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Abstract

A Bernoulli Gibbsian line ensemble L = (L1, . . . , LN ) is the law of the trajectories of
N−1 independent Bernoulli random walkers L1, . . . , LN−1 with possibly random initial
and terminal locations that are conditioned to never cross each other or a given random
up-right path LN (i.e. L1 ≥ · · · ≥ LN ). In this paper we investigate the asymptotic
behavior of sequences of Bernoulli Gibbsian line ensembles LN = (LN

1 , . . . , LN
N ) when

the number of walkers tends to infinity. We prove that if one has mild but uniform
control of the one-point marginals of the lowest-indexed (or top) curves LN

1 then the
sequence LN is tight in the space of line ensembles. Furthermore, we show that if the
top curves LN

1 converge in the finite dimensional sense to the parabolic Airy2 process
then LN converge to the parabolic Airy line ensemble.
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1 Introduction and main results

1.1 Gibbsian line ensembles

In the last several years there has been a significant interest in line ensembles that
satisfy what is known as the Brownian Gibbs property. A line ensemble is merely a
collection of random continuous curves on some interval Λ ⊂ R (all defined on the
same probability space) that are indexed by a set Σ ⊂ Z. In this paper, we will almost
exclusively have Σ = {1, . . . , N} with N ∈ N ∪ {∞} and if N =∞ we use the convention
Σ = N. We denote the line ensemble by L and by Li(ω)(x) := L(ω)(i, x) the i-th
continuous function (or line) in the ensemble, and typically we drop the dependence on
ω from the notation as one does for Brownian motion. We say that a line ensemble L
satisfies the Brownian Gibbs property if it is non-intersecting almost surely, i.e. Li(s) <
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Li−1(s) for i = 2, . . . , N and s ∈ Λ and it satisfies the following resampling invariance.
Suppose we sample L and fix two times s, t ∈ Λ with s < t and a finite interval K =

{k1, k1 + 1, . . . , k2} ⊂ Σ with k1 ≤ k2. We can erase the part of the lines Lk between the
points (s,Lk(s)) and (t,Lk(t)) for k = k1, . . . , k2 and sample independently k2 − k1 + 1

random curves between these points according to the law of k2−k1 +1 Brownian bridges,
which have been conditioned to not cross each other as well as the lines Lk1−1 and Lk2+1

with the convention that L0 =∞ and Lk2+1 = −∞ if k2 + 1 6∈ Σ. In this way we obtain a
new random line ensemble L′, and the essence of the Brownian Gibbs property is that
the law of L′ is the same as that of L. The readers can find a precise definition of the
Brownian Gibbs property in Definition 2.8 but for now they can think of a line ensemble
that satisfies the Brownian Gibbs property as N random curves, which locally have the
distribution of N avoiding Brownian bridges.

Part of the interest behind Brownian Gibbsian line ensembles is that they naturally
arise in various models in statistical mechanics, integrable probability and mathematical
physics. If N is finite, a natural example of a Brownian Gibbsian line ensemble is
given by Dyson Brownian motion (this is the law of N independent one-dimensional
Brownian motions all started at the origin and appropriately conditioned to never cross
for all positive time). Other important examples of models that satisfy the Brownian
Gibbs property include Brownian last passage percolation, which has been extensively
studied recently in [19, 20, 21, 18] and the parabolic Airy line ensemble LAiry [27, 7].
The Airy line ensemble A was first discovered as a scaling limit of the multi-layer
polynuclear growth model in [27], where its finite dimensional distribution was derived.
(The relationship between the Airy and parabolic Airy line ensemble is given by Ai(t) =

21/2LAiryi (t) + t2 for i ∈ N.) Subsequently, in [7] it was shown that the edge of Dyson
Brownian motion (or rather a closely related model of Brownian watermelons) converges
uniformly over compacts to the parabolic Airy line ensemble LAiry, see Figure 1. This
stronger notion of convergence was obtained by utilizing the Brownian Gibbs property
and the latter has led to the proof of many new and interesting properties of the Airy line
ensemble [18, 7, 11]. Apart from its inherent beautiful structure, the Airy line ensemble
plays a distinguished (conjectural) foundational role in the Kardar-Parisi-Zhang (KPZ)
universality class through its relationship to the construction of the Airy sheet in [10].

Figure 1: Dyson Brownian motion and the parabolic Airy line ensemble as its edge
scaling limit.

The parabolic Airy line ensemble is believed to be a universal scaling limit of not just
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Dyson Brownian motion but many line ensembles that satisfy a Gibbs property. Recently,
it was shown in the preprint [9] that uniform convergence to the parabolic Airy line
ensemble holds for sequences of N non-intersecting Bernoulli, geometric, exponential
and Poisson random walks started from the origin as N tends to infinity.(We mention
that non-intersecting Bernoulli random walkers are equivalent to non-crossing ones
after a deterministic shift.) These types of result are reminiscent of Donsker’s theorem
from classical probability theory, which establishes the convergence of generic random
walks to Brownian motion. The difference is that as the number of avoiding walkers
is increasing to infinity, one leaves the Gaussian universality class and enters the KPZ
universality class. It is worth mentioning that the results in the preprint [9] rely on very
precise integrable inputs (exact formulas for the finite dimensional distributions) for the
random walkers for each fixed N , which are suitable for taking the large N limit – this
is one reason only the packed initial condition is effectively treated. For more general
initial conditions, the convergence even in the Bernoulli case, which is arguably the
simplest, remains widely open. We also mention that the preprint [9] uses a slightly
different notation than what we use in the present paper. Our use of the term Airy
line ensemble (denoted by A) agrees with the original definition in [27] and the term
parabolic Airy line ensemble (denoted by LAiry) agrees with [3]. On the other hand,
the preprint [9] calls A the “stationary Airy line ensemble” and

√
2LAiry the “Airy line

ensemble”. We have chosen to follow the notation from [3] and not [9] in this paper, as it
is more well-established in the field.

The goal of the present paper is to investigate asymptotics of N avoiding Bernoulli
random walkers with general (possibly random) initial and terminal conditions in the
large N limit. The main questions that motivate our work are:

1. What are sufficient conditions that ensure that the trajectories of N avoiding
Bernoulli random walkers are uniformly tight, meaning that they have uniform
weak subsequential limits that are N-indexed line ensembles on R?

2. What are sufficient conditions that ensure that the trajectories of N avoiding
Bernoulli random walkers converge uniformly to the parabolic Airy line ensemble
LAiry?

If LN = (LN1 , . . . , L
N
N ) denotes the trajectories of the N avoiding Bernoulli random

walkers (with LN1 ≥ LN2 ≥ · · · ≥ LNN ) we show that as long as LN1 under suitable shifts
and scales has one-point tight marginals that (roughly) globally approximate an inverted
parabola, one can conclude that the whole line ensemble LN under the same shifts
and scales is uniformly tight. In other words, having a mild but uniform control of the
one-point marginals of the lowest-indexed (or top) curve LN1 one can conclude that the
full line ensemble is tight and moreover any subsequential limit satisfies the Brownian
Gibbs property. This is the main result of the paper and appears as Theorem 1.1.

Regarding the second question above, we show that if LN1 under suitable shifts and
scales converges weakly to the parabolic Airy2 process (the lowest indexed curve in the
parabolic Airy line ensemble LAiry) in the finite dimensional sense, then the whole line
ensemble LN under the same shifts and scales converges uniformly to the parabolic Airy
line ensemble LAiry. The latter result is presented as Corollary 1.3 in the next section
and is a relatively easy consequence of Theorem 1.1 and the recent characterization
result of Brownian Gibbsian line ensembles in [12].

It is worth pointing out that to establish tightness we do not require actual con-
vergence of the marginals, which makes our approach more general than that of the
preprint [9]. In particular, in the preprint [9] the authors assume finite dimensional
convergence of LN to the parabolic Airy line ensemble, while our approach does not. In
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most studied cases for avoiding Bernoulli random walks, such as [2, 17, 22], one has
access to exact formulas that can be used to prove the finite dimensional convergence of
LN to the parabolic Airy line ensemble, which makes this a natural assumption to make.
Our motivation, however, is to formulate a framework that establishes tightness (or
convergence) and relies as little as possible on exact formulas. We do this in the hopes of
eventually extending this framework to other models of Gibbsian line ensembles – ones
with general (not necessarily Bernoulli) random walk paths and general (not necessarily
avoiding) Gibbs properties. In this sense, the present paper should be thought of as a
proof of concept – showing in (arguably) the simplest case that the global behavior of
a sequence of Gibbsian line ensemble can be effectively analyzed using only one-point
marginal information for their lowest indexed curves. We mention that since this article
has been completed, part of the framework in this paper has been applied to a general
class of Gibbsian line ensembles in [14].

1.2 Main results

We begin by giving some necessary definitions, which will be further elaborated in
Section 2 but will suffice for us to present the main results of the paper. For a, b ∈ Z
with a < b we denote by Ja, bK the set {a, a+ 1, . . . , b}. Given T0, T1 ∈ Z with T0 ≤ T1 and
N ∈ N we call a J1, NK-indexed Bernoulli line ensemble on JT0, T1K a random collection
of N up-right paths drawn in the region JT0, T1K × Z in Z2 – see the bottom-right part
of Figure 2. We denote a Bernoulli line ensemble by L and L(i, s) is the location of
the i-th up-right path at time s for (i, s) ∈ J1, NK × JT0, T1K. For convenience we also
denote Li(s) = L(i, s) the i-th up-right path in the ensemble and one can think of Li’s as
trajectories of Bernoulli random walkers that at each time stay put or jump by one.

We say that a Bernoulli line ensemble satisfies the Schur Gibbs property if it satisfies
the following:

1. With probability 1 we have L1(s) ≥ L2(s) ≥ · · · ≥ LN (s) for all s ∈ JT0, T1K.

2. For any K = {k1, k1 + 1, . . . , k2} ⊂ J1, N − 1K and a, b ∈ JT0, T1K with a < b the
conditional law of Lk1 , . . . , Lk2 in the region D = Ja, bK × Z, given {L(i, s) : i 6∈
K or s 6∈ Ja+ 1, b− 1K} is that of k2 − k1 + 1 independent Bernoulli random walks
that are conditioned to start from ~x = (Lk1(a), . . . , Lk2(a)) at time a, to end at
~y = (Lk1(b), . . . , Lk2(b)) at time b and to never cross each other or the paths Lk1−1

or Lk2+1 in the interval JT0, T1K (here L0 =∞).

In simple words, the above definition states that a Bernoulli line ensemble satisfies the
Schur Gibbs property if it is non-crossing and its local distribution is that of avoiding
Bernoulli random walk bridges. We mention here that in the above definition the curve
LN plays a special role, since we do not assume that its conditional distribution is that
of a Bernoulli bridge conditioned to stay below LN−1. Essentially, the curve LN plays
the role of a bottom (random) boundary for our ensemble and a Bernoulli line ensemble
satisfying the Schur Gibbs property can be seen to be equivalent to the statement that it
is precisely the law of N − 1 independent Bernoulli bridges that are conditioned to start
from some random configuration at time T0, end at some random configuration at time
T1 and never cross each other or a given random up-right path LN in the time interval
JT0, T1K. We refer to Bernoulli line ensembles that satisfy the Schur Gibbs property as
Bernoulli Gibbsian line ensembles. We mention that the name Schur Gibbs property
originates from the connection between Bernoulli Gibbsian line ensembles and Schur
symmetric polynomials, discussed later in Section 8.2.

A natural context in which Bernoulli Gibbsian line ensembles arise is lozenge tilings
– see Figure 2 and its caption. To be brief, one can take a finite tileable region in the
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hexagonal lattice and consider the uniform distribution on all possible tilings of this
region with three types of rhombi (also called lozenges). The resulting measure on tilings
has a natural Gibbs property, which is that if you freeze the tiling outside of some finite
region the tiling inside that region will be conditionally uniform among all possible tilings.
For special choices of tileable domains uniform lozenge tilings give rise to Bernoulli line
ensembles (with deterministic packed starting and terminal conditions), and the tiling
Gibbs property translated to the line ensemble becomes the Schur Gibbs property. In
Figure 2 one observes that L3 (which is the bottom-most curve in the ensemble) is not
uniformly distributed among all up-right paths that stay below L2 and have the correct
endpoints since it needs to stay above the bottom boundary of the tiled region.

Figure 2: The top-left picture represents a tileable region in the triangular lattice and
three types of lozenges. The top-right picture depicts a possible tiling of the region and
the bottom-left picture represents the same tiling under an affine transformation. One
draws lines through the mid-points of the vertical sides of the vertical rhombi and the
squares and this gives rise to a collection of random up-right paths. If one shifts these
lines down one obtains a Bernoulli line ensemble – depicted in the bottom-right picture.
If one takes the uniform measure on lozenge tilings the Bernoulli line ensemble one
obtains through the above procedure satisfies the Schur Gibbs property.

In the remainder of this section we fix a sequence LN = (LN1 , . . . , L
N
N ) of J1, NK-

indexed Bernoulli Gibbsian line ensembles on JaN , bN K where aN ≤ 0 and bN ≥ 0 are
integers. Our interest is in understanding the asymptotic behavior of LN as N →∞ (i.e.
when the number of walkers tends to infinity). Below we we list several assumptions on
the sequence LN , which rely on parameters α > 0, p ∈ (0, 1) and λ > 0. The parameter α
is related to the fluctuation exponent of the line ensemble and the assumptions below
will indicate that LN1 (0) fluctuates on order Nα/2. The parameter p is the global slope
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of the line ensemble, and since we are dealing with Bernoulli walkers the global slope
is in [0, 1] and we exclude the endpoints to avoid degenerate cases. The parameter λ
is related to the global curvature of the line ensemble, and the assumptions below will
indicate that once the slope is removed the line ensemble approximates the parabola
−λx2. We now turn to formulating our assumptions precisely.
Assumption 1. We assume that there is a function ψ : N→ (0,∞) such that
limN→∞ ψ(N) =∞ and aN < −ψ(N)Nα while bN > ψ(N)Nα.

The significance of Assumption 1 is that the sequence of intervals [aN , bN ] (on which
the line ensemble LN is defined) on scale Nα asymptotically covers the entire real
line. The nature of ψ is not important and any function converging to infinity along the
integers works for our purposes.
Assumption 2. There is a function φ : (0,∞)→ (0,∞) such that for any ε > 0 we have

sup
n∈Z

lim sup
N→∞

P
(∣∣∣N−α/2(LN1 (nNα)− pnNα + λn2Nα/2)

∣∣∣ ≥ φ(ε)
)
≤ ε. (1.1)

Let us elaborate on Assumption 2 briefly. If n = 0 the statement indicates that
N−α/2L1(0) is a tight sequence of random variables and so α/2 is the fluctuation exponent
of the ensemble. The transversal exponent is α and is reflected in the way time (the
argument in LN1 ) is scaled – it is twice α/2 as expected by Brownian scaling. The essence
of Assumption 2 is that if one removes a global line with slope p from LN1 and rescales
by Nα/2 vertically and Nα horizontally the resulting curve asymptotically approximates
the parabola −λx2. The way the statement is formulated, this approximation needs to
happen uniformly over the integers but the choice of Z is not important. Indeed, one can
replace Z with any subset of R that has arbitrarily large and small points and the choice
of Z is made for convenience. Equation (1.1) indicates that for each n ∈ Z the sequence
of random variables XN

n = N−α/2(LN1 (nNα)− pnNα + λn2Nα/2) is tight, but it says a bit
more. Namely, it states that ifMn is the family of all possible subsequential limits of
{XN

n }N≥1 then ∪n∈ZMn is itself a tight family of distributions on R. A simple case when
Assumption 2 is satisfied is when XN

n converges to the Tracy-Widom distribution for all n
as N →∞. In this case the family ∪n∈ZMn only contains the Tracy-Widom distribution
and so is naturally tight.

The final thing we need to do is to embed all of our line ensembles LN in the same
space. The latter is necessary as we want to talk about tightness and convergence of
line ensembles that presently are defined on different state spaces (remember that the
number of up-right paths is changing with N ). We consider N × R with the product
topology coming from the discrete topology on N and the usual topology on R. We let
C(N×R) be the space of continuous functions on N×R with the topology of uniform
convergence over compacts and corresponding Borel σ-algebra. For each N ∈ N we let

fNi (s) = N−α/2(LNi (sNα)− psNα + λs2Nα/2), for s ∈ [−ψ(N), ψ(N)] and i = 1, . . . , N ,

and extend fNi to R by setting for i = 1, . . . , N

fNi (s) = fNi (−ψ(N)) for s ≤ −ψ(N) and fNi (s) = fNi (ψ(N)) for s ≥ ψ(N).

If i ≥ N + 1 we define fNi (s) = 0 for s ∈ R. With the above we have that LN defined by

LN (i, s) =
fNi (s)− λs2√

p(1− p)
(1.2)

is a random variable taking value in C(N×R) and we let PN denote its distribution. We
remark that the particular extension we chose for fNi outside of [−ψ(N), ψ(N)] and for
i ≥ N + 1 is immaterial since all of our convergence/tightness results are formulated for
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the topology of uniform convergence over compacts. Consequently, only the behavior
of these functions on compact intervals and finite index matters and not what these
functions do near infinity, which is where the modification happens as limN→∞ ψ(N) =∞
by assumption.

We are now ready to state our main result, whose proof can be found in Section 2.4.

Theorem 1.1. Under Assumptions 1 and 2 the sequence PN is tight. Moreover, if L∞
denotes any subsequential limit of LN then L∞ satisfies the Brownian Gibbs property of
Section 1.1 (see also Definition 2.10).

Remark 1.2. In simple words, Theorem 1.1 states that if one has a sequence of Bernoulli
Gibbsian line ensembles with a mild but uniform control of the one-point marginals of
the top curves LN1 then the entire line ensembles need to be tight. The idea of utilizing
the Gibbs property of a line ensemble to improve one-point tightness of the top curve to
tightness of the entire curve or even the entire line ensemble has appeared previously
in several different contexts. For line ensembles whose underlying path structure is
Brownian it appeared in the seminal work of [7] and more recently in [4, 5]. For discrete
Gibbsian line ensembles (more general than the one studied in this paper) it appeared in
[6] and for line ensembles related to the inverse gamma directed polymer in [32].

Theorem 1.1 indicates that in order to ensure the existence of subsequential limits
for LN as in (1.2) it suffices to ensure tightness of the one-point marginals of the top
curves LN1 in a sufficiently uniform sense. We next investigate the question of when
LN converges to the parabolic Airy line ensemble LAiry. We let A = {Ai}i∈N be the N-
indexed Airy line ensemble and L = {LAiryi }i∈N be given by LAiryi (x) = 2−1/2(Ai(x)− x2)

as in [7, Theorem 3.1]. In particular, both A and L are random variables taking values in
the space C(N×R), and A1(·) is the Airy2 process while LAiry1 (·) is the parabolic Airy2

process. To establish convergence of LN to LAiry we need the following strengthening
of Assumption 2.

Assumption 2’. Let c =
(

2λ2

p(1−p)

)1/3

. For any k ∈ N, t1, . . . , tk, x1, . . . , xk ∈ R we assume

lim
N→∞

P
(
LN1 (ti) ≤ xi for i = 1, . . . , k

)
= P

(
c−1/2LAiry1 (cti) ≤ xi for i = 1, . . . , k

)
. (1.3)

In plain words, Assumption 2’ states that the top curves LN1 (t) converge in the finite
dimensional sense to c−1/2LAiry1 (ct). Let us briefly explain why Assumption 2’ implies
Assumption 2 (and hence we refer to it as a strengthening). Under Assumption 2’, we
would have that N−α/2(LN1 (xNα)− pxNα + λx2Nα/2) converge in the finite dimensional

sense to
√

p(1−p)
2c A1(cx). In particlar, for each n ∈ Z we have that

lim
N→∞

P
(∣∣∣N−α/2(LN1 (nNα)− pnNα + λn2Nα/2)

∣∣∣ ≥ a) = P

(√
p(1− p)

2c
|A1(cn)| ≥ a

)
=

1− FGUE

(
a ·

√
2c

p(1− p)

)
+ FGUE

(
−a ·

√
2c

p(1− p)

)
,

where we used that A1(x) is a stationary process whose one point marginals are given by
the Tracy-Widom distribution FGUE , [31], and that FGUE is diffuse. In particular, given
ε > 0 we can find a large enough so that the second line above is less than ε and such a
choice of a furnishes a function φ as in Assumption 2.

The next result gives conditions under which LN converges to the parabolic Airy line
ensemble LAiry. It is proved in Section 2.4
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Tightness of Bernoulli Gibbsian line ensembles

Corollary 1.3. Under Assumptions 1 and 2’ the sequence LN converges weakly in the
topology of uniform convergence over compacts to the line ensemble L∞ defined by

L∞i (t) = c−1/2LAiryi (ct), for i ∈ N and t ∈ R, where we recall c =

(
2λ2

p(1− p)

)1/3

.

Remark 1.4. In plain words, Corollary 1.3 states that to prove the convergence of a
sequence of Bernoulli Gibbsian line ensembles LN to the parabolic Airy line ensemble
LAiry, it suffices to show that the top curves LN1 (one for each ensemble) converge in the
finite dimensional sense to the parabolic Airy2 process. We mention that the convergence
in Corollary 1.3 is in the uniform topology over compacts, which is stronger than finite-
dimensional convergence. We also mention that in the preprint [9] the conclusion of
Corollary 1.3 was established under the assumption that LN converge to L∞ in the
finite dimensional sense. Simply put, we require as input only the finite dimensional
convergence of the top curves, while [9, Theorem 1.5] requires the finite dimensional
convergence of not just the top but all curves in the line ensemble, which is a much
stronger assumption.

The remainder of the paper is organized as follows. In Section 2 we introduce the
basic definitions and notation for line ensembles. The main technical result of the paper,
Theorem 2.26, is presented in Section 2.3 and Theorem 1.1 and Corollary 1.3 are proved
in Section 2.4 by appealing to it. In Section 3 we prove several statements for Bernoulli
random walk bridges, by using a strong coupling result that allows us to compare the
latter with Brownian bridges. The proof of Theorem 2.26 is presented in Section 4 and is
based on three key lemmas. Two of these lemmas are proved in Section 5 and the last
one in Section 6. The paper ends with Sections 7 and 8, where various technical results
needed throughout the paper are proved.

2 Line ensembles

In this section we introduce various definitions and notation that are used throughout
the paper.

2.1 Line ensembles and the Brownian Gibbs property

In this section we introduce the notions of a line ensemble and the (partial) Brownian
Gibbs property. Our exposition in this section closely follows that of [7, Section 2] and
[12, Section 2].

Given two integers p ≤ q, we let Jp, qK denote the set {p, p + 1, . . . , q}. If p > q then
Jp, qK = ∅. Given an interval Λ ⊂ R we endow it with the subspace topology of the usual
topology on R. We let (C(Λ), C) denote the space of continuous functions f : Λ→ R with
the topology of uniform convergence over compacts, see [25, Chapter 7, Section 46],
and Borel σ-algebra C. Given a set Σ ⊂ Z we endow it with the discrete topology and
denote by Σ× Λ the set of all pairs (i, x) with i ∈ Σ and x ∈ Λ with the product topology.
We also denote by (C(Σ× Λ), CΣ) the space of continuous functions on Σ× Λ with the
topology of uniform convergence over compact sets and Borel σ-algebra CΣ. Typically,
we will take Σ = J1, NK (we use the convention Σ = N if N = ∞) and then we write(
C(Σ× Λ), C|Σ|

)
in place of (C(Σ× Λ), CΣ).

The following defines the notion of a line ensemble.

Definition 2.1. Let Σ ⊂ Z and Λ ⊂ R be an interval. A Σ-indexed line ensemble
L is a random variable defined on a probability space (Ω,F ,P) that takes values in
(C(Σ× Λ), CΣ). Intuitively, L is a collection of random continuous curves (sometimes
referred to as lines), indexed by Σ, each of which maps Λ in R. We will often slightly
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Tightness of Bernoulli Gibbsian line ensembles

abuse notation and write L : Σ×Λ→ R, even though it is not L which is such a function,
but L(ω) for every ω ∈ Ω. For i ∈ Σ we write Li(ω) = (L(ω))(i, ·) for the curve of index i
and note that the latter is a map Li : Ω→ C(Λ), which is (C,F)-measurable. If a, b ∈ Λ

satisfy a < b we let Li[a, b] denote the restriction of Li to [a, b].

We will require the following result, whose proof is postponed until Section 7.1. In
simple terms it states that the space C(Σ× Λ) where our random variables L take value
has the structure of a complete, separable metric space.

Lemma 2.2. Let Σ ⊂ Z and Λ ⊂ R be an interval. Suppose that {an}∞n=1, {bn}∞n=1 are
sequences of real numbers such that an < bn, [an, bn] ⊂ Λ, an+1 ≤ an, bn+1 ≥ bn and
∪∞n=1[an, bn] = Λ. For n ∈ N let Kn = Σn × [an, bn] where Σn = Σ ∩ J−n, nK. Define
d : C(Σ× Λ)× C(Σ× Λ)→ [0,∞) by

d(f, g) =

∞∑
n=1

2−n min

{
sup

(i,t)∈Kn
|f(i, t)− g(i, t)|, 1

}
. (2.1)

Then d defines a metric on C(Σ× Λ) and moreover the metric space topology defined by
d is the same as the topology of uniform convergence over compact sets. Furthermore,
the metric space (C(Σ× Λ), d) is complete and separable.

Definition 2.3. Given a sequence {Ln : n ∈ N} of random Σ-indexed line ensembles
we say that Ln converge weakly to a line ensemble L, and write Ln =⇒ L if for any
bounded continuous function f : C(Σ× Λ)→ R we have that

lim
n→∞

E [f(Ln)] = E [f(L)] .

We also say that {Ln : n ∈ N} is tight if for any ε > 0 there exists a compact set
K ⊂ C(Σ× Λ) such that P(Ln ∈ K) ≥ 1− ε for all n ∈ N.

We call a line ensemble non-intersecting if P-almost surely Li(r) > Lj(r) for all i < j

and r ∈ Λ.

We will require the following sufficient condition for tightness of a sequence of line
ensembles, which extends [1, Theorem 7.3]. We give a proof in Section 7.2.

Lemma 2.4. Let Σ ⊂ Z and Λ ⊂ R be an interval. Suppose that {an}∞n=1, {bn}∞n=1 are
sequences of real numbers such that an < bn, [an, bn] ⊂ Λ, an+1 ≤ an, bn+1 ≥ bn and
∪∞n=1[an, bn] = Λ. Then {Ln} is tight if and only if for every i ∈ Σ we have:

(i) lima→∞ lim supn→∞ P(|Lni (a0)| ≥ a) = 0 for some a0 ∈ Λ;

(ii) For all ε > 0 and k ∈ N, lim
δ→0

lim sup
n→∞

P

(
supx,y∈[ak,bk],

|x−y|≤δ
|Lni (x)− Lni (y)| ≥ ε

)
= 0.

We next turn to formulating the Brownian Gibbs property – we do this in Definition 2.8
after introducing some relevant notation and results. If Wt denotes a standard Brownian
motion, then the process

B̃(t) = Wt − tW1, 0 ≤ t ≤ 1,

is called a Brownian bridge (from B̃(0) = 0 to B̃(1) = 0) with diffusion parameter 1. For
brevity we call the latter object a standard Brownian bridge.

Given a, b, x, y ∈ R with a < b we define a random variable on (C([a, b]), C) through

B(t) = (b− a)1/2 · B̃
(
t− a
b− a

)
+

(
b− t
b− a

)
· x+

(
t− a
b− a

)
· y, (2.2)

and refer to the law of this random variable as a Brownian bridge (from B(a) = x to
B(b) = y) with diffusion parameter 1. Given k ∈ N and ~x, ~y ∈ Rk we let Pa,b,~x,~yfree denote the
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law of k independent Brownian bridges {Bi : [a, b]→ R}ki=1 from Bi(a) = xi to Bi(b) = yi
all with diffusion parameter 1.

We next state a couple of results about Brownian bridges from [7] for future use.

Lemma 2.5. [7, Corollary 2.9]. Fix a continuous function f : [0, 1] → R such that
f(0) > 0 and f(1) > 0. Let B be a standard Brownian bridge and let C = {B(t) >

f(t) for some t ∈ [0, 1]} (crossing) and T = {B(t) = f(t) for some t ∈ [0, 1]} (touching).
Then P(T ∩ Cc) = 0.

Lemma 2.6. [7, Corollary 2.10]. Let U be an open subset of C([0, 1]), which contains a
function f such that f(0) = f(1) = 0. If B : [0, 1]→ R is a standard Brownian bridge then
P(B[0, 1] ⊂ U) > 0.

The following definition introduces the notion of an (f, g)-avoiding Brownian line
ensemble, which in simple terms is a collection of k independent Brownian bridges,
conditioned on not intersecting each other and staying above the graph of g and below
the graph of f for two continuous functions f and g.

Definition 2.7. Let k ∈ N and W ◦k denote the open Weyl chamber in Rk, i.e.

W ◦k = {~x = (x1, . . . , xk) ∈ Rk : x1 > x2 > · · · > xk}.

(In [7] the notation Rk> was used for this set.) Let ~x, ~y ∈ W ◦k , a, b ∈ R with a < b, and
f : [a, b] → (−∞,∞] and g : [a, b] → [−∞,∞) be two continuous functions. The latter
condition means that either f : [a, b] → R is continuous or f = ∞ everywhere, and
similarly for g. We also assume that f(t) > g(t) for all t ∈ [a, b], f(a) > x1, f(b) > y1 and
g(a) < xk, g(b) < yk.

With the above data we define the (f, g)-avoiding Brownian line ensemble on the
interval [a, b] with entrance data ~x and exit data ~y to be the Σ-indexed line ensemble
Q with Σ = J1, kK on Λ = [a, b] and with the law of Q equal to Pa,b,~x,~yfree (the law of

k independent Brownian bridges {Bi : [a, b] → R}ki=1 from Bi(a) = xi to Bi(b) = yi)
conditioned on the event

E = {f(r) > B1(r) > B2(r) > · · · > Bk(r) > g(r) for all r ∈ [a, b]} .

It is worth pointing out that E is an open set of positive measure and so we can
condition on it in the usual way – we explain this briefly in the following paragraph.
Let (Ω,F ,P) be a probability space that supports k independent Brownian bridges
{Bi : [a, b] → R}ki=1 from Bi(a) = xi to Bi(b) = yi all with diffusion parameter 1.
Notice that we can find ũ1, . . . , ũk ∈ C([0, 1]) and ε > 0 (depending on ~x, ~y, f, g, a, b)
such that ũi(0) = ũi(1) = 0 for i = 1, . . . , k and such that if h̃1, . . . , h̃k ∈ C([0, 1]) satisfy
h̃i(0) = h̃i(1) = 0 for i = 1, . . . , k and supt∈[0,1] |ũi(t)− h̃i(t)| < ε then the functions

hi(t) = (b− a)1/2 · h̃i
(
t− a
b− a

)
+

(
b− t
b− a

)
· xi +

(
t− a
b− a

)
· yi,

satisfy f(r) > h1(r) > · · · > hk(r) > g(r). It follows from Lemma 2.6 that

P(E) ≥ P

(
max

1≤i≤k
sup
r∈[0,1]

|B̃i(r)− ũi(r)| < ε

)
=

k∏
i=1

P

(
sup
r∈[0,1]

|B̃i(r)− ũi(r)| < ε

)
> 0,

and so we can condition on the event E.
To construct a realization of Q we proceed as follows. For ω ∈ E we define

Q(ω)(i, r) = Bi(r)(ω) for i = 1, . . . , k and r ∈ [a, b].
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Observe that for i ∈ {1, . . . , k} and an open set U ∈ C([a, b]) we have that

Q−1({i} × U) = {Bi ∈ U} ∩ E ∈ F ,

and since the sets {i} × U form an open basis of C(J1, kK × [a, b]) we conclude that
Q is F -measurable. This implies that the law Q is indeed well-defined and also it is
non-intersecting almost surely. Also, given measurable subsets A1, . . . , Ak of C([a, b]) we
have that

P(Qi ∈ Ai for i = 1, . . . , k) =
P
a,b,~x,~y
free ({Bi ∈ Ai for i = 1, . . . , k} ∩ E)

P
a,b,~x,~y
free (E)

.

We denote the probability distribution of Q as Pa,b,~x,~y,f,gavoid and write Ea,b,~x,~y,f,gavoid for the
expectation with respect to this measure.

The following definition gives the notion of the Brownian Gibbs property from [7].

Definition 2.8. Fix a set Σ = J1, NK with N ∈ N or N = ∞ and an interval Λ ⊂ R and
let K = {k1, k1 + 1, . . . , k2} ⊂ Σ be finite and a, b ∈ Λ with a < b. Set f = Lk1−1 and
g = Lk2+1 with the convention that f = ∞ if k1 − 1 6∈ Σ and g = −∞ if k2 + 1 6∈ Σ.
Write DK,a,b = K × (a, b) and Dc

K,a,b = (Σ × Λ) \ DK,a,b. A Σ-indexed line ensemble
L : Σ× Λ→ R is said to have the Brownian Gibbs property if it is non-intersecting and

Law
(
L|K×[a,b] conditional on L|DcK,a,b

)
= Law (Q) ,

where Qi = Q̃i−k1+1 and Q̃ is the (f, g)-avoiding Brownian line ensemble on [a, b] with
entrance data (Lk1(a), . . . ,Lk2(a)) and exit data (Lk1(b), . . . ,Lk2(b)) from Definition 2.7.
Note that Q̃ is introduced because, by definition, any such (f, g)-avoiding Brownian line
ensemble is indexed from 1 to k2 − k1 + 1 but we want Q to be indexed from k1 to k2.

An equivalent way to express the Brownian Gibbs property is as follows. A Σ-indexed
line ensemble L on Λ satisfies the Brownian Gibbs property if and only if it is non-
intersecting and for any finite K = {k1, k1 + 1, . . . , k2} ⊂ Σ and [a, b] ⊂ Λ and any
bounded Borel-measurable function F : C(K × [a, b])→ R we have P-almost surely

E
[
F
(
L|K×[a,b]

) ∣∣Fext(K × (a, b))
]

= E
a,b,~x,~y,f,g
avoid

[
F (Q̃)

]
, (2.3)

where

Fext(K × (a, b)) = σ
{
Li(s) : (i, s) ∈ Dc

K,a,b

}
is the σ-algebra generated by the variables in the brackets above, L|K×[a,b] denotes the
restriction of L to the set K × [a, b], ~x = (Lk1(a), . . . ,Lk2(a)), ~y = (Lk1(b), . . . ,Lk2(b)),
f = Lk1−1[a, b] (the restriction of L to the set {k1 − 1} × [a, b]) with the convention that
f =∞ if k1 − 1 6∈ Σ, and g = Lk2+1[a, b] with the convention that g = −∞ if k2 + 1 6∈ Σ.

Remark 2.9. Let us briefly explain why equation (2.3) makes sense. Firstly, since Σ× Λ

is locally compact, we know by [25, Lemma 46.4] that L → L|K×[a,b] is a continuous map
from C(Σ×Λ) to C(K × [a, b]), so that the left side of (2.3) is the conditional expectation
of a bounded measurable function, and is thus well-defined. A more subtle question is
why the right side of (2.3) is Fext(K × (a, b))-measurable. This question was resolved in
[12, Lemma 3.4], where it was shown that the right side is measurable with respect to
the σ-algebra

σ {Li(s) : i ∈ K and s ∈ {a, b}, or i ∈ {k1 − 1, k2 + 1} and s ∈ [a, b]} ,

which in particular implies the measurability with respect to Fext(K × (a, b)).
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In the present paper it is convenient for us to use the following modified version of
the definition above, which we call the partial Brownian Gibbs property – it was first
introduced in [12]. We explain the difference between the two definitions, and why we
prefer the second in Remark 2.12.

Definition 2.10. Fix a set Σ = J1, NK with N ∈ N or N =∞ and an interval Λ ⊂ R. A Σ-
indexed line ensemble L on Λ is said to satisfy the partial Brownian Gibbs property if and
only if it is non-intersecting and for any finite K = {k1, k1 +1, . . . , k2} ⊂ Σ with k2 ≤ N−1

(if Σ 6= N), [a, b] ⊂ Λ and any bounded Borel-measurable function F : C(K × [a, b])→ R

we have P-almost surely

E
[
F (L|K×[a,b])

∣∣Fext(K × (a, b))
]

= E
a,b,~x,~y,f,g
avoid

[
F (Q̃)

]
, (2.4)

where we recall that DK,a,b = K × (a, b) and Dc
K,a,b = (Σ× Λ) \DK,a,b, and

Fext(K × (a, b)) = σ
{
Li(s) : (i, s) ∈ Dc

K,a,b

}
is the σ-algebra generated by the variables in the brackets above, L|K×[a,b] denotes the
restriction of L to the set K × [a, b], ~x = (Lk1(a), . . . ,Lk2(a)), ~y = (Lk1(b), . . . ,Lk2(b)),
f = Lk1−1[a, b] with the convention that f =∞ if k1 − 1 6∈ Σ, and g = Lk2+1[a, b].

Remark 2.11. Observe that if N = 1 then the conditions in Definition 2.10 become
void, i.e., any line ensemble with one line satisfies the partial Brownian Gibbs property.
Also, we mention that (2.4) makes sense by the same reason that (2.3) makes sense, see
Remark 2.9.

Remark 2.12. Definition 2.10 is slightly different from the Brownian Gibbs property
of Definition 2.8 as we explain here. Assuming that Σ = N the two definitions are
equivalent. However, if Σ = {1, . . . , N} with 1 ≤ N < ∞ then a line ensemble that
satisfies the Brownian Gibbs property also satisfies the partial Brownian Gibbs property,
but the reverse need not be true. Specifically, the Brownian Gibbs property allows for
the possibility that k2 = N in Definition 2.10 and in this case the convention is that
g = −∞. As the partial Brownian Gibbs property is more general we prefer to work with
it and most of the results later in this paper are formulated in terms of it rather than the
usual Brownian Gibbs property.

2.2 Bernoulli Gibbsian line ensembles

In this section we introduce the notion of a Bernoulli line ensemble and the Schur
Gibbs property. Our discussion will parallel that of [6, Section 3.1], which in turn goes
back to [8, Section 2.1].

Definition 2.13. Let Σ ⊂ Z and T0, T1 ∈ Z with T0 < T1. Consider the set Y of functions
f : Σ× JT0, T1K→ Z such that f(j, i+ 1)− f(j, i) ∈ {0, 1} when j ∈ Σ and i ∈ JT0, T1 − 1K
and let D denote the discrete topology on Y . We call a function f : JT0, T1K → Z such
that f(i + 1) − f(i) ∈ {0, 1} when i ∈ JT0, T1 − 1K an up-right path and elements in Y

collections of up-right paths.
A Σ-indexed Bernoulli line ensemble L on JT0, T1K is a random variable defined on

a probability space (Ω,B,P), taking values in Y such that L is a (B,D)-measurable
function.

Remark 2.14. In [6, Section 3.1] Bernoulli line ensembles L were called discrete line
ensembles in order to distinguish them from the continuous line ensembles from Defini-
tion 2.1. In this paper we have opted to use the term Bernoulli line ensembles to empha-
size the fact that the functions f ∈ Y satisfy the property that f(j, i+ 1)− f(j, i) ∈ {0, 1}
when j ∈ Σ and i ∈ JT0, T1 − 1K. This condition essentially means that for each j ∈ Σ the
function f(j, ·) can be thought of as the trajectory of a Bernoulli random walk from time
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T0 to time T1. As other types of discrete line ensembles, see e.g. [32], have appeared in
the literature we have decided to modify the notation in [6, Section 3.1] so as to avoid
any ambiguity.

The way we think of Bernoulli line ensembles is as random collections of up-right
paths on the integer lattice, indexed by Σ (see Figure 3). Observe that one can view
an up-right path L on JT0, T1K as a continuous curve by linearly interpolating the points
(i, L(i)). This allows us to define (L(ω))(i, s) for non-integer s ∈ [T0, T1] and to view
Bernoulli line ensembles as line ensembles in the sense of Definition 2.1. In particular,
we can think of L as a random variable taking values in (C(Σ× Λ), CΣ) with Λ = [T0, T1].
We will often slightly abuse notation and write L : Σ × JT0, T1K → Z, even though it

Figure 3: Two samples of J1, 3K-indexed Bernoulli line ensembles with T0 = 0 and T1 = 8,
with the left ensemble avoiding and the right ensemble nonavoiding.

is not L which is such a function, but rather L(ω) for each ω ∈ Ω. Furthermore we
write Li = (L(ω))(i, ·) for the index i ∈ Σ path. If L is an up-right path on JT0, T1K and
a, b ∈ JT0, T1K satisfy a < b we let LJa, bK denote the restriction of L to Ja, bK.

Let ti, zi ∈ Z for i = 1, 2 be given such that t1 < t2 and 0 ≤ z2 − z1 ≤ t2 − t1. We
denote by Ω(t1, t2, z1, z2) the collection of up-right paths that start from (t1, z1) and end
at (t2, z2), by Pt1,t2,z1,z2Ber the uniform distribution on Ω(t1, t2, z1, z2) and write Et1,t2,z1,z2Ber

for the expectation with respect to this measure. One thinks of the distribution Pt1,t2,z1,z2Ber

as the law of a simple random walk with i.i.d. Bernoulli increments with parameter
p ∈ (0, 1) that starts from z1 at time t1 and is conditioned to end in z2 at time t2 – this
interpretation does not depend on the choice of p ∈ (0, 1). Notice that by our assumptions
on the parameters the state space Ω(t1, t2, z1, z2) is non-empty.

Given k ∈ N, T0, T1 ∈ Z with T0 < T1 and ~x, ~y ∈ Zk we let PT0,T1,~x,~y
Ber denote the law of

k independent Bernoulli bridges {Bi : JT0, T1K→ Z}ki=1 from Bi(T0) = xi to Bi(T1) = yi.
Equivalently, this is just k independent random up-right paths Bi ∈ Ω(T0, T1, xi, yi) for
i = 1, . . . , k that are uniformly distributed. This measure is well-defined provided that
Ω(T0, T1, xi, yi) are non-empty for i = 1, . . . , k, which holds if T1 − T0 ≥ yi − xi ≥ 0 for all
i = 1, . . . , k.

The following definition introduces the notion of an (f, g)-avoiding Bernoulli line
ensemble, which in simple terms is a collection of k independent Bernoulli bridges,
conditioned on not-crossing each other and staying above the graph of g and below the
graph of f for two functions f and g.
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Definition 2.15. Let k ∈ N and Wk denote the set of signatures of length k, i.e.

Wk = {~x = (x1, . . . , xk) ∈ Zk : x1 ≥ x2 ≥ · · · ≥ xk}.

Let ~x, ~y ∈ Wk, T0, T1 ∈ Z with T0 < T1, S ⊆ JT0, T1K, and f : JT0, T1K → (−∞,∞] and
g : JT0, T1K→ [−∞,∞) be two functions.

With the above data we define the (f, g;S)-avoiding Bernoulli line ensemble on the
interval JT0, T1K with entrance data ~x and exit data ~y to be the Σ-indexed Bernoulli line
ensemble Q with Σ = J1, kK on JT0, T1K and with the law of Q equal to PT0,T1,~x,~y

Ber (the
law of k independent uniform up-right paths {Bi : JT0, T1K→ R}ki=1 from Bi(T0) = xi to
Bi(T1) = yi) conditioned on the event

ES = {f(r) ≥ B1(r) ≥ B2(r) ≥ · · · ≥ Bk(r) ≥ g(r) for all r ∈ S} .

The above definition is well-posed if there exist Bi ∈ Ω(T0, T1, xi, yi) for i = 1, . . . , k that
satisfy the conditions in ES (i.e. if the set of such up-right paths is not empty). We will
denote by Ωavoid(T0, T1, ~x, ~y, f, g;S) the set of collections of k up-right paths that satisfy
the conditions in ES and then the distribution on Q is simply the uniform measure on
Ωavoid(T0, T1, ~x, ~y, f, g;S). We denote the probability distribution of Q as PT0,T1,~x,~y,f,g

avoid,Ber;S and

write ET0,T1,~x,~y,f,g
avoid,Ber;S for the expectation with respect to this measure. If S = JT0, T1K, we

write Ωavoid(T0, T1, ~x, ~y, f, g), PT0,T1,~x,~y,f,g
avoid,Ber , and ET0,T1,~x,~y,f,g

avoid,Ber . If f = +∞ and g = −∞, we

write Ωavoid(T0, T1, ~x, ~y), PT0,T1,~x,~y
avoid,Ber, and ET0,T1,~x,~y

avoid,Ber.

It will be useful to formulate simple conditions under which Ωavoid(T0, T1, ~x, ~y, f, g) is
non-empty and thus PT0,T1,~x,~y,f,g

avoid,Ber is well-defined. Note that Ωavoid(T0, T1, ~x, ~y, f, g;S) ⊇
Ωavoid(T0, T1, ~x, ~y, f, g) for any S ⊆ JT0, T1K, so PT0,T1,~x,~y,f,g

avoid,Ber;S is also well-defined in this
case. We accomplish this in the following lemma, whose proof is given in Section 7.3.

Lemma 2.16. Suppose that k ∈ N and T0, T1 ∈ Z with T0 < T1. Suppose further that

1. ~x, ~y ∈Wk satisfy T1 − T0 ≥ yi − xi ≥ 0 for i = 1, . . . , k,

2. f : JT0, T1K → (−∞,∞] and g : JT0, T1K → [−∞,∞) satisfy f(i + 1) = f(i) or
f(i+ 1) = f(i) + 1, and g(i+ 1) = g(i) or g(i+ 1) = g(i) + 1 for i = T0, . . . , T1 − 1,

3. f(T0) ≥ x1, f(T1) ≥ y1, g(T0) ≤ xk, g(T1) ≤ yk and f(i) ≥ g(i) for i ∈ JT0, T1K.

Then the set Ωavoid(T0, T1, ~x, ~y, f, g) from Definition 2.15 is non-empty.

The following definition introduces the notion of the Schur Gibbs property, which can
be thought of a discrete analogue of the partial Brownian Gibbs property in the same
way that Bernoulli random walks are discrete analogues of Brownian motion.

Definition 2.17. Fix a set Σ = J1, NK with N ∈ N or N =∞ and T0, T1 ∈ Z with T0 < T1.
A Σ-indexed Bernoulli line ensemble L : Σ × JT0, T1K → Z is said to satisfy the Schur
Gibbs property if it is non-crossing, meaning that

Lj(i) ≥ Lj+1(i) for all j = 1, . . . , N − 1 and i ∈ JT0, T1K,

and for any finite K = {k1, k1 + 1, . . . , k2} ⊂ J1, N − 1K and a, b ∈ JT0, T1K with a < b the
following holds. Suppose that f, g are two up-right paths drawn in {(r, z) ∈ Z2 : a ≤ r ≤ b}
and ~x, ~y ∈Wk with k = k2 − k1 + 1 altogether satisfy that P(A) > 0 where A is the event

A = {~x = (Lk1(a), . . . , Lk2(a)), ~y = (Lk1(b), . . . , Lk2(b)), Lk1−1Ja, bK = f, Lk2+1Ja, bK = g},

where if k1 = 1 we adopt the convention f =∞ = L0. Then writing k = k2 − k1 + 1, we
have for any {Bi ∈ Ω(a, b, xi, yi)}ki=1 that

1A ·P
(
Li+k1−1Ja, bK = Bi for i = 1, . . . , k|FBerext

)
= 1A ·Pa,b,~x,~y,f,gavoid,Ber

(
∩ki=1{Qi = Bi}

)
, (2.5)

where FBerext = σ(Li(j) : (i, j) ∈ Σ× JT0, T1K \ Jk1, k2K× Ja+ 1, b− 1K).
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Remark 2.18. In simple words, a Bernoulli line ensemble is said to satisfy the Schur
Gibbs property if the distribution of any finite number of consecutive paths, conditioned
on their end-points and the paths above and below them is simply the uniform measure
on all collection of up-right paths that have the same end-points and do not cross each
other or the paths above and below them.

Remark 2.19. Observe that in Definition 2.17 the index k2 is assumed to be less than or
equal to N − 1, so that if N <∞ the N -th path is special and is not conditionally uniform.
This is what makes Definition 2.17 a discrete analogue of the partial Brownian Gibbs
property rather than the usual Brownian Gibbs property. Similarly to the partial Brownian
Gibbs property, see Remark 2.11, if N = 1 then the conditions in Definition 2.17 become
void, i.e., any Bernoulli line ensemble with one line satisfies the Schur Gibbs property.
Also we mention that the well-posedness of PT0,T1,~x,~y,f,g

avoid,Ber in (2.5) is a consequence of
Lemma 2.16 and our assumption that P(A) > 0.

Remark 2.20. In [6] the authors studied a generalization of the Gibbs property in
Definition 2.17 depending on a parameter t ∈ (0, 1), which was called the Hall-Littlewood
Gibbs property due to its connection to Hall-Littlewood polynomials [24]. The property
in Definition 2.17 is the t→ 0 limit of the Hall-Littlewood Gibbs property. Since under
this t→ 0 limit Hall-Littlewood polynomials degenerate to Schur polynomials we have
decided to call the Gibbs property in Definition 2.17 the Schur Gibbs property.

Remark 2.21. An immediate consequence of Definition 2.17 is that if M ≤ N , we
have that the induced law on {Li}Mi=1 also satisfies the Schur Gibbs property as an
{1, . . . ,M}-indexed Bernoulli line ensemble on JT0, T1K.

We end this section with the following definition of the term acceptance probability.

Definition 2.22. Assume the same notation as in Definition 2.15 and suppose that T1 −
T0 ≥ yi − xi ≥ 0 for i = 1, . . . , k. We define the acceptance probability Z(T0, T1, ~x, ~y, f, g)

to be the ratio

Z(T0, T1, ~x, ~y, f, g) =
|Ωavoid(T0, T1, ~x, ~y, f, g)|∏k

i=1 |Ω(T0, T1, xi, yi)|
. (2.6)

Remark 2.23. The quantity Z(T0, T1, ~x, ~y, f, g) is precisely the probability that if Bi are
sampled uniformly from Ω(T0, T1, xi, yi) for i = 1, . . . , k then the Bi satisfy the condition

E = {f(r) ≥ B1(r) ≥ B2(r) ≥ · · · ≥ Bk(r) ≥ g(r) for all r ∈ JT0, T1K} .

Let us explain briefly why we call this quantity an acceptance probability. One way
to sample PT0,T1,~x,~y,f,g

avoid,Ber is as follows. Start by sampling a sequence of i.i.d. up-right

paths BNi uniformly from Ω(T0, T1, xi, yi) for i = 1, . . . , k and N ∈ N. For each n check if
Bn1 , . . . , B

n
k satisfy the condition E and let M denote the smallest index that accomplishes

this. If Ωavoid(T0, T1, ~x, ~y, f, g) is non-empty then M is geometrically distributed with
parameter Z(T0, T1, ~x, ~y, f, g), and in particular M is finite almost surely and {BMi }ki=1

has distribution PT0,T1,~x,~y,f,g
avoid,Ber . In this sampling procedure we construct a sequence of

candidates {BNi }ki=1 for N ∈ N and reject those that fail to satisfy condition E, the
first candidate that satisfies it is accepted and has law P

T0,T1,~x,~y,f,g
avoid,Ber and the probability

that a candidate is accepted is precisely Z(T0, T1, ~x, ~y, f, g), which is why we call it an
acceptance probability.

2.3 Main technical result

In this section we present the main technical result of the paper. We start with the
following technical definition.

Definition 2.24. Fix k ∈ N, α, λ > 0 and p ∈ (0, 1). Suppose we are given a sequence
{TN}∞N=1 with TN ∈ N and that {LN}∞N=1, LN = (LN1 , L

N
2 , . . . , L

N
k ) is a sequence of J1, kK-
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indexed Bernoulli line ensembles on J−TN , TN K. We call the sequence (α, p, λ)-good if
there exists N0 ∈ N such that

• LN satisfies the Schur Gibbs property of Definition 2.17 for N ∈ N, N ≥ N0;

• there is a function ψ : N → (0,∞) such that limN→∞ ψ(N) = ∞ and for each
N ≥ N0 we have that TN > ψ(N)Nα;

• there are functions φ1 : Z× (0,∞)→ (0,∞) and φ2 : (0,∞)→∞ such that for any
ε > 0, n ∈ Z and N ≥ φ1(n, ε) we have

P
(∣∣∣N−α/2(LN1 (nNα)− pnNα + λn2Nα/2)

∣∣∣ ≥ φ2(ε)
)
≤ ε. (2.7)

Remark 2.25. Let us elaborate on the meaning of Definition 2.24. In order for a
sequence of LN of J1, kK-indexed Bernoulli line ensembles on J−TN , TN K to be (α, p, λ)-
good we want several conditions to be satisfied. Firstly, we want for all large N the
Bernoulli line ensemble LN to satisfy the Schur Gibbs property. The second condition is
that while the interval of definition of LN is finite for each N and given by J−TN , TN K,
we want this interval to grow at least with speed Nα. This property is quantified by the
function ψ, which can be essentially thought of as an arbitrary unbounded increasing
function onN. The third condition is that we want for each n ∈ Z the sequence of random
variables N−α/2(LN1 (nNα) − pnNα) to be tight but moreover we want globally these
random variables to look like the parabola −λn2. This statement is reflected in (2.7),
which provides a certain uniform tightness of the random variables N−α/2(LN1 (nNα)−
pnNα+λn2Nα/2). A particular case when (2.7) is satisfied is for example if we know that
for each n ∈ Z the random variables N−α/2(LN1 (nNα)−pnNα+λn2Nα/2) converge to the
same random variableX. In the applications that we have in mind these random variables
would converge to the 1-point marginals of the Airy2 process that are all given by the
same Tracy-Widom distribution (since the Airy2 process is stationary). Equation (2.7)
is a significant relaxation of the requirement that N−α/2(LN1 (nNα)− pnNα + λn2Nα/2)

all converge weakly to the Tracy-Widom distribution – the convergence requirement is
replaced with a mild but uniform control of all subsequential limits.

The main technical result of the paper is given below and proved in Section 4.

Theorem 2.26. Fix k ∈ N with k ≥ 2, α, λ > 0, p ∈ (0, 1) and let LN = (LN1 , L
N
2 , . . . , L

N
k )

be an (α, p, λ)-good sequence of J1, kK-indexed Bernoulli line ensembles. Set

fNi (s) = N−α/2(LNi (sNα)−psNα+λs2Nα/2), for s ∈ [−ψ(N), ψ(N)] and i = 1, . . . , k − 1,

and extend fNi to R by setting for i = 1, . . . , k − 1

fNi (s) = fNi (−ψ(N)) for s ≤ −ψ(N) and fNi (s) = fNi (ψ(N)) for s ≥ ψ(N).

Let PN be the law of {fNi }
k−1
i=1 and P̃N that of {f̃Ni }

k−1
i=1 := {(fNi (s)− λs2)/

√
p(1− p)}k−1

i=1

both as J1, k − 1K-indexed line ensembles (i.e. as random variables in (C(J1, k − 1K ×
R), Ck−1)). Then

(i) The sequences PN and P̃N are tight;

(ii) Any subsequential limit L∞ = {f̃∞i }
k−1
i=1 of P̃N satisfies the partial Brownian Gibbs

property of Definition 2.10.

Roughly, Theorem 2.26 (i) states that if we have a sequence of J1, kK-indexed Bernoulli
line ensembles that satisfy the Schur Gibbs property and the top paths of these ensembles
under some shift and scaling have tight one-point marginals with a non-trivial parabolic
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shift, then under the same shift and scaling the top k − 1 paths of the line ensemble will
be tight. The extension of fNi to R is completely arbitrary and irrelevant for the validity
of Theorem 2.26 since the topology on C(J1, k − 1K×R) is that of uniform convergence
over compacts. Consequently, only the behavior of these functions on compact intervals
matters in Theorem 2.26 and not what these functions do near infinity, which is where
the modification happens as limN→∞ ψ(N) = ∞ by assumption. The only reason we
perform the extension is to embed all Bernoulli line ensembles into the same space
(C(J1, k − 1K×R), Ck−1).

We mention that the k-th up-right path in the sequence of Bernoulli line ensembles is
special and Theorem 2.26 provides no tightness result for it. The reason for this stems
from the Schur Gibbs property, see Definition 2.17, which assumes less information for
the k-th path. In practice, one either has an infinite Bernoulli line ensemble for each N
or one has a Bernoulli line ensemble with finite number of paths, which increase with N
to infinity. In either of these settings one can use Theorem 2.26 to prove tightness of the
full line ensemble, we will see this when we prove Theorem 1.1 in the next section.

2.4 Proofs of Theorem 1.1 and Corollary 1.3

Proof. (of Theorem 1.1) We use the same notation and assumptions as in the statement
of the theorem. For clarity we split the proof into two steps.
Step 1. In this step we prove that LN is tight. In view of Lemma 2.4 to establish the
tightness of LN it suffices to show that for every k ∈ N

(i) lima→∞ lim supN→∞ P(|LNk (0)| ≥ a) = 0.

(ii) For all ε > 0 and m ∈ N, lim
δ→0

lim sup
N→∞

P

(
supx,y∈[−m,m],

|x−y|≤δ
|LNk (x)− LNk (y)| ≥ ε

)
= 0.

Let TN = min(−aN , bN ) and for N ≥ k + 1 let L̃N = (L̃N1 , L̃
N
2 , . . . , L̃

N
k+1) denote the

J1, k + 1K-indexed Bernoulli line ensemble obtained from LN by restriction to the top
k + 1 lines and the interval J−TN , TN K. In particular, since LN satisfies the Schur Gibbs
property we conclude the same is true for L̃N and moreover Assumptions 1 and 2 in
Section 1.2 imply that {L̃N}N≥k+1 is an (α, p, λ)-good in the sense of Definition 2.24.
Specifically, the conditions of Definition 2.24 are satisfied with N0 = k + 1, k in the
definition equals k + 1 as above, α, p, λ as in the statement of the theorem, TN as
above and ψ as in Assumption 2 in Section 1.2. For the functions φ1, φ2 we may set
φ2(ε) = φ(ε/2), where φ is as in Assumption 2 in Section 1.2, which we recall required

sup
n∈Z

lim sup
N→∞

P
(∣∣∣N−α/2(LN1 (nNα)− pnNα + λn2Nα/2)

∣∣∣ ≥ φ(ε)
)
≤ ε.

The last equation and the fact that φ2(ε) = φ(ε/2) implies that for each n ∈ Z and ε > 0

there exists A(n, ε) ∈ N such that for N ≥ A(n, ε) we have

P
(∣∣∣N−α/2(LN1 (nNα)− pnNα + λn2Nα/2)

∣∣∣ ≥ φ2(ε)
)
≤ ε,

and then we can set φ1(n, ε) = A(n, ε).
Since {L̃N}N≥k+1 is an (α, p, λ)-good sequence we have from Theorem 2.26 that

{f̃Ni }ki=1 as in the statement of that theorem for the line ensembles L̃N are tight in
(C(J1, kK × R), Ck). We may now apply the “only if” part of Lemma 2.4 to {f̃Ni }ki=1 and
conclude that statements (i) and (ii) from the beginning of this step hold for f̃Nk , which
in turn implies they hold for LNk , since by construction LNk and f̃Nk have the same law.

Step 2. We next suppose that L∞ is any subsequential limit of LN and that nm ↑ ∞ is a
sequence such that Lnm converges weakly to L∞. We want to show that L∞ satisfies the
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Brownian Gibbs property. Suppose that a, b ∈ R with a < b and K = {k1, k1 + 1, . . . , k2} ⊂
N are given. We wish to show that L∞ is almost surely non-intersecting and for any
bounded Borel-measurable function F : C(K × [a, b])→ R almost surely

E
[
F
(
L∞|K×[a,b]

) ∣∣Fext(K × (a, b))
]

= E
a,b,~x,~y,f,g
avoid

[
F (Q̃)

]
, (2.8)

where we use the same notation as in Definition 2.8. In particular, we recall that

Fext(K × (a, b)) = σ
{
L∞i (s) : (i, s) ∈ Dc

K,a,b

}
, with Dc

K,a,b = (N×R) \K × (a, b).

Let k ≥ k2 + 1 and consider the map Πk : C(N × R) → C(J1, kK × R) given by
[Πk(g)](i, t) = g(i, t), which is continuous, and so Πk[Lnm ] converge weakly to Πk[L∞]

as random variables in C(J1, kK × R). If {f̃Ni }ki=1 are as in Step 1, then we know by
construction that the resitrction of {f̃Ni }ki=1 to [−ψ(N), ψ(N)] has the same distribution
as the restriction of Πk[LN ] to the same interval. Since ψ(N)→∞ by assumption and
Πk[Lnm ] converge weakly to Πk[L∞] we conclude that {f̃nmi }ki=1 converge weakly to
Πk[L∞] (here we used that the topology is that of uniform convergence over compacts).
In particular, by the second part of Theorem 2.26 we conclude that Πk[L∞] satisfies
the partial Brownian Gibbs property as a J1, kK-indexed line ensemble on R. The latter
implies that Πk[L∞] is non-intersecting almost surely and almost surely

E
[
F
(
L∞|K×[a,b]

) ∣∣F̃ext(K × (a, b))
]

= E
a,b,~x,~y,f,g
avoid

[
F (Q̃)

]
, (2.9)

where

F̃ext(K × (a, b)) = σ
{
L∞i (s) : (i, s) ∈ D̃c

K,a,b

}
, with D̃c

K,a,b = (J1, kK×R) \K × (a, b).

Since Πk[L∞] is non-intersecting almost surely and k ≥ k2 + 1 was arbitrary we
conclude that L∞ is almost surely non-intersecting. Let A denote the collection of sets
A of the form

A = {L∞(ir, xr) ∈ Br for r = 1, . . . , p },

where p ∈ N, B1, . . . , Bp ∈ B(R) (the Borel σ-algebra on R and (i1, x1), . . . , (ip, xp) ∈
Dc
K,a,b. Since in (2.9) we have that k ≥ k2 + 1 was arbitrary we conclude that for all

A ∈ A we have

E
[
F
(
L∞|K×[a,b]

)
· 1A

]
= E

[
E
a,b,~x,~y,f,g
avoid

[
F (Q̃)

]
· 1A

]
.

In view of the bounded convergence theorem, we see that the collection of sets A that
satisfies the last equation is a λ-system and as it contains the π-system A we conclude
by the π − λ theorem that it contains σ(A), which is precisely Fext(K × (a, b)). We may
thus conclude (2.8) from the defining properties of conditional expectation and the fact
that the right side of (2.8) is Fext(K × (a, b))-measurable as follows from [12, Lemma
3.4]. This suffices for the proof.

Proof. (of Corollary 1.3) As explained in Section 1.2 we have that Assumption 2’ implies
Assumption 2 and so by Theorem 1.1 we know that LN is a tight sequence of line
ensembles. Let L∞sub be any subsequential limit. We will prove that L∞sub has the same
distribution as L∞ as in the statement of the theorem. If true, this would imply that
LN has only one possible subsequential limit (namely L∞) which combined with the
tightness of LN would imply convergence of the sequence to L∞.

By Theorem 1.1 we know that L∞sub satisfies the Brownian Gibbs property and by
Assumption 2’, we know that L∞sub,1 (the top curve of L∞sub) has the same distribution

as L∞1 . In [7] it was proved that LAiry satisfies the Brownian Gibbs property and
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since L∞i (t) = c−1/2LAiryi (ct), for i ∈ N and t ∈ R we conclude that L∞ also satisfies the
Brownian Gibbs property. To prove the latter one only needs to utilize the fact that if Bt
is a standard Brownian motion so is c−1/2Bct – see e.g. [12, Lemma 3.5] where a related
result is established. Combining all of the above observations, we see that L∞sub and
L∞ both satisfy the Brownian Gibbs property and have the same top curve distribution,
which by [12, Theorem 1.1] implies that L∞sub and L∞ have the same law.

3 Properties of Bernoulli line ensembles

In this section we derive several results for Bernoulli line ensembles, which will be
used in the proof of Theorem 2.26 in Section 4.

3.1 Monotone coupling lemmas

In this section we formulate two lemmas that provide couplings of two Bernoulli line
ensembles of non-crossing Bernoulli bridges on the same interval, which depend mono-
tonically on their boundary data. Schematic depictions of the couplings are provided in
Figure 4. We postpone the proof of these lemmas until Section 7.

Figure 4: Two diagrammatic depictions of the monotone coupling Lemma 3.1 (left part)
and Lemma 3.2 (right part). Red depicts the lower line ensemble and accompanying
entry data, exit data, and bottom bounding curve, while blue depicts that of the higher
ensemble.

Lemma 3.1. Assume the same notation as in Definition 2.15. Fix k ∈ N, T0, T1 ∈ Z
with T0 < T1, S ⊆ JT0, T1K, a function g : JT0, T1K→ [−∞,∞) as well as ~x, ~y, ~x ′, ~y ′ ∈Wk.
Assume that the sets Ωavoid(T0, T1, ~x, ~y,∞, g;S) and Ωavoid(T0, T1, ~x

′, ~y′,∞, g;S) are both
non-empty. Then there exists a probability space (Ω,F ,P), which supports two J1, kK-
indexed Bernoulli line ensembles Lt and Lb on JT0, T1K such that the law of Lt

(
resp. Lb

)
under P is given by PT0,T1,~x

′,~y ′,∞,g
avoid,Ber;S

(
resp. PT0,T1,~x,~y,∞,g

avoid,Ber;S

)
and such that P-almost surely

we have Lti(r) ≥ Lbi (r) for all i = 1, . . . , k and r ∈ JT0, T1K.

Lemma 3.2. Assume the same notation as in Definition 2.15. Fix k ∈ N, T0, T1 ∈ Z
with T0 < T1, S ⊆ JT0, T1K, two functions gt, gb : JT0, T1K → [−∞,∞) and ~x, ~y ∈Wk. We
assume that gt(r) ≥ gb(r) for all r ∈ JT0, T1K and that Ωavoid(T0, T1, ~x, ~y,∞, gt;S) and
Ωavoid(T0, T1, ~x, ~y,∞, gb;S) are both non-empty. Then there exists a probability space
(Ω,F ,P), which supports two J1, kK-indexed Bernoulli line ensembles Lt and Lb on JT0, T1K
such that the law of Lt

(
resp. Lb

)
under P is given by PT0,T1,~x,~y,∞,gt

avoid,Ber;S

(
resp. PT0,T1,~x,~y,∞,gb

avoid,Ber;S

)
and such that P-almost surely we have Lti(r) ≥ Lbi (r) for all i = 1, . . . , k and r ∈ JT0, T1K.
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In plain words, Lemma 3.1 states that one can couple two Bernoulli line ensembles
Lt and Lb of non-crossing Bernoulli bridges, bounded from below by the same function g,
in such a way that if all boundary values of Lt are above the respective boundary values
of Lb, then all up-right paths of Lt are almost surely above the respective up-right paths
of Lb. See the left part of Figure 4. Lemma 3.2, states that one can couple two Bernoulli
line ensembles Lt and Lb that have the same boundary values, but the lower bound gt

of Lt is above the lower bound gb of Lb, in such a way that all up-right paths of Lt are
almost surely above the respective up-right paths of Lb. See the right part of Figure 4.

3.2 Properties of Bernoulli and Brownian bridges

In this section we derive several results about Bernoulli bridges, which are random
up-right paths that have law PT0,T1,x,y

Ber as in Section 2.2, as well as Brownian bridges with
law PT0,T1,x,y

free as in Section 2.1. Our results will rely on the two monotonicity Lemmas 3.1
and 3.2 as well as a strong coupling between Bernoulli bridges and Brownian bridges
from [6] – recalled here as Theorem 3.3.

If Wt denotes a standard Brownian motion and σ > 0, then the process

Bσt = σ(Wt − tW1), 0 ≤ t ≤ 1,

is called a Brownian bridge (conditioned on B0 = 0, B1 = 0) with diffusion parameter σ.
We note that Bσ is the unique a.s. continuous Gaussian process on [0, 1] with B0 = B1 = 0,
E[Bσt ] = 0, and

E[BσrB
σ
s ] = σ2(r ∧ s− rs− sr + sr) = σ2(r ∧ s− rs). (3.1)

With the above notation we state the strong coupling result we use.

Theorem 3.3. Let p ∈ (0, 1). There exist constants 0 < C, a, α < ∞ (depending on p)
such that for every positive integer n, there is a probability space on which are defined
a Brownian bridge Bσ with diffusion parameter σ =

√
p(1− p) and a family of random

paths `(n,z) ∈ Ω(0, n, 0, z) for z = 0, . . . , n such that `(n,z) has law P
0,n,0,z
Ber and

E
[
ea∆(n,z)

]
≤ Ceα(logn)2e|z−pn|

2/n, where

∆(n, z) := sup
0≤t≤n

∣∣∣∣√nBσt/n +
t

n
z − `(n,z)(t)

∣∣∣∣. (3.2)

Remark 3.4. When p = 1/2 the above theorem follows (after a trivial affine shift) from
[23, Theorem 6.3] and the general p ∈ (0, 1) case was done in [6, Theorem 4.5]. We
mention that a significant generalization of Theorem 3.3 for general random walk bridges
has recently been proved in [13, Theorem 2.3], and in particular the inequality in (3.2)
was shown to hold with (log n)2 replaced with log n.

We will use the following simple corollary of Theorem 3.3 to compare Bernoulli
bridges with Brownian bridges. We use the same notation as in the theorem.

Corollary 3.5. Fix p ∈ (0, 1), β > 0, and A > 0. Suppose |z − pn| ≤ K
√
n for a constant

K > 0. Then for any ε > 0, there exists N large enough depending on p, ε, A,K so that
for n ≥ N ,

P
(

∆(n, z) ≥ Anβ
)
< ε.

Proof. Applying Chebyshev’s inequality and (3.2) gives

P
(

∆(n, z) ≥ Anβ
)
≤ e−An

β

E
[
ea∆(n,z)

]
≤ C exp

[
−Anβ + α(log n)2 +

|z − pn|2

n

]
≤ C exp

[
−Anβ + α(log n)2 +K

]
.

The conclusion is now immediate.
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We also state the following result regarding the distribution of the maximum of a
Brownian bridge, which follows from formulas in [15, Section 12.3].

Lemma 3.6. Fix p ∈ (0, 1), and let Bσ be a Brownian bridge of diffusion parameter
σ =

√
p(1− p) on [0, 1]. Then for any C, T > 0 we have

P

(
max
s∈[0,T ]

Bσs/T ≥ C
)

= exp

(
− 2C2

p(1− p)

)
,

P

(
max
s∈[0,T ]

∣∣Bσs/T ∣∣ ≥ C) = 2

∞∑
n=1

(−1)n−1 exp

(
− 2n2C2

p(1− p)

)
.

(3.3)

In particular,

P

(
max
s∈[0,T ]

∣∣Bσs/T ∣∣ ≥ C) ≤ 2 exp

(
− 2C2

p(1− p)

)
. (3.4)

Proof. Let B1 be a Brownian bridge with diffusion parameter 1 on [0, 1]. Then Bσt has
the same distribution as σB1

t . Hence

P

(
max
s∈[0,T ]

Bσs/T ≥ C
)

= P

(
max
t∈[0,1]

B1
t ≥ C/σ

)
= e−2(C/σ)2 = e−2C2/p(1−p).

The second equality follows from [15, Proposition 12.3.3]. This proves the first equality
in (3.3). Similarly, using [15, Proposition 12.3.4] we find

P

(
max
s∈[0,T ]

∣∣Bσs/T ∣∣ ≥ C) = P

(
max
t∈[0,1]

∣∣B1
t

∣∣ ≥ C/σ) = 2

∞∑
n=1

(−1)n−1e−2n2C2/σ2

,

proving the second inequality in (3.3).

Lastly to prove (3.4), observe that since Bσt has mean 0, Bσt and −Bσt have the same
distribution. It follows from the first equality above that

P

(
max
s∈[0,T ]

∣∣Bσs/T ∣∣ ≥ C) ≤ P( max
s∈[0,T ]

Bσs/T ≥ C
)

+ P

(
max
s∈[0,T ]

(
−Bσs/T

)
≥ C

)
=

2P

(
max
s∈[0,T ]

Bσs/T ≥ C
)

= 2e−2C2/p(1−p).

We state one more lemma about Brownian bridges, which allows us to decompose a
bridge on [0, 1] into two independent bridges with Gaussian affine shifts meeting at a
point in (0, 1).

Lemma 3.7. Fix p ∈ (0, 1), T > 0, t ∈ (0, T ). Let ξ be a Gaussian random variable with
mean 0 and variance

E[ξ2] = σ2 t

T

(
1− t

T

)
.

Let B1, B2 be two independent Brownian bridges on [0, 1] with diffusion parameters
σ
√
t/T and σ

√
(T − t)/T respectively, also independent from Bσ. Define the process

B̃s/T =


s

t
ξ +B1

(s
t

)
, s ≤ t,

T − s
T − t

ξ +B2
( s− t
T − t

)
, s ≥ t,

for s ∈ [0, T ]. Then B̃ is a Brownian bridge with diffusion parameter σ.
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Proof. It is clear that the process B̃ is a.s. continuous. Since B̃ is built from three
independent zero-centered Gaussian processes, it is itself a zero-centered Gaussian
process and thus completely characterized by its covariance. Consequently, to show that
B̃ is a Brownian bridge with diffusion parameter σ, it suffices to show by (3.1) that if
0 ≤ r ≤ s ≤ T we have

E[B̃r/T B̃s/T ] = σ2 r

T

(
1− s

T

)
. (3.5)

First assume s ≤ t Using the fact that ξ and B1
· are independent with mean 0, we find

E[B̃r/T B̃s/T ] =
rs

t2
· σ2 t

T

(
1− t

T

)
+ σ2 t

T
· r
t

(
1− s

t

)
=

σ2 r

T

(s
t
− s

T
+ 1− s

t

)
= σ2 r

T

(
1− s

T

)
.

If r ≥ t, we compute

E[B̃r/T B̃s/T ] =
(T − r)(T − s)

(T − t)2
· σ2 t

T

(
1− t

T

)
+ σ2T − t

T
· r − t
T − t

(
1− s− t

T − t

)
=

σ2(T − s)
T (T − t)

(
t(T − r)

T
+ r − t

)
=
σ2(T − s)
T (T − t)

· r(T − t)
T

= σ2 r

T

(
1− s

T

)
.

If r < t < s, then since ξ, B1
· , and B2

· are all independent, we have

E[B̃r/T B̃s/T ] =
r

t
· T − s
T − t

· σ2 t(T − t)
T 2

= σ2 r(T − s)
T 2

= σ2 r

T

(
1− s

T

)
.

This proves (3.5) in all cases.

Below we list four lemmas about Bernoulli bridges. We provide a brief informal
explanation of what each result says after it is stated. For the first two lemmas one
observes that the event whose probability is being estimated is monotone in `. This
allows us by Lemmas 3.1 and 3.2 to replace x, y in the statements of the lemmas with
the extreme values of the ranges specified in each. Once the choice of x and y is fixed
one can use our strong coupling results, Theorem 3.3 and Corollary 3.5, to reduce each
of the lemmas to an analogous one involving a Brownian bridge with some prescribed
diffusion parameter. The latter statements are then easily confirmed as one has exact
formulas for Brownian bridges, such as Lemma 3.6.

Lemma 3.8. Fix p ∈ (0, 1), T ∈ N and x, y ∈ Z such that T ≥ y − x ≥ 0, and suppose
that ` has distribution P0,T,x,y

Ber . Let M1,M2 ∈ R be given. Then we can find W0 =

W0(p,M2 −M1) ∈ N such that for T ≥W0, x ≥M1T
1/2, y ≥ pT +M2T

1/2 and s ∈ [0, T ]

P
0,T,x,y
Ber

(
`(s) ≥ T − s

T
·M1T

1/2 +
s

T
·
(
pT +M2T

1/2
)
− T 1/4

)
≥ 1

3
. (3.6)

Remark 3.9. If M1,M2 = 0 then Lemma 3.8 states that if a Bernoulli bridge ` is started
from (0, x) and terminates at (T, y), which are above the straight line of slope p, then
at any given time s ∈ [0, T ] the probability that `(s) goes a modest distance below the
straight line of slope p is upper bounded by 2/3.

Proof. Define A = bM1T
1/2c and B = bpT + M2T

1/2c. Then since A ≤ x and B ≤ y, it
follows from Lemma 3.1 that there is a probability space with measure P0 supporting
random variables L1 and L2, whose laws under P0 are P0,T,A,B

Ber and P0,T,x,y
Ber respectively,
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and P0-a.s. L1 ≤ L2. Thus

P
0,T,x,y
Ber

(
`(s) ≥ T − s

T
·M1T

1/2 +
s

T
·
(
pT +M2T

1/2
)
− T 1/4

)
=

P0

(
L2(s) ≥ T − s

T
·M1T

1/2 +
s

T
·
(
pT +M2T

1/2
)
− T 1/4

)
≥

P0

(
L1(s) ≥ T − s

T
·M1T

1/2 +
s

T
·
(
pT +M2T

1/2
)
− T 1/4

)
=

P
0,T,A,B
Ber

(
`(s) ≥ T − s

T
·M1T

1/2 +
s

T
·
(
pT +M2T

1/2
)
− T 1/4

)
.

(3.7)

Since the uniform distribution on upright paths on J0, T K× JA,BK is the same as that on
upright paths on J0, T K× J0, B −AK shifted vertically by A, the last line of (3.7) equals

P
0,T,0,B−A
Ber

(
`(s) +A ≥ T − s

T
·M1T

1/2 +
s

T
·
(
pT +M2T

1/2
)
− T 1/4

)
.

Now we employ the coupling provided by Theorem 3.3. We have another probability
space (Ω,F ,P) supporting a random variable `(T,B−A) whose law under P is P0,T,0,B−A

Ber

as well as a Brownian bridge Bσ coupled with `(T,B−A). We have

P
0,T,0,B−A
Ber

(
`(s) +A ≥ T − s

T
·M1T

1/2 +
s

T
·
(
pT +M2T

1/2
)
− T 1/4

)
=

P

(
`(T,B−A)(s) +A ≥ T − s

T
·M1T

1/2 +
s

T
·
(
pT +M2T

1/2
)
− T 1/4

)
=

P

([
`(T,B−A)(s)−

√
TBσs/T −

s

T
· (B −A)

]
+
√
TBσs/T ≥

−A− s

T
· (B −A) +

T − s
T
·M1T

1/2 +
s

T
·
(
pT +M2T

1/2
)
− T 1/4

)
.

(3.8)

From the definitions of A and B, we can rewrite the quantity in the last line of (3.8) and
bound by

T − s
T
· (M1T

1/2 −A) +
s

T
· (pT +M2T

1/2 −B)− T 1/4 ≤

T − s
T

+
s

T
− T 1/4 = −T 1/4 + 1.

Thus the last line of (3.7) is bounded below by

P
([
`(T,B−A)(s)−

√
TBσs/T −

s

T
· (B −A)

]
+
√
TBσs/T ≥ −T

1/4 + 1
)
≥

P
(√

TBσs/T ≥ 0 and ∆(T,B −A) < T 1/4 − 1
)
≥

P
(
Bσs/T ≥ 0

)
− P

(
∆(T,B −A) ≥ T 1/4 − 1

)
=

1

2
− P

(
∆(T,B −A) ≥ T 1/4 − 1

)
.

(3.9)

For the first inequality, we used the fact that the quantity in brackets is bounded
in absolute value by ∆(T,B − A). The second inequality follows by dividing the event
{Bσs/T ≥ 0} into cases and applying subadditivity. Since |B−A−pT | ≤ (|M2−M1|+1)

√
T ,

Corollary 3.5 allows us to choose W0 large enough depending on p and M2 −M1 so that
if T ≥W0, then the last line of (3.9) is bounded above by 1/2− 1/6 = 1/3. In combination
with (3.7) this proves (3.6).
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Lemma 3.10. Fix p ∈ (0, 1), T ∈ N and y, z ∈ Z such that T ≥ y, z ≥ 0, and suppose
that `y, `z have distributions P0,T,0,y

Ber , P0,T,0,z
Ber respectively. Let M > 0 and ε > 0 be given.

Then we can find W1 = W1(M,p, ε) ∈ N and A = A(M,p, ε) > 0 such that for T ≥ W1,
y ≥ pT −MT 1/2, z ≤ pT +MT 1/2 we have

P
0,T,0,y
Ber

(
inf

s∈[0,T ]

[
`y(s)− ps

]
≤ −AT 1/2

)
≤ ε,

P
0,T,0,z
Ber

(
sup

s∈[0,T ]

[
`z(s)− ps

]
≥ AT 1/2

)
≤ ε.

(3.10)

Remark 3.11. Roughly, Lemma 3.10 states that if a Bernoulli bridge ` is started from
(0, 0) and terminates at time T not significantly lower (resp. higher) than the straight
line of slope p, then the event that ` goes significantly below (resp. above) the straight
line of slope p is very unlikely.

Proof. The two inequalities are proven in essentially the same way. We begin with the
first inequality. If B = bpT −MT 1/2c then it follows from Lemma 3.1 that

P
0,T,0,y
Ber

(
inf

s∈[0,T ]

[
`y(s)− ps

]
≤ −AT 1/2

)
≤ P0,T,0,B

Ber

(
inf

s∈[0,T ]

[
`(s)− ps

]
≤ −AT 1/2

)
, (3.11)

where ` has law P
0,T,0,B
Ber . By Theorem 3.3, there is a probability space (Ω,F ,P) support-

ing a random variable `(T,B) whose law under P is also P0,T,0,B
Ber , and a Brownian bridge

Bσ with diffusion parameter σ =
√
p(1− p). Therefore

P
0,T,0,B
Ber

(
inf

s∈[0,T ]

[
`(s)− ps

]
≤ −AT 1/2

)
= P

(
inf

s∈[0,T ]

[
`(T,B)(s)− ps

]
≤ −AT 1/2

)
≤

P

(
inf

s∈[0,T ]

√
TBσs/T ≤ −

1

2
AT 1/2

)
+ P

(
sup

s∈[0,T ]

∣∣∣√TBσs/T + ps− `(T,B)(s)
∣∣∣ ≥ 1

2
AT 1/2

)
≤

P

(
max
s∈[0,T ]

Bσs/T ≥ A/2
)

+ P

(
∆(T,B) ≥ 1

2
AT 1/2 −MT 1/2 − 1

)
.

(3.12)

For the first term in the last line, we used the fact that Bσ and −Bσ have the same
distribution. For the second term, we used the fact that

sup
s∈[0,T ]

∣∣∣ps− s

T
·B
∣∣∣ ≤ sup

s∈[0,T ]

∣∣∣ps− pT −MT 1/2

T
· s
∣∣∣+ 1 = MT 1/2 + 1.

By Lemma 3.6, the first term in the last line of (3.12) is equal to e−A
2/2p(1−p). If we

choose A ≥
√

2p(1− p) log(2/ε), then this is ≤ ε/2. If we also take A > 2M , then since
|B − pT | ≤ (M + 1)

√
T , Corollary 3.5 gives us a W1 large enough depending on M,p, ε so

that the second term in the last line of (3.12) is also < ε/2 for T ≥W1. Adding the two
terms and using (3.11) gives the first inequality in (3.10).

If we replace B with dpT +MT 1/2e and change signs and inequalities where appro-
priate, then the same argument proves the second inequality in (3.10).

We need the following definition for our next result. For a function f ∈ C([a, b]) we
define its modulus of continuity for δ > 0 by

w(f, δ) = sup
x,y∈[a,b]
|x−y|≤δ

|f(x)− f(y)|. (3.13)
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Lemma 3.12. Fix p ∈ (0, 1), T ∈ N and y ∈ Z such that T ≥ y ≥ 0, and suppose that `
has distribution P0,T,0,y

Ber . For each positive M , ε and η, there exist a δ(ε, η,M) > 0 and
W2 = W2(M,p, ε, η) ∈ N such that for T ≥W2 and |y − pT | ≤MT 1/2 we have

P
0,T,0,y
Ber

(
w
(
f `, δ

)
≥ ε
)
≤ η, (3.14)

where f `(u) = T−1/2
(
`(uT )− puT

)
for u ∈ [0, 1].

Remark 3.13. Lemma 3.12 states that if ` is a Bernoulli bridge that is started from (0, 0)

and terminates at (T, y) with y close to pT (i.e. with well-behaved endpoints) then the
modulus of continuity of ` is also well-behaved with high probability.

Proof. By Theorem 3.3, we have a probability measure P supporting a random variable
`(T,y) with law P

0,T,0,y
Ber as well as a Brownian bridge Bσ with diffusion parameter σ =√

p(1− p). We have

P
0,T,0,y
Ber

(
w
(
f `, δ

)
≥ ε
)

= P
(
w
(
f `

(T,y)

, δ
)
≥ ε
)
, (3.15)

and

w
(
f `

(T,y)

, δ
)

= T−1/2 sup
s,t∈[0,1], |s−t|≤δ

∣∣∣`(T,y)(sT )− psT − `(T,y)(tT ) + ptT
∣∣∣ ≤

T−1/2 sup
s,t∈[0,1], |s−t|≤δ

( ∣∣∣√T Bσs + sy − psT −
√
T Bσt − ty + ptT

∣∣∣+∣∣∣√T Bσs + sy − `(T,y)(sT )
∣∣∣+
∣∣∣√T Bσt + ty − `(T,y)(tT )

∣∣∣ ) ≤
sup

s,t∈[0,1], |s−t|≤δ

∣∣∣Bσs −Bσt + T−1/2(y − pT )(s− t)
∣∣∣+ 2T−1/2∆(T, y) ≤

w
(
Bσ, δ

)
+Mδ + 2T−1/2∆(T, y).

(3.16)

The last line follows from the assumption that |y − pT | ≤MT 1/2. From (3.15) and (3.16)

P
0,T,0,y
Ber

(
w
(
f `, δ

)
≥ ε
)
≤ P

(
w
(
Bσ, δ

)
+Mδ + 2T−1/2∆(T, y) ≥ ε

)
≤

P
(
w
(
Bσ, δ

)
+Mδ ≥ ε/2

)
+ P

(
∆(T, y) ≥ ε T 1/2/4

)
.

(3.17)

Corollary 3.5 gives us a W2 large enough depending on M,p, ε, η so that the second term
in the second line of (3.17) is ≤ η/2 for T ≥W2. Since Bσ is a.s. uniformly continuous
on the compact interval [0, 1], w(Bσ, δ) → 0 as δ → 0. Thus we can find δ0 > 0 small
enough depending on ε, η so that w(Bσ, δ0) < ε/4 with probability at least 1− η/2. Then
with δ = min(δ0, ε/4M), the first term in the second line of (3.17) is ≤ η/2 as well. This
implies (3.14).

Lemma 3.14. Fix T ∈ N, p ∈ (0, 1), C,K > 0, and a, b ∈ Z such that Ω(0, T, a, b) is
nonempty. Let `bot ∈ Ω(0, T, a, b) or `bot = −∞. Suppose ~x, ~y ∈ Wk−1, k ≥ 2, are such
that T ≥ yi − xi ≥ 0 for 1 ≤ i ≤ k − 1. Write ~z = ~y − ~x, and suppose that

(1) xk−1 + (zk−1/T )s− `bot(s) ≥ C
√
T for all s ∈ [0, T ]

(2) xi − xi+1 ≥ C
√
T and yi − yi+1 ≥ C

√
T for 1 ≤ i ≤ k − 2,

(3) |zi − pT | ≤ K
√
T for 1 ≤ i ≤ k − 1, for a constant K > 0.
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Let L = (L1, . . . , Lk−1) be a line ensemble with law P
0,T,~x,~y
Ber , and let E denote the event

E = {L1(s) ≥ · · · ≥ Lk−1(s) ≥ `bot(s) for s ∈ [0, T ]} .

Then we can find W3 = W3(p, C,K) so that for T ≥W3,

P
0,T,~x,~y
Ber (E) ≥

(
1

2
−
∞∑
n=1

(−1)n−1e−n
2C2/8p(1−p)

)k−1

. (3.18)

Moreover if C ≥
√

8p(1− p) log 3, then for T ≥W3 we have

P
0,T,~x,~y
Ber (E) ≥

(
1− 3e−C

2/8p(1−p)
)k−1

. (3.19)

Remark 3.15. This lemma states that if k independent Bernoulli bridges are well-
separated from each other and `bot, then there is a positive probability that the curves
will cross neither each other nor `bot. We will use this result to compare curves in an
avoiding Bernoulli line ensemble with free Bernoulli bridges.

Proof. Observe that condition (1) simply states that `bot lies a distance of at least C
√
T

uniformly below the line segment connecting xk−1 and yk−1. Thus (1) and (2) imply that
E occurs if each curve Li remains within a distance of C

√
T/2 from the line segment

connecting xi and yi. As in Theorem 3.3, let Pi be probability measures supporting `(T,zi)

with laws P0,T,0,zi
Ber . Then

P
0,T,~x,~y
Ber (E) ≥ P0,T,~x,~y

Ber

(
sup

s∈[0,T ]

∣∣Li(s)− xi − (zi/T )s
∣∣ ≤ C√T/2, 1 ≤ i ≤ k − 1

)
=

k−1∏
i=1

[
P

0,T,0,zi
Ber

(
sup

s∈[0,T ]

∣∣Li(s)− (zi/T )s
∣∣ ≤ C√T/2)] =

k−1∏
i=1

[
1− Pi

(
sup

s∈[0,T ]

∣∣`(T,zi)(s)− (zi/T )s
∣∣ > C

√
T/2

)]
.

(3.20)

In the second line, we used the fact that L1, . . . , Lk−1 are independent from each other
under P0,T,0,zi

Ber . Let Bσ,i be the Brownian bridge with diffusion parameter σ =
√
p(1− p)

coupled with `(T,zi) given by Theorem 3.3. Then we have

Pi

(
sup

s∈[0,T ]

∣∣`(T,zi)(s)− (zi/T )s
∣∣ > C

√
T/2

)
≤

Pi

(
sup

s∈[0,T ]

|
√
TBσs/T | > C

√
T/4

)
+ Pi

(
∆(T, zi) > C

√
T/4

)
.

(3.21)

By Lemma 3.6, the first term in the second line of (3.21) is equal to

2

∞∑
n=1

(−1)n−1e−n
2C2/8p(1−p).

Moreover, condition (3) in the hypothesis and Corollary 3.5 allow us to find W3 depending
on p, C,K but not on i so that the last probability in (3.21) is bounded above by 1

2 −∑∞
n=1(−1)n−1e−n

2C2/8p(1−p) (note that this quantity is positive by (3.3)) for T ≥ W3.
Adding these two terms and referring to (3.20) proves (3.18).

Now suppose C ≥
√

8p(1− p) log 3. By (3.4) in Lemma 3.6, the first term in the

second line of (3.21) is bounded above by 2e−C
2/8p(1−p). After possibly enlarging W3

from above, the second term is < e−C
2/8p(1−p) for T ≥W3. The assumption on C implies

that 1− 3e−C
2/8p(1−p) ≥ 0, and now combining (3.21) and (3.20) proves (3.19).
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3.3 Properties of avoiding Bernoulli line ensembles

In this section we derive two results about avoiding Bernoulli line ensembles, which
are Bernoulli line ensembles with law P

T0,T1,~x,~y,f,g
avoid,Ber;S as in Definition 2.15. The lemmas

we prove only involve the case when f(r) = ∞ for all r ∈ JT0, T1K and we denote the
measure in this case by PT0,T1,~x,~y,∞,g

avoid,Ber;S . A PT0,T1,~x,~y,∞,g
avoid,Ber;S -distributed random variable will be

denoted by Q = (Q1, . . . , Qk) where k is the number of up-right paths in the ensemble. As
usual, if g = −∞, we write PT0,T1,~x,~y

avoid,Ber;S . Our first result will rely on the two monotonicity
Lemmas 3.1 and 3.2 as well as the strong coupling between Bernoulli bridges and
Brownian bridges from Theorem 3.3, and the further results make use of the material in
Section 8.

Lemma 3.16. Fix p ∈ (0, 1), k ∈ N. Let ~x, ~y ∈ Wk be such that T ≥ yi − xi ≥ 0 for
i = 1, . . . , k. Then for any M,M1 > 0 we can find W4 ∈ N depending on p, k,M,M1 such
that if T ≥W4, xk ≥ −M1

√
T , and yk ≥ pT −M1

√
T , then for any S ⊆ J0, T K we have

P
0,T,~x,~y
avoid,Ber;S

(
Qk(T/2)− pT/2 ≥M

√
T
)
≥

2k/2
(
1− 2e−4/p(1−p))2k exp

(
− 2k(M+M1+6)2

p(1−p)

)
[πp(1− p)]k/2

.

(3.22)

Proof. A sketch of the proof is given in Figure 5 and its caption.

Figure 5: Sketch of the argument for Lemma 3.16: We use Lemma 3.1 to lower the
entry and exit data ~x, ~y of the curves to ~x ′ and ~y ′. We define E to be the event that
that the lines in the line ensemble lie in well-separated strips with all the strips high
enough so that E is contained in the event we want to lower bound in (3.22). We then
use strong coupling with Brownian bridges via Theorem 3.3 and bound the probability of
the bridges remaining within the blue windows to lower bound P(E).

Define vectors ~x, ~y ∈Wk by

x′i = b−M1

√
T c − 10(i− 1)d

√
T e, y′i = bpT −M1

√
T c − 10(i− 1)d

√
T e.
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Then x′i ≤ xk ≤ xi and y′i ≤ yk ≤ yi for 1 ≤ i ≤ k − 1. Thus by Lemma 3.1, we have

P
0,T,~x,~y
avoid,Ber;S

(
Qk(T/2)− pT/2 ≥M

√
T
)
≥ P0,T,~x ′,~y ′

avoid,Ber;S

(
Qk(T/2)− pT/2 ≥M

√
T
)
.

Let us write Ki = pT/2 + M
√
T + (10(k − i) − 5)d

√
T e for 1 ≤ i ≤ k. Note Ki is the

midpoint of pT/2 +M
√
T + 10(k − i− 1)d

√
T e and pT/2 +M

√
T + 10(k − i)d

√
T e. Let E

denote the event that the following conditions hold for 1 ≤ i ≤ k:

(1) |Qi(T/2)−Ki| ≤ 2d
√
T e,

(2) sups∈[0,T/2]

∣∣∣Qi(s)− x′i − Ki − x′i
T/2

s
∣∣∣ ≤ 3

√
T ,

(3) sups∈[T/2,T ]

∣∣∣Qi(s)−Ki −
y′i −Ki

T/2
(s− T/2)

∣∣∣ ≤ 3
√
T .

The first condition implies in particular that Qk(T/2) − pT/2 ≥ M
√
T , and also that

Qi(T/2) − Qi+1(T/2) ≥ 6
√
T for each i. The second and third conditions require that

each curve Qi remain within a distance of 3
√
T of the graph of the piecewise linear

function on [0, T ] passing through the points (0, x′1), (T/2,Ki), and (T, y′i). We observe

P
0,T,~x ′,~y ′

avoid,Ber;S

(
Qk(T/2)− pT/2 ≥M

√
T
)
≥ P0,T,~x ′,~y ′

avoid,Ber;S(E) ≥ P0,T,~x ′,~y ′

Ber (E).

The second inequality follows since on E we have Q1(s) ≥ · · · ≥ Qk(s) for all s ∈
J0, T K (here we used that |Ω(T0, T1, ~x

′, ~y′)| ≥ |Ωavoid(T0, T1, ~x
′, ~y′,∞,−∞;S)|). Writing

z = y′k − x′k we have

P
0,T,~x ′,~y ′

Ber (E) =

[
P

0,T,0,z
Ber

( ∣∣∣`(T/2)− pT/2−M
√
T − 5d

√
T e+ x′1

∣∣∣ ≤ 2d
√
T e and

sup
s∈[0,T/2]

∣∣∣∣`(s)− K1 − x′1
T/2

s

∣∣∣∣ ≤ 3
√
T and

sup
s∈[T/2,T ]

∣∣∣∣`(s)− (K1 − x′1)− y′1 −K1

T/2
(s− T/2)

∣∣∣∣ ≤ 3
√
T

)]k
.

(3.23)

Let P be a probability space supporting a random variable `(T,z) with law P0,T,0,z

coupled with a Brownian bridge Bσ with diffusion parameter σ, as in Theorem 3.3. Then
the expression on the right in (3.23) being raised to the k-th power is bounded below for
large enough T by

P
0,T,0,z
Ber

( ∣∣∣`(T/2)− pT/2− (M +M1 + 5)
√
T
∣∣∣ ≤ 2

√
T − 10 and

sup
s∈[0,T/2]

∣∣∣∣`(s)− ps− M +M1 + 5√
T/2

s

∣∣∣∣ ≤ 3
√
T − 1 and

sup
s∈[T/2,T ]

∣∣∣∣`(s)− ps− (M +M1 + 5)
√
T +

M +M1 + 5√
T/2

(s− T/2)

∣∣∣∣ ≤ 3
√
T − 1

)
≥

P

( ∣∣∣√T Bσ1/2 − (M +M1 + 5)
√
T
∣∣∣ ≤ √T and

sup
s∈[0,T/2]

∣∣∣∣√T Bσs/T − (M +M1 + 5)
√
T · s

T/2

∣∣∣∣ ≤ 2
√
T and

sup
s∈[T/2,T ]

∣∣∣∣√T Bσs/T − (M +M1 + 5)
√
T · T − s

T/2

∣∣∣∣ ≤ 2
√
T

)
− P

(
∆(T, z) >

√
T/2

)
.

(3.24)
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Note that Bσ1/2 is a centered Gaussian random variable with variance p(1 − p)/4 =

σ2(1/2)(1−1/2). Writing ξ = Bσ1/2, it follows from Lemma 3.7 that there exist independent

Brownian bridges B1, B2 with diffusion parameters σ/
√

2 so that Bσs has the same law
as s

T/2ξ + B1
2s/T for s ∈ [0, T/2] and T−s

T/2 ξ + B2
(2s−T )/T for s ∈ [T/2, T ]. The first term in

the last expression in (3.24) is thus equal to

P

(
|ξ − (M +M1 + 5)| ≤ 1 and sup

s∈[0,T/2]

∣∣∣∣B1
s/T − (M +M1 + 5− ξ) · s

T/2

∣∣∣∣ ≤ 2 and

sup
s∈[T/2,T ]

∣∣∣∣B2
(2s−T )/T − (M +M1 + 5− ξ) · T − s

T/2

∣∣∣∣ ≤ 2

)
≥

P

(
|ξ − (M +M1 + 5)| ≤ 1 and sup

s∈[0,T/2]

∣∣B1
2s/T

∣∣ ≤ 1 and sup
s∈[T/2,T ]

∣∣B2
(2s−T )/T

∣∣ ≤ 1

)
=

P
(
|ξ − (M +M1 + 5)| ≤ 1

)
· P
(

sup
s∈[0,T/2]

∣∣B1
2s/T

∣∣ ≤ 1

)
· P
(

sup
s∈[0,T/2]

∣∣B2
(2s−T )/T

∣∣ ≤ 1

)
≥

(
1−2e−4/p(1−p)

)2
∫ M+M1+6

M+M1+4

e−2ξ2/p(1−p)dξ√
πp(1− p)/2

≥ 2
√

2 e−2(M+M1+6)2/p(1−p)√
πp(1− p)

(
1− 2e−4/p(1−p))2.

(3.25)

In the fourth line, we used the fact that ξ, B1
· , and B2

· are independent, and in the second
to last line we used Lemma 3.6. Since |z − pT | ≤ (M1 + 1)

√
T , Lemma 3.5 allows us to

choose T large enough so that P(∆(T, z) >
√
T/2) is less than 1/2 the expression in the

last line of (3.25). Then in view of (3.23) and (3.24), we conclude (3.22).

We now state an important weak convergence result, whose proof is presented in
Section 8 (more specifically see Proposition 8.3).

Proposition 3.17. Fix p, t ∈ (0, 1), k ∈ N, ~a,~b ∈Wk, where we recall

Wk = {~x ∈ Rk : x1 ≥ x2 ≥ · · · ≥ xk}.

Suppose ~xT = (xT1 , . . . , x
T
k ) and ~yT = (yT1 , . . . , y

T
k ) are two sequences in Wk such that for

i ∈ J1, kK

lim
T→∞

xTi√
T

= ai and lim
T→∞

yTi − pT√
T

= bi.

Let (QT1 , . . . , Q
T
k ) have law P

0,T,~xT ,~yT

avoid,Ber , and define the sequence {ZT } of random k-
dimensional vectors

ZT =

(
QT1 (tT )− ptT√

T
, . . . ,

QTk (tT )− ptT√
T

)
.

Then as T → ∞, ZT converges weakly to a random vector Ẑ on Rk with a probability
density ρ supported on W ◦k .

The convergence result in Proposition 3.17 allows us to prove the following lemma,
which roughly states that if the entrance and exit data of a sequence of avoiding Bernoulli
line ensembles remain in compact windows, then with high probability the curves of the
ensemble will remain separated from one another at each point by some small positive
distance on scale

√
T . This is how Proposition 3.17 will be used in the main argument

in the text, although in Section 8 we give a detailed description of the density ρ in
Proposition 3.17.

Lemma 3.18. Fix p, t ∈ (0, 1) and k ∈ N. Suppose that ~x T = (xT1 , . . . , x
T
k ), ~y T =

(yT1 , . . . , y
T
k ) are elements of Wk such that T ≥ yTi − xTi ≥ 0 for i ∈ J1, kK. Then for any
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M1,M2 > 0 and ε > 0 there exists W5 ∈ N and δ > 0 depending on p, k,M1,M2 such that
if T ≥W5, |xTi | ≤M1

√
T and |yTi − pT | ≤M2

√
T , then

P
0,T,~xT ,~yT

avoid,Ber

(
min

1≤i≤k−1

[
Qi(tT )−Qi+1(tT )

]
< δ
√
T

)
< ε.

Proof. We prove the claim by contradiction. Suppose there exist M1,M2, ε > 0 such that
for any W5 ∈ N and δ > 0 there exists some T ≥W5 with

P
0,T,~xT ,~yT

avoid,Ber

(
min

1≤i≤k−1

[
Qi(tT )−Qi+1(tT )

]
< δ
√
T

)
≥ ε.

Then we can obtain sequences Tn, δn > 0, Tn ↗∞, δn ↘ 0, such that for all n we have

P
0,T,~x Tn ,~y Tn

avoid,Ber

(
min

1≤i≤k−1

[
Qi(tTn)−Qi+1(tTn)√

Tn

]
< δn

)
≥ ε.

Since |xTni | ≤M1

√
Tn and |yTni − pTn| ≤M2

√
Tn for 1 ≤ i ≤ k, the sequences {~x Tn/

√
Tn},

{(~y Tn − pTn)/
√
Tn} are bounded in Rk. It follows that there exist ~x, ~y ∈ Rn and a

subsequence {Tnm} such that

~x Tnm√
Tnm

−→ ~x,
~y Tnm − pTnm√

Tnm
−→ ~y

as m→∞ (see [29, Theorem 3.6]). Denote

Zmi =
Qi(tTnm)− ptTnm√

Tnm
.

Fix δ > 0 and choose M large enough so that if m ≥M then δm < δ. Then for m ≥M

ε ≤ lim inf
m→∞

P

(
min

1≤i≤k−1

[
Zmi − Zmi+1

]
< δnm

)
≤lim inf
m→∞

P

(
min

1≤i≤k−1

[
Zmi − Zmi+1

]
≤ δ
)
. (3.26)

Now by Lemma 3.17, (Zm1 , . . . , Z
m
k ) converges weakly to a random vector Ẑ on Rk with a

density ρ. It follows from the portmanteau theorem [16, Theorem 3.2.11] applied with
the closed set K = [0, δ]

lim sup
m→∞

P

(
min

1≤i≤k−1

[
Zmi − Zmi+1

]
∈ K

)
≤ P

(
min

1≤i≤k−1

[
Ẑi − Ẑi+1

]
∈ K

)
. (3.27)

Combining (3.26) and (3.27), we obtain

ε ≤ P
(

0 ≤ min
1≤i≤k−1

[
Ẑi − Ẑi+1

]
≤ δ
)
≤
k−1∑
i=1

P
(

0 ≤ Ẑi − Ẑi+1 ≤ δ
)
. (3.28)

To conclude the proof, we find a δ for which (3.28) cannot hold. For η̃ ≥ 0 put

Eη̃i = {~z ∈ Rk : 0 ≤ zi − zi+1 ≤ η̃}.

For each i ∈ J1, k − 1K and η > 0, we have

P
(

0 ≤ Ẑi − Ẑi+1 ≤ η
)

=

∫
Rk
ρ · 1Eηi dz1 · · · dzk. (3.29)

Clearly ρ · 1Eηi → ρ · 1E0
i

pointwise as η → 0, and E0
i = {~z ∈ Rk : zi = zi+1} has Lebesgue

measure 0. Thus ρ · 1Eηi → 0 a.e. as η → 0. Since |ρ · 1Eηi | ≤ ρ and ρ is integrable, the
dominated convergence theorem and (3.29) imply that

P
(

0 ≤ Ẑi − Ẑi+1 ≤ η
)
−→ 0
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as η → 0. Thus for each i ∈ J1, k− 1K and ε > 0 we can find an ηi > 0 such that 0 < η ≤ ηi
implies P(0 ≤ Ẑi − Ẑi+1 ≤ η) < ε/(k − 1). Putting δ = min1≤i≤k−1 ηi we find that

k−1∑
i=1

P
(

0 ≤ Ẑi − Ẑi+1 ≤ δ
)
< ε,

contradicting (3.28) for this choice of δ.

4 Proof of Theorem 2.26

The goal of this section is to prove Theorem 2.26. Throughout this section, we assume
that we have fixed k ∈ N with k ≥ 2, p ∈ (0, 1), α, λ > 0, and{

LN = (LN1 , L
N
2 , . . . , L

N
k )
}∞
N=1

an (α, p, λ)-good sequence of J1, kK-indexed Bernoulli line ensembles as in Definition 2.24,
all defined on a probability space with measure P. The proof of Theorem 2.26 depends
on three results – Proposition 4.1 and Lemmas 4.2 and 4.3. In these three statements
we establish various properties of the sequence of line ensembles LN . The constants
in these statements depend implicitly on α, p, λ, k, and the functions φ1, φ2, ψ from
Definition 2.24, which are fixed throughout. We will not list these dependencies explicitly.
The proof of Proposition 4.1 is in Section 4.1 while the proofs of Lemmas 4.2 and 4.3 are
in Section 5. Theorem 2.26 (i) and (ii) are proved in Sections 4.2 and 4.3.

4.1 Preliminary results

The main result in this section is presented as Proposition 4.1 below. In order to
formulate it and some of the lemmas below, it will be convenient to adopt the following
notation for any r > 0 and m ∈ N:

tm = b(r +m)Nαc. (4.1)

Proposition 4.1. Let P be the measure from the beginning of this section. For any ε > 0,
r > 0 there exist δ = δ(ε, r) > 0 and N1 = N1(ε, r) such that for all N ≥ N1 we have

P
(
Z
(
− t1, t1, ~x, ~y,∞, LNk J−t1, t1K

)
< δ
)
< ε,

where ~x = (LN1 (−t1), . . . , LNk−1(−t1)), ~y = (LN1 (t1), . . . , LNk−1(t1)), LNk J−t1, t1K is the re-
striction of LNk to J−t1, t1K, and Z is the acceptance probability of Definition 2.22.

The general strategy we use to prove Proposition 4.1 is inspired by the proof of [8,
Proposition 6.5]. We begin by stating three key lemmas that will be required. The proofs
of Lemmas 4.2 and 4.3 are postponed to Section 5 and Lemma 4.4 is proved in Section 6.

Lemma 4.2. Let P be the measure from the beginning of this section. For any ε > 0,
r > 0 there exist R1 = R1(ε, r) > 0 and N2 = N2(ε, r) such that for N ≥ N2

P

(
sup

s∈[−t3,t3]

[
LN1 (s)− ps

]
≥ R1N

α/2

)
< ε.

Lemma 4.3. Let P be the measure from the beginning of this section. For any ε > 0,
r > 0 there exist R2 = R2(ε, r) > 0 and N3 = N3(ε, r) such that for N ≥ N3

P

(
inf

s∈[−t3,t3]

[
LNk−1(s)− ps

]
≤ −R2N

α/2

)
< ε.
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Lemma 4.4. Fix k ∈ N, k ≥ 2, p ∈ (0, 1), r, α,M1,M2 > 0. Suppose that `bot : J−t3, t3K→
R ∪ {−∞}, and ~x, ~y ∈ Wk−1 are such that |Ωavoid(−t3, t3, ~x, ~y,∞, `bot)| ≥ 1. Suppose
further that

1. sups∈[−t3,t3]

[
`bot(s)− ps

]
≤M2(2t3)1/2,

2. −pt3 +M1(2t3)1/2 ≥ x1 ≥ xk−1 ≥ max
(
`bot(−t3),−pt3 −M1(2t3)1/2

)
,

3. pt3 +M1(2t3)1/2 ≥ y1 ≥ yk−1 ≥ max
(
`bot(t3), pt3 −M1(2t3)1/2

)
.

Then there exist constants h̃ > 0 and N4 ∈ N, depending on M1,M2, p, k, r, α, such that
for any ε̃ > 0 and N ≥ N4 we have

P
−t3,t3,~x,~y,∞,`bot
avoid,Ber

(
Z
(
− t1, t1,Q(−t1),Q(t1),∞, `botJ−t1, t1K

)
≤ h̃ε̃

)
≤ ε̃, (4.2)

where Z is the acceptance probability of Definition 2.22, `botJ−t1, t1K is the vector, whose
coordinates match those of `bot on J−t1, t1K and Q(a) = (Q1(a), . . . , Qk−1(a)) is the value
of the line ensemble Q = (Q1, . . . , Qk−1) whose law is P−t3,t3,~x,~y,∞,`botavoid,Ber at location a.

Proof of Proposition 4.1. Let ε > 0 be given. Define the event

EN =
{
LNk−1(±t3)∓ pt3 ≥ −M1(2t3)1/2

}
∩
{
LN1 (±t3)∓ pt3 ≤M1(2t3)1/2

}
∩{

sup
s∈[−t3,t3]

[LNk (s)− ps] ≤M2(2t3)1/2

}
.

In view of Lemmas 4.2 and 4.3 and the fact that P-almost surely LN1 (s) ≥ LNk (s) for all
s ∈ [−t3, t3] we can find sufficiently large M1,M2 and N2 such that for N ≥ N2 we have

P(EcN ) < ε/2. (4.3)

Let h̃, N4 be as in Lemma 4.4 for the values M1,M2 as above, the values α, p, k from
the beginning of the section and r as in the statement of the proposition. For δ = (ε/2) · h̃
we denote

V =
{
Z
(
− t1, t1, ~x, ~y,∞, LNk J−t1, t1K

)
< δ
}
,

and make the following deduction for N ≥ N4

P
(
V ∩ EN

)
= E

[
E
[
1EN · 1V

∣∣∣σ(LN (−t3),LN (t3), LNk J−t3, t3K
)]]

=

E

[
1EN · E

[
1{Z

(
− t1, t1, ~x, ~y,∞, LNk J−t1, t1K

)
< δ}

∣∣∣σ(LN (−t3),LN (t3), LNk J−t3, t3K
)]]

=

E
[
1EN · Eavoid

[
1{Z

(
− t1, t1,L(−t1),L(t1),∞, LNk J−t1, t1K

)
< δ}

]]
≤ E [1EN · ε/2] ≤ ε/2.

(4.4)

In (4.4) we have written Eavoid in place of E
−t3,t3,LN (−t3),LN (t3),∞,LNk J−t3,t3K
avoid,Ber to ease the

notation; in addition, we have that LN (a) = (LN1 (a), . . . , LNk−1(a)) and L on the last line is

distributed according to P
−t3,t3,LN (−t3),LN (t3),∞,LNk J−t3,t3K
avoid,Ber . We elaborate on (4.4) in the

paragraph below.
The first equality in (4.4) follows from the tower property for conditional expectations.

The second equality uses the definition of V and the fact that 1EN is
σ
(
LN (−t3),LN (t3), LNk J−t3, t3K

)
-measurable and can thus be taken outside of the condi-

tional expectation. The third equality uses the Schur Gibbs property, see Definition 2.17.
The first inequality on the third line holds if N ≥ N4 and uses Lemma 4.4 with ε̃ = ε/2

as well as the fact that on the event EN the random variables LN (−t3),LN (t3) and
LNk J−t3, t3K (that play the roles of ~x, ~y and `bot) satisfy the inequalities
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1. sups∈[−t3,t3]

[
LNk (s)− ps

]
≤M2(2t3)1/2,

2. −pt3 +M1(2t3)1/2 ≥ LN1 (−t3) ≥ LNk−1(−t3) ≥ max
(
LNk (−t3),−pt3 −M1(2t3)1/2

)
,

3. pt3 +M1(2t3)1/2 ≥ LN1 (t3) ≥ LNk−1(t3) ≥ max
(
LNk (t3), pt3 −M1(2t3)1/2

)
.

The last inequality in (4.4) is trivial.
Combining (4.4) with (4.3), we see that for all N ≥ max(N2, N4) we have

P (V ) = P(V ∩ EN ) + P(V ∩ EcN ) ≤ ε/2 + P(EcN ) < ε,

which proves the proposition.

4.2 Proof of Theorem 2.26 (i)

Since f̃Nn are obtained from fNn by subtracting a deterministic continuous function
(namely λs2) and rescaling by a constant (namely

√
p(1− p)) we see that P̃N is tight

if and only if PN is tight and so it suffices to show that PN is tight. By Lemma 2.4, it
suffices to verify the following two conditions for all i ∈ J1, k − 1K, r > 0, and ε > 0:

lim
a→∞

lim sup
N→∞

P(|fNi (0)| ≥ a) = 0 (4.5)

lim
δ→0

lim sup
N→∞

P

(
sup

x,y∈[−r,r],|x−y|≤δ
|fNi (x)− fNi (y)| ≥ ε

)
= 0. (4.6)

For the sake of clarity, we will prove these conditions in several steps.

Step 1. In this step we prove (4.5). Let ε > 0 be given. Then by Lemmas 4.2 and 4.3 we
can find N2, N3 and R1, R2 such that for N ≥ max(N1, N2)

P

(
sup

s∈[−t3,t3]

[LN1 (s)− ps] ≥ R1N
α/2

)
< ε/2,

P

(
inf

s∈[−t3,t3]
[LNk−1(s)− ps] ≤ −R2N

α/2

)
< ε/2.

In particular, if we set R = max(R1, R2) and utilize the fact that LN1 (0) ≥ · · · ≥ LNk−1(0)

we conclude that for any i ∈ J1, k − 1K we have

P
(
|LNi (0)| ≥ RNα/2

)
≤ P

(
LN1 (0) ≥ R1N

α/2
)

+ P
(
LNk−1(0) ≤ −R2N

α/2
)
< ε,

which implies (4.5).

Step 2. In this step we prove (4.6). In the sequel we fix r, ε > 0 and i ∈ J1, k − 1K. To
prove (4.6) it suffices to show that for any η > 0, there exists a δ > 0 and N0 such that
N ≥ N0 implies

P

(
sup

x,y∈[−r,r],|x−y|≤δ
|fNi (x)− fNi (y)| ≥ ε

)
< η. (4.7)

For δ > 0 we define the event

ANδ =

{
sup

x,y∈[−t1,t1],|x−y|≤δNα

∣∣LNi (x)− LNi (y)− p(x− y)
∣∣ ≥ 3Nα/2ε

4

}
, (4.8)

where we recall that t1 = b(r + 1)Nαc from (4.1). We claim that there exist δ0 > 0 and
N0 ∈ N such that for δ ∈ (0, δ0] and N ≥ N0 we have

P(ANδ ) < η. (4.9)
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We prove (4.9) in the steps below. Here we assume its validity and prove (4.7).

Observe that if δ ∈
(
0,min

(
δ0, ε · (8λr)−1

))
, where λ is as in the statement of the

theorem, we have the following tower of inequalities

P

(
sup

x,y∈[−r,r],|x−y|≤δ
|fNi (x)− fNi (y)| ≥ ε

)
=

P

(
sup

x,y∈[−r,r],|x−y|≤δ

∣∣∣N−α/2 (LNi (xNα)− LNi (yNα)
)
− p(x− y)Nα/2 + λ(x2 − y2)

∣∣∣ ≥ ε) ≤
P

(
sup

x,y∈[−r,r],|x−y|≤δ
N−α/2

∣∣LNi (xNα)− LNi (yNα)− p(x− y)Nα
∣∣+ 2λrδ ≥ ε

)
≤

P

(
sup

x,y∈[−r,r],|x−y|≤δ

∣∣LNi (xNα)− LNi (yNα)− p(x− y)Nα
∣∣ ≥ 3Nα/2ε

4

)
≤ P(ANδ ) < η.

(4.10)

In (4.10) the first equality follows from the definition of fNi , and the inequality on the
second line follows from the inequality |x2 − y2| ≤ 2rδ, which holds for all x, y ∈ [−r, r]
such that |x−y| ≤ δ. The inequality in the third line of (4.10) follows from our assumption
that δ < ε · (8λr)−1 and the first inequality on the last line follows from the definition of
ANδ in (4.8), and the fact that t1 ≥ rNα. The last inequality follows from our assumption
that δ < δ0 and (4.9). From (4.10) we get (4.7).

Step 3. In this step we prove (4.9) and fix η > 0 in the sequel. For δ1,M1 > 0 and N ∈ N
we define the events

E1 =

{
max

1≤j≤k−1

∣∣LNj (±t1)∓ pt1
∣∣ ≤M1N

α/2

}
, E2 =

{
Z(−t1, t1, ~x, ~y,∞, LNk J−t1, t1K) > δ1

}
,

(4.11)

where we used the same notation as in Proposition 4.1 (in particular
~x = (LN1 (−t1), . . . , LNk−1(−t1)) and ~y = (LN1 (t1), . . . , LNk−1(t1))). Combining Lemmas 4.2, 4.3
and Proposition 4.1 we know that we can find δ1 > 0 sufficiently small, M1 sufficiently
large and Ñ ∈ N such that for N ≥ Ñ we know

P (Ec1 ∪ Ec2) < η/2. (4.12)

We claim that we can find δ0 > 0 and N0 ≥ Ñ such that for N ≥ N0 and δ ∈ (0, δ0)

P(ANδ ∩ E1 ∩ E2) < η/2. (4.13)

Since

P(ANδ ) = P(ANδ ∩ E1 ∩ E2) + P(ANδ ∩ (Ec1 ∪ Ec2)) ≤ P(ANδ ∩ E1 ∩ E2) + P (Ec1 ∪ Ec2) ,

we see that (4.12) and (4.13) together imply (4.9).

Step 4. In this step we prove (4.13). We define the σ-algebra

F = σ
(
LNk J−t1, t1K, LN1 (±t1), LN2 (±t1), . . . , LNk−1(±t1)

)
.

Clearly E1, E2 ∈ F , so the indicator random variables 1E1
and 1E2

are F -measurable. It
follows from the tower property of conditional expectation that

P
(
ANδ ∩ E1 ∩ E2

)
= E

[
1ANδ

1E1
1E2

]
= E

[
1E1

1E2
E
[
1ANδ

| F
]]
. (4.14)

EJP 26 (2021), paper 135.
Page 35/93

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP698
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Tightness of Bernoulli Gibbsian line ensembles

By the Schur-Gibbs property (see Definition 2.17), we know that P-almost surely

E
[
1ANδ

| F
]

= E
−t1,t1,~x,~y,∞,LNk J−t1,t1K
avoid,Ber

[
1ANδ

]
. (4.15)

We now observe that the Radon-Nikodym derivative of P
−t1,t1,~x,~y,∞,LNk J−t1,t1K
avoid,Ber with respect

to P−t1,t1,~x,~yBer is given by

dP
−t1,t1,~x,~y,∞,LNk J−t1,t1K
avoid,Ber (Q1, . . . , Qk−1)

dP−t1,t1,~x,~yBer

=
1{Q1≥···≥Qk−1≥Qk}

Z(−t1, t1, ~x, ~y,∞, LNk J−t1, t1K)
, (4.16)

where Q = (Q1, . . . , Qk−1) is P−t1,t1,~x,~yBer -distributed and Qk = LNk J−t1, t1K. To see this,

note that by Definition 2.15 we have for any set A ⊂
∏k−1
i=1 Ω(−t1, t1, xi, yi) that

P
−t1,t1,~x,~y,∞,LNk J−t1,t1K
avoid,Ber (A) =

P
−t1,t1,~x,~y
Ber (A ∩ {Q1 ≥ · · · ≥ Qk−1 ≥ Qk})
P
−t1,t1,~x,~y
Ber (Q1 ≥ · · · ≥ Qk−1 ≥ Qk)

=

E
−t1,t1,~x,~y
Ber

[
1A · 1{Q1≥···≥Qk−1≥Qk}

]
Z(−t1, t1, ~x, ~y,∞, LNk J−t1, t1K)

=

∫
A

1{Q1≥···≥Qk−1≥Qk}

Z(−t1, t1, ~x, ~y,∞, LNk J−t1, t1K)
dP−t1,t1,~x,~yBer .

It follows from (4.14), (4.16), and the definition of E2 in (4.11) that

P(ANδ ∩ E1 ∩ E2) = E

[
1E1

1E2
E
−t1,t1,~x,~y
Ber

[
1BNδ

· 1{Q1≥···≥Qk}

Z(−t1, t1, ~x, ~y, LNk J−t1, t1K)

]]
≤

≤ E
[
1E11E2E

−t1,t1,~x,~y
Ber

[
1BNδ
δ1

]]
≤ 1

δ1
E
[
1E1 · P

−t1,t1,~x,~y
Ber (BNδ )

]
,

(4.17)

where δ1 is as in (4.11), and

BNδ =

{
sup

x,y∈[−t1,t1],|x−y|≤δNα
|Qi(x)−Qi(y)− p(x− y)| ≥ 3Nα/2ε

4

}
.

Notice that under P−t1,t1,~x,~yBer the law of Qi is precisely P−t1,t1,xi,yiBer , and so we conclude

P
−t1,t1,~x,~y
Ber (BNδ ) = P

0,2t1,0,yi−xi
Ber

(
sup

x,y∈[0,2t1],|x−y|≤δNα
|`(x)− `(y)− p(x− y)| ≥ 3Nα/2ε

4

)
,

(4.18)

where ` has law P0,2t1,0,yi−xi
Ber (note that in (4.18) we implicitly translated the path ` to the

right by t1 and up by −xi, which does not affect the probability in question). Since on
the event E1 we know that |yi − xi − 2pt1| ≤ 2M1N

α we conclude from Lemma 3.12 that
we can find N0 and δ0 > 0 depending on M1, r, α such that for N ≥ N0 and δ ∈ (0, δ0)

1E1
· P0,2t1,0,yi−xi

Ber

(
sup

x,y∈[0,2t1],|x−y|≤δNα
|`(x)− `(y)− p(x− y)| ≥ 3Nα/2ε

4

)
<
δ1η

2
. (4.19)

Combining (4.17), (4.18) and (4.19) we conclude (4.13), and hence statement (i) of the
theorem.

4.3 Proof of Theorem 2.26 (ii)

In this section we fix a subsequential limit L∞ = (f̃∞1 , . . . , f̃∞k−1) of the sequence

P̃N as in the statement of Theorem 2.26, and we prove that L∞ possesses the partial
Brownian Gibbs property. Our approach is similar to that in [12, Sections 5.1 and 5.2].
We first give a definition of measures on scaled free and avoiding Bernoulli random walks.
These measures will appear when we apply the Schur Gibbs property to the scaled line
ensembles {f̃Ni }

k−1
i=1 .
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Definition 4.5. Let a, b ∈ N−αZ with a < b and x, y ∈ N−α/2Z satisfy 0 ≤ y − x ≤
(b−a)Nα/2. Let `(T,z) denote a random variable with law P0,T,0,z

Ber as before Definition 2.15.

We define Pa,b,x,yfree,N to be the law of the C([a, b])-valued random variable Y given by

Y (t) =
x+N−α/2

[
`((b−a)Nα, (y−x)Nα/2))((t− a)Nα)− ptNα

]
√
p(1− p)

, t ∈ [a, b].

Now for i ∈ J1, kK, let `(N,z),i denote i.i.d. random variables with laws P0,N,0,z
Ber . Let

~x, ~y ∈ (N−α/2Z)k satisfy 0 ≤ yi − xi ≤ (b − a)Nα/2 for i ∈ J1, kK. We define the J1, kK-
indexed line ensemble YN by

YNi (t) =
xi +N−α/2

[
`((b−a)Nα, (yi−xi)Nα/2)),i((t− a)Nα)− ptNα

]
√
p(1− p)

, i ∈ J1, kK, t ∈ [a, b].

We let Pa,b,~x,~yfree,N denote the law of YN . Suppose ~x, ~y ∈ (N−α/2Z)k ∩Wk, where

Wk = {~x = (x1, . . . , xk) ∈ Rk : x1 ≥ x2 ≥ · · · ≥ xk}.

Suppose further that f : [a, b]→ (−∞,∞], g : [a, b]→ [−∞,∞) are continuous functions.
We define the probability measure Pa,b,~x,~y,f,gavoid,N to be Pa,b,~x,~yfree,N conditioned on the event

E = {f(r) ≥ YN1 (r) ≥ · · · ≥ YNk (r) ≥ g(r) for r ∈ [a, b]}.

This measure is well-defined if E is nonempty.

Next, we state two lemmas whose proofs we give in Section 7.5. The first lemma
proves weak convergence of the scaled avoiding random walk measures in Definition 4.5.
It states roughly that if the boundary data of these measures converge, then the measures
converge weakly to the law of avoiding Brownian bridges with the boundary limiting
data, as in Definition 2.7.

Lemma 4.6. Fix k ∈ N and a, b ∈ R with a < b, and let f : [a − 1, b + 1] → (−∞,∞],
g : [a − 1, b + 1] → [−∞,∞) be continuous functions such that f(t) > g(t) for all t ∈
[a − 1, b + 1]. Let ~x, ~y ∈ W ◦k be such that f(a) > x1, f(b) > y1, g(a) < xk, and g(b) < yk.
Let aN = baNαcN−α and bN = dbNαeN−α, and let fN : [a − 1, b + 1] → (−∞,∞] and
gN : [a − 1, b + 1] → [−∞,∞) be continuous functions such that fN → f and gN → g

uniformly on [a− 1, b+ 1]. If f ≡ ∞ the last statement means that fN ≡ ∞ for all large
enough N and if g ≡ −∞ the latter means that gN ≡ −∞ for all large enough N .

Lastly, let ~xN , ~y N ∈ (N−α/2Z)k ∩Wk, write

x̃Ni = (xNi − paNNα/2)/
√
p(1− p), ỹNi = (yNi − pbNNα/2)/

√
p(1− p),

and suppose that x̃Ni → xi and ỹNi → yi as N →∞ for each i ∈ J1, kK. Then there exists

N0 ∈ N so that PaN ,bN ,~x
N ,~y N ,fN ,gN

avoid,N is well-defined for N ≥ N0. Moreover, if YN have laws

P
aN ,bN ,~x

N ,~y N ,fN ,gN
avoid,N and ZN = YN |J1,kK×[a,b], i.e. ZN is a sequence of random variables on

C(J1, kK× [a, b]) obtained by projecting YN to J1, kK× [a, b], then the law of ZN converges
weakly to Pa,b,~x,~y,f,gavoid as N →∞.

The next lemma shows that at any given point, the values of the k − 1 curves in L∞
are each distinct, so that Lemma 4.6 may be applied.

Lemma 4.7. Let L∞ be as in the beginning of this section. Then for any s ∈ R we have
L∞(s) = (f̃∞1 (s), . . . , f̃∞k−1(s)) ∈W ◦k−1, P-a.s.

Using these two lemmas whose proofs are postponed, we now give the proof of
Theorem 2.26 (ii).
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Proof. (of Theorem 2.26 (ii)) For clarity we split the proof into three steps.

Step 1. We write Σ = J1, k − 1K and L̃N = (f̃N1 , . . . , f̃
N
k−1), where we recall that

f̃Ni (s) = N−α/2(LNi (sNα)− psNα)/
√
p(1− p).

Since L∞ is a weak subsequential limit of L̃N we know there is a subsequence {Nm}∞m=1

such that L̃Nm =⇒ L∞. We will still call the subsequence L̃N to not overburden the
notation. By the Skorohod representation theorem [1, Theorem 6.7], we can also assume
that L̃N and L∞ are all defined on the same probability space with measure P and the
convergence is happening P-almost surely. Here we are implicitly using Lemma 2.2 from
which we know that the random variables L̃N and L∞ take value in a Polish space so
that the Skorohod representation theorem is applicable.

Fix a set K = Jk1, k2K ⊆ J1, k − 2K and a, b ∈ R with a < b. We claim that for any
bounded Borel-measurable function F : C(K × [a, b])→ R we have

E[F (L∞|K×[a,b]) | Fext(K × (a, b))] = E
a,b,~x,~y,f,g
avoid [F (Q)], (4.20)

where ~x = (f̃∞k1 (a), . . . , f̃∞k2 (a)), ~y = (f̃∞k1 (b), . . . , f̃∞k2 (b)), f = f̃∞k1−1 (with f̃∞0 = +∞),

g = f̃∞k2+1, the σ-algebra Fext(K × (a, b)) is as in Definition 2.8, and Q has law P
a,b,~x,~y,f,g
avoid .

We mention that by Lemma 4.7 we have P-a.s. that f̃∞i (x) > f̃i+1(x) for all i ∈ J1, k − 2K
so that the right side of (4.20) is well-defined. We will prove (4.20) in the steps below.
Here we assume its validity and conclude the proof of the theorem.

We first observe from (4.20) that for any bounded Borel-measurable F1 : C(J1, k −
2K× [a, b])→ R and F2 : C([a, b])→ R we have P-almost surely

F2(f̃∞k−1) · E[F1(L∞|J1,k−2K×[a,b]) | Fext(J1, k − 2K× (a, b))] = F2(f̃∞k−1) · Ea,b,~x,~y,f,gavoid [F1(Q)].

(4.21)
Let H be the class of bounded Borel-measurable functions H : C(J1, k − 1K× [a, b])→ R

that satisfy

E[H(L∞|J1,k−1K×[a,b]) | Fext(J1, k − 2K× (a, b))] = E
a,b,~x,~y,f,g
avoid [H(Q, g)], (4.22)

where on the right side (Q, g) is the line ensemble with k − 1 curves, whose top k − 2

curves agree with Q and the k−1-st one agrees with g. From (4.21) H contains functions
of the form

H(f1, . . . , fk−1) =

k−1∏
i=1

1{fi ∈ Bi}

for any Borel sets B1, . . . , Bk−1 ⊂ C([a, b]). In addition, it is clear from (4.22) that
H is closed under linear combinations (by linearity of conditional expectations) and
under bounded monotone limits (by the monotone convergence theorem for conditional
expectations). Thus by the monotone class theorem [16, Theorem 5.2.2], H contains all
bounded Borel measurable functions H : C(J1, k − 1K× [a, b])→ R.

In particular, setting H(f1, . . . , fk−1) = 1{f1(s) > · · · > fk−1(s) for all s ∈ [a, b]} in
(4.22) we conclude that L∞|J1,k−1K×[a,b] is non-intersecting P-a.s. for any a < b. Taking
a = −m, b = m and a countable intersection over m ∈ Z we conclude that L∞ is non-
intersecting P-a.s. The latter and (4.20) together imply that L∞ satisfies the partial
Brownian Gibbs property of Definition 2.10.

Step 2. In this and the next step we prove (4.20). Fix m ∈ N, n1, . . . , nm ∈ Σ, t1, . . . , tm ∈
R, and h1, . . . , hm : R→ R bounded continuous functions. Define S = {i ∈ J1,mK : ni ∈
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K, ti ∈ [a, b]}. In this step we prove that

E

[
m∏
i=1

hi(f̃
∞
ni (ti))

]
= E

[∏
s/∈S

hs(f̃
∞
ns (ts)) · E

a,b,~x,~y,f,g
avoid

[∏
s∈S

hs(Qns(ts))

]]
, (4.23)

where Q denotes a random variable with law P
a,b,~x,~y,f,g
avoid . By assumption, we have

lim
N→∞

E

[
m∏
i=1

hi(f̃
N
ni(ti))

]
= E

[
m∏
i=1

hi(f̃
∞
ni (ti))

]
. (4.24)

We define the sequences aN = baNαcN−α, bN = dbNαeN−α, ~xN = (LNk1(aN ), . . . , LNk2(aN )),

~y N = (LNk1(bN ), . . . , LNk2(bN )), fN = f̃Nk1−1 (where f̃N0 = +∞), gN = f̃Nk2+1. Since
aN → a, bN → b, we may choose N0 sufficiently large so that if N ≥ N0, then
ts < aN or ts > bN for all s /∈ S with ns ∈ K. Since the line ensemble (LN1 , . . . , L

N
k−1)

in the definition of L̃N satisfies the Schur Gibbs property (see Definition 2.17), we
see from Definition 4.5 that the law of L̃N |K×[a,b] conditioned on the σ-algebra F =

σ
(
f̃Nk1−1, f̃

N
k2+1, f̃

N
k1

(aN ), f̃Nk1(bN ), . . . , f̃Nk2(aN ), f̃Nk2(bN )
)

is (upto a reindexing of the curves)

precisely PaN ,bN ,~x
N ,~y N ,fN ,gN

avoid,N . Therefore, writing ZN for a random variable with this law,
we have

E

[
m∏
i=1

hi(f̃
N
ni(ti))

]
= E

[∏
s/∈S

hs(f̃
N
ns(ts)) · E

aN ,bN ,~x
N ,~y N ,fN ,gN

avoid,N

[∏
s∈S

hs(Z
N
ns−k1+1(ts))

]]
.

(4.25)
Now by Lemma 4.7, we have P-a.s. that f̃∞k1−1(a) > f̃∞k1 (a) > · · · > f̃∞k2 (a) > f̃∞k2+1(a)

and also f̃∞k1−1(b) > f̃∞k1 (b) > · · · > f̃∞k2 (b) > f̃∞k2+1(b). In addition, we have by part (i) of

Theorem 2.26 that P-almost surely fN → f = f̃∞k1−1 and gN → g = f̃∞k2+1 uniformly on

[a−1, b+1] ⊇ [aN , bN ], and (xNi −paNNα/2)/
√
p(1− p)→ ~x, (yNi −pbNNα/2)/

√
p(1− p)→

~y for i ∈ J1, k − 1K. It follows from Lemma 4.6 that

lim
N→∞

E
aN ,bN ,~x

N ,~y N ,fN ,gN
avoid,N

[∏
s∈S

hs(Z
N
ns−k1+1(ts))

]
= E

a,b,~x,~y,f,g
avoid

[∏
s∈S

hs(Qns(ts))

]
. (4.26)

Lastly, the continuity of the hi implies that

lim
N→∞

∏
s/∈S

hs(f̃
N
ns(ts)) =

∏
s/∈S

hs(f̃
∞
ns (ts)). (4.27)

Combining (4.24), (4.25), (4.26), and (4.27) with the bounded convergence theorem
proves (4.23).

Step 3. In this step we use (4.23) to prove (4.20). The argument below is a standard
monotone class argument. For n ∈ N we define piecewise linear functions

χn(x, r) =


0, x > r + 1/n,

1− n(x− r), x ∈ [r, r + 1/n],

1, x < r.

We fix m1,m2 ∈ N, n1
1, . . . , n

1
m1
, n2

1, . . . , n
2
m2
∈ Σ, t11, . . . , t

1
m1
, t21, . . . , t

2
m2
∈ R, such that

(n1
i , t

1
i ) /∈ K × [a, b] and (n2

i , t
2
i ) ∈ K × [a, b] for all i. Then (4.23) implies that

E

[
m1∏
i=1

χn(f∞n1
i
(t1i ), ai)

m2∏
i=1

χn(f∞n2
i
(t2i ), bi)

]
=

E

[
m1∏
i=1

χn(f∞n1
i
(t1i ), ai)E

a,b,~x,~y,f,g
avoid

[
m2∏
i=1

χn(Qn2
i
(t2i ), bi)

]]
.
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Letting n → ∞, we have χn(x, r) → χ(x, r) = 1x≤r, and the bounded convergence
theorem gives

E

[
m1∏
i=1

χ(f∞n1
i
(t1i ), ai)

m2∏
i=1

χ(f∞n2
i
(t2i ), bi)

]
=E

[
m1∏
i=1

χ(f∞n1
i
(t1i ), ai)E

a,b,~x,~y,f,g
avoid

[
m2∏
i=1

χ(Qn2
i
(t2i ), bi)

]]
.

Let H denote the space of bounded Borel measurable functions H : C(K × [a, b]) → R

satisfying

E

[
m1∏
i=1

χ(f∞n1
i
(t1i ), ai)H(L∞|K×[a,b])

]
= E

[
m1∏
i=1

χ(f∞n1
i
(t1i ), ai)E

a,b,~x,~y,f,g
avoid [H(Q)]

]
. (4.28)

The above shows that H contains all functions 1A for sets A contained in the π-system A
consisting of sets of the form

{h ∈ C(K × [a, b]) : h(n2
i , t

2
i ) ≤ bi for i ∈ J1,m2K}.

We note thatH is closed under linear combinations simply by linearity of expectation, and
if Hn ∈ H are nonnegative bounded measurable functions converging monotonically to a
bounded function H, then H ∈ H by the monotone convergence theorem. Thus by the
monotone class theorem [16, Theorem 5.2.2], H contains all bounded σ(A)-measurable
functions. Since the finite dimensional sets in A generate the full Borel σ-algebra CK
(see for instance [12, Lemma 3.1]), we have in particular that F ∈ H.

Now let B denote the collection of sets B ∈ Fext(K × (a, b)) such that

E[1B · F (L∞|K×[a,b])] = E[1B · Ea,b,~x,~y,f,gavoid [F (Q)]]. (4.29)

We observe that B is a λ-system. Indeed, since (4.28) holds for H = F , taking ai, bi →∞
and applying the bounded convergence theorem shows that (4.29) holds with 1B = 1.
Thus if B ∈ B then Bc ∈ B since 1Bc = 1− 1B. If Bi ∈ B, i ∈ N, are pairwise disjoint and
B =

⋃
iBi, then 1B =

∑
i 1Bi , and it follows from the monotone convergence theorem

that B ∈ B. Moreover, (4.28) with H = F implies that B contains the π-system P of sets
of the form

{h ∈ C(Σ×R) : h(ni, ti) ≤ ai for i ∈ J1,m1K, where (ni, ti) /∈ K × (a, b)}.

By the π-λ theorem [16, Theorem 2.1.6] it follows that B contains σ(P ) = Fext(K× (a, b)).
Thus (4.29) holds for all B ∈ Fext(K × (a, b)). It is proven in [12, Lemma 3.4] that
E
a,b,~x,~y,f,g
avoid [F (Q)] is an Fext(K × (a, b))-measurable function. Therefore (4.20) follows

from (4.29) by the definition of conditional expectation. This suffices for the proof.

5 Bounding the max and min

In this section we prove Lemmas 4.2 and 4.3 and we assume the same notation as in
the statements of these lemmas. In particular, we assume that k ∈ N, k ≥ 2, p ∈ (0, 1),
α, λ > 0 are all fixed and {

LN = (LN1 , L
N
2 , . . . , L

N
k )
}∞
N=1

,

is an (α, p, λ)-good sequence of J1, kK-indexed Bernoulli line ensembles as in Defini-
tion 2.24 that are all defined on a probability space with measure P. The proof of
Lemma 4.2 is given in Section 5.1 and Lemma 4.3 is proved in Section 5.2.
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5.1 Proof of Lemma 4.2

Our proof of Lemma 4.2 is similar to that of [6, Lemma 5.2]. For clarity we split the
proof into three steps. In the first step we introduce some notation that will be required
in the proof of the lemma, which is presented in Steps 2 and 3.

Step 1. We write s4 = bdr+ 4eNαc, s3 = bb(r+ 3)cNαc, so that s3 ≤ t3 ≤ s4, and assume
that N is large enough so that ψ(N)Nα from Definition 2.24 is at least s4. Notice that
such a choice is possible by our assumption that LN is an (α, p, λ)-good sequence and in
particular, we know that LNi are defined at ±s4 for i ∈ J1, kK. We define events

E(M) =
{∣∣LN1 (−s4) + ps4

∣∣ > MNα/2
}
, F (M) =

{
LN1 (−s3) > −ps3 +MNα/2

}
,

G(M) =

{
sup

s∈[0,s4]

[
LN1 (s)− ps

]
≥ (6r + 22)(2r + 10)1/2(M + 1)Nα/2

}
.

If ε > 0 is as in the statement of the lemma, we note by (2.7) that we can find M and
Ñ1 sufficiently large so that if N ≥ Ñ1 we have

P(E(M)) < ε/4 and P(F (M)) < ε/12. (5.1)

In the remainder of this step we show that the event G(M) \E(M) can be written as a
countable disjoint union of certain events, i.e. we show that⊔

(a,b,s,`top,`bot)∈D(M)

E(a, b, s, `top, `bot) = G(M) \ E(M), (5.2)

where the sets E(a, b, s, `top, `bot) and D(M) are described below.
For a, b, z1, z2, z3 ∈ Z with z1 ≤ a, z2 ≤ b, s ∈ J0, s4K, `bot ∈ Ω(−s4, s, z1, z2) and `top ∈

Ω(s, s4, b, z3) we define E(a, b, s, `top, `bot) to be the event that LN1 (−s4) = a, LN1 (s) = b,
LN1 agrees with `top on Js, s4K, and LN2 agrees with `bot on J−s4, sK. Let D(M) be the set
of tuples (a, b, s, `top, `bot) satisfying

(1) 0 ≤ s ≤ s4,

(2) 0 ≤ b−a ≤ s+s4, |a+ps4| ≤MNα/2, and b−ps ≥ (6r+22)(2r+10)1/2(M +1)Nα/2,

(3) z1 ≤ a, z2 ≤ b, and `bot ∈ Ω(−s4, s, z1, z2),

(4) b ≤ z3 ≤ b+ (s4 − s), and `top ∈ Ω(s, s4, b, z3),

(5) if s < s′ ≤ s4, s′ ∈ Z then `top(s′)− ps′ < (6r + 22)(2r + 10)1/2(M + 1)Nα/2.

It is clear that D(M) is countable. The five conditions above together imply that⋃
(a,b,s,`top,`bot)∈D(M)

E(a, b, s, `top, `bot) = G(M) \ E(M),

and what remains to be shown to prove (5.2) is that E(a, b, s, `top, `bot) are pairwise
disjoint.

On the intersection of E(a, b, s, `top, `bot) and E(ã, b̃, s̃, ˜̀
top, ˜̀

bot) we must have ã =

LN1 (−s4) = a so that a = ã. Furthermore, we have by properties (2) and (5) that s ≥ s̃

and s̃ ≥ s from which we conclude that s = s̃ and then we conclude b̃ = b, `top = ˜̀
top,

`bot = ˜̀
bot. In summary, if E(a, b, s, `top, `bot) and E(ã, b̃, s̃, ˜̀

top, ˜̀
bot) have a non-trivial

intersection then (a, b, s, `top, `bot) = (ã, b̃, s̃, ˜̀
top, ˜̀

bot), which proves (5.2).
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Step 2. In this step we prove that we can find an N2 so that for N ≥ N2

P

(
sup

s∈[0,t3]

[
LN1 (s)− ps

]
≥ (6r + 22)(2r + 10)1/2(M + 1)Nα/2

)
≤ P(G(M)) < ε/2. (5.3)

A similar argument, which we omit, proves the same inequality with [−t3, 0] in place of
[0, t3] and then the statement of the lemma holds for all N ≥ N2, with R1 = (6r+ 22)(2r+

10)1/2(M + 1).
We claim that we can find Ñ2 ∈ N sufficiently large so that if N ≥ Ñ2 and

(a, b, s, `top, `bot) ∈ D(M) satisfies P(E(a, b, s, `top, `bot)) > 0 then we have

P
−s4,s,a,b,∞,`bot
avoid,Ber

(
`(−s3) > −ps3 +MNα/2

)
≥ 1

3
. (5.4)

We prove (5.4) in Step 3. For now we assume its validity and conclude the proof of (5.3).

Let (a, b, s, `top, `bot) ∈ D(M) be such that P(E(a, b, s, `top, `bot)) > 0. By the Schur
Gibbs property, see Definition 2.17, we have for any `0 ∈ Ω(−s4, s, a, b) that

P
(
LN1 J−s4, sK = `0 |E(a, b, s, `top, `bot)

)
= P

−s4,s,a,b,∞,`bot
avoid,Ber (` = `0), (5.5)

where LN1 J−s4, sK denotes the restriction of LN1 to the set J−s4, sK.
Combining (5.4) and (5.5) we get for N ≥ Ñ2

P
(
LN1 (−s3) > −ps3 +MNα/2|E(a, b, s, `top, `bot)

)
=

P
−s4,s,a,b,∞,`bot
avoid,Ber

(
`(−s3) > −ps3 +MNα/2

)
≥ 1

3
.

(5.6)

It follows from (5.6) that for N ≥ Ñ2 we have

ε/12 > P(F (M)) ≥
∑

(a,b,s,`top,`bot)∈D(M),
P(E(a,b,s,`top,`bot))>0

P (F (M) ∩ E(a, b, s, `top, `bot)) =

∑
(a,b,s,`top,`bot)∈D(M),
P(E(a,b,s,`top,`bot))>0

P
(
LN1 (−s3) > −ps3 +MNα/2|E(a, b, s, `top, `bot)

)
P (E(a, b, s, `top, `bot)) ≥

∑
(a,b,s,`top,`bot)∈D(M),
P(E(a,b,s,`top,`bot))>0

1

3
· P (E(a, b, s, `top, `bot)) =

1

3
· P(G(M) \ E(M)),

(5.7)

where in the last equality we used (5.2). From (5.1) and (5.7) we have for N ≥ N2 =

max(Ñ1, Ñ2)

P(G(M)) ≤ P(E(M)) + P(G(M) \ E(M)) < ε/4 + ε/4,

which proves (5.3).

Step 3. In this step we prove (5.4) and in the sequel we let (a, b, s, `top, `bot) ∈ D(M) be
such that P(E(a, b, s, `top, `bot)) > 0. We remark that the condition P(E(a, b, s, `top, `bot)) >

0 implies that Ωavoid(−s4, s, a, b,∞, `bot) is not empty. By Lemma 3.2 we know that

P
−s4,s,a,b,∞,`bot
avoid,Ber

(
`(−s3) > −ps3 +MNα/2

)
≥ P−s4,s,a,bBer

(
`(−s3) > −ps3 +MNα/2

)
,

and so it suffices to show that

P
−s4,s,a,b
Ber

(
`(−s3) > −ps3 +MNα/2

)
≥ 1

3
. (5.8)
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One directly observes that

P
−s4,s,a,b
Ber

(
`(−s3) > −ps3 +MNα/2

)
= P

0,s+s4,0,b−a
Ber

(
`(s4 − s3) + a ≥ −ps3 +MNα/2

)
≥

P
0,s+s4,0,b−a
Ber

(
`(s4 − s3) ≥ p(s4 − s3) + 2MNα/2

)
,

(5.9)

where the inequality follows from the assumption in (2) that a+ps4 ≥ −MNα/2. Moreover,
since b− ps ≥ (6r + 22)(2r + 10)1/2(M + 1)Nα/2 and a+ ps4 ≤MNα/2, we have

b−a ≥ p(s+s4)+(6r+21)(2r+10)1/2(M+1)Nα/2 ≥ p(s+s4)+(6r+21)(M+1)(s+s4)1/2.

The second inequality follows since s+ s4 ≤ 2s4 ≤ (2r + 10)Nα.
It follows from Lemma 3.8 with M1 = 0, M2 = (6r + 21)(M + 1) that for large N

P
0,s+s4,0,b−a
Ber

(
`(s4 − s3) ≥ s4 − s3

s+ s4
[p(s+ s4) +M2(s+ s4)1/2]− (s+ s4)1/4

)
≥ 1/3. (5.10)

Note that s4−s3
s+s4

≥ Nα

(2r+10)Nα = 1
2r+10 and so for all N ∈ N we have

s4 − s3

s+ s4
[p(s+ s4) +M2(s+ s4)1/2]− (s+ s4)1/4 ≥

p(s4 − s3) +
(6r + 21)(M + 1)(s+ s4)1/2

2r + 10
− (s+ s4)1/4 ≥ p(s4 − s3) + 2MNα/2.

(5.11)

Combining (5.9), (5.10) and (5.11) we conclude that we can find Ñ2 ∈ N such that if
N ≥ Ñ2 we have (5.8). This suffices for the proof.

5.2 Proof of Lemma 4.3

We mention that the general idea behind the proof of Lemma 4.3 has similarities with
the proof of [18, Proposition 2.7].

We begin by proving the following important lemma, which shows that it is unlikely
that the curve LNk−1 falls uniformly very low on a large interval.

Lemma 5.1. Under the same conditions as in Lemma 4.3 the following holds. For any
r, ε > 0 there exist R > 0 and N5 ∈ N such that for all N ≥ N5

P

(
sup

x∈[r,R]

(
LNk−1(xNα)− pxNα

)
≤ −(λR2 + φ2(ε/16) + 1)Nα/2

)
< ε, (5.12)

where λ, φ are as in the definition of an (α, p, λ)-good sequence of line ensembles, see
Definition 2.24. The same statement holds if [r,R] is replaced with [−R,−r] and the
constants N5, R depend on ε, r as well as the parameters α, p, λ, k and the functions φ2, ψ

from Definition 2.24.

Proof. Before we go into the proof we give an informal description of the main ideas.
The key to this lemma is the parabolic shift implicit in the definition of an (α, p, λ)-good
sequence. This shift requires that the deviation of the top curve LN1 from the line of slope
p to appear roughly parabolic. On the event in equation (5.12) we have that the (k−1)-th
curve dips very low uniformly on the interval [r,R] and we will argue that on this event
the top k − 2 curves essentially do not feel the presence of the (k − 1)-th curve. After a
careful analysis using the monotone coupling lemmas from Section 3.1 we will see that
the latter statement implies that the curve LN1 behaves like a free bridge between its
end-points that have been slightly raised. Consequently, we would expect the midpoint
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LN1 (Nα(R+ r)/2) to be close (on scale Nα/2) to [LN1 (rNα)+LN1 (RNα)]/2. However, with
high probability [LN1 (rNα) + LN1 (RNα)]/2 lies much lower than the inverted parabola
−λ(R + r)2Nα/2/4 (due to the concavity of the latter), and so it is very unlikely for
LN1 (Nα(R+ r)/2) to be near it by our assumption. The latter would imply that the event
in (5.12) is itself unlikely, since conditional on it an unlikely event became likely.

We proceed to fill in the details of the above sketch of the proof in the following steps.
In total there are six steps and we will only prove the statement of the lemma for the
interval [r,R], since the argument for [−R,−r] is very similar.

Step 1. We begin by specifying the choice of R in the statement of the lemma, fixing
some notation and making a few simplifying assumptions.

Fix r, ε > 0 as in the statement of the lemma. Note that for any R > r,

sup
r≤x≤R

(
LNk−1(xNα)− pxNα

)
≥ sup
dre≤x≤R

(
LNk−1(xNα)− pxNα

)
.

Thus by replacing r with dre, we can assume that r ∈ Z, which we do in the sequel.
Notice that by our assumption that LN is (α, p, λ)-good we know that (5.12) holds trivially
if k = 2 (with the right side of (5.12) being any number greater than ε/16 and in particular
ε) and so in the sequel we assume that k ≥ 3.

Define constants

C =

√
8p(1− p) log

3

1− (11/12)1/(k−2)
, (5.13)

and R0 > r sufficiently large so that for R ≥ R0 and N ∈ N we have

λ(R− r)2

4
≥ 2φ2(ε/16) + 2 + kdCdRNαe − brNαceN−α/2. (5.14)

We define R = dR0e+1dR0e+r odd, so that R ≥ R0 and the midpoint (R+r)/2 are integers.
This specifies our choice of R and for convenience we denote m = (R+ r)/2.

In the following, we always assume N is large enough so that ψ(N) > R, hence LNi
are defined at RNα for 1 ≤ i ≤ k. We may do so by the second condition in the definition
of an (α, p, λ)-good sequence (see Definition 2.24).

With the choice of R as above we define the events

A =
{
LN1 (mNα)− pmNα + λm2Nα/2 < −φ2(ε/16)Nα/2

}
,

B =

{
sup

x∈[r,R]

(
LNk−1(xNα)− pxNα

)
≤ −[λR2 + φ2(ε/16) + 1]Nα/2

}
.

(5.15)

The goal of the lemma is to prove that we can find N5 ∈ N so that for all N ≥ N5

P(B) < ε, (5.16)

which we accomplish in the steps below.

Step 2. In this step we introduce some notation that will be used throughout the next
steps. Let γ = brNαc and Γ = dRNαe. We also define the event

F =

{
sup

s∈{γ,Γ}

∣∣∣LN1 (s)− ps+ λs2N−α/2
∣∣∣ < [φ2(ε/16) + 1]Nα/2

}
. (5.17)

EJP 26 (2021), paper 135.
Page 44/93

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP698
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Tightness of Bernoulli Gibbsian line ensembles

In the remainder of this step we show F ∩B can be written as a countable disjoint union

F ∩B =
⊔

(~x,~y,`bot)∈D

E(~x, ~y, `bot), (5.18)

where the sets E(~x, ~y, `bot) and D are defined below.
For ~x, ~y ∈Wk−2, z1, z2 ∈ Z, and `bot ∈ Ω(γ,Γ, z1, z2), let E(~x, ~y, `bot) denote the event

that LNi (γ) = xi and LNi (Γ) = yi for 1 ≤ i ≤ k− 2, and LNk−1 agrees with `bot on [γ,Γ]. Let
D denote the set of triples (~x, ~y, `bot) satisfying

(1) 0 ≤ yi − xi ≤ Γ− γ for 1 ≤ i ≤ k − 2,

(2) |x1 − pγ + λγ2N−3α/2| < φ2(ε/16)Nα/2 and |y1 − pΓ + λΓ2N−3α/2| < φ2(ε/16)Nα/2,

(3) z1 ≤ xk−2, z2 ≤ yk−2, and `bot ∈ Ω(γ,Γ, z1, z2),

(4) supx∈[r,R][`bot(xN
α)− pxNα] ≤ −[λR2 + φ2(ε/16) + 1]Nα/2.

It is clear that D is countable, the events E(~x, ~y, `bot) are pairwise disjoint for different
elements in D and (5.18) is satisfied.

Step 3. We claim that we can find Ñ0 so that for N ≥ Ñ0 we have

P(A|E(~x, ~y, `bot)) ≥ 1/4 (5.19)

for all (~x, ~y, `bot) ∈ D such that P(E(~x, ~y, `bot)) > 0. We will prove (5.19) in the steps
below. In this step we assume its validity and conclude the proof of (5.16).

It follows from (5.18) and (5.19) that for N ≥ Ñ0 and P(F ∩B) > 0 we have

P(A|F ∩B) =
∑

(~x,~y,`bot)∈D,P(E(~x,~y,`bot)))>0

P(A|E(~x, ~y, `bot)P(E(~x, ~y, `bot))

P(F ∩B)
≥

1

4
·
∑

(~x,~y,`bot)∈D,P(E(~x,~y,`bot)))>0P(E(~x, ~y, `bot))

P(F ∩B)
=

1

4
.

From the third condition in the definition of an (α, p, λ)-good sequence, see Defini-
tion 2.24, we can find Ñ1 so that P(A) < ε/8 for N ≥ Ñ1. Hence if N ≥ max(Ñ1, Ñ2) and
P(F ∩B) > 0 we have

P(F ∩B) =
P(A ∩ F ∩B)

P(A|F ∩B)
≤ 4P(A) < ε/2. (5.20)

Lastly, by the same condition in Definition 2.24 we can find Ñ2 so that for N ≥ Ñ2

P(F c) = 2 · ε/8 = ε/4. (5.21)

In deriving (5.21) we used the fact that |LN1 (γ)− LN1 (rNα)| ≤ 1, |LN1 (Γ)− LN1 (RNα)| ≤ 1

and p ∈ [0, 1]. Combining (5.20) and (5.21) we conclude that if N ≥ N5 = max(Ñ0, Ñ1, Ñ2)

P(B) ≤ P(F ∩B) + P(F c) ≤ ε/2 + ε/4 < ε,

which proves (5.16).

Step 4. In this step we prove (5.19). We define ~x ′, ~y ′ ∈Wk−2 through

x′i = x+ (k − 1− i)dC
√
T e, y′i = y + (k − 1− i)dC

√
T e for i = 1, . . . , k − 2 with

x = dpγ − λγ2N−3α/2 +[φ2(ε/16) + 1]Nα/2e, y = dpΓ− λΓ2N−3α/2 +[φ2(ε/16) + 1]Nα/2e,
(5.22)
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where C is as in (5.13) and T = Γ− γ. Note that for any (~x, ~y, `bot) ∈ D we have

x′i ≥ x ≥ x1 ≥ xi and y′i ≥ y ≥ y1 ≥ yi

for each i = 1, . . . , k − 2. Furthermore,

x′i − x′i+1 ≥ C
√
T and y′i − y′i+1 ≥ C

√
T

for all i = 1, . . . , k − 2 with the convention x′k−1 = x and y′k−1 = y.

We claim that we can find Ñ0 so that for all N ≥ Ñ0 and (~x, ~y, `bot) ∈ D such that
P(E(~x, ~y, `bot)) > 0 we have

∏k−2
i=1 |Ω(γ,Γ, x′i, y

′
i)| ≥ |Ωavoid(γ,Γ, ~x′, ~y′,∞, `bot)| ≥ 1 and

moreover we have

P
γ,Γ,~x′,~y′

Ber

(
Q1 (mNα)− pmNα + λm2Nα/2 < −φ2(ε/16)Nα/2

)
≥ 1/3, (5.23)

P
γ,Γ,~x′,~y′

Ber (Q1 ≥ · · · ≥ Qk−1) ≥ 11/12, (5.24)

where Q = (Q1, . . . , Qk−2) is Pγ,Γ,~x
′,~y′

Ber -distributed and we used the convention that
Qk−1 = `bot. We prove (5.23) and (5.24) in the steps below. In this step we assume their
validity and conclude the proof of (5.19).

Observe that for any (~x, ~y, `bot) ∈ D such that P(E(~x, ~y, `bot)) > 0 we have the follow-
ing tower of inequalities provided that N ≥ Ñ0

P(A|E(~x, ~y, `bot)) = P
γ,Γ,~x,~y,∞,`bot
avoid,Ber

(
Q1 (mNα)− pmNα + λm2Nα/2 < −φ2(ε/16)Nα/2

)
≥

P
γ,Γ,~x′,~y′,∞,`bot
avoid,Ber

(
Q1 (mNα)− pmNα + λm2Nα/2 < −φ2(ε/16)Nα/2

)
=

P
γ,Γ,~x′,~y′

Ber

(
{Q1 (mNα)− pmNα + λm2Nα/2 < −φ2(ε/16)Nα/2} ∩ {Q1 ≥ · · · ≥ Qk−1}

)
P
γ,Γ,~x′,~y′

Ber (Q1 ≥ · · · ≥ Qk−1)
.

(5.25)

Let us elaborate on (5.25) briefly. The condition that P(E(~x, ~y, `bot)) > 0 is required to
ensure that the probabilities on the first line of (5.25) are well-defined and N ≥ Ñ0

ensures that all other probabilities are also well-defined. The equality on the first line of
(5.25) follows from the definition of A and the Schur Gibbs property, see Definition 2.17,
and Q = (Q1, . . . , Qk−2) is Pγ,Γ,~x,~y,∞,`botavoid,Ber -distributed. The inequality in the first line
of (5.25) follows from Lemma 3.1, while the equality in the second line follows from

Definition 2.15, and now Q = (Q1, . . . , Qk−2) is Pγ,Γ,~x
′,~y′

Ber -distributed with the convention
that Qk−1 = `bot.

Combining (5.23), (5.24) and (5.25) we conclude that

P(A|E(~x, ~y, `bot)) ≥ 1/3− 1/12 = 1/4,

which proves (5.19).

Step 5. In this step we prove (5.23). We observe that since P(E(~x, ~y, `bot)) > 0 we know
that |Ωavoid(γ,Γ, ~x, ~y,∞, `bot)| ≥ 1 and then we conclude from Lemma 2.16 that there
exist N̂1 ∈ N such that for N ≥ N̂1 we have |Ωavoid(γ,Γ, ~x′, ~y′,∞, `bot)| ≥ 1.

Below ` will be used for a generic random variable with law P·,·,·,·Ber , where the boundary
data changes from line to line. With x, y as in (5.22), write z = y − x and recall that

EJP 26 (2021), paper 135.
Page 46/93

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP698
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Tightness of Bernoulli Gibbsian line ensembles

T = Γ− γ. Then

P
γ,Γ,x′1,y

′
1

Ber

(
` (mNα)− pmNα + λm2Nα/2 < −φ2(ε/16)Nα/2

)
=

P
0,T,x′1,y

′
1

Ber

(
`(T/2)− pmNα + λm2Nα/2 < −φ2(ε/16)Nα/2

)
=

P
0,T,x,y
Ber

(
`(T/2)− pmNα + λm2Nα/2 < −φ2(ε/16)Nα/2 − (k − 2)dC

√
T e
)
≥

P
0,T,x,y
Ber

(
`(T/2)− x+ y

2
< λ

(
γ2 + Γ2

2N3α/2

)
− [2φ2(ε/16) + 1 + λm2]Nα/2 − kdC

√
T e
)

=

P
0,T,0,z
Ber

(
`(T/2)− z/2 < λ

(
γ2 + Γ2

2N3α/2

)
− [2φ2(ε/16) + 1 + λm2]Nα/2 − kdC

√
T e
)
.

(5.26)

The equalities in (5.26) follow from shifting the boundary data of the curve `, while the
inequality on the third line follows from the definition of x, y as in (5.22).

From our choice of R in Step 1 and the definition of γ,Γ we know that

λ
γ2 + Γ2

2N2α
− λm2 ≥ λ (R− r)2

4
− rλ

Nα
≥ 2φ2(ε/16) + 2 + kdC

√
T eN−α/2 − rλ

Nα
.

The last inequality and (5.26) imply

P
γ,Γ,x′1,y

′
1

Ber

(
` (mNα)− pmNα + λm2Nα/2 < −φ2(ε/16)Nα/2

)
≥

P
0,T,0,z
Ber

(
`(T/2)− z/2 < Nα/2 − rλN−α/2

)
.

(5.27)

Let P̃ be the probability measure on the space afforded by Theorem 3.3, supporting
a random variable `(T,z) with law P

0,T,0,z
Ber and a Brownian bridge Bσ with diffusion

parameter σ =
√
p(1− p). Then the probability in the last line of (5.26) is equal to

P
0,T,0,z
Ber

(
`(T/2)− z/2 < Nα/2 − rλN−α/2

)
= P̃

(
`(T,z)(T/2)− z/2 < Nα/2 − rλN−α/2

)
≥

P̃
(√

TBσ1/2 < 0 and ∆(T, z) < Nα/2 − rλN−α/2
)
≥ 1

2
− P̃

(
∆(T, z) ≥ Nα/2 − rλN−α/2

)
,

(5.28)

where we recall that ∆(T, z) is as in (3.2). Since as N →∞ we have

T ∼ (R− r)Nα and
|z − pT |2

T
∼ (R+ r),

we conclude from Corollary 3.5 that there exists N̂2 ∈ N such that if N ≥ max(N̂1, N̂2)

we have

P̃
(

∆(T, z) ≥ Nα/2 − rλN−α/2
)
≤ 1

6
. (5.29)

Combining (5.27), (5.28) and (5.29) we obtain (5.23).

Step 6. In this last step, we prove (5.24). Let `bot be the straight segment connecting
x and y, defined in (5.22). By construction, we have that there is N̂3 ∈ N such that if
N ≥ N̂3 we have for any (~x, ~y, `bot) ∈ D that `bot lies uniformly below the line segment
`bot, which in turn lies at least C

√
T below the straight segment connecting x′k−2 and

y′k−2. If N̂1 is as in Step 5 we conclude from Lemma 3.14 that there exists N̂4 ∈ N such

that if N ≥ max(N̂1, N̂3, N̂4) and P(E(~x, ~y, `bot)) > 0

P
γ,Γ,~x′,~y′

Ber (Q1 ≥ · · · ≥ Qk−1) ≥
(

1− 3e−C
2/8p(1−p)

)k−2

=
11

12
. (5.30)

EJP 26 (2021), paper 135.
Page 47/93

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP698
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Tightness of Bernoulli Gibbsian line ensembles

where the condition that N ≥ N̂1 is included to ensure that the probability Pγ,Γ,~x
′,~y′

Ber is
well-defined. In deriving (5.30) we also used (5.13), which implies

C =

√
8p(1− p) log

3

1− (11/12)1/(k−2)
≥
√

8p(1− p) log 3.

We see that (5.30) implies (5.24), which concludes the proof of the lemma.

In the remainder of this section we use Lemma 5.1 to prove Lemma 4.3.

Proof. (of Lemma 4.3) For clarity we split the proof into five steps.

Step 1. In this step we specify the choice of R2 in the statement of the lemma and
introduce some notation that will be used in the proof of the lemma, which is given in
Steps 2-5 below. Throughout we fix r, ε > 0. Define the constant

C1 =

√
16p(1− p) log

3

1− 2−1/(k−1)
. (5.31)

Let R > r + 3, M > 0 and Ñ1 ∈ N be such that for N ≥ Ñ1 we have that the event

B =

{
sup

x∈[r+3,R]

(
LNk−1(xNα)− pxNα

)
≥ −MNα/2

}
∩{

sup
x∈[−R,−r−3]

(
LNk−1(xNα)− pxNα

)
≥ −MNα/2

} (5.32)

satisfies
P (B) ≥ 1− ε/2. (5.33)

Such a choice of R,M, Ñ1 is possible by Lemma 5.1.
Let us set

s−1 = d−R ·Nαe, s−2 = b−(r + 3) ·Nαc, s+
1 = d(r + 3) ·Nαe, s+

2 = bR ·Nαc,

and for a ∈ Js−1 , s
−
2 K and b ∈ Js+

1 , s
+
2 K we define ~x ′, ~y ′ ∈Wk−1 by

x′i = bpa−MNα/2c − (i− 1)dC1(2R)1/2Nα/2e,

y′i = bpb−MNα/2c − (i− 1)dC1(2R)1/2Nα/2e,
(5.34)

for i = 1, . . . , k − 1. We will write ~z = ~y′ − ~x′, and we note that zk−1 ≥ p(b − a) − 1 and
also 2RNα ≥ b − a ≥ 2(r + 3)Nα. The latter and Lemma 3.10 imply that there exists
R2 > 0 and Ñ2 ∈ N such that if N ≥ Ñ2 we have

P
0,b−a,0,zk−1

Ber

(
inf

s∈[0,b−a]

(
`(s)− ps

)
≤ −(R2 −M − C1(2R)1/2k)Nα/2

)
< ε/4. (5.35)

This fixes our choice of R2 in the statement of the lemma.

With the above choice of R2 we define the event

A =

{
inf

s∈[−t3,t3]

[
LNk−1(s)− ps

]
≤ −R2N

α/2

}
, (5.36)

and then to prove the lemma it suffices to show that there exists N4 ∈ N such that for
N ≥ N4

P(A) < ε (5.37)
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Step 2. In this step, we prove that the event B from (5.32) can be written as a countable
disjoint union of the form

B =
⊔

(a,b,~x,~y,`bot,`
−
top,`

+
top)∈D

E(a, b, ~x, ~y, `bot, `
−
top, `

+
top), (5.38)

where the set D and events E(a, b, ~x, ~y, `bot, `
−
top, `

+
top) are defined below.

For a ∈ Js−1 , s
−
2 K and b ∈ Js+

1 , s
+
2 K, ~x, ~y ∈ Wk−1, z1, z2, z

−
1 , z

+
2 ∈ Z, `bot ∈ Ω(a, b, z1, z2),

`−top ∈ Ω(s−1 , a, z
−
1 , xk−1), `+top ∈ Ω(b, s+

2 , yk−1, z
+
2 ) we define E(a, b, ~x, ~y, `bot, `

−
top, `

+
top) to be

the event that LNi (a) = xi and LNi (b) = yi for 1 ≤ i ≤ k − 1, and LNk agrees with `bot on
Ja, bK, LNk−1 agrees with `−top on Js−1 , aK and with `+top on Jb, s+

2 K.
We also let D be the collection of tuples (a, b, ~x, ~y, `bot, `

−
top, `

+
top) satisfying:

(1) a ∈ Js−1 , s
−
2 K, b ∈ Js+

1 , s
+
2 K;

(2) ~x, ~y ∈Wk−1, 0 ≤ yi − xi ≤ b− a, xk−1 − pa > −MNα/2, and yk−1 − pb > −MNα/2;

(3) if c ∈ Js−1 , s
−
2 K ∩ (−∞, a) then `−top(c)− pc ≥ −MNα/2;

(4) if d ∈ Js+
1 , s

+
2 K ∩ (b,∞) then `+top(d)− pd ≥ −MNα/2;

(5) z1 ≤ xk−1, z2 ≤ yk−1, and `bot ∈ Ω(a, b, z1, z2).

It is clear that D is countable, and that

B =
⋃

(a,b,~x,~y,`bot)∈D

E(a, b, ~x, ~y, `bot, `
−
top, `

+
top),

so to prove (5.38) it suffices to show that the events E(a, b, ~x, ~y, `bot, `
−
top, `

+
top) are pairwise

disjoint. Observe that on the intersection of E(a, b, ~x, ~y, `bot, `
−
top, `

+
top) and

E(ã, b̃, ~̃x, ~̃y, ˜̀
bot, ˜̀−

top,
˜̀+
top), conditions (2) and (3) imply that a = ã, while conditions (2)

and (4) that b = b̃. Afterwards, we conclude that ~x = ~̃x, ~y = ~̃y, `bot = ˜̀
bot, `

−
top = ˜̀−

top and

`+top = ˜̀+
top, confirming (5.38).

Step 3. In this step we prove (5.37). We claim that we can find Ñ3 ∈ N such that if
N ≥ Ñ3 and (a, b, ~x, ~y, `bot, `

−
top, `

+
top) ∈ D is such that P

(
E(a, b, ~x, ~y, `bot, `

−
top, `

+
top)
)
> 0

P(A |E(a, b, ~x, ~y, `bot, `
−
top, `

+
top)) < ε/2. (5.39)

We will prove (5.39) in the steps below. Here we assume its validity and conclude the
proof of (5.37).

If N ≥ max(Ñ1, Ñ2, Ñ3) we have in view of (5.38) and (5.39) that

P(A) ≤ P(A ∩B) + P(Bc) = P(Bc) +
∑

(a,b,~x,~y,`bot,`
−
top,`

+
top)∈D

P(E(a,b,~x,~y,`bot,`
−
top,`

+
top))>0

P(A|E(a, b, ~x, ~y, `bot, `
−
top, `

+
top))×

P(E(a, b, ~x, ~y, `bot, `
−
top, `

+
top)) ≤ P(Bc) +

ε

2

∑
(a,b,~x,~y,`bot,`

−
top,`

+
top)∈D

P(E(a,b,~x,~y,`bot,`
−
top,`

+
top))>0

P(E(a, b, ~x, ~y, `bot, `
−
top, `

+
top)) =

P(Bc) +
ε

2
· P(B) < ε,

where in the last inequality we used (5.33). The above inequality clearly implies (5.37).
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Step 4. In this step we prove (5.39). We claim that there exists Ñ4 ∈ N such that if
N ≥ Ñ4, a ∈ Js−1 , s

−
2 K and b ∈ Js+

1 , s
+
2 K we have that

∏k−1
i=1 |Ω(a, b, x′i, y

′
i)| ≥ 1 and

P
a,b,~x′,~y′

Ber (Q1 ≥ · · · ≥ Qk−1) ≥ 1

2
, (5.40)

where Q = (Q1, . . . , Qk−1) is Pa,b,~x
′,~y′

Ber -distributed and we recall that ~x′, ~y′ were defined
in (5.34). We will prove (5.40) in Step 5 below. Here we assume its validity and conclude
the proof of (5.39).

Observe that by condition (2) in Step 2, we have that x′i ≤ pa−MNα/2 ≤ xk−1 ≤ xi,
and similarly y′i ≤ pb−MNα/2 ≤ yk−1 ≤ yi for i = 1, . . . , k − 1. From this observation we
conclude that if N ≥ Ñ4 is sufficiently large and (a, b, ~x, ~y, `bot, `

−
top, `

+
top) ∈ D is such that

P
(
E(a, b, ~x, ~y, `bot, `

−
top, `

+
top)
)
> 0 we have

P(A|E(a, b, ~x, ~y, `bot, `
−
top, `

+
top)) ≤

P

(
inf

s∈[a,b]

(
LNk−1(s)− ps

)
≤ −R2N

α/2
∣∣E(a, b, ~x, ~y, `bot, `

−
top, `

+
top)

)
=

P
a,b,~x,~y,∞,`bot
avoid,Ber

(
inf

s∈[a,b]
(Qk−1(s)− ps) ≤ −R2N

α/2

)
≤

P
a,b,~x′,~y′

avoid,Ber

(
inf

s∈[a,b]

(
Qk−1(s)− ps

)
≤ −R2N

α/2

)
=

P
a,b,~x′,~y′

Ber

(
{infs∈[a,b]

(
Qk−1(s)− ps

)
≤ −R2N

α/2} ∩ {Q1 ≥ · · · ≥ Qk−1}
)

P
a,b,~x ′,~y ′

Ber (Q1 ≥ · · · ≥ Qk−1)
≤

P
a,b,~x′,~y′

Ber

(
infs∈[a,b]

(
Qk−1(s)− ps

)
≤ −R2N

α/2
)

P
a,b,~x ′,~y ′

Ber (Q1 ≥ · · · ≥ Qk−1)
.

(5.41)

Let us elaborate on (5.41) briefly. The first inequality in (5.41) follows from the def-
inition of A and the fact that a ≤ −t3 while b ≥ t3 by construction. The condition
P
(
E(a, b, ~x, ~y, `bot, `

−
top, `

+
top)
)
> 0 ensures that the first three probabilities in (5.41) are

all well-defined. The equality on the second line follows from the Schur Gibbs property
and the inequality on the third line follows from Lemmas 3.1 and 3.2 since x′i ≤ xi and
y′i ≤ yi by construction. To ensure that the probability in the fourth line is well-defined
(and hence Lemmas 3.1 and 3.2 are applicable) it suffices to assume that N ≥ Ñ4, in view
of Lemma 2.16. The equality on the fourth line follows from the definition of Pa,b,~x

′,~y′

avoid,Ber,
see Definition 2.15 and the last inequality is trivial.

By our choice of R2, see (5.35), we know that there is Ñ5 ∈ N such that if N ≥ Ñ5

P
a,b,~x′,~y′

Ber

(
inf

s∈[a,b]

(
Qk−1(s)− ps

)
≤ −R2N

α/2

)
=

P
0,b−a,0,zk−1

Ber

(
inf

s∈[0,b−a]

(
`(s)− ps

)
≤ −R2N

α/2 − x′k−1

)
≤

P
0,b−a,0,zk−1

Ber

(
inf

s∈[0,b−a]

(
`(s)− ps

)
≤ −(R2 −M − C1(2R)1/2k)Nα/2

)
< ε/4.

(5.42)

Combining (5.40), (5.41) and (5.41) we conclude that for N ≥ Ñ3 = max(Ñ4, Ñ5) we have

P(A|E(a, b, ~x, ~y, `bot, `
−
top, `

+
top)) < 2 · ε/4 = ε/2,

which implies (5.39).
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Step 5. In this final step we prove (5.40). Set T = b− a and note that by our assumption
that a ∈ Js−1 , s

−
2 K and b ∈ Js+

1 , s
+
2 K we know that (2r+6)Nα ≤ T ≤ 2RNα. This implies that

1 + C1(2R)1/2Nα/2 ≥ x′i − x′i+1 ≥ C1

√
T and likewise for y′i. It follows from Lemma 3.14,

applied with `bot = −∞ that there is Ñ4 ∈ N such that if N ≥ Ñ4 we have T ≥ y′i − x′i ≥ 0

for all i so that
∏k−1
i=1 |Ω(a, b, x′i, y

′
i)| ≥ 1 and moreover

P
a,b,~x′,~y′

Ber (Q1 ≥ · · · ≥ Qk−1) = P
0,b−a,~x′,~y′
Ber (Q1 ≥ · · · ≥ Qk−1) ≥(

1− 3e−C
2
1/8p(1−p)

)k−1

≥ 1/2
(5.43)

In deriving (5.43) we also used (5.31), which implies

C1 =

√
16p(1− p) log

3

1− 2−1/(k−1)
≥
√

8p(1− p) log 3.

Equation (5.43) clearly implies (5.40) and this concludes the proof of the lemma.

6 Lower bounds on the acceptance probability

We prove Lemma 4.4 in Section 6.1 by using Lemma 6.2, whose proof is presented in
Section 6.2.

6.1 Proof of Lemma 4.4

Throughout this section we assume the same notation as in Lemma 4.4, i.e., we
assume that we have fixed k ∈ N, p ∈ (0, 1), M1,M2 > 0, `bot : J−t3, t3K→ R∪ {−∞}, and
~x, ~y ∈Wk−1 such that |Ωavoid(−t3, t3, ~x, ~y,∞, `bot)| ≥ 1. We also assume that

1. sups∈[−t3,t3]

[
`bot(s)− ps

]
≤M2(2t3)1/2,

2. −pt3 +M1(2t3)1/2 ≥ x1 ≥ xk−1 ≥ max
(
`bot(−t3),−pt3 −M1(2t3)1/2

)
,

3. pt3 +M1(2t3)1/2 ≥ y1 ≥ yk−1 ≥ max
(
`bot(t3), pt3 −M1(2t3)1/2

)
.

Definition 6.1. We write S = J−t3,−t1K ∪ Jt1, t3K, and we denote by Q = (Q1, . . . , Qk−1)

and Q̃ = (Q̃1, . . . , Q̃k−1) the J1, k − 1K-indexed line ensembles uniformly distributed on
Ωavoid(−t3, t3, ~x, ~y,∞, `bot) and Ωavoid(−t3, t3, ~x, ~y,∞, `bot;S) respectively. We let PQ and
PQ̃ denote these uniform measures.

In other words, Q̃ has the law of k − 1 independent Bernoulli bridges that have been
conditioned on not-crossing each other on the set S and also staying above the graph of
`bot but only on the intervals J−t3,−t1K and Jt1, t3K. The latter restriction means that the
lines are allowed to cross on J−t1 + 1, t1 − 1K, and Q̃k−1 is allowed to dip below `bot on
J−t1 + 1, t1 − 1K as well.

Lemma 6.2. There exists N5 ∈ N and constants g, h > 0 such that for N ≥ N5 we have

PQ̃

(
Z
(
− t1, t1, Q̃(−t1), Q̃(t1), `botJ−t1, t1K

)
≥ g
)
≥ h. (6.1)

We will prove Lemma 6.2 in Section 6.2. In the remainder of this section, we give
the proof of Lemma 4.4 using Lemma 6.2. The proof begins by evaluating the Radon-
Nidokym derivative between PQ′ and PQ̃′ . We then use this Radon-Nikodym derivative

to transition between Q̃ in Lemma 6.2 which ignores `bot on J−(t1 − 1), t1 − 1K and Q in
Lemma 4.4 which avoids `bot everywhere.

Proof of Lemma 4.4. Let us denote by PQ′ and PQ̃′ the measures on J1, k − 1K-indexed

Bernoulli line ensembles Q′, Q̃′ on the set S in Definition 6.1 induced by the restrictions
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of the measures PQ, PQ̃ to S. Also let us write Ωa(·) for Ωavoid(·) for simplicity, and

denote by Ωa(S) the set of elements of Ωavoid(−t3, t3, Q̃(−t3), Q̃(t3)) restricted to S. We
claim the Radon-Nikodym derivative between these two restricted measures on elements
B = (B1, . . . , Bk−1) of Ωa(S) is given by

dPQ′

dPQ̃′
(B) =

PQ′(B)

PQ̃′(B)
= (Z ′)−1Z (−t1, t1,B (−t1) ,B (t1) , `botJ−t1, t1K) , (6.2)

with Z ′ = EQ̃′ [Z (−t1, t1,B(−t1),B(t1), `botJ−t1, t1K)]. The first equality holds simply
because the measures are discrete. To prove the second equality, observe that

PQ′(B) =
|Ωa(−t1, t1,B(−t1),B(t1), `botJ−t1, t1K)|
|Ωa(−t3, t3,Q(−t3),Q(t3), `bot)|

,

PQ̃′(B) =

∏k−1
i=1 |Ω(−t1, t1, Bi(−t1), Bi(t1))|

|Ωa(−t3, t3, Q̃(−t3), Q̃(t3), `bot;S)|

(6.3)

These identities follow from the restriction, and the fact that the measures are uniform.
Then from Definition 2.22 we know

Z(−t1, t1,B(−t1),B(t1), `bot) =
|Ωa(−t1, t1,B(−t1),B(t1), `botJ−t1, t1K)|∏k−1

i=1 |Ω(−t1, t1, Bi(−t1), Bi(t1))|
and hence

Z ′ =
∑

B∈Ωa(S)

∏k−1
i=1 |Ω(−t1, t1, Bi(−t1), Bi(t1))|

|Ωa(−t3, t3, Q̃(−t3), Q̃(t3), `bot;S)|
· |Ωa(−t1, t1,B(−t1),B(t1), `bot)|∏k−1

i=1 |Ω(−t1, t1, Bi(−t1), Bi(t1))|
=

∑
B∈Ωa(S) |Ωa(−t1, t1,B(−t1),B(t1), `bot)|
|Ωa(−t3, t3, Q̃(−t3), Q̃(t3), `bot;S)|

=
|Ωa(−t3, t3,Q(−t3),Q(t3), `bot)|
|Ωa(−t3, t3, Q̃(−t3), Q̃(t3), `bot;S)|

.

Comparing the above identities proves the second equality in (6.2).
Now note that Z (−t1, t1,B(−t1),B(t1), `botJ−t1, t1K) is a deterministic function of

((B(−t1),B(t1)). In fact, the law of ((B(−t1),B(t1)) under PQ̃′ is the same as that of(
Q̃(−t1), Q̃(t1)

)
by way of the restriction. It follows from Lemma 6.2 that

Z ′ = EQ̃′ [Z (−t1, t1,B(−t1),B(t1), `botJ−t1, t1K)]
= EQ̃ [Z (−t1, t1,Q(−t1),Q(t1), `botJ−t1, t1K)] ≥ gh,

which gives us

(Z ′)−1 ≤ 1

gh
. (6.4)

Similarly, the law of (B(−t1),B(t1)) under PQ′ is the same as that of (Q(−t1),Q(t1))

under PQ. Hence

PQ

(
Z(−t1, t1,Q(−t1),Q(t1), `botJ−t1, t1K) ≤ ghε̃

)
=

PQ′

(
Z (−t1, t1,B(−t1),B(t1), `botJ−t1, t1K) ≤ ghε̃

)
.

(6.5)

Now let us write E = {Z (−t1, t1,B(−t1),B(t1), `botJ−t1, t1K) ≤ ghε̃} ⊂ Ωa(S). Then
according to (6.2), we have

PQ′(E) =

∫
Ωa(S)

1E dPQ′ = (Z ′)−1

∫
Ωa(S)

1E ·Z (−t1, t1,B(−t1),B(t1), `botJ−t1, t1K) dPQ̃′(B).

From the definition of E, the inequality (6.4), and the fact that 1E ≤ 1, it follows that

PQ′(E) ≤ (Z ′)−1

∫
Ωa(S)

1E · ghε̃ dPQ̃′ ≤
1

gh

∫
Ωa(S)

ghε̃ dPQ̃′ ≤ ε̃.

In combination with (6.5), this proves (4.2) with h̃ = gh.
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6.2 Proof of Lemma 6.2

In this section, we prove Lemma 6.2. We first state and prove two auxiliary lemmas
necessary for the proof. The first lemma establishes a set of conditions under which we
have the desired lower bound on the acceptance probability.

Lemma 6.3. Let ε > 0 and V top > 0 be given such that V top > M2 + 6(k − 1)ε. Suppose
further that ~a,~b ∈Wk−1 are such that

1. V top(2t3)1/2 ≥ a1 + pt1 ≥ ak−1 + pt1 ≥ (M2 + 2ε)(2t3)1/2;

2. V top(2t3)1/2 ≥ b1 − pt1 ≥ bk−1 − pt1 ≥ (M2 + 2ε)(2t3)1/2;

3. ai − ai+1 ≥ 3ε(2t3)1/2 and bi − bi+1 ≥ 3ε(2t3)1/2 for i = 1, . . . , k − 2.

Then we can find g = g(ε, V top,M2) > 0 and N6 ∈ N such that for all N ≥ N6 we have

Z
(
− t1, t1,~a,~b, `botJ−t1, t1K

)
≥ g. (6.6)

Proof. Observe by the rightmost inequalities in conditions (1) and (2) in the hypothesis,
as well as condition (1) in Lemma 4.4, that `bot lies a distance of at least 2ε(2t3)1/2 ≥
2ε(2t1)1/2 uniformly below the line segment connecting ak−1 and bk−1. Also note that (1)
and (2) imply |bi − ai − 2pt1| ≤ (V top −M2 − 2ε)(2t3)1/2 for each i. Lastly noting (3), we
see that the conditions of Lemma 3.14 are satisfied with C = 2ε. This implies (6.6), with

g =

(
1

2
−
∞∑
n=1

(−1)n−1e−ε
2n2/2p(1−p)

)k−1

.

The next lemma helps us derive the lower bound h in (6.1).

Lemma 6.4. For any R > 0 we can find V t1 , V
b
1 ≥M2 +R, h1 > 0 and N7 ∈ N (depending

on R) such that if N ≥ N7 we have

PQ̃

(
(2t3)1/2V t1 ≥ Q̃1(±t2)∓ pt2 ≥ Q̃k−1(±t2)∓ pt2 ≥ (2t3)1/2V b1

)
≥ h1. (6.7)

Proof. We first define the constants V b1 and h1, as well as two other constants C and K1

to be used in the proof. We put

C =

√
8p(1− p) log

3

1− (11/12)1/(k−2)
,

V b1 = M1 + Ck +M2 +R, K1 = (4r + 10)V b1 ,

h1 =
2k/2−5

(
1− 2e−4/p(1−p))2k

(πp(1− p))k/2
exp

(
−2k(K1 +M1 + 6)2

p(1− p)

)
.

(6.8)

Note in particular that V b1 > M2 +R. We will fix V t1 > V b1 in Step 3 below depending on
h1. We will prove in the following steps that for these choices of V b1 , V

t
1 , h1, we can find

N7 so that for N ≥ N7 we have

PQ̃

(
Q̃k−1(±t2)∓ pt2 ≥ (2t3)1/2V b1

)
≥ 2h1, (6.9)

PQ̃

(
Q̃1(±t2)∓ pt2 > (2t3)1/2V t1

)
≤ h1. (6.10)

Assuming the validity of the claim, we then observe that the probability in (6.7) is
bounded below by 2h1 − h1 = h1, proving the lemma. We will prove (6.9) and (6.10) in
three steps.
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Step 1. In this step we prove that there exists N7 so that (6.9) holds for N ≥ N7,
assuming results from Step 2 below. We condition on the value of Q̃ at 0 and divide Q̃

into two independent line ensembles on [−t3, 0] and [0, t3]. Observe by Lemma 3.2 that

PQ̃

(
Q̃k−1(±t2)∓ pt2 ≥ (2t3)1/2V b1

)
≥ P−t3,t3,~x,~yavoid,Ber;S

(
Q̃k−1(±t2)∓ pt2 ≥ (2t3)1/2V b1

)
.

(6.11)
With K1 as in (6.8), we define the events

E~z =
{(
Q̃1(0), . . . , Q̃k−1(0)

)
= ~z
}
,

X =
{
~z ∈Wk−1 : zk−1 ≥ K1(2t3)1/2 and P−t3,t3,~x,~yavoid,Ber;S(E~z) > 0

}
,

and E =
⊔
~z∈X E~z. By Lemma 2.16, we can choose Ñ0 large depending on M1, C, k,M2, R

so that X is non-empty for N ≥ Ñ0. By Lemma 3.16 we can find Ñ1 so that

P
−t3,t3,~x,~y
avoid,Ber;S(E) ≥ P−t3,t3,~x,~yavoid,Ber;S

(
Q̃k−1(0) ≥ K1(2t3)1/2

)
≥ A exp

(
−2k(K1 +M1 + 6)2

p(1− p)

)
(6.12)

for N ≥ Ñ1, where A = A(p, k) is a constant given explicitly in (3.22).
Now let Q̃1

i and Q̃2
i denote the restrictions of Q̃i to [−t3, 0] and [0, t3] respectively for

1 ≤ i ≤ k − 1, and write S1 = S ∩ J−t3, 0K, S2 = S ∩ J0, t3K. We observe that if ~z ∈ X, then

P
−t3,t3,~x,~y
avoid,Ber;S

(
Q̃1
k−1 = `1, Q̃

2
k−1 = `2 |E~z

)
= P

−t3,0,~x,~z
avoid,Ber;S1

(`1) · P0,t3,~z,~y
avoid,Ber;S2

(`2). (6.13)

In Step 2, we will find Ñ2 so that for N ≥ Ñ2 we have

P
−t3,0,~x,~z
avoid,Ber;S1

(
Q̃1
k−1(−t2) + pt2 ≥ (2t3)1/2V b1

)
≥ 1

4
,

P
0,t3,~x,~z
avoid,Ber;S2

(
Q̃2
k−1(t2)− pt2 ≥ (2t3)1/2V b1

)
≥ 1

4
.

(6.14)

Using (6.12), (6.13), and (6.14), we conclude that

P
−t3,t3,~x,~y
avoid,Ber;S

(
Q̃k−1(±t2)∓ pt2 ≥ (2t3)1/2V b1

)
≥ A

16
exp

(
−2k(K1 +M1 + 6)2

p(1− p)

)
for N ≥ N7 = max(Ñ0, Ñ1, Ñ2). In combination with (6.11), this proves (6.9) with
h1 = A/16 as in (6.8).

Step 2. In this step, we prove the inequalities in (6.14) from Step 1, using Lemma 3.8.
Let us define vectors ~x ′, ~z ′, ~y ′ by

x′i = b−pt3 −M1(2t3)1/2c − (i− 1)dC(2t3)1/2e,

z′i = bK1(2t3)1/2c − (i− 1)dC(2t3)1/2e,

y′i = bpt3 −M1(2t3)1/2c − (i− 1)dC(2t3)1/2e.

Note that x′i ≤ xk−1 ≤ xi and x′i − x′i+1 ≥ C(2t3)1/2 for 1 ≤ i ≤ k − 1, and likewise for
z′i, y

′
i. By Lemma 3.1 we have

P
−t3,0,~x,~z
avoid,Ber;S1

(
Q̃1
k−1(−t2) + pt2≥(2t3)1/2V b1

)
≥P−t3,0,~x

′,~z ′

avoid,Ber;S1

(
Q̃1
k−1(−t2) + pt2≥(2t3)1/2V b1

)
≥P−t3,0,x

′
k−1,z

′
k−1

Ber

(
`1(−t2) + pt2≥(2t3)1/2V b1

)
−
(

1− P−t3,t3,~x
′,~z ′

Ber

(
Q̃1

1≥· · ·≥Q̃1
k−1

))
.

(6.15)
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To bound the first term on the second line, first note that x′k−1 ≥ −pt3 − (M1 + C(k −
1))(2t3)1/2 and z′k−1 ≥ K1(2t3)1/2 − C(k − 1)(2t3)1/2 for sufficiently large N . Let us write

x̃, z̃ for these two lower bounds. Then by Lemma 3.8, we have an Ñ3 so that for N ≥ Ñ3,

P
−t3,0,x′k−1,z

′
k−1

Ber

(
`1(−t2) ≥ t2

t3
x̃+

t3 − t2
t3

z̃ − (2t3)1/4

)
≥ 1

3
. (6.16)

Moreover, as long as Ñα
3 > 2, we have for N ≥ Ñα

3 that

t3 − t2
t3

≥ 1− (r + 2)Nα

(r + 3)Nα − 1
> 1− r + 2

r + 5/2
=

1

2r + 5
. (6.17)

It follows from our choice of V b1 and K1 = 2(2r + 5)V b1 in (6.8), as well as (6.17), that

t2
t3
x̃+

t3 − t2
t3

z̃ − (2t3)1/4 = −pt2 − C(k − 1)(2t3)1/2 − t2
t3
M1(2t3)1/2+

t3 − t2
t3

K1(2t3)1/2 − (2t3)1/4 ≥ −pt2 − Ck(2t3)1/2 −M1(2t3)1/2 +
1

2r + 5
K1(2t3)1/2

= −pt2 + (M1 + Ck + 2(M2 +R))(2t3)1/2 > −pt2 + (2t3)1/2V b1 .

For the first inequality, we used the fact that t2/t3 < 1, and we assumed that Ñ3 is
sufficiently large so that C(k−1)(2t3)1/2 +(2t3)1/4 ≤ Ck(2t3)1/2 for N ≥ Ñ3. Using (6.16),
we conclude for N ≥ Ñ3

P
−t3,0,x′k−1,z

′
k−1

Ber

(
`1(−t2) + pt2 ≥ (2t3)1/2V b1

)
≥ 1

3
. (6.18)

Since |z′i − x′i − pt2| ≤ (K1 +M1 + 1)(2t2)1/2, we have by Lemma 3.14 and our choice of
C that the second probability in the second line of (6.15) is bounded below by(

1− 3e−C
2/8p(1−p)

)k−1

≥ 11/12

for N larger than some Ñ4. It follows from (6.15) and (6.18) that for N ≥ Ñ2 =

max(Ñ3, Ñ4),

P
−t3,0,~x,~z
avoid,Ber;S1

(
Q̃1
k−1(−t2) + pt2 ≥ (2t3)1/2V b1

)
≥ 1

3
− 1

12
=

1

4
,

proving the first inequality in (6.14). The second inequality is proven similarly.

Step 3. In this last step, we fix V t1 and prove that we can enlarge N7 from Step 1 so
that (6.10) holds for N ≥ N7. Let C be as in (6.8), and define vectors ~x ′′, ~y ′′ ∈Wk−1 by

x′′i = d−pt3 +M1(2t3)1/2e+ (k − i)dC(2t3)1/2e,

y′′i = dpt3 +M1(2t3)1/2e+ (k − i)dC(2t3)1/2e.

Note that x′′i ≥ x1 ≥ xi and x′′i − x′′i+1 ≥ C(2t3)1/2, and likewise for y′′i . Moreover, `bot lies
a distance of at least C(2t3)1/2 uniformly below the line segment connecting x′′k−1 and
y′′k−1. By Lemma 3.1 we have

PQ̃

(
Q̃1(±t2)∓ pt2 > (2t3)1/2V t1

)
≤

P
−t3,t3,~x ′′,~y ′′,∞,`bot
avoid,Ber;S

(
sup

s∈[−t3,t3]

[
Q̃1(s)− ps

]
≥ (2t3)1/2V t1

)
≤

P
−t3,t3,x′′1 ,y

′′
1

Ber

(
sups∈[−t3,t3]

[
L̃1(s)− ps

]
≥ (2t3)1/2V t1

)
P
−t3,t3,~x ′′,~y ′′
Ber

(
L̃1 ≥ · · · ≥ L̃k−1 ≥ `bot

) .
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In the numerator in the third line, we used the fact that the curves L̃1, . . . , L̃k−1 are

independent under P
−t3,t3,x′′1 ,y

′′
1

Ber , and the event in the parentheses depends only on L̃1.
By Lemma 3.10, since min(x′′1 + pt3, y

′′
1 − pt3) ≤ (M1 + C(k − 1))(2t3)1/2, we can choose

V t1 > V b1 as well as Ñ5 large enough so that the numerator is bounded above by h1/2 for
N ≥ Ñ5. Since |y′′i −x′′i −2pt3| ≤ 1, our choice of C and Lemma 3.14 give a Ñ6 so that the
denominator is at least 11/12 for N ≥ Ñ6. This gives an upper bound of 12/11 · h1/2 < h1

in the above as long as N7 ≥ max(Ñ5, Ñ6), which concludes the proof of (6.10).

We are now equipped to prove Lemma 6.2. Let us put for convenience

t12 =

⌊
t1 + t2

2

⌋
. (6.19)

Proof. (of Lemma 6.2) We first introduce some notation to be used in the proof. Let S
be as in Definition 6.1. For ~c, ~d ∈ Wk−1, let us write S̃ = J−t2,−t1K ∪ Jt1, t2K, Ω̃(~c, ~d) =

Ωavoid(−t2, t2,~c, ~d,∞, `bot; S̃). For s ∈ S̃ we define events

A(~c, ~d, s) =
{
Q̃ ∈ Ω̃(~c, ~d) : Q̃k−1(±s)∓ ps ≥ (M2 + 1)(2t3)1/2

}
,

B(~c, ~d, V top, s) =
{
Q̃ ∈ Ω̃(~c, ~d) : Q̃1(±s)∓ ps ≤ V top(2t3)1/2

}
,

C(~c, ~d, ε, s) =

{
Q̃ ∈ Ω̃(~c, ~d) : min

1≤i≤k−2, ς∈{−1,1}

[
Q̃i(ςs)− Q̃i+1(ςs)

]
≥ 3ε(2t3)1/2

}
,

D(~c, ~d, V top, ε, s) = A(~c, ~d, s) ∩B(~c, ~d, V top, s) ∩ C(~c, ~d, ε, s).

(6.20)

Here, ε and V top are constants which we will specify later. By Lemma 6.3, for all (~c, ~d)

and N sufficiently large we have

D(~c, ~d, V top, ε, s) ⊂ {Z (−t1, t1,Q(−t1),Q(t1), `botJ−t1, t1K) > g} (6.21)

for some g depending on ε, V top,M2. The above gives all the notation we require.
We now turn to the proof of the lemma, which split is into several steps.

Step 1. In this step, we show that there exist R > 0 and N̄0 sufficiently large so that if
ck−1 + pt2 ≥ (2t3)1/2(M2 + R) and dk−1 − pt2 ≥ (2t3)1/2(M2 + R), then for all s ∈ S̃ and
N ≥ N̄0 we have

P
−t2,t2,~c,~d,∞,`bot
avoid,Ber;S̃

(
A(~c, ~d, s)

)
≥ 19

20
and P

−t2,t2,~c,~d
avoid,Ber;S̃

(Qk−1|S̃ ≥ `bot|S̃) ≥ 99

100
. (6.22)

Let us begin with the first inequality. We observe via Lemma 3.2 that

P
−t2,t2,~c,~d,∞,`bot
avoid,Ber;S̃

(
A(~c, ~d, s)

)
≥ P−t2,t2,~c,~d

avoid,Ber;S̃

(
A(~c, ~d, s)

)
. (6.23)

Now define the constant

C =

√
8p(1− p) log

3

1− (199/200)1/(k−1)
(6.24)

and vectors ~c ′, ~d ′ ∈Wk by

c′i = b−pt2 + (M2 +R)(2t3)1/2c − (i− 1)dC(2t2)1/2e,

d′i = bpt2 + (M2 +R)(2t3)1/2c − (i− 1)dC(2t2)1/2e.

EJP 26 (2021), paper 135.
Page 56/93

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP698
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Tightness of Bernoulli Gibbsian line ensembles

Then by Lemma 3.1 we have

P
−t2,t2,~c,~d
avoid,Ber;S̃

(
A(~c, ~d, s)

)
≥ P−t2,t2,~c

′,~d ′

avoid,Ber;S̃
(A(~c ′, ~d ′, s)) ≥

P
−t2,t2,c′k−1,d

′
k−1

Ber

(
inf
s∈S̃

[
`(s)− ps

]
≥ (M2 + 1)(2t3)1/2

)
−(

1− P−t2,t2,~c
′,~d ′

Ber (L1 ≥ · · · ≥ Lk−1)
)
.

(6.25)

By Lemma 3.14 and our choice of C, we can find Ñ0 so that P−t2,t2,~c
′,~d ′

Ber (L1 ≥ · · · ≥
Lk−1) > 199/200 > 39/40 for N ≥ Ñ0. Writing z = d′k−1 − c′k−1, the term in the second
line of (6.25) is equal to

P
−t2,t2,0,z
Ber

(
inf
s∈S̃

[
`(s) + c′k−1 − ps

]
≥ (M2 + 1)(2t3)1/2

)
≥

P
0,2t2,0,z
Ber

(
inf

s∈[0,2t2]

[
`(s)− ps

]
≥ (−R+ Ck + 1)(2t3)1/2

)
.

In the second line, we used the estimate c′k−1 ≥ −pt2 + (M2 + R − Ck)(2t3)1/2. Now
by Lemma 3.10, we can choose R large enough depending on C, k,M2, p so that this
probability is greater than 39/40 for N greater than some Ñ1. This gives a lower bound
in (6.25) of 39/40 − 1/40 = 19/20 for N ≥ max(Ñ0, Ñ1), and in combination with (6.23)
this proves the first inequality in (6.22).

We prove the second inequality in (6.22) similarly. Note that since `bot(s) ≤ ps +

M2(2t3)1/2 on [−t3, t3] by assumption, we have

P
−t2,t2,~c,~d
avoid,Ber;S̃

(
Q̃k−1|S̃ ≥ `bot|S̃

)
≥ P−t2,t2,~c,~d

avoid,Ber;S̃

(
inf

s∈[−t2,t2]

[
Qk−1(s)− ps

]
≥M2(2t3)1/2

)
≥

P
−t2,t2,~c ′,~d ′

avoid,Ber;S̃

(
inf

s∈[−t2,t2]

[
Q̃k−1(s)− ps

]
≥M2(2t3)1/2

)
≥

P
0,2t2,0,z
Ber

(
inf

s∈[0,2t2]

[
`(s)− ps

]
≥ −(R− Ck)(2t3)1/2

)
−
(
1− P−t2,t2,~c

′,~d ′

Ber (L̃1 ≥ · · · ≥ L̃k−1)
)
.

(6.26)

We enlarge R if necessary so that the probability in the third line of (6.26) is > 199/200

for N ≥ Ñ2 by Lemma 3.10, and 3.14 implies as above that the second expression
in the last line of (6.26) is > −1/200 for N ≥ Ñ3. This gives us a lower bound of
199/200 − 1/200 = 99/100 for N ≥ Ñ0 = max(Ñ2, Ñ3) as desired. This proves the two
inequalities in (6.22) for N ≥ N̄0 = max(Ñ0, Ñ1, Ñ2, Ñ3).

Step 2. In this step we fix R sufficiently large so that R > C from (6.24) and the
inequalities in (6.22) both hold for this choice of R. Our work from Step 1 ensures that
such a choice for R is possible. Let V t1 , V

b
1 , and h1 be as in Lemma 6.4 for this choice of

R. Define the set

E =
{
~c, ~d ∈Wk−1 : (2t3)1/2V t1 ≥ max(c1 + pt2d1 − pt2) and

min(ck−1 + pt2, dk−1 − pt2) ≥ (2t3)1/2V b1
}
.

(6.27)

We show in this step that there exists V top ≥ M2 + 6(k − 1) and N̄1 such that for all
(~c, ~d) ∈ E, s ∈ S̃, and N ≥ N̄1 we have

P
−t2,t2,~c,~d,∞,`bot
avoid,Ber;S̃

(
B(~c, ~d, V top, s)

)
≥ 19

20
. (6.28)
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Let C be as in (6.24), and define ~c ′′, ~d ′′ ∈Wk−1 by

c′′i = d−pt2 + (2t3)1/2V t1 e+ (k − 1− i)dC(2t2)1/2e,

d′′i = dpt2 + (2t3)1/2V t1 e+ (k − 1− i)dC(2t2)1/2e.

Then c′′i ≥ c1 ≥ ci and c′′i − c′′i+1 ≥ C(2t2)1/2 for each i, and likewise for d′′i . By Lemma 3.1,
the left hand side of (6.28) is bounded below by

P
−t2,t2,~c ′′,~d ′′,∞,`bot
avoid,Ber;S̃

(
sup
s∈S̃

[
Q̃1(s)− ps

]
≤ V top(2t3)1/2

)
≥

P
0,2t2,0,z

′

Ber

(
sup

s∈[−t2,t2]

[
`(s)− ps

]
≤ (V top − V t1 − Ck)(2t3)1/2

)
−(

1− P−t2,t2,~c
′′,~d ′′,∞,`bot

Ber (L1 ≥ · · · ≥ Lk−1 ≥ `bot)
)
.

(6.29)

In the last line, we have written z′ = d′′1 − c′′1 , and we used the fact that c′′1 ≤ −pt2 + (V t1 +

Ck)(2t3)1/2. By Lemma 3.10, we can find V top large enough depending on V t1 , C, k, p

so that the probability in the third line of (6.29) is at least 39/40 for N ≥ Ñ4. On the
other hand, the above observations regarding ~c ′′, ~d ′′, and `bot, as well as the fact that
|d′′1 − c′′1 − 2pt2| ≤ 1, allow us to conclude from Lemma 3.14 that the probability in the
last line of (6.29) is at least 39/40 for N ≥ Ñ5. In applying Lemma 3.14 we used the
fact that V b1 ≥M2 +R, which implies that `bot lies a distance of at least R(2t3)1/2 (and
hence C(2t3)1/2 as R > C by construction) uniformly below the line segment connecting
c′′k−1 and d′′k−1. We thus obtain a lower bound of 39/40 − 1/40 = 19/20 in (6.29) for

N̄1 = max(Ñ4, Ñ5), which proves (6.28) as desired.

Step 3. In this step, we show that with E, V t1 , and V b1 as in Step 2, there exist ε > 0

sufficiently small and N̄2 such that for all (~c, ~d) ∈ E and N ≥ N̄2, we have

P
−t2,t2,~c,~d,∞,`bot
avoid,Ber;S̃

(
D(~c, ~d, V top, ε, t12)

)
≥ 1

2
. (6.30)

We claim that this follows if we find Ñ6 so that for N ≥ Ñ6,

P
−t2,t2,~c,~d
avoid,Ber;S̃

(
C(~c, ~d, ε, t12) |A(~c, ~d, t1) ∩B(~c, ~d, V top, t1)

)
≥ 9

10
. (6.31)

To see this, note that (6.22) and (6.28) imply that for N ≥ max(N̄0, N̄1),

P
−t2,t2,~c,~d
avoid,Ber;S̃

(
A(~c, ~d, t1) ∩B(~c, ~d, V top, t1)

)
≥
(

19

20
− 1

20

)
· 99

100
>

4

5
,

and then (6.31) and the second inequality in (6.22) imply that forN ≥ N̄2 = max(N̄0, N̄1, Ñ6),

P
−t2,t2,~c,~d,∞,`bot
avoid,Ber;S̃

(
A(~c, ~d, t1) ∩B(~c, ~d, V top, t1) ∩ C(~c, ~d, ε, t12)

)
>

9

10
· 4

5
− 1

99
>

1

2
,

which gives (6.30) once we recall the definition of D(~c, ~d, V top, ε, t12).

In the remainder of this step, we verify (6.31). Observe that A(~c, ~d, t1)∩B(~c, ~d, V top, t1)

can be written as a countable disjoint union:

A(~c, ~d, t1) ∩B(~c, ~d, V top, t1) =
⊔

(~a,~b)∈I

F (~a,~b). (6.32)

Here, for ~a,~b ∈ Wk−1, F (~a,~b) is the event that Q(−t1) = ~a and Q(t1) = ~b, and I is the
collection of pairs (~a,~b) satisfying
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(1) 0 ≤ min(ai − ci, di − bi) ≤ t2 − t1 and 0 ≤ bi − ai ≤ 2t1 for 1 ≤ i ≤ k − 1,

(2) min(ak−1 + pt1, bk−1 − pt1) ≥ (M2 + 1)(2t3)1/2,

(3) max(a1 + pt1, b1 − pt1) ≤ V top(2t3)1/2.

Now let Q1 = (Q1
1, . . . , Q

1
k−1) and Q2 = (Q2

2, . . . , Q
2
k−1) denote the restrictions of Q̃ to

J−t2,−t1K and Jt1, t2K respectively. Then we observe that

P
−t2,t2,~c,~d
avoid,Ber;S̃

(
Q1 = B1,Q2 = B2

∣∣F (~a,~b)
)

= P
−t2,−t1,~c,~a
avoid,Ber

(
Q1 = B1

)
P
t1,t2,~b,~d
avoid,Ber

(
Q2 = B2

)
.

(6.33)

We also let Ĩ = {(~a,~b) ∈ I : P−t2,t2,~c,
~d

avoid,Ber;S̃
(F (~a,~b)) > 0}, and we choose Ñ7 so that Ĩ is

nonempty for N ≥ Ñ7 using Lemma 2.16. We now fix (~a,~b) and argue that we can choose
ε > 0 small enough and Ñ8 so that for N ≥ Ñ8,

P
−t2,t2,~c,~d
avoid,Ber;S̃

(
C(~c, ~d, ε, t12)

∣∣F (~a,~b)
)
≥ 9

10
. (6.34)

Then using (6.34) and (6.32) and summing over Ĩ proves (6.31) forN ≥ Ñ6 = max(Ñ7, Ñ8).
To prove (6.34), we first show that we can find δ > 0 and Ñ7 so that

P
−t2,−t1,~c,~a
avoid,Ber

(
max

1≤i≤k−2

[
Q1
i (−t12)−Q1

i+1(−t12)
]
≥ δ(2t3)1/2

)
≥ 3√

10
(6.35)

for N ≥ Ñ7. We prove this inequality using Lemma 3.18. In order to apply this result, we
first observe that since | − t12 + 1

2 (t1 + t2)| ≤ 1 by (6.19), we have

0 ≤ Q1
i (−t12)−Q1

i (− 1
2 (t1 + t2)) ≤ 1. (6.36)

Now applying Lemma 3.18 with M1 = V t1 , M2 = V top, we obtain Ñ7 and δ > 0 such that
if N ≥ Ñ7, then

P
−t2,−t1,~c,~a
avoid,Ber

(
min

1≤i≤k−1

[
Q1
i (− 1

2 (t1 + t2))−Q1
i+1(− 1

2 (t1 + t2))
]
< δ(t2 − t1)1/2

)
< 1− 3√

10
.

Together with (6.36) and the fact that t3/4 < t2 − t1, this implies that

P
−t2,−t1,~c,~a
avoid,Ber

(
min

1≤i≤k−1

[
Q1
i (−t12)−Q1

i+1(−t12)
]
< (δ/2)(2t3)1/2 − 1

)
< 1− 3√

10
(6.37)

for N ≥ Ñ7. Now we observe that as long as Ñα
7 ≥

1+8/δ2

r+3 , then (δ/4)(2t3)1/2 ≤
(δ/2)(2t2)1/2 − 1 for N ≥ Ñ7. This implies (6.35). A similar argument gives us a δ̃ > 0

such that

P
−t2,−t1,~c,~a
avoid,Ber

(
min

1≤i≤k−1

[
Qi(−t12)−Qi+1(−t12)

]
< (δ̃/4)(2t3)1/2

)
< 1− 3√

10

for N ≥ Ñ7. Then putting ε = min(δ, δ̃)/12 and using (6.33), we obtain (6.34) for N ≥ Ñ7.

Step 4. In this step, we find N̄3 so that

P
−t2,t2,~c,~d,∞,`bot
avoid,Ber;S̃

(
D(~c, ~d, V top, ε, t1)

)
≥ 1

2

(
1

2
−
∞∑
n=1

(−1)n−1e−ε
2n2/2p(1−p)

)k−1

(6.38)
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for N ≥ N̄3. We will find Ñ9 so that for N ≥ Ñ9,

P
−t2,t2,~c,~d,∞,`bot
avoid,Ber;S̃

(
D(~c, ~d, V top, ε, t1)

∣∣D(~c, ~d, V top, ε, t12)
)
≥(

1

2
−
∞∑
n=1

(−1)n−1e−ε
2n2/2p(1−p)

)k−1

.
(6.39)

Then (6.30) implies (6.38) for N ≥ N̄3 = max(N̄2, Ñ9).
To prove (6.39) we first observe that we can write

D(~c, ~d, V top, ε, t12) =
⊔

(~a,~b)∈J

G(~a,~b). (6.40)

Here, for ~a,~b ∈Wk−1, G(~a,~b) is the event that Q(−t12) = ~a and Q(t12) = ~b, and J is the
collection of (~a,~b) satisfying

(1) 0 ≤ min(ai − ci, di − bi) ≤ t2 − t12 and 0 ≤ bi − ai ≤ 2t12 for 1 ≤ i ≤ k − 1,

(2) min(ak−1 + pt1, bk−1 − pt1) ≥ (M2 + 1)(2t3)1/2,

(3) max(a1 + pt1, b1 − pt1) ≤ V top(2t3)1/2,

(4) min(ai − ai+1, bi − bi+1) ≥ 3ε(2t3)1/2 for 1 ≤ i ≤ k − 2.

We let J̃ = {(~a,~b) ∈ J : P−t2,t2,~c,
~d,∞,`bot

avoid,Ber;S̃
(G(~a,~b)) > 0}, and we take Ñ9 large enough

by Lemma 2.16 so that J̃ 6= ∅. We also let D̃(V top, ε, t1) denote the set consisting of
elements of D(~c, ~d, V top, ε, t1) restricted to J−t12, t12K. Then for (~a,~b) ∈ J̃ we have

P
−t2,t2,~c,~d,∞,`bot
avoid,Ber;S̃

(
D(~c, ~d, V top, ε, t1)

∣∣G(~a,~b)
)

= P
−t12,t12,~a,~b,∞,`bot
avoid,Ber;S̃

(
D̃(V top, ε, t1)

)
≥

P
−t12,t12,~a,~b
Ber

(
D̃(V top, ε, t1) ∩ {L1 ≥ · · · ≥ Lk−1 ≥ `bot}

)
.

(6.41)

We observe that the event in the second line of (6.41) occurs as long as each curve Li
remains within a distance of ε(2t3)1/2 from the straight segment connecting ai and bi on
[−t12, t12], for 1 ≤ i ≤ k− 2. By the argument in the proof of Lemma 3.14, we can enlarge
Ñ9 so that the probability of this event is bounded below by the expression on the right
in (6.39) for N ≥ Ñ9. Then using (6.41) and (6.40) and summing over J̃ implies (6.39).

Step 5. In this last step, we complete the proof of the lemma, fixing the constants g and
h as well as N5. Let g = g(ε, V top,M2) be as in Lemma 6.3 for the choices of ε, V top in
Steps 2 and 3, let

h =
h1

2

(
1

2
−
∞∑
n=1

(−1)n−1e−ε
2n2/2p(1−p)

)k−1

with h1 as in Step 2, and let N5 = max(N̄0, N̄1, N̄2, N̄3, N7), with N7 as in Lemma 6.4. In
the following we assume N ≥ N5. By (6.38) we have that if (~c, ~d) ∈ E and N ≥ N5, then

P
−t2,t2,~c,~d,∞,`bot
avoid,Ber;S̃

(H) ≥ h

h1
,

where H is the event that

1. V top(2t3)1/2 ≥ Q̃1(−t1) + pt1 ≥ Q̃k−1(−t1) + pt1 ≥ (M2 + 1)(2t2)1/2,
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2. V top(2t3)1/2 ≥ Q̃1(t1)− pt1 ≥ Q̃k−1(t1)− pt1 ≥ (M2 + 1)(2t3)1/2,

3. Q̃i(−t1)− Q̃i+1(−t1) ≥ 3ε(2t2)1/2, Q̃i(t1)− Q̃i+1(t1) ≥ 3ε(2t2)1/2 for i = 1, . . . , k − 2.

Let Y denote the event appearing in (6.7). Then we can write Y =
⊔

(~c,~d)∈E Y (~c, ~d),

where Y (~c, ~d) is the event that Q̃(−t2) = ~c, Q̃(t2) = ~d, and E is defined in Step 2. If
Ẽ = {(~c, ~d) ∈ E : PQ̃(Y (~c, ~d)) > 0}, we can assume by Lemma 2.16 that N5 is large
enough so that Ẽ 6= ∅. It follows from Lemma 6.4 that PQ̃(Y ) ≥ h1. We conclude from
the definition of PQ̃ that for all N ≥ N5,

PQ̃(H) ≥ PQ̃(H ∩ Y ) =
∑

(~c,~d)∈Ẽ

PQ̃(Y (~c, ~d)) · PQ̃(H |Y (~c, ~d)) =

∑
(~c,~d)∈Ẽ

PQ̃(Y (~c, ~d)) · P−t2,t2,~c,~d,∞,`bot
avoid,Ber;S̃

(H) ≥ h

h1

∑
(~c,~d)∈Ẽ

PQ̃(Y (~c, ~d)) =
h

h1
PQ̃(Y ) ≥ h.

Now Lemma 6.3 implies (6.1), completing the proof.

7 Appendix A

In this section we prove Lemmas 2.2, 2.4, 3.1 and 3.2.

7.1 Proof of Lemma 2.2

We adopt the same notation as in Lemma 2.2 and proceed with its proof.

Observe that the sets K1 ⊂ K2 ⊂ · · · ⊂ Σ × Λ are compact, they cover Σ × Λ, and
any compact subset K of Σ × Λ is contained in all Kn for sufficiently large n. To see
this last fact, let π1, π2 denote the canonical projection maps of Σ × Λ onto Σ and Λ

respectively. Since these maps are continuous, π1(K) and π2(K) are compact in Σ

and Λ. This implies that π1(K) is finite, so it is contained in Σn1 = Σ ∩ J−n1, n1K for
some n1. On the other hand, π2(K) is closed and bounded in R, thus contained in
some closed interval [α, β] ⊆ Λ. Since an ↘ a and bn ↗ b, we can choose n2 large
enough so that π2(K) ⊆ [α, β] ⊆ [an2 , bn2 ]. Then taking n = max(n1, n2), we have
K ⊆ π1(K)× π2(K) ⊆ Σn × [an, bn] = Kn.

We now split the proof into several steps.

Step 1. In this step, we show that the function d defined in the statement of the lemma
is a metric. For each n and f, g ∈ C(Σ× Λ), we define

dn(f, g) = sup
(i,t)∈Kn

|f(i, t)− g(i, t)|, d′n(f, g) = min{dn(f, g), 1}

Then we have

d(f, g) =

∞∑
n=1

2−nd′n(f, g).

Clearly each dn is nonnegative and satisfies the triangle inequality, and it is then easy to
see that the same properties hold for d′n. Furthermore, d′n ≤ 1, so d is well-defined and
d(f, g) ∈ [0, 1]. Observe that d is nonnegative, and if f = g, then each d′n(f, g) = 0, so the
sum d(f, g) is 0. Conversely, if f 6= g, then since the Kn cover Σ× Λ, we can choose n
large enough so that Kn contains an x with f(x) 6= g(x). Then d′n(f, g) 6= 0, and hence
d(f, g) 6= 0. Lastly, the triangle inequality holds for d since it holds for each d′n.
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Step 2. Now we prove that the topology τd on C(Σ× Λ) induced by d is the same as the
topology of uniform convergence over compacts, which we denote by τc. Recall that τc is
generated by the basis consisting of sets

BK(f, ε) =
{
g ∈ C(Σ× Λ) : sup

(i,t)∈K
|f(i, t)− g(i, t)| < ε

}
,

for K ⊂ Σ× Λ compact, f ∈ C(Σ× Λ), and ε > 0, and τd is generated by sets of the form
Bdε (f) = {g : d(f, g) < ε}.

We first show that τd ⊆ τc. It suffices to prove that every set Bdε (f) is a union of sets
BK(f, ε). First, choose ε > 0 and f ∈ C(Σ × Λ). Let g ∈ Bdε (f). We will find a basis
element Ag of τc such that g ∈ Ag ⊂ Bdε (f). Let δ = d(f, g) < ε, and choose n large
enough so that

∑
k>n 2−k < ε−δ

2 . Define Ag = BKn(g, ε−δn ), and suppose h ∈ Ag. Then
since Km ⊆ Kn for m ≤ n, we have

d(f, h) ≤ d(f, g) + d(g, h) ≤ δ +

n∑
k=1

2−kdn(g, h) +
∑
k>n

2−k < δ +
ε− δ

2
+
ε− δ

2
= ε.

Therefore g ∈ Ag ⊂ Bdε (f). Then we can write

Bdε (f) =
⋃

g∈Bdε (f)

Ag,

a union of basis elements of τc.
We now prove conversely that τc ⊆ τd. Let K ⊂ Σ× Λ be compact, f ∈ C(Σ× Λ), and

ε > 0. Choose n so that K ⊂ Kn, and let g ∈ BK(f, ε) and δ = supx∈K |f(x)− g(x)| < ε. If
d(g, h) < 2−n(ε − δ), then d′n(g, h) ≤ 2nd(g, h) < ε − δ, hence dn(g, h) < ε − δ, assuming
without loss of generality that ε ≤ 1. It follows that

sup
x∈K
|f(x)− h(x)| ≤ δ + sup

x∈K
|g(x)− h(x)| ≤ δ + dn(g, h) < δ + ε− δ = ε.

Thus g ∈ Bd2−n(ε−δ)(g) ⊂ BK(f, ε), proving that BK(f, ε) ∈ τd by the same argument as
above. We conclude that τd = τc.

Step 3. In this step, we show that (C(Σ× Λ), d) is a complete metric space. Let {fn}n≥1

be Cauchy with respect to d. Then we claim that {fn} must be Cauchy with respect to d′n,
on each Kn. This follows from the observation that d′n(f`, fm) ≤ 2nd(f`, fm). Thus {fn} is
Cauchy with respect to the uniform metric on each Kn, and hence converges uniformly
to a continuous limit fKn on each Kn (see [29, Theorem 7.15]). Since the pointwise
limit must be unique at each x ∈ Σ × Λ, we have fKn(x) = fKm(x) if x ∈ Kn ∩ Km.
Since ∪nKn = Σ × Λ, we obtain a well-defined function f on all of Σ × Λ given by
f(x) = limn→∞ fKn(x). We have f ∈ C(Σ× Λ) since f |Kn = fKn is continuous on Kn for
all n. Moreover, if K ⊂ Σ × Λ is compact and n is large enough so that K ⊂ Kn, then
because fn → fKn = f |Kn uniformly on Kn, we have fn → fKn |K = f |K uniformly on K.
That is, for any K ⊂ Σ× Λ compact and ε > 0, we have fn ∈ BK(f, ε) for all sufficiently
large n. Therefore fn → f in τc, and equivalently in the metric d by Step 2.

Step 4. Lastly, we prove separability by adapting the arguments from [1, Example 1.3].
For each pair of positive integers n, k, let Dn,k be the subcollection of C(Σ×Λ) consisting
of polygonal functions that are piecewise linear on {j} × In,k,i for each j ∈ Σn and each
subinterval

In,k,i =
[
an + i−1

k (bn − an), an + i
k (bn − an)

]
, 1 ≤ i ≤ k,
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taking rational values at the endpoints of these subintervals, and extended constantly to
all of Λ. Then D = ∪n,kDn,k is countable, and we claim that it is dense in τc. To see this,
let K ⊂ Σ×Λ be compact, f ∈ C(Σ×Λ), and ε > 0, and choose n so that K ⊂ Kn. Since
f is uniformly continuous on Kn, we can choose k large enough so that for 0 ≤ i ≤ k, if
t ∈ In,k,i, then ∣∣f(j, t)− f(j, an + i

k (bn − an))
∣∣ < ε/2

for all j ∈ Σn. Using that Q is dense in R we can choose g ∈ ∪kDn,k with |g(j, an+ i
k (bn−

an))− f(j, an + i
k (bn − an))| < ε/2. Then we have∣∣f(j, t)− g(j, an + i−1

k (bn − an))
∣∣ < ε and

∣∣f(j, t)− g(j, an + i
k (bn − an))

∣∣ < ε.

Since g(j, t) is a convex combination of g(j, an + i−1
k (bn − an)) and g(j, an + i

k (bn − an)),
we get

|f(j, t)− g(j, t)| < ε

as well. In summary,

sup
(j,t)∈K

|f(j, t)− g(j, t)| ≤ sup
(j,t)∈Kn

|f(j, t)− g(j, t)| < ε,

so g ∈ BK(f, ε). This proves that D is a countable dense subset of C(Σ× Λ).

7.2 Proof of Lemma 2.4

We first prove two lemmas that will be used in the proof of Lemma 2.4. The first
result allows us to identify the space C(Σ× Λ) with a product of copies of C(Λ). In the
following, we assume the notation of Lemma 2.4.

Lemma 7.1. Let πi : C(Σ×Λ)→ C(Λ), i ∈ Σ, be the projection maps given by πi(F )(x) =

F (i, x) for x ∈ Λ. Then the πi are continuous. Endow the space
∏
i∈Σ C(Λ) with the

product topology induced by the topology of uniform convergence over compacts on
C(Λ). Then the mapping

F : C(Σ× Λ) −→
∏
i∈Σ

C(Λ), f 7→ (πi(f))i∈Σ

is a homeomorphism.

Proof. We first prove that the πi are continuous. We know C(Σ × Λ) is metrizable
by Lemma 2.2, and by a similar argument so is C(Λ) (take Σ = {0} in Lemma 2.2).
Consequently, it suffices to assume that fn → f in C(Σ×Λ) and show that πi(fn)→ πi(f)

in C(Λ). Let K be compact in Λ. Then {i}×K is compact in Σ×Λ, and fn → f uniformly
on {i}×K by assumption, so we have πi(fn)|K = fn|{i}×K → f |{i}×K = πi(f)|K uniformly
on K. Since K was arbitrary, we conclude that πi(fn)→ πi(f) in C(Λ) as desired.

We now observe that F is invertible. If (fi)i∈Σ ∈
∏
i∈Σ C(Λ), then the function f

defined by f(i, ·) = fi(·) is in C(Σ× Λ), since Σ has the discrete topology. This gives a
well-defined inverse for F . It suffices to prove that F and F−1 are open maps.

We first show that F sends each basis element BK(f, ε) of C(Σ × Λ) to a basis
element in

∏
i∈Σ C(Λ). Note that a basis for the product topology is given by products∏

i∈ΣBKi(fi, ε), where at most finitely many of the Ki are nonempty. Here, we use the
convention that B∅(fi, ε) = C(Λ). Let πΣ, πΛ denote the canonical projections of Σ× Λ

onto Σ,Λ. The continuity of πΣ implies that if K ⊂ Σ × Λ is compact, then πΣ(K) is
compact in Σ, hence finite. Observe that the set K ∩ ({i} × Λ) is an intersection of
a compact set with a closed set and is hence compact in Σ × Λ. Therefore the sets
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Ki = πΛ(K ∩ ({i} × Λ)) are compact in Λ for each i ∈ Σ since πΛ is continuous. We
observe that F (BK(f, ε)) =

∏
i∈Σ Ui, where

Ui = BKi(πi(f), ε), if i ∈ πΣ(K),

and Ui = C(Λ) otherwise. Since πΣ(K) is finite and the Ki are compact, we see that
F (BK(f, ε)) is a basis element in the product topology as claimed.

Lastly, we show that F−1 sends each basis element U =
∏
i∈ΣBKi(fi, ε) for the

product topology to a set of the form BK(f, ε). We have Ki = ∅ for all but finitely many i.
Write f = F−1((fi)i∈Σ) and K = ∪i∈Σ({i} ×Ki). Notice that K is compact in Σ× Λ as a
finite union of compact sets (each of {i} ×Ki is compact by Tychonoff’s theorem, [25,
Theorem 37.3]). Moreover, one has

F−1(U) = BK(f, ε),

which proves that F−1 is also an open map.

We next prove a lemma which states that a sequence of line ensembles is tight if and
only if all individual curves form tight sequences.

Lemma 7.2. Suppose that {Ln}n≥1 is a sequence of Σ-indexed line ensembles on Λ, and
let Xn

i = πi(Ln). Then the Xn
i are C(Λ)-valued random variables on (Ω,F ,P), and {Ln}

is tight if and only if for each i ∈ Σ the sequence {Xn
i }n≥1 is tight.

Proof. The fact that the Xn
i are random variables follows from the continuity of the

πi in Lemma 7.1 and [16, Theorem 1.3.4]. First suppose the sequence {Ln} is tight.
By Lemma 2.2, C(Σ × Λ) is a Polish space, so it follows from Prohorov’s theorem, [1,
Theorem 5.1], that {Ln} is relatively compact. That is, every subsequence {Lnk} has a
further subsequence {Lnk` } converging weakly to some L. Then for each i ∈ Σ, since πi
is continuous by the above, the subsequence {πi(Lnk` )} of {πi(Lnk)} converges weakly to
πi(L) by the Continuous mapping theorem, [1, Theorem 2.7]. Thus every subsequence of
{πi(Ln)} has a convergent subsequence. Since C(Λ) is a Polish space (apply Lemma 2.2
with Σ = {0}), Prohorov’s theorem, [1, Theorem 5.2], implies {πi(Ln)} is tight.

Conversely, suppose {Xn
i } is tight for all i ∈ Σ. Then given ε > 0, we can find compact

sets Ki ⊂ C(Λ) such that

P(Xn
i /∈ Ki) ≤ ε/2i

for each i ∈ Σ. By Tychonoff’s theorem, [25, Theorem 37.3], the product K̃ =
∏
i∈ΣKi is

compact in
∏
i∈Σ C(Λ). We have

P
(
(Xn

i )i∈Σ /∈ K̃
)
≤
∑
i∈Σ

P(Xn
i /∈ Ki) ≤

∞∑
i=1

ε/2i = ε. (7.1)

By Lemma 7.1, we have a homeomorphism G :
∏
i∈Σ C(Λ)→ C(Σ× Λ). We observe that

G((Xn
i )i∈Σ) = Ln, and K = G(K̃) is compact in C(Σ × Λ). Thus Ln ∈ K if and only if

(Xn
i )i∈Σ ∈ K̃, and it follows from (7.1) that

P(Ln ∈ K) ≥ 1− ε.

This proves that {Ln} is tight.

We are now ready to prove Lemma 2.4.
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Proof. (of Lemma 2.4) By a direct extension of [1, Theorem 7.3], a sequence {Pn}n≥1

of probability measures on C([u, v]) with the uniform topology is tight if and only if the
following conditions hold:

for some w ∈ [u, v] we have lim
a→∞

lim sup
n→∞

Pn(|x(w)| ≥ a) = 0,

lim
δ→0

lim sup
n→∞

Pn

(
sup
|s−t|≤δ

|x(s)− x(t)| ≥ ε
)

= 0 for all ε > 0.
(7.2)

If {Ln}n≥1 is tight we conclude the sequence {Lni |[am,bm]}n≥1 is tight for every m ≥ 1.
This is because the projection map is continuous. The last two statements prove the
“only if” part of the lemma. In the remainder we focus on the “if” part, i.e. proving that
{Ln}n≥1 is tight, given that conditions (i) and (ii) in the lemma are satisfied.

Fix i ∈ Σ. By Lemma 7.2, it suffices to show that the sequence {Lni }n≥1 of C(Λ)-
valued random variables is tight. From (7.2) we see that conditions (i) and (ii) in the
lemma imply that the sequence {Lni |[am,bm]}n≥1 is tight for every m ≥ 1. Let πm :

C(Λ) → C([am, bm]) denote the map f 7→ f |[am,bm] and note that πm is continuous. It
follows from [16, Theorem 1.3.4] that πm(Ln) = Lni |[am,bm] is a C([am, bm])-valued random
variable. Tightness of the sequence implies that for any ε > 0, we can find compact sets
Km ⊂ C([am, bm]) so that

P
(
πm(Lni ) /∈ Km

)
≤ ε/2m

for each m ≥ 1. Writing K = ∩∞m=1π
−1
m (Km), it follows that

P
(
Lni ∈ K

)
≥ 1−

∞∑
m=1

ε/2m = 1− ε.

To conclude tightness of {Lni }, it suffices to prove that K = ∩∞m=1π
−1
m (Km) is sequentially

compact in C(Λ). We argue by diagonalization. Let {fn} be a sequence in K, so that
fn|[am,bm] ∈ Km for every m,n. Since K1 is compact, there is a sequence {n1,k} of natural
numbers such that the subsequence {fn1,k

|[a1,b1]}k converges in C([a1, b1]). Since K2

is compact, we can take a further subsequence {n2,k} of {n1,k} so that {fn2,k
|[a2,b2]}k

converges in C([a2, b2]). Continuing in this manner, we obtain sequences {n1,k} ⊇
{n2,k} ⊇ · · · so that {fnm,k |[am,bm]}k converges in C([am, bm]) for all m. Writing nk = nk,k,
it follows that the sequence {fnk} converges uniformly on each [am, bm]. If K is any
compact subset of C(Λ), then K ⊂ [am, bm] for some m, and hence {fnk} converges
uniformly on K. Therefore {fnk} is a convergent subsequence of {fn}.

7.3 Proof of Lemma 2.16

We adopt the same notation as in the statement of Lemma 2.16 and proceed with its
proof.

We first construct a candidate B and then we prove that B ∈ Ωavoid(T0, T1, ~x, ~y, f, g).
Denote B0 = f and Bk+1 = g with x0 = f(T0) and y0 = f(T1). By Condition (3) of
Lemma 2.16 we know x0 ≥ x1 and y0 ≥ y1. We define inductively Bj for j = 1, . . . , k as
follows (recall that B0 = f ). Assuming that Bj−1 has been constructed we let Bj(T0) = xj
and then for i ∈ JT0, T1 − 1K we define

Bj(i+ 1) =

{
Bj(i) + 1 if Bj(i) + 1 ≤ min{Bj−1(i+ 1), yj}
Bj(i) else.

(7.3)
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This gives our candidate B = (B1, . . . , Bk). In order to verify that this candidate ensemble
B is an element of Ωavoid(T0, T1, ~x, ~y, f, g), three properties must be ensured:

(a) B(T0) = ~x and B(T1) = ~y

(b) f(i) ≥ B1(i) ≥ · · · ≥ Bk(i) ≥ g(i) for all i ∈ JT0, T1K
(c) Bj(i+ 1)−Bj(i) ∈ {0, 1} for all i ∈ JT0, T1 − 1K and j ∈ J1, kK

(7.4)

Property (c) follows directly from our definition in (7.3). We split the proof of (a) and (b)
above into three steps.

Step 1. In this step we prove that for each j = 1, . . . , k that Bj−1(i) ≥ Bj(i) for
i ∈ JT0, T1K. If j = 1 and f ≡ ∞ there is nothing to prove, so we may assume that either
j ≥ 2 or j = 1 and f is an up-right path – the proofs in these cases are the same. Suppose
that for some i ∈ JT0, T1 − 1K we have that Bj(i) ≤ Bj−1(i) then we know by construction
that Bj(i+ 1) = Bj(i) or Bj(i) + 1. In the former case, we trivially get

Bj(i+ 1) = Bj(i) ≤ Bj−1(i) ≤ Bj−1(i+ 1),

where the last inequality used that Bj−1 is an up-right path. If Bj(i + 1) = Bj(i) + 1

from (7.3) we see that Bj(i) + 1 ≤ Bj−1(i+ 1) and so we again conclude that Bj(i+ 1) ≤
Bj−1(i + 1). By assumption we know that Bj(T0) = xj ≤ xj−1 = Bj−1(T0), and so
by inducting on i from T0 to T1 we conclude that Bj−1(i) ≥ Bj(i) for i ∈ JT0, T1K and
j = 1, . . . , k. To summarize, we have proved that for i ∈ JT0, T1K

f(i) ≥ B1(i) ≥ · · · ≥ Bk(i). (7.5)

Step 2. In this step we prove (a). By construction we already know that B(T0) = ~x and
so we only need to prove that B(T1) = ~y. We will show this claim inductively on j: we
trivially know the claim is true for j = 0, since y0 = f(T1) is given. Then suppose that
Bj(T1) = yj holds up to j = n − 1. We seek to prove that Bn(T1) = yn. Notice that by
construction we know that Bn(i) ≤ yn for all i ∈ JT0, T1K and so we only need to show
that Bn(T1) ≥ yn.

Suppose first that Bn(i + 1) = Bn(i) + 1 for all i ∈ JT0, T1 − 1K. Then we know that
Bn(T1) = xn + (T1 − T0) ≥ yn by assumption (1) in Lemma 2.16, and so we are done.
Conversely, there is an i0 ∈ JT0, T1 − 1K such that Bn(i0 + 1) = Bn(i0) and we can take
i0 to be the largest index in JT0, T1 − 1K satisfying this condition. Observe that by (7.3)
we must have that either Bn(i0) ≥ yn or Bn(i0) ≥ Bn−1(i0 + 1). In the former case, we
see that since Bn is an up-right path we must have Bn(T1) ≥ Bn(i0) ≥ yn and again we
are done. Thus we only need to consider the case when Bn−1(i0 + 1) ≤ Bn(i0). By the
maximality of i0 we know that Bn(i+ 1) = Bn(i) + 1 for i = i0 + 1, . . . , T1 and so we see

Bn(T1) = Bn(i0 + 1) + (T1 − i0 − 1) = Bn(i0) + (T1 − i0 − 1) ≥
Bn−1(i0 + 1) + (T1 − i0 − 1) ≥ Bn−1(T1) = yn−1 ≥ yn.

Overall, we conclude in all cases that Bn(T1) ≥ yn which concludes the proof of (a).

Step 3. In this step we prove (b), and in view of (7.5) we see that it suffices to show that
Bk(i) ≥ g(i) for all i. If g ≡ −∞ there is nothing to prove and so we may assume that g is
an up-right path.

Suppose that g(i) > Bk(i) for some i ∈ JT0, T1K. Since g(T0) ≤ Bk(T0) = xk by
Condition (3) in Lemma 2.16, we know that there exists some point i0 such that g(i0) =

Bk(i0) and g(i0 + 1) > Bk(i0 + 1). In particular, since g and Bk can each only increase by
1, this implies Bk(i0) = Bk(i0 +1) and g(i0 +1) = g(i0)+1. This implies either Bk(i0) = yk
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or Bk(i0) + 1 > Bk−1(i0 + 1). If Bk(i0) = yk then by assumption (3) of Lemma 2.16 we
conclude

yk ≥ g(T1) ≥ g(i0 + 1) = g(i0) + 1 = Bk(i0) + 1 ≥ yk + 1,

which is an obvious contradiction.
Therefore, it must be the case that Bk(i0) + 1 > Bk−1(i0 + 1) and then we conclude

that Bk−1(i0 + 1) = Bk−1(i0) = Bk(i0) in view of (7.5). By the same argument we see
that Bk−1(i0 + 1) = Bk−1(i0) can only occur if Bk−2(i0 + 1) = Bk−2(i0) = Bk−1(i0) and
iterating this k times we conclude that B0(i0 + 1) = B0(i0) = B1(i0) = · · · = Bk(i0) =

g(i0) = g(i0 + 1) − 1. But then g(i0 + 1) > f(i0 + 1), which contradicts condition (3) in
Lemma 2.16. The contradiction arose from our assumption that g(i) > Bk(i) for some
i ∈ JT0, T1K and so no such i exists, proving (b).

7.4 Proof of Lemmas 3.1 and 3.2

We will prove the following lemma, of which the two lemmas are immediate conse-
quences. In particular, Lemma 3.1 is the special case when gb = gt, and Lemma 3.2 is
the case when ~x = ~x ′ and ~y = ~y ′. We argue in analogy to [12, Lemma 5.6].

Lemma 7.3. Fix k ∈ N, T0, T1 ∈ Z with T0 < T1, S ⊆ JT0, T1K, and two functions gb, gt :

JT0, T1K→ [−∞,∞) with gb ≤ gt on S. Also fix ~x, ~y, ~x ′, ~y ′ ∈Wk such that xi ≤ x′i, yi ≤ y′i
for 1 ≤ i ≤ k. Assume that Ωavoid(T0, T1, ~x, ~y,∞, gb;S) and Ωavoid(T0, T1, ~x

′, ~y ′,∞, gt;S)

are both non-empty. Then there exists a probability space (Ω,F ,P), which supports
two J1, kK-indexed Bernoulli line ensembles Lt and Lb on JT0, T1K such that the law of

Lt
(
resp. Lb

)
under P is given by PT0,T1,~x

′,~y ′,∞,gt
avoid,Ber;S

(
resp. PT0,T1,~x,~y,∞,gb

avoid,Ber;S

)
and such that

P-almost surely we have Lti(r) ≥ Lbi (r) for all i = 1, . . . , k and r ∈ JT0, T1K.

Proof. Throughout the proof, we will write Ωa,S to mean Ωavoid(T0, T1, ~x, ~y,∞, gb;S) and
Ω′a,S to mean Ωavoid(T0, T1, ~x

′, ~y ′,∞, gt;S). We split the proof into two steps.

Step 1. We first aim to construct a Markov chain (Xn, Y n)n≥0, with Xn ∈ Ωa,S , Y n ∈
Ω′a,S , with initial distribution given by

X0
i (t) = min(xi + t− T0, yi), Y 0

i (t) = min(x′i + t− T0, y
′
i),

for t ∈ JT0, T1K and 1 ≤ i ≤ k. First observe that we do in fact have X0 ∈ Ωa,S , since
X0
i (T0) = xi, X0

i (T1) = yi, X0
i (t) ≤ min(xi−1 + t − T0, yi−1) = X0

i−1(t), and X0
k(t) ≥

xi + t− T0 ≥ gb(T0) + t− T0 ≥ gb(t). We also note here that X0 is maximal on the entire
space Ω(T0, T1, ~x, ~y), in the sense that for any Z ∈ Ω(T0, T1, ~x, ~y), we have Zi(t) ≤ X0

i (t)

for all t ∈ JT0, T1K. In particular, X0 is maximal on Ωa,S . Likewise, we see that Y 0 is
maximal on Ω′a,S .

We want the chain (Xn, Y n) to have the following properties:

(1) (Xn)n≥0 and (Y n)n≥0 are both Markov in their own filtrations,

(2) (Xn) is irreducible and aperiodic, with invariant distribution PT0,T1,~x,~y,∞,gb
avoid,Ber;S ,

(3) (Y n) is irreducible and aperiodic, with invariant distribution PT0,T1,~x
′,~y ′,∞,gt

avoid,Ber;S ,

(4) Xn
i ≤ Y ni on JT0, T1K for all n ≥ 0 and 1 ≤ i ≤ k.

This will allow us to conclude convergence of Xn and Y n to these two uniform measures.
We specify the dynamics of (Xn, Y n) as follows. At time n, we uniformly sample a

triple (i, t, z) ∈ J1, kK × JT0, T1K × Jxk, y′1 − 1K. We also flip a fair coin, with P(heads) =

P(tails) = 1/2. We update Xn and Y n using the following procedure. If j 6= i, we leave
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Xj , Yj unchanged, and for all points s 6= t, we set Xn+1
i (s) = Xn

i (s). If T0 < t < T1,
Xn
i (t − 1) = z, and Xn

i (t + 1) = z + 1 (note that this implies Xn
i (t) ∈ {z, z + 1}), we

consider two cases. If t ∈ S, then we set

Xn+1
i (t) =

{
z + 1, if heads,

z, if tails,

assuming this does not cause Xn+1
i (t) to fall below Xn

i+1(t), with the convention that
Xn
k+1 = gb. If t /∈ S, we perform the same update regardless of whether it results in a

crossing. In all other cases, we leave Xn+1
i (t) = Xn

i (t). We update Y n using the same
rule, with gt in place of gb.

We first observe that Xn and Y n are in fact non-crossing on S for all n. Note X0 is
non-crossing, and if Xn is non-crossing, then the only way Xn+1 could be crossing on
S is if the update were to push Xn+1

i (t) below Xn
i+1(t) for some i, t with t ∈ S. But any

update of this form is suppressed, so it follows by induction that Xn ∈ Ωa,S for all n.
Similarly, we see that Y n ∈ Ω′a,S .

It is easy to see that (Xn, Y n) is a Markov chain, since at each time n, the value of
(Xn+1, Y n+1) depends only on the current state (Xn, Y n), and not on the time n or any
of the states prior to time n. Moreover, the value of Xn+1 depends only on the state Xn,
not on Y n, so (Xn) is a Markov chain in its own filtration. The same applies to (Y n). This
proves the property (1) above.

We now argue that (Xn) and (Y n) are irreducible. Fix any Z ∈ Ωa;S . As observed
above, we have Zi ≤ X0

i on JT0, T1K for all i. We argue that we can reach the state Z
starting from X0 in some finite number of steps with positive probability. Due to the
maximality of X0, we only need to move the paths downward. If we do this starting
with the bottom path, then there is no danger of the paths Xi crossing on S, or of Xk

crossing gb on S. To ensure that Xn
k = Zk, we successively sample triples (k, t, z) as

follows. We initialize t = T0 + 1. If Xn
k (t) = Zk(t), we increment t by 1. Otherwise, we

have Xn
k (t) > Zk(t), so we set z = Xn

k (t) − 1 and flip tails. This may or may not push
Xk(t) downwards by 1. We then increment t and repeat this process. If t reaches T1 − 1,
then at the increment we reset t = T0 + 1. After finitely many steps, Xk will agree with
Zk on all of JT0, T1K. We then repeat this process for Xn

i and Zi, with i descending. Since
each of these samples and flips has positive probability, and this process terminates in
finitely many steps, the probability of transitioning from Xn to Z after some number of
steps is positive. The same reasoning applies to show that (Y n) is irreducible.

To see that the chains are aperiodic, simply observe that if we sample a triple (i, T0, z)

or (i, T1, z), then the states of both chains will be unchanged.

To see that the uniform measure PT0,T1,~x,~y,∞,gb
avoid,Ber;S on Ωa,S is invariant for (Xn), fix any

ω ∈ Ωa,S . For simplicity, write µ for the uniform measure. Then for all τ ∈ Ωa,S , we have
µ(τ) = 1/|Ωa,S |. Hence∑

τ∈Ωa,S

µ(τ)P(Xn+1 = ω |Xn = τ) =
1

|Ωa,S |
∑

τ∈Ωa,S

P(Xn+1 = ω |Xn = τ) =

1

|Ωa,S |
∑

τ∈Ωa,S

P(Xn+1 = τ |Xn = ω) =
1

|Ωa,S |
· 1 = µ(ω).

The second equality is clear if τ = ω. Otherwise, note that P(Xn+1 = ω |Xn = τ) 6= 0 if
and only if τ and ω differ only in one indexed path (say the ith) at one point t, where
|τi(t)− ωi(t)| = 1, and this condition is also equivalent to P(Xn+1 = τ |Xn = ω) 6= 0. If
Xn = τ , there is exactly one choice of triple (i, t, z) and one coin flip which will ensure
Xn+1
i (t) = ω(t), i.e., Xn+1 = ω. Conversely, if Xn = ω, there is one triple and one coin
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flip which will ensure Xn+1 = τ . Since the triples are sampled uniformly and the coin
flips are fair, these two conditional probabilities are in fact equal. This proves (2), and
an analogous argument proves (3).

Lastly, we argue that Xn
i ≤ Y ni on JT0, T1K for all n ≥ 0 and 1 ≤ i ≤ k. This is of

course true at n = 0. Suppose it holds at some n ≥ 0, and suppose that we sample a
triple (i, t, z). Then the update rule can only change the values of the Xn

i (t) and Y ni (t).
Notice that the values can change by at most 1, and if Y ni (t)−Xn

i (t) = 1, then the only
way the ordering could be violated is if Yi were lowered and Xi were raised at the next
update. But this is impossible, since a coin flip of heads can only raise or leave fixed both
curves, and tails can only lower or leave fixed both curves. Thus it suffices to assume
Xn
i (t) = Y ni (t).

There are two cases to consider that violate the ordering of Xn+1
i (t) and Y n+1

i (t).
Either (i) Xi(t) is raised but Yi(t) is left fixed, or (ii) Yi(t) is lowered yet Xi(t) is left fixed.
These can only occur if the curves exhibit one of two specific shapes on Jt − 1, t + 1K.
For Xi(t) to be raised, we must have Xn

i (t − 1) = Xn
i (t) = Xn

i (t + 1) − 1, and for Yi(t)
to be lowered, we must have Y ni (t− 1)− 1 = Y ni (t) = Y ni (t+ 1). From the assumptions
that Xn

i (t) = Y ni (t), and Xn
i ≤ Y ni , we observe that both of these requirements force the

other curve to exhibit the same shape on Jt− 1, t+ 1K. Then the update rule will be the
same for both curves for either coin flip, proving that both (i) and (ii) are impossible.

Step 2. It follows from (2) and (3) and [26, Theorem 1.8.3] that (Xn)n≥0 and (Y n)n≥0

converge weakly to PT0,T1,~x,~y,∞,gb
avoid,Ber;S and PT0,T1,~x

′,~y ′,∞,gt
avoid,Ber;S respectively. In particular, (Xn)

and (Y n) are tight, so (Xn, Y n)n≥0 is tight as well. By Prohorov’s theorem, it follows that
(Xn, Y n) is relatively compact. Let (nm) be a sequence such that (Xnm , Y nm) converges
weakly. Then by the Skorohod representation theorem [1, Theorem 6.7], it follows that
there exists a probability space (Ω,F ,P) supporting random variables Xn, Yn and X,Y

taking values in Ωa,S ,Ω
′
a,S respectively, such that

(1) The law of (Xn,Yn) under P is the same as that of (Xn, Y n),

(2) Xn(ω) −→ X(ω) for all ω ∈ Ω,

(3) Yn(ω) −→ Y(ω) for all ω ∈ Ω.

In particular, (1) implies that Xnm has the same law as Xnm , which converges

weakly to PT0,T1,~x,~y,∞,gb
avoid,Ber;S . It follows from (2) and the uniqueness of limits that X has law

P
T0,T1,~x,~y,∞,gb
avoid,Ber;S . Similarly, Y has law P

T0,T1,~x
′,~y ′,∞,gt

avoid,Ber;S . Moreover, condition (4) in Step 1
implies that Xn(i, ·) ≤ Yn(i, ·), P-a.s., so X(i, ·) ≤ Y(i, ·) for 1 ≤ i ≤ k, P-a.s. Thus we can
take Lb = X and Lt = Y.

7.5 Proof of Lemmas 4.6 and 4.7

In this section we use the same notation as in Section 4.3. We first prove Lemma 4.6.
We will use the following lemma, which proves an analogous convergence result for a
single rescaled Bernoulli random walk.

Lemma 7.4. Let x, y, a, b ∈ R with a < b, and let aN , bN ∈ N−αZ, xN , yN ∈ N−α/2Z be
sequences with aN ≤ a, bN ≥ b, and |yN − xN | ≤ (bN − aN )Nα/2. Suppose aN → a,
bN → b. Write x̃N = (xN − paNNα/2)/

√
p(1− p), ỹN = (yN − pbNNα/2)/

√
p(1− p), and

assume x̃N → x, ỹN → y as N → ∞. Let Y N be a sequence of random variables with

laws PaN ,bN ,x
N ,yN

free,N , and let ZN = Y N |[a,b]. Then the law of ZN converges weakly to

P
a,b,x,y
free as N →∞.
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Proof. Let us write zN = (yN − xN )Nα/2 and TN = (bN − aN )Nα. Let B̃ be a standard
Brownian bridge on [0, 1], and define random variablesBN , B taking values in C([aN , bN ]),
C([a, b]) respectively via

BN (t) =
√
bN − aN · B̃

(
t− aN
bN − aN

)
+

t− aN
bN − aN

· ỹN +
bN − t
bN − aN

· x̃N ,

B(t) =
√
b− a · B̃

(
t− a
b− a

)
+
t− a
b− a

· y +
b− t
b− a

· x.

We observe that B has law P
a,b,x,y
free and BN =⇒ B as N →∞. By [1, Theorem 3.1], to

show that ZN =⇒ B, it suffices to find a sequence of probability spaces supporting
Y N , BN so that

ρ(BN , Y N ) = sup
t∈[aN ,bN ]

|BN (t)− Y N (t)| =⇒ 0 as N →∞. (7.6)

It follows from Theorem 3.3 that for each N ∈ N there is a probability space supporting
BN and Y N , as well as constants C, a′, α′ > 0, such that

E
[
ea
′∆(N,xN ,yN )

]
≤ Ceα

′ logNe|z
N−pTN |2/Nα , (7.7)

where ∆(N, xN , yN ) =
√
p(1− p)Nα/2ρ(BN , Y N ). Since by assumption

(zN − pTN )N−α/2 →
√
p(1− p) (y − x),

there exist N0 ∈ N and A > 0 so that |z − pTN | ≤ ANα/2 for N ≥ N0. Then for ε > 0 and
N ≥ N0, Chebyshev’s inequality and (7.7) give

P(ρ(BN , Y N ) > ε) ≤ Ce−a
′ε
√
p(1−p)Nα/2eα

′ logNeA
2

.

The right hand side tends to 0 as N →∞, implying (7.6).

We now give the proof of Lemma 4.6.

Proof. (of Lemma 4.6) We prove the two statements of the lemma in two steps.

Step 1. In this step we fix N0 ∈ N so that PaN ,bN ,~x
N ,~y N ,fN ,gN

avoid,N is well-defined for N ≥ N0.
Observe that we can choose ε > 0 and continuous functions h1, . . . , hk : [a, b] → R

depending on a, b, ~x, ~y, f, g with hi(a) = xi, hi(b) = yi for i ∈ J1, kK, such that if ui : [a, b]→
R are continuous functions with ρ(ui, hi) = supx∈[a,b] |ui(x)− hi(x)| < ε, then

f(x)− ε > u1(x) + ε > u1(x)− ε > · · · > uk(x) + ε > uk(x)− ε > g(x) + ε (7.8)

for all x ∈ [a, b]. By Lemma 2.6, we have

P
a,b,~x,~y
free (ρ(Qi, hi) < ε for i ∈ J1, kK) > 0. (7.9)

Since yNi −xNi − p(bN −aN )Nα/2 →
√
p(1− p) (yi−xi) as N →∞ for i ∈ J1, kK and p < 1,

we can find N1 ∈ N so that for N ≥ N1, |yNi − xNi | ≤ (bN − aN )Nα/2. It follows from

Lemma 7.4 that if ỸN have laws PaN ,bN ,~x
N ,~y N

free,N for N ≥ N1 and Z̃N = ỸN |J1,kK×[a,b], then

the law of Z̃N converges weakly to Pa,b,~x,~yfree . In view of (7.9) we can then find N2 so that
if N ≥ max(N1, N2) then

P
aN ,bN ,~x

N ,~y N

free,N (ρ(ỸNi , hi) < ε for i ∈ J1, kK) > 0. (7.10)
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We now choose N3 so that supx∈[a−1,b+1] |f(x) − fN (x)| < ε/4 and supx∈[a−1,b+1] |g(x) −
gN (x)| < ε/4. If f = ∞ (resp. g = −∞), we interpret this to mean that fN = ∞ (resp.
gN = −∞). We take N4 large enough so that if N ≥ N4 and |x − y| ≤ N−α/2 then
|f(x)− f(y)| < ε/4 and |g(x)− g(y)| < ε/4. Lastly, we choose N5 so that N−α5 < ε/4. Then
for N ≥ N0 = max(N1, N2, N3, N4, N5), we have using (7.8) that

{ρ(ỸNi , hi) < ε for i ∈ J1, kK} ⊂ {fN ≥ YN1 ≥ · · · ≥ YNk ≥ gN on [aN , bN ]}. (7.11)

By (7.10) and (7.11) we conclude that

P
aN ,bN ,~x

N ,~yN

free,N

(
{fN ≥ YN1 ≥ · · · ≥ YNk ≥ gN on [aN , bN ]}

)
> 0,

which implies that PaN ,bN ,~x
N ,~y N ,fN ,gN

avoid,N is well-defined.

Step 2. In this step we prove that ZN =⇒ P
a,b,~x,~y,f,g
avoid , with ZN defined in the statement

of the lemma. We write Σ = J1, kK, Λ = [a, b], and ΛN = [aN , bN ]. It suffices to show that
for any bounded continuous function F : C(Σ× Λ)→ R we have

lim
N→∞

E[F (ZN )] = E[F (Q)], (7.12)

where Q has law P
a,b,~x,~y,f,g
avoid .

We define the functions Hf,g : C(Σ× Λ)→ R and HN
f,g : C(Σ× ΛN )→ R by

Hf,g(L) = 1{f > L1 > · · · > Lk > g on Λ},
HN
f,g(LN ) = 1{f ≥ LN1 ≥ · · · ≥ LNk ≥ g on ΛN}.

Then we observe that for N ≥ N0,

E[F (ZN )] =
E[F (LN |Σ×[a,b])H

N
f,g(LN )]

E[HN
f,g(LN )]

, (7.13)

where LN has law PaN ,bN ,~x
N ,~y N

free,N . By our choice of N0 in Step 1, the denominator in (7.13)
is positive for all N ≥ N0. Similarly, we have

E[F (Q)] =
E[F (L)Hf,g(L)]

E[Hf,g(L)]
, (7.14)

where L has law P
a,b,~x,~y
free . From (7.13) and (7.14), we see that to prove (7.12) it suffices

to show that for any bounded continuous function F : C(Σ× Λ)→ R,

lim
N→∞

E[F (LN |Σ×[a,b])H
N
f,g(LN )] = E[F (L)Hf,g(L)]. (7.15)

By Lemma 7.4, LN |Σ×[a,b] =⇒ L as N →∞. Since C(Σ× Λ) is separable, the Skorohod
representation theorem [1, Theorem 6.7] gives a probability space (Ω,F ,P) supporting

C(Σ× ΛN )-valued random variables LN with laws PaN ,bN ,~x
N ,~y N

free,N and a C(Σ× Λ)-valued

random variable L with law P
a,b,~x,~y
free such that LN |Σ×[a,b] → L uniformly on compact sets,

pointwise on Ω. Here we rely on the fact that aN , bN are respectively the largest element
of N−αZ less than a and the smallest element greater than b, so that LN |Σ×[a,b] uniquely
determines LN on [aN , bN ].

Define the events

E1 = {ω : f > L1(ω) > · · · > Lk(ω) > g on [a, b]},
E2 = {ω : Li(ω)(r) < Li+1(ω)(r) for some i ∈ J0, kK and r ∈ [a, b]},
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where in the definition of E2 we use the convention L0 = f , Lk+1 = g. The continuity
of F implies F (LN |Σ×[a,b])H

N
fN ,gN

(LN )→ F (L) on the event E1, and on the event E2 we

have F (LN |Σ×[a,b])H
N
fN ,gN

(LN )→ 0. By Lemma 2.5 we have P(E1 ∪E2) = 1, so P-a.s. we

have F (LN |Σ×[a,b])H
N
fN ,gN

(LN )→ F (L)Hf,g(L). The bounded convergence theorem then
implies (7.15), completing the proof of (7.12).

We now state two lemmas about Brownian bridges which will be used in the proof of
Lemma 4.7. The first lemma shows that a Brownian bridge started at 0 almost surely
becomes negative somewhere on its domain.

Lemma 7.5. Fix any T > 0 and y ∈ R, and let Q denote a random variable with law
P

0,T,0,y
free . Define the event C = {infs∈[0,T ]Q(s) < 0}. Then P0,T,0,y

free (C) = 1.

Proof. Let B denote a standard Brownian bridge on [0, 1], and let

B̃s = Bs/T +
sy

T
, for s ∈ [0, T ].

Then B̃ has the law of Q. Consider the stopping time τ = inf{s > 0 : B̃s < 0}. We will
argue that τ = 0 a.s, which implies the conclusion of the lemma since {τ = 0} ⊂ C. We
observe that since B̃ is a.s. continuous and Q is dense in R,

{τ = 0} = ∩n∈N ∪s∈(0,1/n)∩Q {B̃s < 0} ∈ ∩n∈Nσ(B̃s : s < 1/n).

Here, σ(B̃s : s < ε) denotes the σ-algebra generated by B̃s for s < ε. We used the fact
that for a fixed ε, each set {B̃s < 0} for s ∈ (0, ε) ∩Q is contained in this σ-algebra, and
thus so is their countable union. It follows from Blumenthal’s 0-1 law [16, Theorem
7.2.3] that P(τ = 0) ∈ {0, 1}. To complete the proof, it suffices to show that P(τ = 0) > 0.
By (3.1), Bs/T is distributed normally with mean 0 and variance σ2 = (s/T )(1− s/T ). We
observe that for any s ∈ (0, T ),

P(τ ≤ s) ≥ P(Bs/T < −sy/T ) = P (σN (0, 1) > (s/T )y) = P
(
N (0, 1) > y

√
s/(T − s)

)
.

As s → 0, the probability on the right tends to P(N (0, 1) > 0) = 1/2. Since {τ = 0} =⋂∞
n=1{τ ≤ 1/n} and {τ ≤ 1/(n+ 1)} ⊂ {τ ≤ 1/n}, we conclude that

P(τ = 0) = lim
n→∞

P(τ ≤ 1/n) ≥ 1/2.

Therefore P(τ = 0) = 1.

The second lemma shows that a difference of two independent Brownian bridges is
another Brownian bridge.

Lemma 7.6. Let a, b, x1, y1, x2, y2 ∈ R with a < b. Let B1(t), B2(t) be independent
Brownian bridges from on [a, b] from x1 to y1 and from x2 to y2 respectively, as defined in
(2.2). If B(t) = B1(t)−B2(t) for t ∈ [a, b], then 2−1/2B is itself a Brownian bridge on [a, b]

from 2−1/2(x1 − x2) to 2−1/2(y1 − y2).

Proof. By definition, for i = 1, 2 we have

Bi(t) = (b− a)1/2 · B̃i
(
t− a
b− a

)
+

(
b− t
b− a

)
· xi +

(
t− a
b− a

)
· yi,

with B̃i(t) = W i
t − tW i

1 for independent Brownian motions W 1 and W 2. We have

B(t) = (b− a)1/2 · (B̃1 − B̃2)

(
t− a
b− a

)
+

(
b− t
b− a

)
· (x1 − x2) +

(
t− a
b− a

)
· (y1 − y2). (7.16)

EJP 26 (2021), paper 135.
Page 72/93

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP698
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Tightness of Bernoulli Gibbsian line ensembles

Note that the process B̃1 − B̃2 is a linear combination of continuous Gaussian mean 0
processes, so it is a continuous Gaussian mean 0 process, and is thus characterized by
its covariance. Since B̃1(·) and B̃2(·) are both Gaussian with mean 0 and the covariance
min(s, t), their difference B̃1(·) − B̃2(·) is also Gaussian with mean 0 and covariance
2 min(s, t). This implies that 2−1/2(B̃1 − B̃2) is itself a Brownian bridge B̃ on [a, b], and
hence equation (7.16) can be rewritten

2−1/2B(t) = (b− a)1/2 · B̃
(
t− a
b− a

)
+

(
b− t
b− a

)
· 2−1/2(x1 − x2) +

(
t− a
b− a

)
· 2−1/2(y1 − y2).

This is a Brownian bridge on [a, b] from 2−1/2(x1 − x2) to 2−1/2(y1 − y2) as desired.

To conclude this section, we prove Lemma 4.7.

Proof. (of Lemma 4.7) Suppose that L∞ is a subsequential limit of (f̃N1 , . . . , f̃
N
k−1). By

possibly passing to a subsequence we may assume that (f̃N1 , . . . , f̃
N
k−1) =⇒ L∞. We will

still call the subsequence (f̃N1 , . . . , f̃
N
k−1) to not overburden the notation. By the Skorohod

representation theorem [1, Theorem 6.7], we can also assume that (f̃N1 , . . . , f̃
N
k−1) and

L∞ are all defined on the same probability space with measure P and the convergence
is happening P-almost surely. Here we are implicitly using Lemma 2.2 from which we
know that the random variables (f̃N1 , . . . , f̃

N
k−1) and L∞ take value in a Polish space so

that the Skorohod representation theorem is applicable.
Let us denote the random variables with laws (f̃N1 , . . . , f̃

N
k−1) by XN and the one with

law L∞ by X and so XN → X almost surely w.r.t. P. In particular, XN (s)→ X (s) for any
s ∈ R. Recall that fNi (s) = N−α/2(LNi (sNα)−psNα)+λs2, so XNi (s) = N−α/2(LNi (sNα)−
psNα)/

√
p(1− p), where LN has the law of LN .

Suppose that Xi(s) = Xi+1(s) for some i ∈ J1, k−2K. Then we have XNi (s)−XNi+1(s)→
0, i.e., N−α/2(LNi (sNα) − LNi+1(sNα)) → 0 as N → ∞. Let us write a = bsNαcN−α,
b = d(s + 2)NαeN−α and xN = LNi (aNα) − LNi+1(aNα), yN = LNi (bNα) − LNi+1(bNα).
Then N−α/2xN → 0. If Qi, Qi+1 are independent Bernoulli bridges with laws

P
a,b,LNi (aNα),LNi (bNα)
Ber and P

a,b,LNi+1(aNα),LNi+1(bNα)

Ber , then ` = Qi − Qi+1 is a random walk
bridge taking values in {−1, 0, 1}, from (a, xN ) to (b, yN ). Let us denote the law of

N−α/2`/
√
p(1− p) by Pa,b,x

N ,yN

diff .
By Lemma 7.4,

(xN +N−α/2Qi+1 − ptNα)/
√
p(1− p) and (xN +N−α/2Qi − ptNα)/

√
p(1− p)

converge weakly to the law of two Brownian bridges Bi from L∞i (s) to L∞i (s+2) and Bi+1

from L∞i+1(s) to L∞i+1(s+2) respectively. Consequently, their difference N−α/2`/
√
p(1− p)

converges weakly to the difference of two independent Brownian bridges, B1 −B2. By
Lemma 7.6, this difference is equal to 21/2B, where B is a Brownian bridge B on
[s, s+ 2] from 0 to 2−1/2y, where y = L∞i (s+ 2)− L∞i+1(s+ 2). In other words, B has law

P
s,s+2,0,2−1/2y
free . Therefore Pa,b,x

N ,yN

diff converges weakly to Ps,s+2,0,y
free . With probability one,

mint∈[s,s+2]Bt < 0 by Lemma 7.5. Thus given δ > 0, we can choose N large enough so

that the probability of N−α/2`/
√
p(1− p), or equivalently `, remaining above 0 on [a, b]

is less than δ. Thus for large enough N we have

P
(
f∞i (s) = f∞i+1(s)

)
≤ P

(
P
a,b,xN ,yN

diff

(
sup
s∈[a,b]

`(s) ≥ 0

)
< δ

)
≤

P
(
Z(a, b,LN (aNα),LN (bNα),∞,LNk ) < δ

)
.

(7.17)

Here, Z denotes the acceptance probability of Definition 2.22. This is the probability that
k − 1 independent Bernoulli bridges Q1, . . . , Qk−1 on [a, b] with entrance and exit data
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LN (a) and LN (b) do not cross one another or LNk . The last inequality follows because `
has the law of the difference of Qi and Qi+1, and the acceptance probability is bounded
above by the probability that Qi and Qi+1 do not cross, i.e., that Qi − Qi+1 ≥ 0. By
Proposition 4.1, given ε > 0 we can choose δ so that the probability on the right in (7.17)
is < ε. We conclude that

P
(
f∞i (s) = f∞i+1(s)

)
= 0.

8 Appendix B

The goal of this section is to prove Proposition 3.17, which roughly states that if the
boundary data of an avoiding Bernoulli line ensemble converges then the fixed time
distribution of the ensemble converges weakly to a random vector with density ρ. In the
process of the proof we will identify this limiting density ρ.

Throughout this section we fix k ∈ N and consider sequences of J1, kK-indexed line
ensembles with distribution given by P0,T,~x,~y

avoid,Ber in the sense of Definition 2.15. Recall that
this is just the law of k independent Bernoulli random walks that have been conditioned
to start from ~x = (x1, . . . , xk) at time 0 and end at ~y = (y1, · · · , yk) at time T and are
conditioned on never crossing. Here ~x, ~y ∈ Wk satisfy T ≥ yi − xi ≥ 0 for i = 1, . . . , k,
which by Lemma 2.16 ensures the well-posedness of P0,T,~x,~y

avoid,Ber.

In Section 8.1, we introduce some definitions and formulate the precise statements
of the two results we want to prove as Propositions 8.2 and 8.3. In Section 8.2, we
introduce some basic results about skew Schur polynomials and express the fixed time
distribution of avoiding Bernoulli line ensembles through these polynomials in Lemma 8.7.
In Sections 8.3 and 8.4, we prove Propositions 8.2 and 8.3 for an important special
case. In Section 8.5 we introduce some notations and results about multi-indices and
multivariate functions which paves the way for the full proofs of Propositions 8.2 and 8.3
in that section and Section 8.6.

8.1 Weak convergence

We start by recalling and introducing some helpful notation. Recall,

Wk = {~x ∈ Rk : x1 ≥ x2 ≥ · · · ≥ xk}, W ◦k = {~x ∈ Rk : x1 > x2 > · · · > xk}.

Definition 8.1. Here we recall the scaling from Proposition 3.17. We fix p, t ∈ (0, 1), and
~a,~b ∈ Wk. Suppose that ~xT = (xT1 , . . . , x

T
k ) and ~yT = (yT1 , . . . , y

T
k ) are two sequences of

k-dimensional vectors in Wk such that

lim
T→∞

xTi√
T

= ai and lim
T→∞

yTi − pT√
T

= bi

for i = 1, . . . , k. Define the sequence of random k-dimensional vectors ZT by

ZT = (ZT1 , . . . , Z
T
k ) =

(
LT1 (tT )− ptT√

T
, . . . ,

LTk (tT )− ptT√
T

)
, (8.1)

where (LT1 , . . . , L
T
k ) is P0,T,~xT ,~yT

avoid,Ber -distributed.

We next define a class of functions that will be used to express the limiting density ρ in
Proposition 3.17. These functions depend on two vectors ~a,~b ∈Wk as well as parameters
p, t ∈ (0, 1) through the quantities

c1(p, t) =
1

p(1− p)t
, c2(p, t) =

1

p(1− p)(1− t)
, c3(p, t) =

1

2p(1− p)t(1− t)
. (8.2)
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Suppose the vectors ~a and ~b have the following form

~a = (a1, . . . , ak) = (α1, . . . , α1︸ ︷︷ ︸
m1

, . . . , αp, . . . , αp︸ ︷︷ ︸
mp

)

~b = (b1, . . . , bk) = (β1, . . . , β1︸ ︷︷ ︸
n1

, . . . , βq, . . . , βq︸ ︷︷ ︸
nq

)
(8.3)

where α1 > α2 > · · · > αp, β1 > β2 > · · · > βq and
∑p
i=1mi =

∑q
i=1 ni = k. We denote

~m = (m1, · · · ,mp), ~n = (n1, · · · , nq) and define two determinants ϕ(~a, ~z, ~m) and ψ(~b, ~z, ~n)

as follows

ϕ(~a, ~z, ~m) = det


(
(c1(t, p)zj)

i−1ec1(t,p)α1zj
)
i=1,...,m1
j=1,...,k

...(
(c1(t, p)zj)

i−1ec1(t,p)αpzj
)
i=1,...,mp
j=1,...,k



ψ(~b, ~z, ~n) = det


(
(c2(t, p)zj)

i−1ec2(t,p)β1zj
)
i=1,...,n1
j=1,...,k

...
((c2(t, p)zj)

i−1ec2(t,p)βqzj )i=1,...,nq
j=1,...,k

 .
(8.4)

Then we define the function

H(~z) = ϕ(~a, ~z, ~m) · ψ(~b, ~z, ~n) ·
k∏
i=1

e−c3(t,p)z2i . (8.5)

The function H implicitly depends on p, t, k,~a,~b but we will not reflect this dependence in
the notation. The following result summarizes the properties we will require from H(~z).
Its proof can be found in Sections 8.3 and 8.5.

Proposition 8.2. Fix p, t ∈ (0, 1) and ~a,~b ∈Wk and let H(~z) be as in (8.5). Then we have:

1. H(~z) ≥ 0 for all ~z ∈Wk.

2. H(~z) = 0 for ~z ∈Wk \W ◦k and H(~z) > 0 for ~z ∈W ◦k .

3. Zc :=
∫
Wk

H(~z)d~z ∈ (0,∞), where d~z stands for the usual Lebesgue measure.

In view of Proposition 8.2 we know that the function

ρ(~z) = ρ(z1, . . . , zk) = Z−1
c · 1{z1>z2>···>zk} ·H(~z), (8.6)

defines a density on Rk. This is the limiting density in Proposition 3.17. We end this
section by stating the main convergence statement we want to establish.

Proposition 8.3. Assume the same notation as in the Definition 8.1. Then the random
vectors ZT converge weakly to ρ as in (8.6) as T →∞.

The way the proof of the above two propositions is organized in the remainder of
the section is as follows. We first prove Proposition 8.2 and Proposition 8.3 for the case
when ~a,~b ∈ W ◦k – this is done in Sections 8.3 and 8.4 respectively. Afterwards we will

prove Proposition 8.2 for vectors ~a, ~b that have the form in (8.3) in Section 8.5 and then
use Proposition 8.3 for the case ~a,~b ∈ W ◦k and the monotone coupling Lemma 3.1 to
prove Proposition 8.3 in the general case in Section 8.6.
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8.2 Skew Schur polynomials

In this section we give some definitions and elementary results regarding skew Schur
polynomials, which are mainly based on [24, Chapter 1]. Afterwards we explain how the
fixed time distribution of an avoiding Bernoulli line ensemble is expressible in terms of
these skew Schur polynomials.

Definition 8.4. Partitions, skew diagrams, interlacing, conjugation

1. A partition is an infinite sequence λ = (λ1, λ2, . . . , λr, . . . ) of non-negative integers
in decreasing order λ1 ≥ λ2 ≥ · · · ≥ λr ≥ · · · and containing only finitely many
non-zero terms. The non-zero λi are called parts of λ, the number of parts is called
the length of the partition λ, denoted by l(λ), and the sum of the parts is the weight
of λ, denoted by |λ|.

2. A partition λ is graphically represented by a Young diagram that has λ1 left-justified
boxes on the top row, λ2 boxes on the second row and so on. Suppose λ and µ are
two partitions, we write λ ⊃ µ if λi ≥ µi for all i ∈ N. We call the set-theoretic
difference of the two Young diagrams of λ and µ a skew diagram and denote it λ/µ.

3. Partitions λ = (λ1, λ2, · · · ) and µ = (µ1, µ2, · · · ) are call interlaced, denoted by
µ � λ, if λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · .

4. The conjugate of a partition λ is the partition λ′ such that

λ′i = max
j≥1
{j : λj ≥ i}

In particular, λ′1 = l(λ), λ1 = l(λ′) and notice that λ′′ = λ. For example, the
conjugate of (5441) is (43331).

According to Definition 8.4, we directly get that if µ ⊂ λ then l(λ) ≥ l(µ) and
l(λ′) ≥ l(µ′). Also, µ � λ implies µ ⊂ λ. Also as explained in [24, pp. 5] we have that if
µ � λ are interlaced, then λ′i − µ′i = 0 or 1 for every i ≥ 1.

Definition 8.5. Elementary Symmetric Functions.For each integer r ≥ 0, the r-th
elementary symmetric function er is the sum of all products of r distinct variables xi, so
that e0 = 1 and

er =
∑

i1<i2<···<ir

xi1xi2 · · ·xir (8.7)

for r ≥ 1. For r < 0, we define er to be zero. In particular, when x1 = x2 = · · · = xn = 1,
xn+1 = xn+2 = · · · = 0, er is just the binomial coefficient when 0 ≤ r ≤ n:

er(1
n) =

(
n

r

)
and er = 0 when r > n.

Next, we introduce Skew Schur Polynomial based on [24, Chapter 1, (5.5), (5.11),
(5.12)].

Definition 8.6. Skew Schur Polynomial, Jacob-Trudi Formula

1. Suppose µ ⊂ λ are partitions. If µ � λ are interlaced, then the skew Schur
polynomial sλ/µ with single variable x is defined by sλ/µ(x) = x|λ−µ|. Otherwise,
we define sλ/µ(x) = 0.
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2. Suppose µ ⊂ λ are two partitions, define the skew Schur polynomial sλ/µ with
respect to variables x1, x2, · · · , xn by

sλ/µ(x1, · · · , xn) =
∑
(ν)

n∏
i=1

sνi/νi−1(xi) =
∑
(ν)

n∏
i=1

x
|νi−νi−1|
i (8.8)

summed over all sequences (ν) = (ν0, ν1, · · · , νn) of partitions such that ν0 = µ,
νn = λ and ν0 � ν1 � · · · � νn. In particular, when x1 = x2 = · · · = xn = 1,
the skew Schur polynomial is just the number of such sequences of interlaced
partitions (ν). This definition also implies the following branching relation of skew
Schur polynomials:

sκ/µ(x1, . . . , xn) =
∑
λ

sκ/λ(x1, . . . , xm) · sλ/µ(xm+1, . . . , xn), (8.9)

where 1 ≤ m ≤ n and sκ/λ(∅) = 1{κ = λ}.

3. We also have the following Jacob-Trudi Formula[24, Chapter 1, (5.5)] for the skew
Schur polynomial:

sλ/µ = det
(
eλ′i−µ′j−i+j

)
1≤i,j≤m

(8.10)

where m ≥ l(λ′), and er is the elementary symmetric function in Definition 8.5.

Based on the above preparation, we are ready to state the following lemma giving
the distribution of avoiding Bernoulli line ensembles at time btT c.
Lemma 8.7. Assume the same notation as in Definition 8.1, denote m = btT c, n =

T − btT c and assume m,n ∈ N. Then, the avoiding Bernoulli line ensemble at time m
has the following distribution:

P
0,T,~xT ,~yT

avoid,Ber(LT1 (m) = λ1, · · · , LTk (m) = λk) =

det
(
eλi−xTj −i+j(1

m)
)

1≤i,j≤k
· det

(
eyTi −λj−i+j(1

n)
)

1≤i,j≤k

det
(
eyTi −xTj −i+j(1

m+n)
)

1≤i,j≤k

,
(8.11)

where λ1 ≥ λ2 ≥ · · · ≥ λk are integers.

Proof. Notice that if we shift all xi, yi and λi by the same integer, both sides of (8.11)
stay the same and so we may assume that all of these quantities are positive by adding
the same large integer to all the coordinates. We then let κ be the partition with
parts κi = yTi , µ be the partition with µi = xTi and λ be the partition with parts λi for
i = 1, . . . , k. All three partitions have length k. In view of (8.10) we see that the right
side of (8.11) is precisely

RHS of (8.11) =
sλ′/µ′(1

m) · sκ′/λ′(1n)

sκ′/µ′(1T )
. (8.12)

Let Ω(0, T, ~xT , ~yT ) be the set of all avoiding Bernoulli line ensembles from ~xT to ~yT ,
and analogously define Ω(0,m, ~xT , λ) and Ω(0, n, λ, ~yT ). Then we get by the uniformity of

the measure P0,T,~xT ,~yT

avoid,Ber that

LHS of (8.11) =
|Ω(0,m, ~xT , λ)| · |Ω(0, n, λ, ~yT )|

|Ω(0, T, ~xT , ~yT )|
. (8.13)

EJP 26 (2021), paper 135.
Page 77/93

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP698
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Tightness of Bernoulli Gibbsian line ensembles

Let us define the set

TBTκ/µ := {(λ0, . . . , λT ) | λ0 = µ, λT = κ, λi � λi+1 for i = 0, · · · , T − 1}.

By the definition of Ω(0, T, ~xT , ~yT ) the map f : Ω(0, T, ~xT , ~yT )→ TBTκ/µ given by

f(L) = (L(·, 0), . . . ,L(·, T )),

where L(·, j) stands for the partition with parts L(i, j) for i = 1, . . . , k defines a bijection
between Ω(0, T, ~xT , ~yT ) and TBTκ/µ and so we conclude that

|Ω(0, T, ~xT , ~yT )| = |TBTκ/µ| = sκ′/µ′(1
T ),

where in the last equality we used (8.8). Applying the same argument to Ω(0,m, ~xT , λ)

and Ω(0, n, λ, ~yT ) we conclude

|Ω(0,m, ~xT , λ)| = sλ′/µ′(1
m), |Ω(0, n, λ, ~yT )| = sκ′/λ′(1

n), |Ω(0, T, ~xT , ~yT )| = sκ′/µ′(1
T ).

(8.14)
Combining (8.12), (8.13) and (8.14) gives (8.11).

8.3 Proof of Proposition 8.2 for ~a,~b ∈W ◦k
In this section we prove a few technical results we will need later as well as Proposi-

tion 8.2 for the case when ~a,~b have distinct entries.

Lemma 8.8. Suppose that p ∈ (0, 1) and R > 0 are given. Suppose that x ∈ [−R,R] and
N = pn+

√
nx ∈ [0, n] is an integer. Then

eN (1n) = (
√

2π)−1 · exp

(
− x2

2(1− p)p

)
· exp

(
N log

(
1− p
p

))
· exp

(
O(n−1/2)

)
·

exp (−n log(1− p)− (1/2) log n− (1/2) log (p(1− p)))
(8.15)

where the constant in the big O notation depends on p and R alone. Moreover, there
exist positive constants C, c > 0 depending on p alone such that for all large enough
n ∈ N and N ∈ [0, n],

eN (1n) ≤ C · exp

(
N log

1− p
p
− n log(1− p)− (1/2) log n

)
· exp

(
−cn−1(N − pn)2

)
.

(8.16)

Remark 8.9. Notice that when R > 0 is fixed and N ∈ [pn− R
√
n, pn+ R

√
n] we have

N ∈ [0, n] for all large enough n so that our insistence that N ∈ [0, n] in the first part of
Lemma 8.8 does not affect the asymptotics. The second part of the lemma, equation
(8.16), also trivially holds if N 6∈ [0, n] since eN (1n) = 0 in this case by Definition 8.5.

Proof. For clarity the proof is split into several steps.

Step 1. In this step we prove (8.15). Using Definition 8.5 we obtain

eN (1n) =
n!

N !(n−N)!
(8.17)

We have the following formula [28] for n ≥ 1

n! =
√

2πnnne−nern , where
1

12n+ 1
< rn <

1

12n
(8.18)
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Applying (8.18) to equation (8.17) gives

eN (1n) =
exp

(
(n+ 1/2) log n− (N + 1/2) logN − (n−N + 1/2) log(n−N) +O

(
n−1

))
√

2π

= (
√

2π)−1 · exp

(
(n+ 1/2) log n− (N + 1/2) log

N

pn
− (n−N + 1/2) log

n−N
(1− p)n

)
·

exp
(
−(N + 1/2) log(pn)− (n−N + 1/2) log((1− p)n) +O

(
n−1

))
.

(8.19)

Denote ∆ =
√
nx = O

(
n1/2

)
, and we now use the Taylor expansion of the logarithm

and the expression for N to get

log
N

pn
= log

(
1 +

∆

pn

)
=

∆

pn
− 1

2

∆2

p2n2
+O

(
n−3/2

)
Analogously, we have

log
n−N

(1− p)n
= log

(
1− ∆

(1− p)n

)
= − ∆

(1− p)n
− 1

2

∆2

(1− p)2n2
+O

(
n−3/2

)
Plugging the two equations above into equation (8.19) we get

eN (1n) = (
√

2π)−1 · exp

(
−(N + 1/2)

[
∆

pn
− 1

2

∆2

p2n2
+O

(
n−3/2

)])
·

exp

(
−(n−N + 1/2)

[
− ∆

(1− p)n
− 1

2

∆2

(1− p)2n2
+O

(
n−3/2

)])
·

exp
(
(n+ 1/2) log n− (N + 1/2) log(pn)− (n−N + 1/2) log((1− p)n) +O

(
n−1

))
(8.20)

We next observe that

− ∆(N + 1/2)

pn
+

(n−N + 1/2)∆

(1− p)n
= − ∆2

p(1− p)n
+O

(
n−1/2

)
∆2(N + 1/2)

2n2p2
+

∆2(n−N + 1/2)

2(1− p)2n2
=

∆2

2p(1− p)n
+O

(
n−1/2

)
(n+ 1/2) log n− (N + 1/2) log(pn)− (n−N + 1/2) log((1− p)n) =

N log
1− p
p
− 1

2
log p(1− p)− 1

2
log n− n log(1− p)

(8.21)

Plugging (8.21) into (8.20) we arrive at (8.15).

Step 2. In this step we prove (8.16). If N = 0 or n we know that eN (1n) = 1 and then
(8.16) is easily seen to hold with C = 1 and any c ∈ (0,min(− log p,− log(1− p))). Thus it
suffices to consider the case when N ∈ [1, n− 1] and in the sequel we also assume that
n ≥ 2.

Combining (8.17) and (8.18) we conclude that

eN (1n) ≤ exp ((n+ 1/2) log n− (N + 1/2) logN − (n−N + 1/2) log(n−N)) (8.22)
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From (8.22) we get for all large enough n that

φn := log [eN (1n) · exp (−N log((1− p)/p) + n log(1− p) + (1/2) log n)]

≤ (n+ 1/2) log n− (N + 1/2) log
N

pn
− (N + 1/2) log(pn)− (n−N + 1/2) log

n−N
(1− p)n

− (n−N + 1/2) log((1− p)n)−N log
1− p
p

+ n log(1− p) + (1/2) log n

= −(N + 1/2) log
N

pn
− (n−N + 1/2) log

n−N
(1− p)n

− (1/2) log (p(1− p))

= −(pn+ ∆ + 1/2) log

(
1 +

∆

pn

)
− ((1− p)n−∆ + 1/2) log

(
1− ∆

(1− p)n

)
−

1

2
log (p(1− p)) ≤ C1 + ψn(∆)

where C1 > 0 is sufficiently large depending on p alone and

ψn(s) = −(pn+ s+ 1/2) log

(
1 +

s

pn

)
− ((1− p)n− s+ 1/2) log

(
1− s

(1− p)n

)
(8.23)

where s ∈ [−pn + 1, (1 − p)n − 1]. We claim that we can find positive constants C2 > 0

and c > 0 such that for all n sufficiently large and s ∈ [−pn+ 1, (1− p)n− 1] we have

ψn(s) ≤ C2 − cn−1s2 (8.24)

We prove (8.24) in Step 3 below. For now we assume its validity and conclude the proof
of (8.16). In view of φn ≤ C1 + ψn(s) and (8.24) we know that

eN (1n) ≤ eC1+C2+N log((1−p)/p)−n log(1−p)−(1/2) logn · exp(−cn−1(N − pn)2),

which proves (8.16) with C = eC1+C2 .
Step 3. In this step we prove (8.24). A direct computation gives

ψ′n(s) = − log

(
1 +

t

pn

)
+ log

(
1− t

(1− p)n

)
+

1

2
· 1

pn+ t
+

1

2
· 1

(1− p)n− t

ψ′′n(s) =
(n+ 1) · s2 + (2p− 1)n(n+ 1) · s+ p(p− 1)n2(n+ 1) + (1/2)n2

(pn+ s)2((1− p)n− s)2

(8.25)

Notice that the numerator of ψ′′n(s) is a quadratic function with min at xmin = (−p+1/2)n,
which is the midpoint of the interval [−pn+ 1, (1− p)n− 1]. Consequently, the numerator
reaches its maximum at either one of the two endpoints of the interval [−pn+1, (1−p)n−1].
The denominator is the square of a parabola that reaches its minimum also at the
endpoints of the interval [−pn+ 1, (1− p)n− 1]. Therefore, we conclude that

ψ′′n(s) ≤ ψ′′n(−pn+ 1) = ψ′′n((1− p)n− 1) =
− 1

2n
2 + 1

(n− 1)2
=

− 1

2
− 1

n− 1
+

1

2
· 1

(n− 1)2
≤ −1

2
· 1

n− 1
≤ − 1

2n
= −2cn−1

(8.26)

where c = 1/4. Next, we prove (8.24) under two cases when s ∈ [−pn + 1, 0] and
s ∈ [0, (1− p)n− 1], respectively.
1◦. When s ∈ [−pn+ 1, 0], by the fundamental theorem of calculus and (8.26) we get

ψ′n(s) = ψ′n(0)−
∫ 0

s

ψ′′n(y)dy ≥ ψ′n(0)− (−s)(−2cn−1) =
2p− 1

2p(1− p)n
− 2cn−1s,
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and a second application of the same argument yields for s ∈ [−pn+ 1, 0]

ψn(s) = ψn(0)−
∫ 0

s

ψ′n(y)dy ≤ −
∫ 0

s

(
2p− 1

2p(1− p)n
− 2cn−1y

)
dy =

(2p− 1)s

2p(1− p)n
− cn−1s2,

When p ≤ 1/2, (2p−1)s
2p(1−p)n ≤

(2p−1)pn
2p(1−p)n = 1−2p

2(1−p) , so (8.24) gets proved with C2 = 1−2p
2(1−p) .

When p > 1/2, (8.24) gets proved C2 = 0.

2◦. When s ∈ [0, (1− p)n− 1], using the fundamental theorem of calculus and (8.26)

ψ′n(s) = ψ′n(0) +

∫ s

0

ψ′′n(y)dy ≤=
2p− 1

2p(1− p)n
− 2cn−1s,

and a second application of the same argument yields for s ∈ [0, (1− p)n− 1]

ψn(s) = ψn(0) +

∫ s

0

ψ′n(y)dy ≤ (2p− 1)s

2p(1− p)n
− cn−1s2,

When p ≥ 1/2, (2p−1)s
2p(1−p)n ≤

(2p−1)(1−p)n
2p(1−p)n = 2p−1

2p , so (8.24) gets proved with C2 = 2p−1
2p .

When p < 1/2, (8.24) gets proved C2 = 0. Combining 1◦ and 2◦ we complete the proof.

Lemma 8.10. Assume the same notation as in Definition 8.1. Fix ~z ∈ Rk such that
z1 > · · · > zk. Suppose that T0 ∈ N is sufficiently large so that for T ≥ T0 we have

zk
√
T + ptT ≥ a1

√
T + k + 1 and bk

√
T + pT ≥ z1

√
T + ptT + k + 1,

and define λTi = bzi
√
T + ptT c for i = 1, . . . , k (to ease notation we suppress the depen-

dence of λ on T in what follows). Setting m = btT c and n = T −m define

Aλ(T ) = det
(
eλi−xTj −i+j(1

m)
)

1≤i,j≤k
· det

(
eyTi −λj−i+j(1

n)
)

1≤i,j≤k
, (8.27)

Bλ(T ) = (
√

2π)k · exp (kT log(1− p) + k log T + (k/2) log(p(1− p))) ·

exp

(
− log

(
1− p
p

) k∑
i=1

(yTi − xTi )

)
·Aλ(T )

(8.28)

We claim that

lim
T→∞

Bλ(T ) = (2π)−k/2 · exp(−(k/2) log(p(1− p))− (k/2) log(t(1− t)))·

det
[
ec1(t,p)aizj

]k
i,j=1

· det
[
ec2(t,p)bizj

]k
i,j=1

·
k∏
i=1

exp

(
−c1(t, p)a2

i + c2(t, p)b2i
2

)
.

(8.29)

Proof. Let us write

A1
λ = det

(
eλi−xTj −i+j(1

m)
)

1≤i,j≤k
, A2

λ = det
(
eyTi −λj−i+j(1

n)
)

1≤i,j≤k
, and

A3
λ = det

(
eyTi −xTj −i+j(1

m+n)
)

1≤i,j≤k
.
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Then from Lemma 8.8 we have

A1
λ = det

[
exp

(
−

(λi − xTj + j − i− pm)2

2(1− p)pm

)
exp

(
O
(
T−1/2

))]
· (
√

2π)−k·

exp

(
−km log(1− p)− (k/2) logm− (k/2) log(p(1− p)) + log

(
1− p
p

) k∑
i=1

(λi − xTi )

)
(8.30)

A2
λ = det

[
exp

(
− (yTi − λj + j − i− pn)2

2(1− p)pn

)
exp

(
O
(
T−1/2

))]
· (
√

2π)−k·

exp

(
−kn log(1− p)− (k/2) log n− (k/2) log(p(1− p)) + log

(
1− p
p

) k∑
i=1

(yTi − λi)

)
(8.31)

A3
λ = det

[
exp

(
−

(yTi − xTj + j − i− pT )2

2(1− p)pT

)
exp

(
O
(
T−1/2

))]
· (
√

2π)−k·

exp

(
−kT log(1− p)− (k/2) log T − (k/2) log(p(1− p)) + log

(
1− p
p

) k∑
i=1

(yTi − xTi )

)
(8.32)

where the constants in the big O notation are uniform as zi vary over compact subsets of
R. Combining (8.31), (8.30) and (8.28) we see that

Bλ(T ) = (2π)−k/2 · exp(−(k/2) log(p(1− p))− (k/2) log(t(1− t)) +O(T−1))·

det

[
exp

(
− (zi − aj)2

2p(1− p)t
+O(T−1/2)

)]
· det

[
exp

(
− (bi − zj)2

2p(1− p)(1− t)
+O(T−1/2)

)]
(8.33)

Taking the limit T →∞ in (8.33), and using the identities

det

[
exp

(
− (zi − aj)2

2p(1− p)t

)]
= det

[
ec1(t,p)aizj

]k
i,j=1

·
k∏
i=1

exp

(
−c1(t, p)

2
(a2
i + z2

i )

)
, and

det

[
exp

(
− (bi − zj)2

2p(1− p)(1− t)

)]
= det

[
ec2(t,p)bizj

]k
i,j=1

·
k∏
i=1

exp

(
−c2(t, p)

2
(b2i + z2

i )

)
(8.34)

we get (8.29).

Lemma 8.11. Suppose the vector ~m = (m1, . . . ,mp) satisfies k =
∑p
i=1mi, and α1 >

α2 > · · · > αp. Then the following determinant

U = det


(zi−1
j eα1zj )i=1,...,m1

j=1,...,k
...

(zi−1
j eαpzj )i=1,...,mp

j=1,...,k


is non-zero for any ~z = (z1, . . . , zk) ∈ Rk whose entries are distinct.

Proof. We claim that, the following equation with respect to z over R

(ξ1 + ξ2z + · · ·+ ξm1
zmi−1)eα1z + · · ·+ (ξm1+···+mp−1+1 + · · ·+ ξkz

mp−1)eαpz = 0
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has at most (k − 1) distinct roots, where (ξ1, . . . , ξk) ∈ Rk is non-zero.

Denote the rows of the matrix in the definition of U by v1, . . . , vk. If the above
claim holds, we can conclude that we cannot find non-zero (ξ1, · · · , ξk) ∈ Rk such that
ξ1v1 + · · ·+ ξkvk = 0. Thus, the k row vectors of the determinant are linearly independent
and the determinant is non-zero. Thus it suffices to prove the claim, and we do it by
induction on k.
1◦. If k = 2, the equation is (ξ1 + ξ2z)e

α1z = 0 or ξ1eα1z + ξ2e
α2z = 0, where ξ1, ξ2 ∈ R

cannot be zero at the same time. Then, it’s easy to see that the equation has at most 1

root in two scenarios.
2◦. Suppose the claim holds for k ≤ n.
3◦. When k = n+ 1, we have the equation

(ξ1 + ξ2z + · · ·+ ξm1
zmi−1)eα1z + · · · (ξm1+···+mp−1+1 + · · ·+ ξkz

mp−1)eαpz = 0

but now
∑p
i=1mi = n + 1. WLOG, suppose (ξ1, . . . , ξm1

) has a non-zero element and ξ`
is the first non-zero element. Notice that the above equation has the same roots as the
following one:

F (z) = (ξ`z
`−1 + · · ·+ ξm1

zm1−1) + · · ·+ (ξm1+···+mp−1+1 + · · ·+ ξkz
mp−1)e(αp−α1)z = 0.

Assume it has at least (n + 1) distinct roots η1 < η2 < · · · < ηn+1. Then F ′(z) = 0

has at least n distinct roots δ1 < · · · < δn such that η1 < δ1 < η2 < · · · < δn < ηn+1,
by Rolle’s Theorem. Actually, F ′(z) = (ξ`(` − 1))z`−2 + · · · + ξm1(m1 − 1)zm1−2) + · · · +
(ξ′m1+···+mp−1+1 + · · ·+ ξ′kz

mp−1)e(αp−α1)z = 0 where ξ′i, i = m1 + 1, · · · , k are coefficients
that can be calculated. This equation has at most (m1 − 1) +m2 + · · ·+mp − 1 = n− 1

roots by 2◦, which leads to a contradiction. Therefore, our claim holds and we have
proved the lemma.

Proof. (of Proposition 8.2 when ~a,~b ∈ W ◦k ) Let us fix ~z ∈ W ◦k , and define λT as in
Lemma 8.10. We also let xTi and yTi be sequences of integers such that

lim
T→∞

xTi√
T

= ai and lim
T→∞

yTi − pT√
T

= bi

for i = 1, . . . , k. In view of the Jacobi-Trudi formula (8.10) we know that Bλ(T ) as in
Lemma 8.10 are non-negative and from (8.29) they converge as T tends to infinity to

(2π)−k/2 · exp(−(k/2) log(p(1− p))− (k/2) log(t(1− t)))·

det
[
ec1(t,p)aizj

]k
i,j=1

· det
[
ec2(t,p)bizj

]k
i,j=1

·
k∏
i=1

exp

(
−c1(t, p)a2

i + c2(t, p)b2i
2

)
.

On the other hand, we have that when the entries of ~a,~b are distinct

H(~z) = det
[
ec1(t,p)aizj

]k
i,j=1

· det
[
ec2(t,p)bizj

]k
i,j=1

·
k∏
i=1

e−c3(t,p)z2i .

The last two statements imply that H(~z) ≥ 0 and from Lemma 8.11 we have H(~z) 6= 0 so
that H(~z) > 0 for ~z ∈ W ◦k . If ~z ∈ Wk \W ◦k then zi = zj for some i 6= j and then we see
that H(~z) = 0 since the matrices in determinants in the equation above for H(~z) have
i-th and j-th column that are equal, which makes the determinant vanish. This proves
the first two statements in the proposition.
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To prove the third statement observe that by the continuity, non-negativity of H(~z)

and the fact that it is strictly positive in the open set W ◦k we know that Zc ∈ (0,∞] and
so we only need to prove that Zc <∞. Using the formula

det [Ai,j ]
k
i,j=1 =

∑
σ∈Sk

(−1)σ ·
k∏
i=1

Ai,σ(i)

and the triangle inequality we see that∣∣∣∣det
[
ec1(t,p)aizj

]k
i,j=1

∣∣∣∣ ≤ ∑
σ∈Sk

k∏
j=1

ec1(t,p)aσ(j)zj ≤
∑
σ∈Sk

k∏
j=1

ec1(t,p)(
∑k
i=1 |ai|)·|zj |

≤ k! ·
k∏
i=1

eC1|zj |, where C1 =

k∑
i=1

c1(t, p)|ai|

(8.35)

Analogously, define the constant C2 =
∑k
i=1 c2(t, p)|bi| and we have

∣∣∣∣det
[
ec2(t,p)bizj

]k
i,j=1

∣∣∣∣ ≤ k! ·
k∏
i=1

eC2|zj | (8.36)

Using (8.35) and (8.36) we get

|H(~z)| ≤ (k!)2 ·
k∏
i=1

eC|zi|−c3(t,p)z2i (8.37)

where C = C1 + C2. Since the right side of (8.37) is integrable (because of the square in
the exponential) we conclude that H(~z) is also integrable by domination and so Zc <∞
as desired.

8.4 Proof of Proposition 8.3 for ~a,~b ∈W ◦k
For clarity we split the proof into several steps.

Step 1. In this step we prove that Zc from Proposition 8.2 in the case when ~a,~b have
distinct entries satisfies the equation

Zc = (2π)
k
2 (p(1− p)t(1− t)) k2 · e

c1(t,p)
2

∑k
i=1 a

2
i · e

c2(t,p)
2

∑k
i=1 b

2
i det

[
e−

1
2p(1−p) (bi−aj)2

]k
i,j=1

.

(8.38)
Let Bλ(T ) be as in Lemma 8.10 for λ ∈ Wk, with ~xT , ~yT as in the statement of the

proposition. It follows from Lemma 8.7 that∑
λ∈Wk

Bλ(T )

T k/2
= (
√

2π)k · exp(kT log(1− p) + (k/2) log T + (k/2) log p(1− p))·

exp

(
− log

(
1− p
p

) k∑
i=1

(yTi − xTi )

)
· det

(
eyTi −xTj −i+j(1

m+n)
)

1≤i,j≤k
,

(8.39)

where we recall that m = btT c and n = T −m. Taking the T → ∞ limit in (8.39) and
using (8.32) we obtain

lim
T→∞

∑
λ∈Wk

Bλ(T )

T k/2
= det

[
e−

1
2p(1−p) (bi−aj)2

]k
i,j=1

. (8.40)
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For λ ∈ Wk and T ∈ N we define Qλ(T ) to be the cube [λ1T
−1/2 − pt

√
T , (λ1 +

1)T−1/2− pt
√
T )× · · ·× [λkT

−1/2− pt
√
T , (λk + 1)T−1/2− pt

√
T ) and note that Qλ(T ) has

Lebesgue measure T−k/2. In addition, we define the step functions fT through

fT (~z) =
∑
λ∈Wk

Bλ(T ) · 1Qλ(T )(~z) (8.41)

and observe that ∑
λ∈Wk

Bλ(T )

T k/2
=

∫
Rk
fT (~z)d~z (8.42)

where d~z represents the usual Lebesgue measure on Rk.
In view of (8.29) we know that for almost every ~z = (z1, · · · , zk) ∈ Rk we have

lim
T→∞

fT (~z) = 1{z1>···>zk} ·H(z) · (2πp(1− p)t(1− t))− k2 ·

k∏
i=1

exp

(
−c1(t, p)a2

i + c2(t, p)b2i
2

)
.

(8.43)

We claim that there exists a non-negative integrable function g on Rk such that if T is
large enough

|fT (z1, . . . , zk)| ≤ |g(z1, . . . , zk)| (8.44)

We will prove (8.44) in Step 2 below. For now we assume its validity and conclude the
proof of (8.38).

From (8.43) and the dominated convergence theorem with dominating function g as
in (8.44) we know that

lim
T→∞

∫
Rk
fT (~z)d~z =

∫
Wk

H(~z)(2πp(1− p)t(1− t))− k2
k∏
i=1

exp

(
−c1(t, p)a2

i + c2(t, p)b2i
2

)
d~z.

(8.45)

Combining (8.45), (8.42) and (8.40) we conclude that

det
[
e−

1
2p(1−p) (bi−aj)2

]k
i,j=1

=

∫
Wk

H(~z) · (2πp(1− p)t(1− t))− k2 ·
k∏
i=1

e−
c1(t,p)a2i+c2(t,p)b2i

2 d~z.

(8.46)

which clearly establishes (8.38).

Step 2. In this step we demonstrate an integrable function g that satisfies (8.44). Let us
fix λ ∈Wk. If λi ≥ xTi +m+ 1 or λi < xTi for some i ∈ {1, 2, . . . , k} we know that

det
(
eλi−xTj −i+j(1

m)
)

1≤i,j≤k
= 0.

To see this, observe that if λs ≥ xTs + m + 1 then the top-right s × (k − s)-th block in
the matrix consists of zeros (since eN (1m) = 0 for N ≥ m+ 1). Thus if A and B are the
top-left (s− 1)× (s− 1) submatrix and bottom-right (k − s+ 1)× (k − s+ 1) submatrix
we would have that

det
(
eλi−xTj −i+j(1

m)
)

1≤i,j≤k
= detA · detB,
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but then detB = 0 since its top row consists of 0’s. Similar arguments show that the
determinant is 0 if λs < xTs for some s ∈ {1, 2, . . . , k}, where now we would get a block
of 0’s in the bottom left corner using eN (1m) = 0 for N < 0. From the definition of
Bλ(T ) we conclude that Bλ(T ) = 0 if λi ≥ xTi +m+ 1 or λi < xTi . Similarly, we have that
Bλ(T ) = 0 if yTi ≥ λi + n+ 1 or yTi < λi for some i ∈ {1, 2, . . . , k}, using that

det
(
eyTi −λj−i+j(1

n)
)

1≤i,j≤k
= 0

in this case. Overall, we conclude that Bλ(T ) = 0 unless

m ≥ λi − xTi ≥ 0 and n ≥ yTi − λi ≥ 0 for all i ∈ {1, . . . , k}

which implies that for all large enough T we have

Bλ(T ) = 0, unless |λi − xTj + j − i| ≤ (1 + p)m and |yTi − λj + j − i| ≤ (1 + p)n (8.47)

for all i, j ∈ {1, · · · , k}. To see the latter, suppose that there exist i, j such that (1 +p)m <

|λi − xTj + j − i|. Then we have

(1 + p)m < |λi − xTj + j − i| ≤ |λi − xTi |+ k + |xTi − xTj | = |λi − xTi |+O(
√
T ).

When T is sufficiently large, the above inequality implies λi − xTi 6∈ [0,m] so that
Bλ(T ) = 0, and similar result holds for yTi − λj + j − i, which justifies (8.47). From the
definition of Bλ(T ) we know

Bλ(T ) = CT · det[E(λi − xTj + j − i,m)]ki,j=1 · det[E(yTi − λj + j − i, n)]ki,j=1, where

E(N,n) = eN (1n) · exp

(
−N log

(
1− p
p

)
+ n log(1− p) + (1/2) log n

)
, and

CT = (
√

2π)k(p(1− p))k/2 · exp(k log T − (k/2) log n− (k/2) logm).

(8.48)

Notice that CT is uniformly bounded for all T large enough, because

k log T − k

2
log n− k

2
logm =

k

2
log

(
T 2

btT c · (T − btT c)

)
= −k

2
log(t(1− t)) +O

(
T−1

)
(8.49)

and O
(
T−1

)
is uniformly bounded.

In view of (8.16) we know that we can find constants C1, c1 > 0 such that for all large
enough T and N1 ∈ [0,m] and N2 ∈ [0, n] we have

E(N1,m) ≤ C1 exp(−c1m−1(N1 − pm)2) and E(N2, n) ≤ C1 exp(−c1n−1(N2 − pn)2)

(8.50)

Observing that er(1n) = 0 for r > n or r < 0, we know that (8.50) also holds for all
N1 ∈ [−(1 + p)m, (1 + p)m] and N2 ∈ [−(1 + p)n, (1 + p)n]. Combining (8.47), (8.48) and
(8.50) we see that for all λ ∈Wk and T sufficiently large

0 ≤ Bλ(T ) ≤ C̃
∑

σ,τ∈Sk

k∏
i=1

1{|λi − xTj + j − i| ≤ (1 + p)m} · 1{|yTi − λj + j − i| ≤ (1 + p)n}·

exp
(
−c̃T−1

[
(λi −

√
Taσ(i) − ptT )2 + (

√
Tbi − λτ(i) + ptT )2

])
(8.51)
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where c̃, C̃ > 0 depend on p, t, k but not on T provided that it is sufficiently large.
In particular, we see that if ~z ∈ Rk then either ~z 6∈ Qλ(T ) for any λ ∈ Wk in which

case fT (~z) = 0 or ~z ∈ Qλ(T ) for some λ ∈Wk in which case (8.51) implies

0 ≤ fT (~z) ≤ C
∑

σ,τ∈Sk

k∏
i=1

exp
(
−c((zi − aσ(i))

2 + (bi − zτ(i))
2)
)

(8.52)

where C, c > 0 depend on p, t, k but not on T provided that it is sufficiently large. We
finally see that (8.44) holds with g being equal to the right side of (8.52), which is clearly
integrable.

Step 3. Our work in Steps 1 and 2 implies that the density ρ(~z) we want to prove to be
the weak limit of ZT has the form

ρ(~z) = Z−1
c · det

[
ec1(t,p)aizj

]k
i,j=1

· det
[
ec2(t,p)bizj

]k
i,j=1

·
k∏
i=1

e−c3(t,p)z2i , where

Zc = (2π)
k
2 (p(1− p)t(1− t)) k2 · e

c1(t,p)
2

∑k
i=1 a

2
i · e

c2(t,p)
2

∑k
i=1 b

2
i det

[
e−

1
2p(1−p) (bi−aj)2

]k
i,j=1

.

(8.53)

We fix a compact set K ⊂W ◦k and for ~z ∈ K we define λT (~z) ∈Wk through

λTi (~z) = bptT + ziT
1/2c for i = 1, . . . , k.

In this step we prove that

lim
T→∞

T k/2 · P0,T,~xT ,~yT

avoid,Ber(LT1 (m) = λT1 (~z), · · · , LTk (m) = λTk (~z)) = ρ(~z), (8.54)

where the convergence is uniform over K. Combining (8.11), (8.28),(8.32), (8.33), (8.34)
we get

T k/2 · P0,T,~xT ,~yT

avoid,Ber(LT1 (m) = λT1 (~z), · · · , LTk (m) = λTk (~z)) = [1+O(T−1/2)](2π)−k/2·

det
[
ec1(t,p)aizj

]
· det

[
ec2(t,p)bizj

]
· exp(−(k/2) log(p(1−p))−(k/2) log(t(1−t)))·

k∏
i=1

exp

(
−c1(t, p)

2
(a2
i +z2

i )− c2(t, p)

2
(b2i +z2

i )

)
·det

[
exp

(
−

(yTi −xTj +j−i−pT )2

2(1−p)pT

)]−1

,

where the constants in the big O notation are uniform over K. Using that

det

[
exp

(
−

(yTi − xTj + j − i− pT )2

2(1− p)pT

)]
= det

[
e−

1
2p(1−p) (bi−aj)2

]
· [1 + o(1)],

where the constant in the little o notation does not depend on K and (8.53) we see that

T k/2 · P0,T,~xT ,~yT

avoid,Ber(LT1 (m) = λT1 (~z), · · · , LTk (m) = λTk (~z)) = [1 +O(T−1/2)][1 + o(1)] · ρ(~z),

which implies (8.54).

Step 4. In this step, we prove that for any R = [u1, v1]× · · · × [uk, vk] ⊂W ◦k

lim
T→∞

P(ZT ∈ R) =

∫
R

ρ(~z)d~z, (8.55)
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where we have written P in place of P0,T,~xT ,~yT

avoid,Ber to ease the notation.

Define mT
i = dui

√
T + ptT e and MT

i = bvi
√
T + ptT c. Then we have:

P
(
ZT ∈ R

)
= P

(
ui
√
T + ptT ≤ LTi (btT c) ≤ vi

√
T + ptT, i = 1, . . . , k

)
=

MT
1∑

λ1=mT1

· · ·
MT
k∑

λk=mTk

P(LT1 (btT c) = λ1, . . . , L
T
k (btT c) = λk)

=

MT
1∑

λ1=mT1

· · ·
MT
k∑

λk=mTk

T−k/2 · T k/2 · P(LT1 (btT c) = λ1, . . . , L
T
k (btT c) = λk) =

∫
Rk
hT (~z)d~z,

where hT (~z) is the step function

hT (~z) =

MT
1∑

λ1=mT1

· · ·
MT
k∑

λk=mTk

1Qλ(T )(~z) · T k/2 · P(LT1 (btT c) = λ1, . . . , L
T
k (btT c) = λk),

where as in Step 1, Qλ(T ) is the cube [λ1T
−1/2 − pt

√
T , (λ1 + 1)T−1/2 − pt

√
T ) × · · · ×

[λkT
−1/2−pt

√
T , (λk + 1)T−1/2−pt

√
T ). The last equation and (8.54) together imply that

P
(
ZT ∈ R

)
= [1 + o(1)] ·

∫
R

ρ(~z)d~z.

Letting T →∞ in the last equation we obtain (8.55).

Step 5. In this step, we conclude the proof of the proposition. By [16, Theorem 3.10.1] to
prove the weak convergence of ZT to ρ it suffices to show that for any open set U ⊂W ◦k

lim inf
T→∞

P(ZT ∈ U) ≥
∫
U

ρ(z)dz. (8.56)

In the remainder we fix an open set U ⊂W ◦k and prove (8.56).
From [30, Theorem 1.4] we know that we can write U = ∪∞i=1Ri, where Ri =

[ui1, v
i
1]× · · · × [uik, v

i
k] are rectangles with pairwise disjoint interiors. Let us fix n ∈ N and

ε > 0 and put Rεi = [ui1 + ε, vi1− ε]× · · ·× [uik + ε, vik− ε]. By finite additivity of P and (8.55)

lim inf
T→∞

P(ZT ∈ U) ≥ lim inf
T→∞

P(ZT ∈ ∪ni=1R
ε
i) =

lim inf
T→∞

n∑
i=1

P(ZT ∈ Rεi) =

n∑
i=1

∫
Rεi

ρ(~z)d~z =

∫
∪ni=1R

ε
i

ρ(~z)d~z.

We can now let ε→ 0+ and n→∞ above and apply the monotone convergence theorem
to conclude that the right side converges to

∫
U
ρ(z)dz. Here we use that ρ is continuous

and non-negative. Doing this brings us to (8.56) and thus we conclude the statement of
the proposition.

8.5 Proof of Proposition 8.2 for any ~a,~b ∈Wk

In this section, we give the proof of Proposition 8.2 for any ~a,~b ∈ Wk. In what
follows we assume that ~a,~b have the form in (8.3), which we recall here for the reader’s
convenience.

~a = (a1, · · · , ak) = (α1, · · · , α1︸ ︷︷ ︸
m1

, · · · , αp, · · · , αp︸ ︷︷ ︸
mp

)

~b = (b1, · · · , bk) = (β1, · · · , β1︸ ︷︷ ︸
n1

, · · · , βq, · · · , βq︸ ︷︷ ︸
nq

)
(8.57)
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We recall that α1 > α2 > · · · > αp, β1 > β2 > · · · > βq and
∑p
i=1mi =

∑q
i=1 ni = k. We

denote ~m = (m1, · · · ,mp), ~n = (n1, · · · , nq). If ~a,~b have the above form we recall from
(8.5) that

H(~z) = ϕ(~a, ~z, ~m) · ψ(~b, ~z, ~n) ·
k∏
i=1

e−c3(t,p)z2i , (8.58)

where ϕ and ψ are as in (8.4).
We next introduce some new notation that will be useful for our arguments. For any

ε > 0 we define the vectors ~a+
ε and ~b+ε through

(a+
ε )m1+···+mi−1+j = αi + (mi − j + 1)ε for i = 1, . . . , p and j = 1, . . . ,mi,

(b+ε )n1+···+ni−1+j = βi + (ni − j + 1)ε for i = 1, . . . , q and j = 1, . . . , ni.
(8.59)

Similarly, we define the vectors ~a−ε and ~b−ε through

(a−ε )m1+···+mi−1+j = αi − jε for i = 1, . . . , p and j = 1, . . . ,mi,

(b−ε )n1+···+ni−1+j = βi − jε for i = 1, . . . , q and j = 1, . . . , ni.
(8.60)

We next let H+
ε , H−ε be as in (8.58) for the vectors ~a+

ε ,
~b+ε and ~a−ε ,~b

−
ε respectively. In

particular,

H±ε (~z) = det
[
ec1(t,p)(a±ε )izj

]k
i,j=1

· det
[
ec2(t,p)(b±ε )izj

]k
i,j=1

·
k∏
i=1

e−c3(t,p)z2i . (8.61)

Observe that by construction we have ~a±ε ,~b
±
ε ∈W ◦k for all ε ∈ (0, 1) that are sufficiently

small, which we implicity assume in the sequel. It follows from our work in Section 8.3
that

Z±ε =

∫
Wk

H±ε (z)dz ∈ (0,∞)

and so the functions
ρ±ε (~z) = [Z±ε ]−1 ·H±ε (~z) (8.62)

are well-defined densities on Wk.
We next recall some basic notation for multivariate Taylor series. Suppose σ =

(σ1, . . . , σk) is a multi-index of length k. In our context, we require σ1, . . . , σk be all
non-negative integers (some of them might be equal). We define |σ| =

∑k
i=1 σi as the

order of σ. Suppose τ = (τ1, . . . , τk) is another multi-index of length n. We say τ ≤ σ if
τi ≤ σi for i = 1, · · · , k. We say τ < σ if τ ≤ σ and there exists at least one index i such
that τi < σi. Then, define the partial derivative with respect to the multi-index σ:

Dσf(x1, · · · , xk) =
∂|σ|f(x1, · · · , xk)

∂xσ1
1 ∂xσ2

2 · · · ∂x
σk
k

.

We also have the Taylor expansion for multi-variable functions:

f(x1, · · · , xk) =
∑
|σ|≤r

1

σ!
Dσf(~x0)(~x− ~x0)σ +Rfr+1(~x, ~x0) (8.63)

In the equation, σ! = σ1!σ2! · · ·σk! is the factorial with respect to the multi-index σ,
~x0 = (x0

1, · · · , x0
k) is a constant vector at which we expand the function f , (~x−~x0)σ stands

for (x1 − x0
1)σ1 · · · (xk − x0

k)σk , and

Rfr+1(~x, ~x0) =
∑

σ:|σ|=r+1

1

σ!
Dσf(~x0 + θ(~x− ~x0))(~x− ~x0)σ
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is the remainder, where θ ∈ (0, 1).
We also need some notation for permutations. Suppose sn is a permutation of

{1, . . . , n}, and sn(i) represents the i-th element in the permutation sn. We define
the number of inversions of sn by I(sn) =

∑n−1
i=1

∑n
j=i+1 1{sn(i)>sn(j)}. For example,

the permutation sn = (1, . . . , n) has 0 number of inversions, while the permutation
s5 = (3, 2, 5, 1, 4) has number of inversions equal to 2 + 1 + 2 + 0 + 0 = 5. Define the
sign of permutation sn by sgn(sn) = (−1)I(sn). For instance, sgn((1, . . . , n)) = 1 and
sgn(s5) = −1 in the previous example.

We now turn to the proof of Proposition 8.2.

Proof. (of Proposition 8.2) For clarity we split the proof into two steps.
Step 1. In this step we prove that for every ~z ∈Wk we have

lim
ε→0+

ε−
∑p
i=1 (mi2 )−

∑p
i=1 (ni2 )H±ε (~z) = C(~m) · C(~n) ·H(~z), where

C(~m) =

p∏
i=1

1

mi!
·

∏
1≤j1<j2≤mi

(j2 − j1) and C(~n) =

q∏
i=1

1

ni!
·

∏
1≤j1<j2≤ni

(j2 − j1).
(8.64)

As the cases are very similar we only show (8.64) for H+
ε . Equation (8.64) would follow

if we can show that

lim
ε→0+

ε−
∑p
i=1 (mi2 ) · det

[
ec1(t,p)(a±ε )izj

]k
i,j=1

= C(~m) · ϕ(~a, ~z, ~m),

lim
ε→0+

ε−
∑p
i=1 (ni2 ) · det

[
ec2(t,p)(b±ε )izj

]k
i,j=1

= C(~n) · ψ(~b, ~z, ~n).

(8.65)

Let us put f(~c, ~z) = det
[
ec1(t,p)cizj

]k
i,j=1

, g(~c, ~z) = det
[
ec2(t,p)cizj

]k
i,j=1

, u =
∑p
i=1

(
mi
2

)
,

v =
∑p
i=1

(
ni
2

)
. By the multi-variable Taylor series expansion (8.63) we know that

f(~a+
ε , ~z) =

∑
|σ|≤u

Dσf(~a, ~z)

σ!
(~a+
ε − ~a)σ +Rfu+1(~a+

ε ,~a, ~z). (8.66)

where

Rfu+1(~a+
ε ,~a, ~z) =

∑
σ:|σ|=u+1

1

σ!
Dσf(~a+ θ(~a+

ε − ~a), ~z)(~a+
ε − ~a)σ. (8.67)

and θ ∈ (0, 1). We also observe, by basic linear algebra, that for any multi-index
α = (α1, . . . , αk)

Dαf(~x, ~z) = det
[
(c1(t, p)zj)

αiec1(t,p)xizj
]k
i,j=1

. (8.68)

We note that if |σ| < u then there exist i ∈ {1, . . . , p} and j1, j2 ∈ {1, . . . ,mi} such that
j1 6= j2 and σm1+···+mi−1+j1 = σm1+···+mi−1+j2 . The latter implies that Dσf(~a, ~z) = 0 since
by (8.68) the latter is the determinant of a matrix with two equal rows. An analogous
argument shows that Dσf(~a, ~z) = 0 unless |σ| = u and {σm1+···+mi−1+j : j = 1, . . . ,mi} =

{0, 1, . . . ,mi − 1} for all i ∈ {1, . . . , p}.
On the other hand, if |σ| = u and {σm1+···+mi−1+j : j = 1, . . . ,mi} = {0, 1, . . . ,mi − 1}

for all i ∈ {1, . . . , p} we have that

σ = (σ1, σ2, . . . , σp),

where σi ∈ Smi (the permutation group of {0, 1, . . . ,mi − 1}). Using the multi-linearity of
the determinant we obtain for all such σ that

Dσf(~a, ~z)

σ!
(~a+
ε − ~a)σ = εu · F (σ) · ϕ(~a, ~z, ~m), where F (σ) =

p∏
i=1

sgn(σi) ·
∏mi
r=1 r

σi(j)

mi!
.
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Summing over all σ we conclude that

∑
|σ|≤u

Dσf(~a, ~z)

σ!
(~a+
ε −~a)σ = εu ·ϕ(~a, ~z, ~m)·

p∏
i=1

1

mi!
·

∏
1≤j1<j2≤mi

(j2−j1) = εu ·ϕ(~a, ~z, ~m)·C(~m),

where in deriving the above we used the formula for a Vandermonde determinant, cf.
[24, pp. 40]. Combining the latter with (8.66) and (8.67) we conclude that∣∣ε−uf(~a+

ε , ~z)− C(~m) · ϕ(~a, ~z, ~m)
∣∣ ≤ |ε−uRfu+1(~a+

ε ,~a, ~z)| = O(ε). (8.69)

Analogous arguments show that∣∣∣ε−vg(~b+ε , ~z)− C(~n) · ψ(~b, ~z, ~n)
∣∣∣ ≤ |ε−vRgv+1(~b+ε ,

~b, ~z)| = O(ε). (8.70)

Combining (8.69) and (8.70) we conclude (8.65).

Step 2. In this step we conclude the proof of the proposition. In view of (8.64) and the
fact that H+

ε (~z) > 0 for ~z ∈W ◦k (we proved this in Section 8.3) we conclude that H(~z) ≥ 0

for ~z ∈ W ◦k . Also by Lemma 8.11 we know that H(~z) 6= 0 for ~z ∈ W ◦k and so indeed,
H(~z) > 0 for ~z ∈ W ◦k . Furthermore, we know that H(~z) = 0 for ~z ∈ Wk \W ◦k since the
determinants in the definition of H(~z) vanish due to equal columns when ~z ∈Wk \W ◦k .
Finally, we observe that by (8.69) and (8.70) we know that there exist positive constants
D, d > 0 independent of ε provided it is sufficiently small such that

|ε−u−v ·Hε(~z)| ≤ D · exp
(
d‖~z‖ − c3(t, p)‖~z‖2

)
, (8.71)

where as usual ‖~z‖2 =
∑k
i=1 z

2
i . In view of (8.71) and the dominating convergence

theorem, we conclude that H(~z) is integrable and since it is continuous and positive on
W ◦k we conclude that Zc ∈ (0,∞) as desired.

The above proof essentially shows the following statement.

Corollary 8.12. Let ~a,~b ∈Wk. Let ρ±ε be as (8.62), and let ρ be as in Proposition 8.2 for
the two vectors ~a,~b. Then ρ±ε weakly converge to ρ as ε→ 0+.

Proof. We use the same notation as in the proof of Proposition 8.2 above. As the proofs
are analogous we only show that ρ+

ε weakly converges to ρ. We claim that for any Borel
set B ⊂Wk

lim
ε→0+

∫
B

ε−u−vH+
ε (z)dz = C(~m) · C(~n) ·

∫
B

H(z)dz. (8.72)

Assuming the validity of (8.72) we see that for any Borel set B ⊂Wk we have∫
B

ρ(z)dz =

∫
B
H(z)dz∫

Wk
H(z)dz

= lim
ε→0+

C(~m) · C(~n) ·
∫
B
H+
ε (z)dz

C(~m) · C(~n) ·
∫
Wk

H+
ε (z)dz

= lim
ε→0+

∫
B

ρ+
ε (z)dz,

which proves the weak convergence we wanted. Thus we only need to show (8.72).
In view of (8.64) we know that ε−u−vH+

ε (z) converges pointwise to C(~m) ·C(~n) ·H(z)

and then (8.72) follows from the dominated convergence theorem, invoking (8.71).

8.6 Proof of Proposition 8.3 for any ~a,~b ∈Wk

We fix the same notation as in Section 8.5 and suppose that ε > 0 is sufficiently small
so that ~a±ε ,~b

±
ε ∈W ◦k . To prove the proposition it suffices to show that for any ~c ∈ Rk

lim
T→∞

P
0,T,~xT ,~yT

avoid,Ber

(
ZT1 ≤ c1, . . . , ZTk ≤ ck

)
=

∫
Wk∩R

ρ(~z)d~z, (8.73)
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where R = (−∞, c1]× · · · × (−∞, ck].
We define the vectors ~x+

ε,T and ~y+
ε,T through

(x+
ε,T )m1+···+mi−1+j = xTm1+···+mi−1+j + b

√
T (mi − j + 1)εc for i = 1, . . . , p, j = 1, . . . ,mi,

(y+
ε,T )n1+···+ni−1+j = yTn1+···+ni−1+j + b

√
T (ni − j + 1)εc for i = 1, . . . , q, j = 1, . . . , ni.

Similarly, we define the vectors ~x−ε,T and ~y−ε,T through

(x−ε,T )m1+···+mi−1+j = xTm1+···+mi−1+j − b
√
Tjεc for i = 1, . . . , p and j = 1, . . . ,mi,

(y−ε,T )n1+···+ni−1+j = yTn1+···+ni−1+j − b
√
Tjεc for i = 1, . . . , q and j = 1, . . . , ni.

It follows from Lemma 3.1 that

P
0,T,~x+

ε,T ,~y
+
ε,T

avoid,Ber

(
ZT1 ≤ c1, . . . , ZTk ≤ ck

)
≤ P0,T,~xT ,~yT

avoid,Ber

(
ZT1 ≤ c1, . . . , ZTk ≤ ck

)
≤

P
0,T,~x−ε,T ,~y

−
ε,T

avoid,Ber

(
ZT1 ≤ c1, . . . , ZTk ≤ ck

)
.

(8.74)

Taking the limit as T →∞ in (8.74) and applying our result from Section 8.4 we obtain∫
Wk∩R

ρ+(~z)d~z ≤ lim inf
T→∞

P
0,T,~xT ,~yT

avoid,Ber

(
ZT1 ≤ c1, . . . , ZTk ≤ ck

)
≤

lim sup
T→∞

P
0,T,~xT ,~yT

avoid,Ber

(
ZT1 ≤ c1, . . . , ZTk ≤ ck

)
≤
∫
Wk∩R

ρ−(~z)d~z.

(8.75)

Taking the ε→ 0+ limit in (8.75) and invoking Corollary 8.12 we arrive at (8.73). This
suffices for the proof.
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