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formula, and pathwise couplings on Riemannian

manifolds with Kato bounded Ricci curvature*
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Abstract

We prove that if the Ricci tensor Ric of a geodesically complete Riemannian manifold
M , endowed with the Riemannian distance ρ and the Riemannian measure m, is
bounded from below by a continuous function k : M → R whose negative part k−

satisfies, for every t > 0, the exponential integrability condition

sup
x∈M

E
[
e
∫ t
0 k
−(Xxr )/2 dr

1{t<ζx}
]
<∞,

then the lifetime ζx of Brownian motion Xx on M starting in any x ∈ M is a.s. infinite.
This assumption on k holds if k− belongs to the Kato class of M . We also derive
a Bismut–Elworthy–Li derivative formula for ∇Ptf for every f ∈ L∞(M ) and t > 0

along the heat flow (Pt)t≥0 with generator ∆/2, yielding its L∞-Lip-regularization as
a corollary.

Moreover, given the stochastic completeness of M , but without any assumption on
k except continuity, we prove the equivalence of lower boundedness of Ric by k to
the existence, given any x, y ∈ M , of a coupling (Xx, Xy) of Brownian motions on M

starting in (x, y) such that a.s.,

ρ(Xx
t , X

y
t ) ≤ e−

∫ t
s k(X

x
r ,X

y
r )/2 dr ρ(Xx

s , X
y
s )

holds for every s, t ≥ 0 with s ≤ t, involving the “average” k(u, v) := infγ
∫ 1

0
k(γr) dr

of k along geodesics from u to v.
Our results generalize to weighted Riemannian manifolds, where the Ricci curva-

ture is replaced by the corresponding Bakry–Émery Ricci tensor.
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1 Main results

Let (M , g) be a smooth, geodesically complete, noncompact, connected Riemannian
manifold without boundary. The metric 〈·, ·〉 := g(·, ·) induces the Riemannian distance ρ
and the Riemannian measure m. W.r.t. ρ, we write Br(x) for the open ball of radius r > 0

around x ∈ M , Lip(M ) for the space of real-valued Lipschitz functions on M , and Lip(f)

for the Lipschitz constant of any f ∈ Lip(M ). All appearing vector spaces of functions and
sections of bundles are considered as being real and, unless explicitly stated otherwise,
all appearing Lebesgue and Sobolev spaces are understood w.r.t. m. With the usual
abuse of notation, the fiberwise norm both on TM and T ∗M is | · | := 〈·, ·〉1/2. Let ∇ be
the Levi-Civita connection on M and Ric be the induced Ricci curvature. We recall that
by geodesic completeness, the Laplace–Beltrami operator ∆ is an essentially self-adjoint
operator in L2(M ) when defined initially on smooth compactly supported functions [57],
and thus admits a unique – non-relabeled – self-adjoint extension. Let (Pt)t≥0 be the heat
flow in L2(M ) with generator ∆/2, i.e. Pt := et∆/2 via spectral calculus. For every x ∈ M ,
let Xx : [0, ζx)×Ω→ M be a corresponding adapted diffusion process (Brownian motion)
starting at x ∈ M with lifetime ζx, defined on a filtered probability space (Ω,F∗,P), see
[25, 37, 39, 68] for particular constructions of Xx.

Throughout, we fix a continuous function k : M → R. We write “Ric ≥ k on M ” if

Ric(x)(ξ, ξ) ≥ k(x) |ξ|2 for every x ∈ M , ξ ∈ TxM .

The goal of this paper is to study the previous condition, where the negative part k− of
k, with k−(x) := −min{k(x), 0}, obeys the integrability assumption

Ct <∞ for every t > 0, where Ct := sup
x∈M

E
[
e
∫ t
0
k−(Xxr )/2 dr 1{t<ζx}

]
. (1.1)

Our main results come in two groups. First, we study analytic and probabilistic
consequences of the assumption Ric ≥ k on M if k satisfies (1.1), as described in
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Section 1.1 and stated in Theorem 1.1 and Theorem 1.5. Along with this, we treat an
explicit class of k for which (1.1) holds, the so-called Kato decomposable ones, and
highlight a general condition for k to obey the latter property, Theorem 1.3. Second, we
give equivalent characterizations of the condition Ric ≥ k on M , which are summarized
in Section 1.2, see Theorem 1.6 therein, and mostly do not even require (1.1).

Besides [28, 35], our article is among the first to systematically study analytic and
probabilistic consequences of variable lower Ricci bounds – and equivalent character-
izations of these – which are not uniformly bounded from below and do not underlie
geometric growth conditions. We also stress our novel general sufficient condition from
Theorem 1.3 to determine whether a given variable Ricci curvature lower bound is Kato
decomposable, while the – albeit more general – condition (1.1) is in general hard to
verify directly. Lastly, our equivalence result improves upon previously known ones
especially because it involves a pathwise coupling estimate which has just recently been
introduced in a slightly different framework [14].

1.1 Consequences of variable lower Ricci bounds

To formulate our first result, given an initial point x ∈ M , let //x denote the stochastic
parallel transport w.r.t. ∇ along the sample paths of Xx, i.e. //xt : TxM → TXxt M for all
t ∈ [0, ζx), let the process Qx : [0, ζx)× Ω→ End(TxM ) be defined as the unique solution
to the pathwise ordinary differential equation

dQxs = −1

2
Qxs (//xs )−1 Ric(Xx

s ) //xs ds, Qx0 = IdTxM , (1.2)

where Ric(Xx
s ) is regarded as an element of End(TXxsM ). Let W x : [0, ζx)× Ω→ TxM

denote the anti-development of Xx, a canonically given Euclidean Brownian motion on
TxM . See [25, 37, 39, 68] for details.

Theorem 1.1. Let k : M → R be a continuous function satisfying (1.1) and assume that
Ric ≥ k on M . Then

(i) M is stochastically complete, i.e.

P
[
ζx =∞

]
= 1 for every x ∈ M ,

(ii) for every f ∈ L∞(M ) and every t > 0, we have Bismut–Elworthy–Li’s derivative
formula〈

∇Ptf(x), ξ
〉

=
1

t
E
[
f(Xx

t )

∫ t

0

〈
Qxsξ,dW

x
s

〉]
for every x ∈ M , ξ ∈ TxM ,

where the stochastic integral inside the expectation is understood in Itô’s sense,
and

(iii) for every t > 0, one has the L∞-Lip-regularization property Pt : L
∞(M )→ Lip(M )

with

Lip(Ptf) ≤
√

8 t−1/2 sup
x∈M

E
[
e
∫ t
0
k−(Xxr )/2 dr

]
‖f‖L∞ for every f ∈ L∞(M ).

Before further commenting on Theorem 1.1 and its proof, in order to make more
refined statements, we introduce the following definition.

Definition 1.2. (i) The Kato class K(M ) of M is the linear space of all Borel functions
v : M → R such that

lim
t↓0

sup
x∈M

∫ t

0

E
[∣∣v(Xx

r )
∣∣] dr = 0.
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(ii) A Borel function v : M → R is called Kato decomposable if it belongs to L1
loc(M )

and v− belongs to K(M ).

Kato (decomposable) functions have been studied in great detail in the literature
in the context of (scalar) Schrödinger operators, see [2, 9, 19, 32, 56, 58] and the
references therein. The survey [55] provides a concise overview over the use of Kato
decomposability in the context of Riemannian manifolds and its connections to semigroup
domination. A detailed study of the Kato class and the induced Schrödinger semigroups
corresponding to a large class of Hunt processes can be found in [23]. (Unfortunately, the
authors of [23] assume throughout that the underlying process has the Feller property,
and it is not known whether this property holds in the situation of Theorem 1.1, or
Theorem 1.5 below. This is why at many places we are going to rely on the results from
[32] instead which are formulated for arbitrary Riemannian manifolds.) In connection
with lower Ricci bounds, Kato decomposable functions have been introduced in [34] in
the context of BV functions. They have been considered further recently in [16, 54] in
the context of heat kernel, Betti number and eigenvalue estimates, and in [45] within
the study on Lp-properties of heat semigroups on forms. See also [35], which treats
some probabilistic and geometric aspects of molecular Schrödinger operators under
Kato assumptions.

For the convenience of the reader, we have collected some important properties of
Kato decomposable functions in Appendix A. In particular, note that in view of

E
[∣∣v(Xx

r )
∣∣] ≤ ‖v‖L∞ for every x ∈ M , r ≥ 0,

it follows that L∞(M ) ⊂ K(M ). More generally, in view of an explicit Example A.7, we
provide the following criterion in Section A.3, for which we denote by Ξ: M → R the
function Ξ(x) := m[B1(x)]−1, and by LpΞ(M ) the Lp-space w.r.t. Ξm.

Theorem 1.3. Assume that dim(M ) ≥ 2, that M is quasi-isometric to a complete Rie-
mannian manifold whose Ricci curvature is bounded from below by a constant, and that
k− ∈ LpΞ(M ) + L∞(M ) for some p ∈ (dim(M )/2,∞). Then k is Kato decomposable.

One key feature for us about functions v ∈ K(M ) is that they always satisfy

sup
x∈M

E
[
e
∫ t
0
v(Xxr )/2 dr 1{t<ζx}

]
<∞ locally uniformly in t ∈ [0,∞).

This is known as Khasminskii’s lemma, see Lemma A.4. In particular, since K(M ) is a
linear space, we have the following link of Kato decomposability to (1.1).

Lemma 1.4. Assume that k is a Kato decomposable function. Then for every q ∈ [1,∞),
the exponential integrability (1.1) holds with k replaced by qk.

This is ultimately the key behind the following result which states that in this case,
Bismut–Elworthy–Li’s derivative formula holds on an Lp-scale.

Theorem 1.5. Assume k : M → R is a continuous Kato decomposable function satisfying
Ric ≥ k on M . Then (1.1) is satisfied, and moreover, Bismut–Elworthy–Li’s derivative
formula from Theorem 1.1 holds for every p ∈ (1,∞] and every f ∈ Lp(M ).

The proof of (i) in Theorem 1.1 can be found in Section 3.1, while (ii) and (iii) as well
as Theorem 1.5 are studied in Section 3.2.

Let us collect some bibliographical comments on Theorem 1.1 and Theorem 1.5.
In the framework of uniform bounds from below on the Ricci curvature, (i) in Theo-

rem 1.1 is due to [70]. On weighted Riemannian manifolds – on which the Ricci tensor
is always replaced by the corresponding Bakry–Émery Ricci tensor, see Section 1.3 –
the non-explosion for the induced diffusion processes under uniform lower Ricci bounds
has been obtained by [8]. In connection with (1.1), also for weighted Riemannian mani-
folds, the latter result has been extended by [43] using an approach via stochastic and
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Hessian flows. In fact, the corresponding condition at page 423 of [43] is implied by
our condition (1.1). Once we have established all necessary intermediate results, our
proof then closely follows the lines in [8] (which is also worked towards in [43]). For
different, more geometric non-explosion criteria in terms of distance functions, see [68]
and the references therein. A nonsmooth result similar to (i) – however assuming a Kato-
or rather a Dynkin-type [56, 58] lower bound instead of only (1.1) – has recently been
treated in [28].

Formula (ii) in Theorem 1.1 has first appeared in [11] in the compact case. In the
noncompact case, this result, as well as Theorem 1.5, have been proven in [26, 27] under
more general assumptions than (1.1) using the slightly different technique of stochastic
derivative flows. We also refer to [24] for similar treatises for heat semigroups over
vector bundles, and also [37, 68] for similar results under more geometric conditions
on the lower bound of Ric. Remarkably, localized versions of the Bismut–Elworthy–Li
derivative formula hold without any assumptions on the geometry of the manifold, see
e.g. [61, 63, 64].

The L∞-Lip-regularization (iii) from Theorem 1.1 is a corollary of (ii), thus indicating
the importance of the latter in studying further regularity properties of (Pt)t≥0. In fact,
local versions of (iii) are already known even without the assumption (1.1) on k [63, 68],
with slightly different estimates on Lip(Ptf) involving locally uniform lower bounds on
Ric. (The proof uses the above mentioned local derivative formula.) Outside the smooth
scope, a similar property as (iii) is known on RCD(K,∞) spaces [4]. This setting allows
for more flexibility in the variety of spaces (metric measure spaces), but is still restricted
to uniform lower Ricci bounds, formulated in a synthetic sense [44, 59].

1.2 Characterizations of variable lower Ricci bounds

We now come to our second main result, i.e. several equivalent characterizations of
lower Ricci bounds, which we shortly introduce.

The closest characterization of Ric ≥ k on M is the L1-Bochner inequality which is
related to the Ricci curvature of M by the following well-known Bochner formula: given
any open U ⊂ M , for every f ∈ C∞(U) we have

∆
|∇f |2

2
= 〈∇∆f,∇f〉+ |Hess f |2 + Ric(∇f,∇f) on U. (1.3)

We also derive a one-to-one connection between lower Ricci bounds by k and the
existence of certain couplings of Brownian motions on M . Here, if M is stochastically
complete, then given x, y ∈ M , by a coupling of Brownian motions starting in (x, y), we
understand an M ×M -valued stochastic process (Xx, Xy) : [0,∞)×Ω→ M ×M on some
filtered probability space (Ω,F∗,P) such that Xx and Xy are Brownian motions on M

starting in x and y, respectively. To formulate an appropriate pathwise coupling estimate,
we denote by Geo(M ) the set of minimizing geodesics γ : [0, 1]→ M , and define the lower
semicontinuous function k : M ×M → R by

k(u, v) := inf
{∫ 1

0

k(γr) dr : γ ∈ Geo(M ), γ0 = u, γ1 = v
}
. (1.4)

Observe that k can be recovered from the diagonal values of k, i.e. k(u) = k(u, u) for
every u ∈ M . The key feature about k is that it provides a way to avoid cut-loci.

Theorem 1.6. Let k : M → R be a continuous function satisfying (1.1). Then the
following conditions are equivalent:

(i) we have Ric ≥ k on M ,
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(ii) the L1-Bochner inequality w.r.t. k is satisfied, i.e. for every f ∈ C∞c (M ),

∆|∇f | − |∇f |−1 〈∇∆f,∇f〉 ≥ k |∇f | on {|∇f | 6= 0}, (1.5)

(iii) we have the pathwise coupling property w.r.t. k, i.e. M is stochastically complete
and for every x, y ∈ M , there exists a coupling (Xx, Xy) of Brownian motions on
M starting in (x, y) such that a.s., we have

ρ(Xx
t , X

y
t ) ≤ e−

∫ t
s
k(Xxr ,X

y
r )/2 drρ(Xx

s , X
y
s ) for every s, t ≥ 0 with s ≤ t.

Remark 1.7. Thanks to the local, respectively pathwise, nature of the statements, “(iii)
=⇒ (ii)” and “(ii) ⇐⇒ (i)” are even true without (1.1). Moreover, under the a priori
assumption of stochastic completeness, “(i) =⇒ (iii)” is satisfied without (1.1). For a
slightly more general version of “(iii) =⇒ (ii)”, see Remark 4.7 below.

We prove “(ii) =⇒ (i)” in Section 4.1, “(i) =⇒ (iii)” in Section 4.2 and “(iii) =⇒ (ii)” in
Section 4.3. For Kato decomposable functions k, another equivalent characterization of
Ric ≥ k on M in terms of the L1-gradient estimate is discussed in Section A.1.

Again, some bibliographical comments are in order.
In the abstract framework of [28], the equivalence “(i)⇐⇒ (ii)” – with (ii) in a weak

formulation – together with their equivalence to (a nonsmooth version of) the L1-gradient
estimate from Theorem A.1 has been shown independently.

The pathwise estimate appearing in (iii), as well as the equivalence of (iii) to lower
Ricci bounds, extends similar results from [14], where analogous equivalences have been
established in the synthetic framework of (infinitesimally Hilbertian) CD(k,∞) spaces
with lower semicontinuous, lower bounded variable Ricci bounds k : M → R (see also
[60]). Even for the smooth case, the stated pathwise inequality involving the function
k has been firstly introduced in [14]. (Although it is quite straightforward to detect
the place where k enters from the construction of the coupling, see Section 4.2, the
function k was seemingly never mentioned explicitly in the literature before [14].) In the
Riemannian case, Theorem 1.6 establishes a similar result in full generality without any
lower boundedness assumption on k. We point out that, in contrast to [14], the coupling
technique on manifolds does not require any notion of “Wasserstein contractivity” for the
dual heat flow to (Pt)t≥0 on the space of Borel probability measures on M . It is rather
provided in a direct way by the method of coupling by parallel displacement [20, 40],
see [6] for a treatise in the case of constant k. Let us also point out [65], which claims
the existence of a coupling (Xx, Xy) of Brownian motions, possibly with drift, such that
for every t > 0, even

ρ(Xx
t , X

y
t ) = e−

∫ t
0
κ(Xxr ,X

y
r )/2 dr ρ(x, y)

holds on the event that Xx
r and Xy

r do not belong to each other’s cut-locus for every
r ∈ [0, t]. The real-valued function κ, the so-called “coarse curvature” of M , is defined
outside the diagonal of M ×M and is slightly larger than k.

1.3 Extensions to possible other settings

Apart from well-known geometric and topological applications [12, 15, 43], recent
results for molecular Schrödinger operators [35] suggest a detailed study of weighted
Riemannian manifolds having Kato-type lower bounds on their Bakry–Émery Ricci tensor.
In this context, we note that Theorem 1.1, Theorem 1.5 and Theorem 1.6 remain valid if
for some Φ ∈ C2(M ), we replace

• m by the weighted measure e−2Φ m,

• ∆ by the drift Laplacian ∆− 2 〈∇Φ,∇·〉,
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• Ric by the Bakry–Émery Ricci tensor Ric + 2 Hess Φ,

• (Pt)t≥0 by the semigroup generated by ∆/2−〈∇Φ,∇·〉, noting that the latter is again
essentially self-adjoint [42, Section 2.1] on L2

e−2Φ(M ), the L2-space w.r.t. e−2Φ m,

• Xx by the diffusion generated by the operator ∆/2−〈∇Φ,∇·〉, see e.g. [68, Chapter
3] for the particular form of the corresponding stochastic differential equation and
the construction of its solution, and

• I by the weighted index form stated in Remark 4.4.

Other appropriate changes compared to the non-weighted setting, if needed, will always
be indicated in the sequel.

It would also be interesting to study Theorem 1.1, Theorem 1.5 and Theorem 1.6 in
the context of lower bounds on the Bakry–Émery Ricci curvature RicZ := Ric + 2∇Z
which is associated to a C1-vector field Z on M not necessarily of gradient-type. See
[67, 68] and the references therein for a summary of similar statements under different,
more geometric conditions. Given appropriate interpretations of the involved analytic
objects, see [67, 68] for details, some of the results immediately carry over with trivial
modifications (for instance, the chain “(iii) =⇒ (ii) ⇐⇒ (i)” in Theorem 1.6). On the
other hand, many of our arguments, e.g. Theorem 2.1 below and thus (i) in Theorem 1.1,
or Theorem A.1, are implicitly based on self-adjointness of the semigroup (Pt)t≥0 and
the heat flow on 1-forms. The latter properties lack in this generality, which is why we
restricted ourselves to gradient vector fields.

Finally, a further possible (but highly nontrivial) direction of investigation is the case
of manifolds with boundary, taking the heat flow with Neumann boundary conditions.
See [18, 68] and the references therein for an account on diffusion processes on these.
The key difficulty in this context will be to take into account the local time of the
boundary appropriately. Results that are relevant in this context have been obtained in
[1, 5, 22, 38, 39, 48, 68].

2 Preliminaries

For more details on the heat flows on functions and on 1-forms collected in this
chapter, we refer the reader to [21, 29, 32, 37, 53, 57] and the references therein. For
details on their connection with the underlying stochastic processes, see [39, 47, 68].
Moreover, all objects and results presented here have counterparts in the weighted case
outlined in Section 1.3: the heat flow on functions [29], Brownian motion (or rather the
corresponding Ornstein–Uhlenbeck process) [39, 42, 68], and the heat flow on 1-forms
[42].

Heat flow on functions The operator ∆/2 is the generator of the symmetric strongly
local, regular Dirichlet form E : L2(M )→ [0,∞] given by

E(f) :=
1

2

∫
M

|df |2 dm if f ∈W 1,2(M ), E(f) :=∞ otherwise.

Note that under our standing assumption on M , C∞c (M ) is dense in the Sobolev space
W 1,2(M ) w.r.t. its natural norm [7] – in other words, W 1,2

0 (M ) = W 1,2(M ).
The heat semigroup or heat flow (Pt)t≥0 introduced in the beginning of this article

is directly linked to E by spectral calculus and is a strongly continuous, positivity
preserving contraction semigroup of linear, self-adjoint operators in L2(M). Powerful
L2-L∞-regularization properties of the heat flow on relatively compact subsets of M ,
an exhaustion procedure and bootstrapping of regularity imply the existence of the so-
called minimal heat kernel p ∈ C∞

(
(0,∞)×M ×M ; (0,∞)

)
on M , the smallest positive
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fundamental solution to the heat operator ∂/∂t−∆/2. It has the property that for every
f ∈ L2(M ) and t > 0, (a version of) Ptf can be represented by

Ptf(x) :=

∫
M

pt(x, y) f(y) dm(y) for every x ∈ M .

Actually, (Pt)t≥0 extends to a contraction semigroup of linear operators from Lp(M )

into Lp(M ) for every p ∈ [1,∞] which is strongly continuous if p < ∞ and weak∗

continuous if p = ∞. Moreover, the previous representation formula is still valid for
every p ∈ [1,∞] and f ∈ Lp(M ). For such f , the above properties of the heat kernel show
that P·f ∈ C∞

(
(0,∞)×M

)
solves the heat equation

∂

∂t
Ptf =

1

2
∆Ptf in (0,∞)×M (2.1)

in the classical sense. In addition, we have P·f ∈ C∞
(
[0,∞) ×M

)
if f is also smooth,

and ∂αPtf converges pointwise to ∂αf as t ↓ 0 for every multiindex α ∈ Ndim(M )
0 .

Brownian motion Given a locally compact Polish space Y we denote by C([0,∞);Y )

the space of continuous maps γ : [0,∞) → Y , equipped with the topology of locally
uniform convergence and the induced Borel σ-algebra. Let Y∂ := Y ∪ {∂} denote the
one-point compactification of Y .

Given a point x ∈ M , any stochastic process X with sample paths in C([0,∞);M∂)

which is defined on a probability space (Ω,F ,P) (i.e. the map t 7→ Xt(ω) belongs to
C([0,∞);M∂) for all ω ∈ Ω) is termed Brownian motion on M starting in x if its law
equals the Wiener measure Px on C([0,∞);M∂) concentrated at paths starting in x.
(Usually we want to underline the dependency of X from its starting point x, whence
we shall often write Xx.) Recall that Px is the uniquely determined probability measure
on C([0,∞);M∂) with (ev0)]Px = δx (where ev0(γ) := γ0 is the evaluation map at 0) and
whose transition density is given by the function q : (0,∞)×M∂ ×M∂ → [0,∞) defined
by setting, for every y, y′ ∈ M ,

qt(y, y
′) = pt(y, y

′), qt(∂, y
′) := 0, qt(∂, ∂) := 1, qt(y, ∂) := 1−

∫
M

pt(y, z) dm(z).

Now let ζx := inf{t ≥ 0 : Xx
t = ∂} denote the explosion time of Xx, with the usual

convention that inf ∅ :=∞. Since the Wiener measure is concentrated on paths having ∂
as a trap, for every p ∈ [1,∞] and f ∈ Lp(M ) one has

Ptf(x) = E
[
f(Xx

t )1{t<ζx}
]

for every x ∈ M , t ≥ 0. (2.2)

Therefore, M is stochastically complete if and only if

P
[
t < ζx

]
= Pt1M (x) =

∫
M

pt(x, y) dm(y) = 1 for every x ∈ M , t > 0. (2.3)

If (Ω,F∗,P) is filtered and Xx adapted to the given filtration, then Xx is called an
adapted Brownian motion. In this case, Xx is a semimartingale on M in the sense that for
every f ∈ C∞(M ), the real-valued process f ◦Xx is a semimartingale up to the explosion
time ζx. The stochastic parallel transport along Xx w.r.t. ∇ started in x ∈ M is a process
//x constructed in terms of the horizontal lift of Xx to the orthonormal frame bundle
over M , making the linear map //xt : TxM → TXxt M a.s. orthogonal for every t ∈ [0, ζx).
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Heat flow on 1-forms In the sequel, Borel equivalence classes of 1-forms on M

having a certain regularity R are denoted by ΓR(T ∗M ), and similarly ΓR(TM ) for Borel
equivalence classes of vector fields with regularity R. For instance, given p ∈ [1,∞], we
get the Banach space ΓLp(T ∗M ) given by all Borel equivalence classes ω of sections in
T ∗M such that |ω| ∈ Lp(M ). Let ~∆ := d†d + d d† denote the Hodge–de Rham Laplacian.
When defined initially on ΓC∞c (T ∗M ), by geodesic completeness this operator has a
unique self-adjoint extension in the Hilbert space ΓL2(T ∗M ), which will be denoted
with the same symbol again. Note our sign convention: ~∆ is nonnegative, while ∆ is
nonpositive. The heat semigroup (~Pt)t≥0 on 1-forms given by ~Pt := e−t

~∆/2 in ΓL2(T ∗M )

is smooth, in the sense for every ω ∈ ΓL2(T ∗M ) one has a jointly smooth representative
~P·ω which solves the heat equation

∂

∂t
~Ptω = −1

2
~∆~Ptω in (0,∞)×M

on 1-forms with initial condition ω (and in [0,∞)×M if ω is also smooth).
On exact forms, ~Pt can be represented by the heat operator Pt; more precisely, for

every f ∈W 1,2(M ) one has [24, 42]

~Ptdf = dPtf for every t ≥ 0. (2.4)

If one drops geodesic completeness of M , such a commutation relation becomes subtle
(cf. [62] for a negative and [32] for a positive result in this direction).

Lastly, a key result is the Feynman-Kac formula [24, Theorem B.4], for which we
recall the process Qx from (1.2). Compare with Section A.1. Note that the last asserted
estimate in the theorem follows from Gronwall’s inequality, cf. e.g. (3.1) below. See also
[27, 46] for the compact case.

Theorem 2.1. Suppose that Ric ≥ k on M for some continuous k : M → R satisfy-
ing (1.1). Then for every t > 0 and every ω ∈ ΓL∞(T ∗M ) with compact support, the
Feynman–Kac formula

~Ptω(x) = E
[
Qxt (//xt )−1 ω](Xx

t )1{t<ζx}
][

for every x ∈ M

holds, and in particular∣∣~Ptω(x)
∣∣ ≤ E[e− ∫ t

0
k(Xxr )/2 dr

∣∣ω(Xx
t )
∣∣1{t<ζx}] ≤ Ct ‖ω‖L∞ for every x ∈ M ,

where Ct is defined in (1.1).

Remark 2.2. On weighted Riemannian manifolds, in the notation of Section 1.3 one
has to replace (~Pt)t≥0 by the semigroup – defined on the Hilbert space of 1-forms
that are L2 w.r.t. e−2Φ m – which is generated by the essentially self-adjoint operator
−~∆− 2 d i∇Φ − 2 i∇Φ d. Here i∇Φ denotes interior multiplication of differential forms
with the vector field ∇Φ [42, Section 1.5].

3 Proof of Theorem 1.1 and Theorem 1.5

This chapter treats the stochastic completeness of M , Bismut–Elworthy–Li’s deriva-
tive formula, and the L∞-Lip-regularization of the heat semigroup (Pt)t≥0 if we have
Ric ≥ k on M for some continuous function k : M → R satisfying (1.1).

3.1 Stochastic completeness

A key tool for proving stochastic completeness under geodesic completeness, already
used in [8], are sequences of first-order cutoff-functions [57, Chapter 2]. Their existence
is equivalent to the geodesic completeness of M ([50], see also [31]).
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Lemma 3.1. There exists a sequence (ψn)n∈N in C∞c (M ) satisfying

(i) ψn(M ) ⊂ [0, 1] for every n ∈ N,
(ii) for all compact K ⊂ M , there exists N ∈ N such that ψn

∣∣
K

= 1K for every n ≥ N ,
and

(iii) ‖dψn‖L∞ → 0 as n→∞.

Proof of (i) in Theorem 1.1. We show (2.3), i.e. that Pt1M = 1M for every t > 0. Let
φ ∈ C∞c (M ), and let (ψn)n∈N be a sequence of first-order cutoff functions provided by
Lemma 3.1. Then Theorem 2.1 applied to the 1-form ω := dψn for every n ∈ N gives∥∥~Psdψn∥∥L∞ ≤ Cs ‖dψn‖L∞ ≤ Ct ‖dψn‖L∞ ,

uniformly in s ∈ [0, t]. Since P·ψn solves the heat equation (2.1), also using Fubini’s
theorem, integration by parts as well as the commutation rule (2.4) we arrive at∫

M

(
Ptψn − ψn

)
φdm =

1

2

∫
M

∫ t

0

φ∆Psψn dsdm

= −1

2

∫ t

0

∫
M

〈
dφ, dPsψn

〉
dmds

= −1

2

∫ t

0

∫
M

〈
dφ, ~Psdψn

〉
dmds.

Therefore, we obtain∣∣∣∫
M

(
Pt1M − 1M

)
φdm

∣∣∣ = lim
n→∞

∣∣∣∫
M

(
Ptψn − ψn

)
φ dm

∣∣∣
≤ lim sup

n→∞

1

2

∫ t

0

∫
M

|dφ|
∣∣~Psdψn∣∣dm ds

≤ Ct t

2
‖dφ‖L1 lim sup

n→∞
‖dψn‖L∞ = 0.

Since φ was arbitrary, this proves the claim.

3.2 Bismut–Elworthy–Li’s derivative formula and the Lipschitz smoothing
property

In view of proving Bismut–Elworthy–Li’s derivative formula and the L∞-Lip-regulariza-
tion property of (Pt)t≥0, for convenience we state the following version [51, Theorem
2] of the Burkholder–Davis–Gundy inequality for q ∈ [1,∞) (although we only need the
upper bounds, respectively), which improves the classically known constants to better
ones.

Lemma 3.2. Let (Mr)r≥0 be a real-valued continuous local martingale with M0 = 0, and
let q ∈ [1,∞). Then

(8q)−q/2E
[
[M ]q/2τ

]
≤ E

[
sup
r∈[0,τ ]

|Mr|q
]
≤ (8q)q/2E

[
[M ]q/2τ

]
for every stopping time τ , where ([M ]r)r≥0 denotes the quadratic variation process of
(Mr)r≥0.

Recall the process Qx defined by (1.2) and taking values in TxM .

Proof of (ii) in Theorem 1.1. Fix x ∈ M , t > 0 and ξ ∈ TxM . It suffices to assume |ξ| ≤ 1.
We first assume that f ∈ C∞c (M ). By [24, Proposition 3.2] and keeping in mind that
ζx =∞ a.s., the process Nx given by

Nx
r :=

〈
Qxr (//xr )−1∇Pt−rf(Xx

r ),
t− r
t

ξ
〉

+
1

t
Pt−rf(Xx

r )

∫ r

0

〈
Qxsξ,dW

x
s

〉
,
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r ∈ [0, t], is a local martingale. We show that under the given assumption (1.1) on k, this
process is even a martingale.

As already indicated in Theorem 2.1, given any s ≥ 0, it follows from Gronwall’s
inequality and Ric ≥ k on M that a.s. we have∣∣Qxs ∣∣ ≤ e−

∫ s
0
k(Xxr )/2 dr ≤ e

∫ s
0
k−(Xxr )/2 dr. (3.1)

Hence, for every q ∈ [1,∞), by Lemma 3.2 we obtain

E
[

sup
r∈[0,t]

∣∣∣∫ r

0

〈
Qxsξ(x),dW x

s

〉∣∣∣q] ≤ (8q)q/2E
[( ∫ t

0

|Qxs |2 ds
)q/2]

≤ (8q)q/2 tq/2 sup
y∈M

E
[
e
∫ t
0
qk−(Xyr )/2 dr

]
. (3.2)

(This estimate will only be needed for q = 1 in this proof, but is derived for arbitrary q
as above for later convenience.) Now, estimating |Qxr | as in (3.1) above and using the
commutation relation (2.4) as well as Theorem 2.1, for all r ∈ [0, t] one a.s. has

|Nx
r | ≤ e

∫ r
0
k−(Xxs )/2 ds

∣∣~Pt−r df(Xx
r )
∣∣+
‖f‖L∞
t

∣∣∣∫ r

0

〈
Qxsξ, dW x

s

〉∣∣∣
≤ e

∫ t
0
k−(Xxs )/2 ds Ct−r ‖df‖L∞ +

‖f‖L∞
t

∣∣∣∫ r

0

〈
Qxsξ,dW

x
s

〉∣∣∣
≤ e

∫ t
0
k−(Xxs )/2 ds Ct ‖df‖L∞ +

‖f‖L∞
t

∣∣∣∫ r

0

〈
Qxsξ,dW

x
s

〉∣∣∣.
It follows that

E
[

sup
r∈[0,t]

|Nx
r |
]
≤ C2

t ‖df‖L∞ +
‖f‖L∞
t

E
[

sup
r∈[0,t]

∣∣∣∫ r

0

〈
Qxsξ,dW

x
s

〉∣∣∣].
The first summand on the right-hand side is finite thanks to (1.1). Estimating the second
summand by (3.2) above for q = 1, also the second summand is finite again by (1.1). It
follows that Nx is a true martingale, and thus

〈
∇Ptf(x), ξ

〉
= E

[
Nx

0

]
= E

[
Nx
t

]
=

1

t
E
[
f(Xx

t )

∫ t

0

〈
Qxsξ,dW

x
s

〉]
. (3.3)

The claimed equality for bounded f ∈ C∞(M ) follows by replacing f by ψn f in (3.3)
for every n ∈ N, where (ψn)n∈N is as in Lemma 3.1, and letting n→∞ (together with
the dominated convergence theorem on the right-hand side). In turn, if only f ∈ L∞(M ),
a similar procedure works by replacing f by Pεf in (3.3), where ε > 0, and letting
ε→ 0.

Proof of (iii) in Theorem 1.1. Using the previous Bismut–Elworthy–Li formula and (3.2)
above for q = 1, for every x ∈M , t > 0 and ξ ∈ TxM with |ξ| ≤ 1, we get

∣∣〈∇Ptf(x), ξ
〉∣∣ ≤ 1

t
E
[∣∣∣∫ t

0

〈
Qxsξ, dW x

s

〉∣∣∣] ‖f‖L∞
≤
√

8 t−1/2 sup
x∈M

E
[
e
∫ t
0
k−(Xxr )/2 dr

]
‖f‖L∞ ,

and duality gives

Lip(Ptf) ≤
√

8 t−1/2 sup
x∈M

E
[
e
∫ t
0
k−(Xxr )/2 dr

]
‖f‖L∞ .
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Now we assume Kato decomposability of k in the rest of this chapter, devoting
ourselves to the proof of Theorem 1.5. In this situation, one has to guarantee that the
right-hand side of Bismut–Elworthy–Li’s formula is well-defined for f ∈ Lp(M ), where
p ∈ (1,∞), which is essentially the content of the following lemma.

Lemma 3.3. Let t ≥ 0 and V ∈ ΓL∞(TM ). Then for every f ∈ L∞(M ) and x ∈ M , the
random variable f(Xx

t )
∫ t

0

〈
QxsV (x),dW x

s

〉
is integrable. Moreover, for every p ∈ (1,∞],

the operator EVt given on functions f ∈ L∞(M ) ∩ Lp(M ) in terms of

EVt f(x) := E
[
f(Xx

t )

∫ t

0

〈
QxsV (x),dW x

s

〉]
for every x ∈ M

extends to a bounded linear operator from Lp(M ) into Lp(M ), and the previous repre-
sentation is valid and well-defined for every f ∈ Lp(M ).

Proof. Let V ∈ ΓL∞(TM ) and f ∈ L∞(M ), for which we assume without loss of generality
that

∥∥|V |∥∥
L∞
≤ 1 and ‖f‖L∞ ≤ 1. The inequality (3.2) for q = 1 and Lemma 1.4 directly

show the claimed integrability of f(Xx
t )
∫ t

0

〈
QxsV (x), dW x

s

〉
, and they also show that EVt

is a bounded linear operator from L∞(M ) into L∞(M ).
If p ∈ (1,∞), successively using Hölder’s inequality, (3.2) for q = p/(p−1), Lemma 1.4

again and mass preservation of (Pt)t≥0, we infer the existence of a finite constant C > 0

depending only on k−, t and p such that for every f ∈ Lp(M ) ∩ L∞(M ),

∥∥EVt f∥∥pLp =

∫
M

∣∣∣E[f(Xx
t )

∫ t

0

〈
QxsV (x),dW x

s

〉]∣∣∣p dm(x)

≤
∫
M

E
[
|f(Xx

t )|p
]
E
[∣∣∣∫ t

0

〈
QxsV (x),dW x

s

〉∣∣∣q]p/q dm(x)

≤ (8q)p/2 tp/2 sup
y∈M

E
[
e
∫ t
0
qk−(Xxr )/2 dr

]p−1
∫
M

Pt
(
|f |p

)
(x) dm(x)

≤ C (8q)p/2 tp/2 ‖f‖pLp .

We conclude the statement by a standard approximation argument.

Proof of Theorem 1.5. Trivially, L∞(M ) ∩ Lp(M ) is dense in Lp(M ). Note that, given
p ∈ (1,∞), and f ∈ Lp(M ), it follows from the divergence theorem as well as Lemma 3.3
– replacing ξ by an appropriate smooth and bounded vector field V ∈ Γ(TM ) such that
V (x) = ξ – that both sides of (3.3) are continuous in f w.r.t. convergence in Lp(M ). In
particular, the desired pointwise identity follows.

4 Proof of Theorem 1.6

We turn to characterizations of continuous lower Ricci curvature bounds in terms of
functional inequalities and existence of couplings. Throughout this chapter, we assume
that k : M → R is continuous, and only state explicitly if we need (1.1).

4.1 From the L1-Bochner inequality to lower Ricci bounds

As already hinted, the key point in showing the implication “(ii) =⇒ (i)” in Theorem 1.6
is the well-known Bochner formula (1.3), subject to a clever choice of f as granted by
the subsequent lemma [52, Lemma 3.2], together with the chain rule to deduce Ric ≥ k
on M .

It is well-known in Riemannian geometry that, given any x ∈ M , there exists an open
subset Ox ⊂ TxM such that the restriction of the exponential map to Ox provides a
diffeomorphism expx : Ox → expx(Ox). We denote its inverse by exp−1

x .
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Lemma 4.1. Let x ∈ M and ξ ∈ TxM with unit norm. Let H :=
{

expx η : η ∈ Ox, 〈η, ξ〉 =

0
}

be the (dim(M )− 1)-dimensional hypersurface in M orthogonal to ξ at x. Then there
exists an open neighborhood U ⊂ expx(Ox) of x such that the signed distance function
ρ±H : U → R given by

ρ±H(y) := ρ(y,H) sgn
〈
ξ, exp−1

x y
〉
, where ρ(y,H) := inf

z∈H
ρ(y, z),

obeys

ρ±H ∈ C
∞(U), ∇ρ±H(x) = ξ,

∣∣∇ρ±H(U)
∣∣ = {1}, Hess ρ±H(x) = 0.

Proof of “(ii) =⇒ (i)” in Theorem 1.6. Let x ∈ M , and let ξ ∈ TxM obey |ξ| = 1. In the
notation from Lemma 4.1, consider the function f := ρ±H provided therein. By Lemma 4.1,
Bochner’s formula (1.3) and the chain rule for ∆, we have

Ric(x)(ξ, ξ) = ∆
|∇f |2(x)

2
−
〈
∇∆f(x),∇f(x)

〉
= |∇f |∆

∣∣∇f(x)|+
∣∣∇|∇f |(x)

∣∣2 − 〈∇∆f(x),∇f(x)
〉

≥ k(x) |∇f(x)|2 = k(x).

The arbitrariness of ξ concludes the proof.

Remark 4.2. In the weighted setting outlined in Section 1.3 – retaining the notation
therein – the only essential change needed to modify the previous proof is to replace the
unweighted Bochner identity (1.3) by its weighted counterpart

∆Φ |∇f |2

2
= 〈∇∆Φf,∇f〉+ |Hess f |2 + RicΦ(∇f,∇f),

where ∆Φ := ∆− 2 〈∇Φ,∇·〉 and RicΦ := Ric + 2 Hess Φ. The latter follows from (1.3), the
definition of Hess Φ and metric compatibility of ∇, see e.g. page 28 in [49]:

2 Hess Φ(∇f,∇f) = 2
〈
∇∇f∇Φ,∇f

〉
= 2

〈
∇〈∇Φ,∇f〉,∇f

〉
−
〈
∇Φ,∇|∇f |2

〉
.

The chain rule for ∆Φ is analogous to the one for ∆.

4.2 From lower Ricci bounds to pathwise couplings

We start with the existence of a suitable coupling of Brownian motions under the
inequality Ric ≥ k on M , also assuming (1.1) in this section. (Note that the stochastic
completeness of M is already known by Theorem 1.1.) The coupling technique is
well-known and called coupling by parallel displacement, see [20, 40, 67, 68] and the
references therein. See also [66] for a “local” treatise on regular subdomains.

We first collect some notation. Denote by cutv the cut-locus of v ∈ M , by diag

the diagonal of M ×M , and by R the Riemannian curvature tensor of M . Abbreviate
d := dim(M ) and define cut :=

{
(u, v) ∈ M ×M : u ∈ cutv

}
. Given any (u, v) ∈ (M ×

M ) \ (diag ∪ cut), let J1, . . . , Jd−1 be Jacobi fields along the unique minimal geodesic
γ : [0, ρ(u, v)]→ M from u to v such that {J1(s), . . . , Jd−1(s), γ̇s} is an orthonormal basis
of TγsM both for s = 0 as well as s = ρ(u, v). Define the index form by

I(u, v) :=

d−1∑
i=1

∫ ρ(u,v)

0

(∣∣∇γ̇sJi(s)∣∣2 − 〈R(γ̇s, Ji(s))γ̇s, Ji(s)
〉)

ds.
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Theorem 4.3. For every x, y ∈ M with x 6= y, there exists a coupling (Xx, Xy) of
Brownian motions on M starting in (x, y) which coincide past their coupling time

T (Xx, Xy) := inf
{
t ≥ 0 : Xx

t = Xy
t

}
such that for every I ′ ∈ C(M × M ) for which I ′ ≥ I holds outside diag ∪ cut, before
T (Xx, Xy) we have

dρ(Xx
t , X

y
t ) ≤ 1

2
I ′(Xx

t , X
y
t ) dt.

The construction of this coupling is thoroughly carried out in Theorem 2.1.1 and (the
proof of) Proposition 2.5.1 in [67], see also [68, Theorem 2.3.2]. The key to deduce “(i)
=⇒ (iii)” in Theorem 1.6 from Theorem 4.3 now is to construct an appropriate function
I ′ ∈ C(M ×M ) with I ′ ≥ I outside diag∪ cut, hence circumventing cut-locus issues. This
is the place where the definition of k enters.

Proof of “(i) =⇒ (iii)” in Theorem 1.6. Let u, v ∈ (M ×M ) \ (diag ∪ cut). As in the proof
of [67, Theorem 2.1.4], let U1, . . . , Ud−1 be parallel vector fields along γ such that
{U1(s), . . . , Ud−1(s), γ̇s} is an orthonormal basis of TγsM for every s ∈ [0, ρ(u, v)]. By the
index lemma [17, Lemma 1.21], we have

I(u, v) ≤ −
∫ ρ(u,v)

0

[ d−1∑
i=1

〈
R(γ̇s, Ui(s))γ̇s, Ui(s)

〉]
ds = −

∫ ρ(u,v)

0

Ric(γs)(γ̇s, γ̇s) ds

≤ −
∫ ρ(u,v)

0

k(γs) ds ≤ −ρ(u, v) k(u, v).

(4.1)

As k is lower-semicontinuous, a well-known consequence of Baire’s theorem yields
the existence of a pointwise increasing sequence (kn)n∈N in C(M × M ) converging
pointwise to k. Applying Theorem 4.3 with I ′ replaced by I ′n ∈ C(M × M ) given by
I ′n(u, v) := −ρ(u, v) kn(u, v) and integrating the resulting differential inequality, a.s. we
have

ρ(Xx
t , X

y
t ) ≤ e−

∫ t
s
kn(Xxr ,X

y
r )/2 dr ρ(Xx

s , X
y
s )

for every s, t ≥ 0 with s ≤ t and for every n ∈ N. (Recall that Xx and Xy coincide past
their coupling time.) Letting n→∞ with the aid of the monotone convergence theorem,
we obtain the desired pathwise estimate.

Remark 4.4. In the weighted case from Section 1.3, the quantity I has to be replaced
by its weighted counterpart

IΦ(u, v) := I(u, v)− (∇Φ)ρ(·, v)(u)− (∇Φ)ρ(·, u)(v).

Theorem 4.3 remains true for the corresponding diffusion process, and the weighted
adaptation of the estimates (4.1) follows the proof of [67, Theorem 2.1.4].

4.3 From pathwise couplings to the L1-Bochner inequality

Even if k is smooth, as implicitly discovered in Section 4.2 above, the function k

from (1.4) is in general only lower semicontinuous. In the current section, we shall need
to bypass this lack of continuity by approximation through Lipschitz functions. To this
aim, the following fact, in which Lipschitz continuity on M ×M is understood w.r.t. the
product metric ρ2 given by ρ2

2

(
(x, y), (x′, y′)

)
:= ρ2(x, x′) + ρ2(y, y′), is helpful.

Lemma 4.5. Let D ⊂ M be a compact subset. Then, in D ×D, k is the pointwise limit
of a pointwise increasing sequence of functions in Lipb(M ×M ) which are everywhere
not smaller than inf k(D ×D).
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A purely metric construction of the claimed sequence can be found e.g. at page 107
in [3], replacing (X, d) by (D×D, ρ2) therein. In particular, note that since k(x) = k(x, x)

for every x ∈ M , in D, k is the pointwise limit of a pointwise increasing sequence of
functions in Lipb(M ) which are everywhere not smaller than inf k(D).

The step from the pathwise coupling property w.r.t. k towards (1.5) requires a nontriv-
ial extension of the arguments for [14, Theorem 5.17] (which adapt the duality argument
from [41] to the case of synthetic variable Ricci bounds and make crucial use of uniform
lower boundedness of the Ricci curvature) for short times instead of fixed ones. This
kind of localization argument was indeed used in [14] in different variants at different
instances. For this, a certain short-time behavior of Brownian motion as subsequently
recorded plays a crucial role.

Given any x ∈ M and ε > 0, let τxε be the first exit time of Brownian motion starting in
a fixed x ∈ M from Bε(x). The following estimate for τxε is a variant of [68, Lemma 2.1.4],
noting that by Laplacian comparison, compare with [37, Corollary 3.4.4, Corollary 3.4.5,
Theorem 3.6.1], the constant c1 therein can be chosen uniformly in x off its respective
cut-locus as long as long as x belongs to a compact subset of M . (An analogous version
of Lemma 4.6 holds for general gradient diffusions, taking – in the notation of Section 1.3
– into account the continuity of ∇Φ.)

Lemma 4.6. For every compact D ⊂ M and every ε > 0, there exists a constant c > 0

such that
P
[
τxε ≤ t

]
≤ e−c/t for every x ∈ D, t ∈ (0, 1].

Proof of “(iii) =⇒ (ii)” in Theorem 1.6. Step 1. Initial preparations. Let f ∈ C∞c (M ) and
x ∈ M with |∇f(x)| 6= 0 be arbitrary. Let ε ∈ (0, 1/4], which is kept fixed throughout
this proof, be such that |∇f | is bounded away from zero – in particular smooth – on
B4ε(x). Moreover, let γ be the unique geodesic starting in x with initial velocity γ̇0 =

∇f(x)/|∇f(x)|. The continuity of k yields k ≥ K on B6(x) for some negative real number
K. Define the set of points in M with distance at most 1 to γ by

D :=
⋃

s∈[0,1]

B1(γs).

By the definition (1.4) of k and since ρ(x, γs) ≤ 1 for every s ∈ [0, 1], we have

k ≥ K on D ×D. (4.2)

Finally, let ` ∈ Lipb(M ×M ) be any function obeying K ≤ ` ≤ k on D ×D as provided by
Lemma 4.5.

Step 2. Rewriting the quantities to consider. The key idea to derive the L1-Bochner
inequality (1.5) for f from the given pathwise coupling estimates is to consider certain
difference quotients of the map (t, s) 7→ Ptf(γs) near (0, 0), and to express the involved
heat semigroups in terms of coupled Brownian motions. To address the first point, we
note that, given t > 0, by the smoothness of s 7→ Ptf(γs) on [0,∞), Taylor’s theorem in
its mean value remainder form and the geodesic equation for γ, given any s > 0 there
exists ν ∈ [0, s] such that

Ptf(γs)− Ptf(x) = s
〈
∇Ptf(x), γ̇0

〉
+
s2

2
HessPtf(γν)

(
γ̇ν , γ̇ν

)
.

Dividing by s, subtracting
〈
∇f(x), γ̇0

〉
and dividing by t, respectively, yields

1

t

[ 1

s

[
Ptf(γs)− Ptf(x)

]
−
〈
∇f(x), γ̇0

〉]
=

1

t

〈
∇Ptf(x)−∇f(x), γ̇0

〉
+

s

2t
HessPtf(γν)

(
γ̇ν , γ̇ν

)
.

(4.3)
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To now invoke the coupled Brownian motions, given s ∈ (0, 1] let us denote by
(Xx, Xγs) a process starting in (x, γs) given by the pathwise coupling property w.r.t. k.
Let τxε and τγsε denote the first exit times of the marginal Brownian motions Xx and Xγs

from Bε(x) and Bε(γs), respectively. Since Bε(x),Bε(γs) ⊂ D, for every s ∈ [0, 1] a.s. on
the event

{
τxε > t and τγsε > t

}
we have

ρ(Xx
t , X

γs
t ) ≤ e−

∫ t
0
k(Xxr ,X

γs
r )/2 dr s ≤ e−

∫ t
0
`(Xxr ,X

γs
r )/2 dr s. (4.4)

Step 3. Estimating (4.3) via coupled Brownian motions. Given s ∈
(
0, e−1/2

]
, define

ts := −c/log s2 ∈ (0, c], where c > 0 is the constant from Lemma 4.6 associated to D and
ε. Note that ts → 0 and sα/ts → 0 as s→ 0 for α ∈ {1/2, 1}. Consider the events

As :=
{
τxε > ts and τγsε > ts

}
,

Vs := As ∩
{
ρ
(
Xx
ts , X

γs
ts

)
≥ s1/2

}
,

Ws := As ∩
{ 1

ts

∫ ts

0

ρ
(
Xx
r , X

γs
r

)
dr ≥ s1/2

}
,

Us := As ∩ V c
s ∩W c

s .

(4.5)

Since (t, s) 7→ HessPtf(γs)(γ̇s, γ̇s) is locally bounded on [0,∞)×[0,∞) by joint smoothness
of the heat semigroup, by (4.3) with ts in place of t we have

1

2
|∇f(x)|−1

〈
∇∆f(x),∇f(x)

〉
= lim

s↓0

1

ts

〈
∇Ptsf(x)−∇f(x), γ̇0

〉
≤ lim sup

s→0

1

ts

[ 1

s

[
Ptsf(γs)− Ptsf(x)

]
−
〈
∇f(x), γ̇0

〉]
≤ lim sup

s↓0

1

ts

[ 1

s
E
[∣∣f(Xx

ts)− f(Xγs
ts )
∣∣]− |∇f(x)|

]
= lim sup

s↓0

1

ts

[ 1

s
E
[∣∣f(Xx

ts)− f(Xγs
ts )
∣∣ (1Vs + 1Ws

+ 1Us + 1Ac
s

)]
− |∇f(x)|

]
.

Now we estimate the contributions of the events defined in (4.5) separately.

Step 3.1. The contribution of Ac
s becomes negligible thanks to

lim sup
s↓0

1

ts s
E
[∣∣f(Xx

ts)− f(Xγs
ts )
∣∣1Ac

s

]
≤ lim sup

s↓0

2 ‖f‖L∞
ts s

P
[
Ac
s

]
≤ lim sup

s↓0

2 ‖f‖L∞
ts s

[
P
[
τx ≤ ts

]
+ P

[
τγs ≤ ts

]]
≤ lim sup

s↓0

4 ‖f‖L∞
ts s

e−c/ts = lim sup
s↓0

4 ‖f‖L∞
ts

s = 0,

where the last inequality is granted by Lemma 4.6.
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Step 3.2. Furthermore, by (4.4) and (4.2), the contribution of Vs is controlled by

lim sup
s↓0

1

ts s
E
[∣∣f(Xx

ts)− f(Xγs
ts )
∣∣1Vs]

= lim sup
s↓0

1

ts s
E
[∣∣f(Xx

ts)− f(Xγs
ts )
∣∣

ρ(Xx
ts , X

γs
ts )

ρ(Xx
ts , X

γs
ts )1Vs

]
≤ Lip(f) lim sup

s↓0

1

ts s3/2
E
[
ρ(Xx

ts , X
γs
ts )2 1As

]
≤ Lip(f) lim sup

s↓0

s2

ts s3/2
E
[
e−

∫ ts
0
`(Xxr ,X

γs
r ) dr 1As

]
≤ Lip(f) lim sup

s↓0

s1/2

ts
e−Kts = 0.

Step 3.3. In a similar way, we can ignore the influence of Ws by

lim sup
s↓0

1

ts s
E
[∣∣f(Xx

ts)− f(Xγs
ts )
∣∣1Ws

]
= lim sup

s↓0

1

ts s
E
[∣∣f(Xx

ts)− f(Xγs
ts )
∣∣

ρ(Xx
ts , X

γs
ts )

ρ(Xx
ts , X

γs
ts )1Ws∩{Xxts 6=X

γs
ts
}

]
≤ Lip(f) lim sup

s↓0

1

t2s s
3/2

E
[∫ ts

0

ρ
(
Xx
ts , X

γs
ts

)
ρ(Xx

r , X
γs
r )1As dr

]
≤ Lip(f) lim sup

s↓0

s2

t2s s
3/2

E
[∫ ts

0

e−
∫ ts
0
`(Xxa ,X

γs
a )/2 da e−

∫ r
0
`(Xxa ,X

γs
a )/2 da 1As dr

]
≤ Lip(f) lim sup

s↓0

s1/2

ts
e−Kts = 0.

Step 3.4. Finally we turn to the most delicate part, namely the study of the effect of
Us. To this aim, we first note that, defining the function ` ∈ Lipb(M ) by `(x) := `(x, x),
on the event As ∩W c

s we have∫ ts

0

`(Xx
r , X

γs
r ) dr −

∫ ts

0

`(Xx
r ) dr

=

∫ ts

0

`(Xx
r , X

γs
r ) dr −

∫ ts

0

`(Xx
r , X

x
r ) dr

≥ −Lip(`)

∫ ts

0

ρ(Xx
r , X

γs
r ) dr ≥ −Lip(`) ts s

1/2.

Together with (4.4) and since ρ(Xx
ts , X

γs
ts ) < s1/2 on As ∩ V c

s , we thus obtain

lim sup
s↓0

1

ts

[ 1

s
E
[∣∣f(Xx

ts)− f(Xγs
ts )
∣∣1Us]− |∇f(x)|

]
≤ lim sup

s↓0

1

ts

[ 1

s
E
[
ρ(Xx

ts , X
γs
ts )

∣∣f(Xx
ts)− f(Xγs

ts )
∣∣

ρ(Xx
ts , X

γs
ts )

1Us∩{Xxts 6=X
γs
ts
}

]
− |∇f(x)|

]
≤ lim sup

s↓0

1

ts

[
E
[
e−

∫ ts
0
`(Xxr )/2 dr eLip(`) ts s

1/2/2

× sup
z∈B

s1/2 (Xxts )\{Xxts}

∣∣f(Xx
ts)− f(z)

∣∣
ρ(Xx

ts , z)
1As

]
− |∇f(x)|

]
.
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For small enough s > 0, on the event As we have B2s1/2(Xx
ts) ⊂ B2ε(x). In this case, by

applying the mean value theorem twice,

sup
z∈B

s1/2
(Xxts )\{Xxts}

∣∣f(Xx
ts)− f(z)

∣∣
ρ(Xx

ts , z)

≤ sup
y∈B

2s1/2 (Xxts )

|∇f(y)|

≤ |∇f(Xx
ts)|+ sup

y∈B
2s1/2 (Xxts )

∣∣|∇f(y)| − |∇f(Xx
ts)|
∣∣

≤ |∇f(Xx
ts)|+ 2 s1/2 sup

v∈B4ε(x)

∣∣∇|∇f |(v)
∣∣.

Let ψ ∈ C∞c (M ) be nonnegative with ψ = |∇f | on B2ε(x). Invoking the dominated
convergence theorem, (2.2) and the smoothness of the heat semigroup up to zero, the
terms containing s1/2 above become negligible as s ↓ 0, and we are left with

lim sup
s↓0

1

ts

[ 1

s
E
[∣∣f(Xx

ts)− f(Xγs
ts )
∣∣1Us]− |∇f(x)|

]
≤ lim sup

s↓0

1

ts

[
E
[
e−

∫ ts
0
`(Xxr )/2 dr |∇f(Xx

ts)|1As
]
− |∇f(x)|

]
= lim sup

s↓0

1

ts

[
E
[
e−

∫ ts
0
`(Xxr )/2 dr ψ(Xx

ts)1As
]
− ψ(x)

]
≤ lim sup

s↓0

1

ts

[
E
[
ψ(Xx

ts)
]
− ψ(x)

]
+ lim sup

s↓0

1

ts
E
[[

e−
∫ ts
0
`(Xxr )/2 dr − 1

]
ψ(Xx

ts)
]

=
1

2
∆ψ(x)− 1

2
`(x)ψ(x) =

1

2
∆|∇f(x)| − 1

2
`(x) |∇f(x)|,

where in second last identity, we used that the marginal law of Xx is independent of s.
Since ` was arbitrary, we conclude (1.5) by Lemma 4.5.

Remark 4.7. Without (1.1), a careful inspection of the previous proof shows that if (iii)
in Theorem 1.6 holds for any symmetric lower semicontinuous function k : M ×M → R

which is not necessarily the average of some function as in (1.4), then the L1-Bochner
inequality holds for the function k : M → R defined by k(x) := k(x, x).

A Kato decomposable lower Ricci bounds and their Schrödinger
semigroups

A.1 The L1-gradient estimate

In this section, we present a last equivalent characterization of the condition Ric ≥ k
on M for the class of Kato decomposable k in terms of gradient estimates for (Pt)t≥0. A
similar result can be found in [69, Corollary 2.2]. See also [68, Theorem 2.3.1] for more
geometric growth conditions on k−, and [14, Theorem 1.1] for the nonsmooth case under
boundedness of k−, the condition Ric ≥ k on M interpreted in a synthetic sense [60].

Theorem A.1. Assume that k : M → R is a continuous and Kato decomposable function.
Then any of the equivalent conditions in Theorem 1.6 is equivalent to the L1-gradient
estimate w.r.t. k, i.e. for every f ∈ C∞c (M ),

|∇Ptf(x)| ≤ E
[
e−

∫ t
0
k(Xxr )/2 dr |∇f(Xx

t )|1{t<ζx}
]

for every x ∈ M , t > 0. (A.1)
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Proof. If k obeys Ric ≥ k on M , then the claimed L1-gradient estimate is just a restate-
ment of Theorem 2.1 for exact 1-forms together with (2.4).

Conversely, assume the L1-gradient estimate. A similar argument as in the proof of (i)
in Theorem 1.1 in Section 3.1 – directly employing (A.1) instead of Theorem 2.1 – shows
that M is stochastically complete. Let f ∈ C∞c (M ) and x ∈ M with |∇f(x)| 6= 0. Let ε > 0

such that |∇f | is bounded away from zero – in particular smooth – on Bε(x). By Kato’s
inequality for the Bochner Laplacian [36, Proposition 2.2], we have |∇f | ∈ W 1,2(M ).
Thus, given a nonnegative φ ∈ C∞c (M ) with support in Bε(x), by the chain rule, (2.2) and
a standard representation of the quadratic form E in terms of (Pt)t≥0, see e.g. page 15
in [21],

1

2

∫
M

|∇f(y)|−1
〈
∇f(y),∇∆f(y)

〉
φ(y) dm(y)

=
d

dt

∣∣∣∣
0

∫
M

[
|∇Ptf(y)|2

]1/2
φ(y) dm(y)

= lim
t↓0

1

t

∫
M

[
|∇Ptf(y)| − |∇f(y)|

]
φ(y) dm(y)

≤ lim sup
t↓0

1

t

∫
M

[
E
[
e−

∫ t
0
k(Xyr )/2 dr |∇f(Xy

t )|
]
− |∇f(y)|

]
φ(y) dm(y)

≤ lim sup
t↓0

1

t

∫
M

[
E
[
|∇f(Xy

t )|
]
− |∇f(y)|

]
φ(y) dm(y)

+ lim sup
t↓0

1

t

∫
M

E
[[

e−
∫ t
0
k(Xyr )/2 dr − 1

]
|∇f(Xy

t )|
]
φ(y) dm(y)

= −1

2

∫
M

〈
∇|∇f |(y),∇φ(y)

〉
dm(y) (A.2)

+ lim sup
t↓0

1

t

∫
M

E
[[

e−
∫ t
0
k(Xyr )/2 dr − 1

]
|∇f(Xy

t )|
]
φ(y) dm(y).

It remains to estimate the latter limit. Let τyε be the first exit time of Xy from Bε(y).
Since k is bounded on the bounded set

⋃
y∈Bε(x) Bε(y), and by continuity of Brownian

sample paths, the dominated convergence theorem gives

lim sup
t↓0

1

t

∫
M

E
[[

e−
∫ t
0
k(Xyr )/2 dr − 1

]
|∇f(Xy

t )|1{t<τyε }
]
φ(y) dm(y)

= −1

2

∫
M

k(y) |∇f(y)|φ(y) dm(y).

Using the Cauchy-Schwarz inequality, Lemma 1.4 and Lemma 4.6, for arbitrary T > 0

we obtain

lim sup
t↓0

1

t

∫
M

E
[[

e−
∫ t
0
k(Xyr )/2 dr − 1

]
|∇f(Xy

t )|1{t≥τyε }
]
φ(y) dm(y)

≤ ‖∇f‖L∞
∫
M

E
[∣∣e∫ T0 k−(Xyr )/2 dr − 1

∣∣2]1/2P[τyε ≤ t]1/2 φ(y) dm(y)

≤
√

2 ‖∇f‖L∞
[

sup
y∈M

E
[
e
∫ T
0
k−(Xyr ) dr

]1/2
+ 1
]

× lim sup
t↓0

1

t

∫
M

P
[
τyε ≤ t

]1/2
φ(y) dm(y) = 0,

and the L1-Bochner inequality (1.5) follows after integrating (A.2) by parts and using
the arbitrariness of φ.
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Remark A.2. One can replace C∞c (M ) by W 1,2(M ) in Theorem A.1. This follows from
(2.4) and the fact that under Kato decomposability, the Feynman–Kac formula for the
heat semigroup on 1-forms, Theorem 2.1, holds for all square integrable 1-forms. (This
formula has been shown in [30] in a more general context, and of course it also follows
from Theorem 2.1 by approximating forms in ΓL2(T ∗M ) by elements of ΓC∞c (T ∗M )

using Lemma A.4.) In view of the Cauchy–Schwarz inequality it seems unlikely that
the Feynman–Kac formula on 1-forms holds for all square integrable 1-forms under the
weaker assumption (1.1), although we are not aware of a counterexample (which would
be interesting to have). We refer the reader also to the recent [13], where Feynman–Kac
formulas for general perturbations of order no larger than 1 – rather than just zeroth
order perturbations – of Bochner Laplacians on vector bundles have been treated.

Remark A.3. Somewhat in line with the previous remark, assume that k satisfies (1.1)
instead of Kato decomposability. Of course, if Ric ≥ k on M , the L1-gradient estimate
from Theorem A.1 then still holds by virtue of Theorem 2.1. However, as it becomes
apparent from the above proof, the converse implication seems to be more involved and
to require at least some higher order exponential integrability of k−.

A.2 Schrödinger semigroups

For Kato decomposable k, the right-hand side of (A.1) has a more analytic interpreta-
tion in terms of the Schrödinger semigroup associated to k, which is briefly discussed
now. Assume in this section that k is a (not necessarily continuous) function which
is Kato decomposable and in L2

loc(M ). Then ∆ − k is essentially self-adjont in L2(M )

[33], and the Schrödinger semigroup (Pkt )t≥0 is defined to be Pkt := et(∆−k)/2 via spectral
calculus. This is a strongly continuous semigroup of bounded linear operators in L2(M ).
As k is Kato decomposable, (Pkt )t≥0 has a pointwise well-defined version which, for every
f ∈ L2(M ), can be expressed [32] via Brownian motion Xx on M in terms of

Pkt f(x) = E
[
e−

∫ t
0
k(Xxr )/2 dr f(Xx

t )1{t<ζx}
]

for every x ∈ M , t ≥ 0. (A.3)

We are going to show that this semigroup extends to a strongly continuous semigroup
of bounded operators in Lp(M ) for all p ∈ [1,∞), see Theorem A.5. To this end, we record
Khasminskii’s lemma (which relies on the Markov property of the underlying diffusion
on M ).

Lemma A.4. Let v ∈ K(M ). Then for every δ > 1 there exists a finite constant C ≥ 0

depending only on |v| and δ such that

sup
x∈M

E
[
e
∫ t
0
|v(Xxr )| dr 1{t<ζx}

]
≤ δ eCt for every t ≥ 0.

Up to dealing with the small additional difficulty of stochastic incompleteness, the
proof given in [34] follows from a careful examination of the classical Euclidean proof
given in [2] (which however states a bound of the form C1 eC2t). The above stronger
bound has played a crucial role in the context of total variation considered in [34].
Analogous statements for general Hunt processes having the Feller property can also be
found in [23].

Theorem A.5. Let k : M → R be a Kato decomposable function in L2
loc(M ). Then for

every δ > 1 there exists a finite constant C ≥ 0 depending only on k− and δ such that,
for every p ∈ [1,∞] and every f ∈ L2(M ) ∩ Lp(M ), we have∥∥Pkt f∥∥Lp ≤ δ eCt ‖f‖Lp for every t ≥ 0. (A.4)

In particular, for every p ∈ [1,∞], (Pkt )t≥0 extends to a semigroup of bounded operators
from Lp(M ) into Lp(M ) which indeed satisfies (A.4) for every f ∈ Lp(M ) and, if p <∞,
is strongly continuous.
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Proof. The idea to prove (A.4) is to use (A.3) together with Lemma A.4 to show the
desired inequality in the cases p = ∞ and p = 1 (which needs an additional, but
elementary exhaustion argument) and to apply Riesz–Thorin’s theorem to extend it to all
exponents p ∈ [1,∞]. See [32, Theorem IX.2, Corollary IX.4] for details.

The existence of an extension of (Pkt )t≥0 to a semigroup of bounded operators from
Lp(M ) into Lp(M ) for every p ∈ [1,∞] still satisfying (A.4) is then standard by ap-
proximation. We include the argument for p = ∞ for the convenience of the reader.
Given f ∈ L∞(M ) and any reference point o ∈ M , the sequence (fn)n∈N defined by
fn := f 1Bn(o) ∈ L2(M ) ∩ L∞(M ) converges pointwise to f . By (A.3) and Lemma A.4, the
dominated convergence theorem shows that the pointwise limit Pkt f of (Pkt fn)n∈N as
n→∞ is well-defined. This definition does not depend on the choice of (fn)n∈N as long
as supn∈N ‖fn‖L∞ <∞. It is also clear that this procedure preserves (A.4).

To show strong continuity of (Pkt )t≥0 in Lp(M ) for p <∞, by approximation and (A.4),
it suffices to show continuity of t 7→ Pkt f on [0,∞) in Lp(M ) for f ∈ L2(M ) ∩ Lp(M ) ∩
L∞(M ). By the semigroup property, we may and will restrict ourselves to the proof of
continuity at t = 0. Given any x ∈ M , note that a.s., we have

∫ t
0
k(Xx

r ) dr → 0 as t ↓ 0

since k ∈ L2
loc(M ), and that∣∣e− ∫ t

0
k(Xxr )/2 dr − 1

∣∣ ≤ e
∫ T
0
k−(Xxr )/2 dr + 1 (A.5)

for every t ∈ [0, T ] is satisfied a.s. for fixed T > 0. Since∫
M

∣∣Pkt f − Ptf
∣∣p dm ≤

∫
M

E
[∣∣e− ∫ t

0
k(Xxr )/2 dr − 1

∣∣ |f(Xx
t )|1{t<ζx}

]p
dm(x),

applying the dominated convergence theorem twice using (A.5) as well as Lemma A.4,
we obtain Pkt f − Ptf → 0 in Lp(M ) as t ↓ 0. The result follows immediately by strong
continuity of the heat flow (Pt)t≥0 in Lp(M ).

We close this section by noting that, using quadratic form techniques [23, 32, 56] in
order to define the Schrödinger operator, it is possible to treat L1

loc-potentials k rather
than L2

loc along the same lines.

A.3 Proof of Theorem 1.3

Now, we present one possible step-by-step analysis in order to check the existence
of (continuous) Kato decomposable lower Ricci bounds for M , along with proving Theo-
rem 1.3. Let us abbreviate d := dim(M ).

Proof of Theorem 1.3. Let Ξ : M → (0,∞) be a Borel function such that

sup
y∈M

pt(x, y) ≤ Ξ(x)
[
t−d/2 + 1] for every x ∈ M , t ∈ (0, 1]. (A.6)

(Using a parabolic L1-mean value inequality, it has been shown in [33, Theorem 2.9], see
also [32, Remark IV.17], that every Riemannian manifold admits a canonical choice of
a function Ξ as above.) [32, Proposition VI.10] states that for every p ∈ [1,∞), if d = 1,
and every p ∈ (d/2,∞), if d ≥ 2, we have LpΞ(M ) + L∞(M ) ⊂ K(M ). Thus, any locally
m-integrable function k : M → R such that

k− ∈ LpΞ(M ) + L∞(M )

for some Ξ and p as above is Kato decomposable.
Now let 〈·, ·〉 be quasi-isometric to a complete metric on M whose Ricci curvature is

bounded from below by constant. Then, as the Li–Yau heat kernel estimate, the Cheeger–
Gromov volume estimate and the local volume doubling property are qualitatively stable
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under quasi-isometry, it follows from the considerations in [32, Example IV.18] that there
exists a constant C > 0 such that

pt(x, y) ≤ C m
[
B1(x)

]−1 [
t−d/2 + 1

]
for every x, y ∈ M , t ∈ (0, 1].

Thus every k : M → R such that, choosing Ξ := m
[
B1(·)

]−1
, one has

k− ∈ LpΞ(M ) + L∞(M )

for some p as in the previous step is Kato decomposable.

Remark A.6. The previous proof shows that the assertion of Theorem 1.3 remains valid
if the inverse volume function is replaced by any function obeying (A.6).

Example A.7. Assume that M is a model manifold in the sense of [29], meaning that
M = Rd as a manifold with d ≥ 2, and that the Riemannian metric 〈·, ·〉 is given in polar
coordinates as dr2 + ψ(r) dθ2, where ψ is a smooth positive function on (0,∞). The
volume of balls on such manifolds does not depend on the center, and the Ricci curvature
behaves in the radial direction like ψ′′/ψ − (d − 1)(ψ′)2/ψ2, see e.g. page 266 in [10].
Assume now(

ψ′′/ψ − (d− 1)(ψ′)2/ψ2
)− ∈ Lp

ψd−1((0,∞)) + L∞((0,∞)) for some p > d/2,

where Lp
ψd−1((0,∞)) is the Lp-space of functions w.r.t. 1(0,∞) ψ

d−1 L1. As the volume
measure behaves in the radial direction as ψd−1(r) dr, it follows that the Ricci curvature
is bounded from below by a function with negative part in Lp(M ) + L∞(M ).

To make sure that the latter function space is included in K(M ) it suffices from the
above considerations to assume that there exists a smooth positive function ψ0 on (0,∞)

such that

a. ψ0(0) = 0, ψ′0(0) = 1 and ψ′′0 (0) = 0,

b. ψ′′0/ψ0 − (d− 1)(ψ′0)2/ψ2
0 is uniformly bounded from below by a constant, and

c. ψ0/C ≤ ψ ≤ Cψ0 for some constant C > 1.

Indeed, a. guarantees that there exists a complete metric g0 on M which – in polar
coordinates – is written as g0 = dr2 + ψ0(r) dθ2. Assumption b. guarantees that the Ricci
curvature associated to g0 is bounded from below by a constant, and c. implies that g is
quasi-isometric to g0. For instance, one can take the Euclidean metric corresponding
to ψ0(r) := r or the hyperbolic metric corresponding to ψ0(r) = sinh(r) as reference
metrics.
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