (i), divided by Aζkk!kk+2, is bounded by

γ1 + 2γ2 + 3γ3 < 0.21. (A.6)

To see this, note the only difference between (i) of the present case and Case 2 above is
that here one of the Gj has exactly 1 excess edge. Note that if one of the graphs Gj has
an excess edge, then necessarily kj > 4. Recall that graphs G that contribute to C(k),
as considered in Cases 2(i),(ii),(iii) above, have exactly 1, 2, 3 subgraphs Gj with kj > 4,
respectively. Moreover, recall that the number of such graphs G, divided by Aζkk!kk,
is bounded by γ1, γ2, γ3, respectively, in these cases. Therefore, applying the inductive
hypothesis, and noting that if Gj has exactly `j = 1 excess edge then it contributes an
extra factor of k2j < k2, it follows that the number of graphs G as in (i) of the present case,

divided by Aζkk!kk+2, is bounded by
∑3
j=1 jγj , as claimed. (By (A.2), (A.3) and (A.4), this

sum is bounded by 0.21.)
On the other hand, arguing along the lines as in Case 2, the number of graphs G

satisfying (ii), for a given k1, k2 > 4 such that k1 + k2 = k + 2, is bounded by(
k

k1, k2 − 2

)(
k1
2

)
2!

2∏
j=1

C(kj , i).

By the inductive hypothesis, this is bounded by

Aζkk!kk ·Aζ2 k
k1+2
1 kk2+2

2

kk
.

Arguing as in Case 2, we find that this expression is maximized when k2 = 5 and
k1 = k−3. Hence, summing over the at most k/2 choices for k1, k2, the number of graphs
G satisfying (ii), divided by Aζkk!kk+2, is at most

γ4 =
1

82
Aζ257

2e3
< 0.01. (A.7)
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Altogether, by (A.6) and (A.7), we conclude that

C1(k)

Aζkk!kk+2
≤ γ1 + 2γ2 + 3γ3 + γ4 < 0.22 < 1, (A.8)

completing the proof of Case 3.
Case 4 (i = 0 and ` = 2). This case is nearly identical to Case 3. By Lemma 2.7, in

the last step of a clique process for a graph G that contributes to C2(k), either (i) three
graphs that form exactly one triangle are merged whose excesses sum to 2, or else (ii)
two graphs that share exactly two vertices are merged whose excesses sum to 1. Hence,
by the arguments in Case 3 leading to (A.8), we find that

C2(k)

Aζkk!kk+4
≤ γ1 + 3γ2 + 6γ3 + 2γ4 < 0.33 < 1, (A.9)

as required.
Case 5 (i = 0 and ` = 3). Since ` = 3, it is now possible that in the last step of a

clique process for a graph G contributing to C`(k), two graphs are merged that share
three vertices. Apart from this difference, the argument is completely analogous to the
previous cases.

If G contributes to C3(k), then by Lemma 2.7, in the last step of a clique process for
G, there are three cases to consider:

(i) Three percolating subgraphs Gj , j ∈ {1, 2, 3}, are merged which form exactly one
triangle T = {v1, v2, v3}, such that for some ij ≤ 2 and kj , `j ≥ 0 with

∑
kj =

k + 3 and
∑
`j = 3, we have that Gj contributes to I`j (kj , ij). If any ij > 0, the

corresponding ij vertices of Gj of degree 2 belong to T .
(ii) Two percolating subgraphs Gj , j ∈ {1, 2}, are merged that share exactly two

vertices S = {v1, v2}, such that for some kj with
∑
kj = k + 2, we have that the Gj

contribute to C(kj).
(iii) Two percolating subgraphs Gj , j ∈ {1, 2}, are merged that share exactly three

vertices R = {v1, v2, v3}, such that for some kj with
∑
kj = k + 3, we have that the

Gj contribute to C(kj).
As in Case 4, we find by the arguments in Case 3 leading to (A.8) that the number of

graphs G satisfying (i) or (ii), divided by Aζkk!kk+6, is bounded by

γ1 + 4γ2 + 10γ3 + 3γ4 < 0.45. (A.10)

By the arugments in Case 3 leading to (A.7), the number of graphs G satisfying (iii),
for a given k1, k2 > 4 such that k1 + k2 = k + 3, is bounded by(

k

k1, k2 − 3

)(
k1
3

)
3!

2∏
j=1

C(kj).

By the inductive hypothesis, this is bounded by

Aζkk!kk ·Aζ3 k
k1+3
1 kk2+3

2

kk
.

This expression is maximized when k2 = 5 and k1 = k − 2. Hence, summing over the at
most k/2 choices for k1, k2, the number of graphs G satisfying (iii), divided by Aζkk!kk+6,
is at most

γ5 =
1

84
Aζ358

2e2
< 0.01. (A.11)

Therefore, by (A.10) and (A.11), we have that

C3(k)

Aζkk!kk+6
≤ γ1 + 4γ2 + 10γ3 + 3γ4 + γ5 < 0.46 < 1,
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completing the proof of Case 5.
This last case completes the induction. We conclude that (A.1) holds for all k > 4,

` ≤ 3 and relevant i, and the lemma follows.

B Sharper estimates

Proof of Lemma 3.8. Let ε > 0 be given. We may assume that ε < 1/(2e), as otherwise
the statement of lemma follows by Lemma 3.7. We claim that, for some ϑ(ε) ≥ 1 (to be
determined below), and for all k ≥ 2, ` ≤ 3 and relevant q, i, we have that

I`q(k, i) ≤ ϑ
(
k

i

)
ψε(q/k)kk!kk+2`. (B.1)

Case 1 (i = k−q). We first observe that Lemma 3.7 implies the case i = k−q. Indeed,
if q = k, in which case i = 0, then (B.1) follows immediately by Lemma 3.7, noting that
I`k(k, 0) = C`(k) and ψ(1) = 2/e. On the other hand, if i = k − q > 0 then

I`q(k, k − q) =

(
k

k − q

)(
q

2

)k−q
C`(q),

since all k−q vertices of degree 2 in a graph that contributes to I`q(k, k−q) are neighbors
of 2 vertices in its core. We claim that the right hand side is bounded by(

k

k − q

)
(e/2)k−2q(q/k)2kk!kk+2`.

Since (e/2)k−2q(q/k)2k ≤ ψ(q/k)k, (B.1) follows. To see this, note that by Lemma 3.7, we
have that (

q
2

)k−q
C`(q)

(e/2)k−2q(q/k)2kk!kk+2`
≤
( q
k

)2` q!

(q/e)q
(k/e)k

k!
≤ q!

(q/e)q
(k/e)k

k!
.

By the inequalities 1 ≤ i!/(
√

2πi(i/e)i) ≤ e1/(12i), it is easy to verify that the right hand
side above is bounded by 1, for all relevant q ≤ k. Hence (B.1) holds also in the case
i = k − q > 0.

Case 2 (i < k − q). Fix some kε ≥ 1/(1− y∗)2 (where y∗ is as in (3.1)) such that, for
all k ≥ kε and relevant q, we have that

1 +
2

k − 1

(
k − 2

k − 1

)k
ψε(q/(k − 2)k−2

ψε(q/(k − 1))k−1
= 1 +O(1/k) ≤ 1 + δ,

where

δ = min

{
1− 3/(2e)

3/(2e) + ε
, 1− 3(1− y∗)

y2∗

}
.

Note that, since 3(1− y)/y2 < 1 for all y > (
√

21− 3)/2 ≈ 0.791, and recalling (see (3.1))
that y∗ > y0 ≈ 0.819, it follows that δ > 0.

Select ϑ ≥ 1 so that (B.1) holds for all k ≤ kε and relevant q, `, i. By Case 1 and since
ϑ ≥ 1, we have that (B.1) holds for all k, q in the case that i = k − q. We establish the
remaining cases i < k − q by induction. Assume that for some k > kε, (B.1) holds for all
k′ < k and relevant q, `, i.

In any graph G contributing to I`q(k, i), where i < k−q, there is some vertex of degree
2 with at least one of its two neighbors not in the core of G. There are two cases to
consider: either
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(i) there is a vertex v of degree 2 such that at least one of its two neighbors is of
degree 2 in Gv (obtained from G by deleting v), or else,

(ii) there is no such vertex v, however there are vertices u 6= w of degree 2 in G with a
common neighbor that is not in the core C of G.

Note that, in case (i), removing v results in a graph with j ∈ {i, i+1} vertices of degree 2.
On the other hand, in case (ii), removing u and w results in a graph with j ∈ {i−2, i−1, i}
vertices of degree 2. Hence, for i < k − q, we find that I`q(k, i)/

(
k
i

)
is bounded by

I`q(k − 1, i+ 1)(
k−1
i+1

) (
k − i− q

2

)
+
I`q(k − 1, i)(

k−1
i

) (k − i− q)(k − i)

+ (k − i− q)(k − i)2
2∑
j=0

I`q(k − 2, i− 2 + j)(
k−2
i−2+j

) .

Applying the inductive hypothesis, it follows (after simple, but somewhat tedious simpli-
fications) that

I`q(k, i)

ϑ
(
k
i

)
ψε(q/k)kk!kk+2`

≤ Ψε(q, k)

[
1 +

2

k − 1

(
k − 2

k − 1

)k
ψε(q/(k − 2)k−2

ψε(q/(k − 1))k−1

]
where

Ψε(q, k) =
3

2

k − q
k

(
k − 1

k

)k
ψε(q/(k − 1))k−1

ψε(q/k)k
.

By the choice of kε, and since k ≥ kε, we have that

I`q(k, i)

ϑ
(
k
i

)
ψε(q/k)kk!kk+2`

≤ Ψε(q, k)(1 + δ). (B.2)

Next, we show that Ψε(q, k) < 1− δ, completing the induction. To this end, we take
cases with respect to whether (i) q/(k− 1) ≤ y∗, (ii) y∗ ≤ q/k, or (iii) q/k < y∗ < q/(k− 1).

Case 2(i) (q/(k − 1) ≤ y∗). In this case ψε(q/m) = 3/(2e) + ε, for each m ∈ {k − 1, k}.
It follows, by the choice of δ, that

Ψε(q, k) ≤
(
k − 1

k

)k
3/2

3/(2e) + ε
≤ 3/(2e)

3/(2e) + ε
< 1− δ,

as required.
Case 2(ii) (y∗ ≤ q/k). In this case, we have that ψ(q/m)m = (e/2)m−2q(q/m)2m, for

each m ∈ {k − 1, k}. Hence

Ψε(q, k) =
3

e

(
k

k − 1

)k−1
(k − q)(k − 1)

q2
≤ 3(1− y)

y2
,

where y = q/k. Since the right hand side is decreasing in y, we find, by the choice of δ,
that

Ψε(q, k) ≤ 3(1− y∗)
y2∗

< 1− δ.

Case 2(iii) (q/k < y∗ < q/(k − 1)). In this case, ψε(q/k) = 3/(2e) + ε and

ψε(q/(k − 1))k−1 = (e/2)k−1−2q(q/(k − 1))2(k−1).

Hence

Ψε(q, k) =
3

e

(
k

k − 1

)k−1
(k − q)(k − 1)

q2
(e/2)k−2q(q/k)2k

(3/(2e) + ε)k
.
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As in the previous case, we consider the quantity y = q/k. The above expression is
bounded by

3(1− y)

y2

(
(e/2)1−2yy2

3/(2e) + ε

)k
.

We claim that this expression is increasing in y ≤ y∗. By (3.1) and the choice of δ, it
follows that

Ψε(q, k) ≤ 3(1− y∗)
y2∗

< 1− δ,

as required. To establish the claim, simply note that

∂

∂y

1− y
y2

((2/e)yy)2k =
1

y3
((2/e)yy)2k (2(1− y)(1 + y log(2/e))k + y − 2)

>
2

y3
((2/e)yy)2k((1− y)2k − 1) ≥ 0

for all y ≤ y∗, since k ≥ kε ≥ 1/(1− y∗)2.
Altogether, we conclude that Ψε(q, k) ≤ 1− δ, for all relevant q. By (B.2), it follows

that
I`q(k, i)

ϑ
(
k
i

)
ψε(q/k)kk!kk+2`

≤ 1− δ2 < 1

completing the induction. We conclude that (B.1) holds for k ≥ 2, ` ≤ 3 and relevant q, i.
Since

(
k
i

)
≤ ki, the lemma follows.

C Details in the proof of Lemma 4.10

In this section, to complete the proof of Lemma 4.10, we verify that, for some δ > 0,
we have that ν(β, ψε(y)) < −δ for all relevant β, y. Note that ν is convex in β. Therefore
it suffices to consider the extreme points β = 3/2 and β = min{3, 3/(2y)} in the range
y ∈ [0, 1− 2ε/3].

Since ψε(1) = 2/e, we have that ν(3/2, ψε(1)) = 0. Hence, for some δ1 > 0, we have
that ν(3/2, ψε(y)) < −δ1 for all y ∈ [0, 1 − 2ε/3]. Next, for β = min{3, 3/(2y)}, we treat
the cases (i) y ∈ [0, 1/2] and β = 3 and (ii) y ∈ [1/2, 1− 2ε/3] and β = 3/(2y) separately. If
y ≤ 1/2, then ψε(y) = 3/(2e) + ε, in which case, by the choice of ε,

ν(3, ψε(y)) =
3

2
(1 + 2 log(3/(2e) + ε)) < 0.

On the other hand, for y ≥ 1/2, we need to show that

ν(3/(2y), ψε(y)) =
3

2

(
1 +

1

y
log

(
ψε(y)

2y

))
< 0.

To this end, we first note that differentiating ν(3/(2y), 3/(2e) + ε) twice with respect to y,
we obtain

3

2y3

(
3 + 2 log

(
3/(2e) + ε

2y

))
≥ 3

2

(
3 + 2 log

(
3

4e

))
≈ 0.637 > 0.

Therefore it suffices to consider the extreme points y = 1/2 and y = 1. Noting that, by
the choice of ε, we have that

ν(3, 3/(2e) + ε) =
3

2
(1 + 2 log(3/(2e) + ε)) < 0
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and

ν(3/2, 3/(2e) + ε) =
3

2

(
1 + log

(
3/(2e) + ε

2

))
<

3

2
(1 + 2 log(3/(2e) + ε)) < 0,

it follows that ν(3/(2y), 3/(2e) + ε) < 0 for all y ∈ [1/2, 1]. Next, we observe that
differentiating ν(3/(2y), (e/2)1−2yy2) with respect to y, we obtain

3

2y2
(1− log(ey/4)) ≥ 3 log 2 > 0.

Therefore, since ν(3/(2y), (e/2)1−2yy2) → ν(3/2, ψε(1)) = 0 as y ↑ 1, it follows that
ν(3/(2y), (e/2)1−2yy2) < 0 for all y ∈ [1/2, 1− 2ε/3]. Altogether, there is some δ2 > 0 so
that ν(min{3, 3/(2y)}, ψε(y)) < −δ2 for all y ∈ [0, 1− 2ε/3].

Taking δ = min{δ1, δ2}, it follows that ν(β, ψε(y)) < −δ, for all relevant β, y, as
required.

D Details in the proof of Proposition 4.9

We finish the proof of Proposition 4.9 by showing that, for some δ > 0, we have
ν(β, ε1, ε2) < −δ, for all relevant β, ε1, ε2. Since ν is convex in β, we can restrict to the
extreme points β = 3/2 and β = 3/(2ε1) > β1/ε1. To this end, observe that when β = 3/2,
we have that ν < 0 if and only if η < 1. Similarly, when β = 3/(2ε1), ν < 0 if and only if
η < ε1e

1−ε1 . Since ε1e1−ε1 ≤ 1 for all relevant ε1, it suffices to establish the latter claim.
To this end, we observe that

∂

∂ε2
η(ε1, ε2) = η(ε1, ε2) log

(
eε22

(1− ε1)(1− ε1 − ε2)

)
≥ η(ε1, ε2) log(e/2) > 0

for all relevant ε2 ≥ (1− ε1)/2. Therefore, we need only show that

ζ(ε1) =
η(ε1,min{ε1, 1− ε1})

ε1e1−ε1
< 1− δ

for some δ > 0 and all relevant ε1. We treat the cases ε1 ∈ [1/3, 1/2] and ε1 ∈ [1/2, 1)

separately.
For ε1 ∈ [1/3, 1/2], we have

ζ(ε1) =
η(ε1, ε1)

ε1e1−ε1
=

(e(1− 2ε1))1−2ε1ε4ε1−11

(1− ε1)ε1
.

Hence
∂

∂ε1
ζ(ε1) = ζ(ε1)

(
log

(
ε41

(1− ε1)(1− 2ε1)2

)
+
ε21 + ε1 − 1

ε1(1− ε1)

)
.

The terms ε41/((1 − ε1)(1 − 2ε1)2) and (ε21 + ε1 − 1)/(ε1(1 − ε1)) are increasing for ε1 ∈
[1/3, 1/2], as is easily verified. Hence ζ(ε1) is decreasing in ε1 for 1/3 ≤ ε1 ≤ x1 ≈ 0.439

and increasing for x1 ≤ ε1 ≤ 1/2. Therefore, since ζ(1/3) = (e/6)1/3 < 1 and ζ(1/2) =

1/
√

2 < 1, we have that, for some δ1 > 0, ζ(ε1) < 1− δ1 for all ε1 ∈ [1/3, 1/2].
Similarly, for ε ∈ [1/2, 1), we have

ζ(ε1) =
η(ε1, 1− ε1)

ε1e1−ε1
= (1− ε1)1−ε1ε2ε1−11 .
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Hence
∂

∂ε1
ζ(ε1) = ζ(ε1)

(
log

(
ε21

1− ε1

)
+
ε1 − 1

ε1

)
.

Since ε21/(1 − ε1) and (ε1 − 1)/ε1 are increasing in ε1 ∈ [1/2, 1), we find that ζ(ε1) is
decreasing in ε1 for 1/2 ≤ ε1 ≤ x2 ≈ 0.692 and increasing for x2 ≤ ε1 < 1. Note
that ζ(1/2) = 1/

√
2 < 1 and ζ(1) = 1. Hence, for some δ2 > 0, ζ(ε1) < 1 − δ2 for all

ε1 ∈ [1/2, β1/β] ⊂ [1/2, 1).
Setting δ′ = min{δ1, δ2}, we find that ζ(ε1) < 1− δ′ for all relevant ε1. It follows that,

for some δ > 0, we have that ν(β, ε1, ε2) < −δ, for all relevant β, ε1, ε2.
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