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Hopf bifurcation in a Mean-Field model of spiking
neurons”
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Abstract

We study a family of non-linear McKean-Vlasov SDEs driven by a Poisson measure,
modelling the mean-field asymptotic of a network of generalized Integrate-and-Fire
neurons. We give sufficient conditions to have periodic solutions through a Hopf
bifurcation. Our spectral conditions involve the location of the roots of an explicit
holomorphic function. The proof relies on two main ingredients. First, we introduce a
discrete time Markov Chain modeling the phases of the successive spikes of a neuron.
The invariant measure of this Markov Chain is related to the shape of the periodic
solutions. Secondly, we use the Lyapunov-Schmidt method to obtain self-consistent
oscillations. We illustrate the result with a toy model for which all the spectral
conditions can be analytically checked.
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1 Introduction

We consider a mean-field model of spiking neurons. Let f : Ry - R4, b: Ry — R
and let N(du, dz) be a Poisson measure on Ri with intensity the Lebesgue measure dudz.
Consider the following McKean-Vlasov SDE

t t t
X: = Xo+ / b(Xu)du + J/ E f(Xu)du — / / Xu—ﬂ{zgf(xu,)}N(d'lh dZ) (1.1)
0 0 0o JRry

Here, J > 0 is a deterministic constant (it models the strength of the interactions) and
the initial condition X is independent of the Poisson measure.
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Hopf bifurcation in a Mean-Field model of spiking neurons

Informally, the SDE (1.1) can be understood in the following sense: between the
jumps, X; solves the scalar ODE X; = b(X;) + JE f(X,) and X; jumps to 0 at rate f(X;).
We assume that 5(0) > 0 and that X, > 0, such that the dynamics lives on R.. This SDE
is non-linear in the sense of McKean-Vlasov, because of the interaction term E f(X,)
which depends on the law of X;. Let v(¢,dx) := L£(X;) be the law of X;. It solves the
following non-linear Fokker-Planck equation, in the sense of measures:

O (t,dz) + 05 [(b(x) + Jry)v(t, dx)] + f(x)v(t,dx) = rido(dx) (1.2)

v(0,dz) = L(Xy), re= (x)v(t,dx).
Ry
Here ¢y is the Dirac measure in 0. If furthermore £(X;) has a density for all ¢, that is
L(X:) = v(t,x)dz then v(t, ) solves the following strong form of (1.2)

O (t,x) + 0, [(b(z) + Jry)v(t, )] + f(z)v(t,z) =0,

v(0,z)dr = L(Xg), re= N flz)v(t, z)de,

with the boundary condition
YVt >0, (b(0)+ Jry)v(t,0) =1

We study the existence of periodic solution of this non-linear Fokker-Planck equation.
We give sufficient conditions for the existence of a Hopf bifurcation around a stationary
solution of (1.2).

Associated particle system

Equations (1.1) and (1.2) appeared (see e.g. [7]) as the limit of the following networks of
neurons. For each N > 1, consider i.i.d. initial potentials (Xé’N)iE{L... N} with law £(Xj).
The cadlag process (XZ’N)ZE{LA., ~y € RY is a PDMP: between the jumps each XN
solves the ODE X" = b(X"V) and “spikes” with rate f(X;""). When a spike occurs,
say neuron ¢ spikes at (random) time 7, its potential is reset to 0 while the others receive
a “kick” of size Z:

XN =0, and Vk#i, XFN=XxEN_4 7

T+ ’ ’ T+ = N

This completely defines the particle system. As N goes to infinity, a phenomenon of
propagation of chaos occurs. In particular, each neuron, say (th’N )i>0, converges in law
to the solution of (1.1). We refer to [13] for a proof of such convergence result under
stronger assumptions. There is a qualitative difference between the particle system
and the solution of the limit equation (1.1): for a fixed value of N, the particle system
is Harris ergodic (see [11], where this result is proved under stronger assumptions on
b and f) and so it admits a unique, globally attractive, invariant measure. Thus, there
are no stable oscillations when the number of particles is finite. For the limit equation
however, the long time behavior is richer: for fixed values of the parameters there can be
multiple invariant measures (see [5] and [6] for some explicit examples) and, as shown
here, there can exist periodic solutions (see Figure 1).

Literature

From a mathematical point of view, this model has been first introduced by [7], after many
considerations by physicists (see for instance [24], [14] and [4] and references therein).
In [13], the existence of solution of (1.1), path-wise uniqueness and convergence of the
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particle system are addressed. The long time behavior of the solution to (1.1) is studied
in [5] in the case of weak interactions: b and f being fixed, the authors prove that there
exists a constant J (depending on b and f) such that for all J < J, (1.1) admits a unique
globally attractive invariant measure. Finally in [6], the local stability of an invariant
measure is studied with no further assumptions on the size of the interactions J. It is
proved that the stability of an invariant measure is given by the location of the roots of
some holomorphic function. In [22], the authors study a “metastable” behavior of the
particle system. They give examples of drifts b and rate functions f where the particle
system follows the long time behavior of the mean-field model for an exponential large
time, before finally converging to its (unique) invariant probability measure.

The model studied in the current paper belongs to the class of generalized integrate-
and-fire neurons, whose most celebrated example is the “fixed threshold” model (see for
instance [2], [8] and the references therein). Many of the techniques developed here
also apply to this variant. However, it would require additional work to overcome the
specific difficulties due to the fixed threshold setting. In particular, there are no simple
explicit expressions of the kernels introduced in the current paper.

In [10], numerical evidences are given for the existence of a Hopf bifurcation in a
close setting: the dynamics between the jumps is (as in [7]) given by

Xy =—(X; —EX;) + JE f(Xy).

In particular the potentials of each neuron are attracted to their common mean. This
models “electrical synapses”, while J E f(X;) models the chemical synapses. Oscillations
with both electrical and chemical synapses is also studied in a different model in [23]. In
this work, the mean-field equation is a 2D-ODE and so the analysis of the Hopf bifurcation
is standard. Finally, oscillations with multi-populations such as with both excitatory and
inhibitory neurons have been extensively studied in neuroscience. For instance in [9], it
is shown that multi-populations of mean-field Hawkes processes can oscillate. Again, the
dynamics is reduced to a finite dimension ODE.

It is well-known that the long time behavior of McKean-Vlasov SDEs can be signifi-
cantly different from markovian SDEs. In [25] and [26], the author gives simple examples
of such non-linear SDEs which oscillate. Again, in these examples, the dynamics can
be reduced to an ordinary differential equation. To go beyond ODEs, the framework
of Delay differential equation is often used: see for instance [27] for the study of Hopf
bifurcations for such equations, based on the Lyapunov-Schmidt method. In [20, 21] the
authors study periodic solutions of a McKean-Vlasov SDE using a slow-fast approach.
Another approach is to use the center manifold theory to reduce infinite dimensional
problem to manifold of finite dimension: we refer to [18] (see also [15] for an application
to some McKean-Vlasov SDE). Finally, in [19] an abstract framework is presented to
study Hopf bifurcations for some classes of regular PDEs. Even though our proof is
not based on the PDE (1.2) (but on the Volterra integral equation described below), we
follow the methodology of [19] to obtain our main result.

Regularity of the drift and of the jump function.

We make the following regularity assumptions on b and f.
Assumption 1.1. The drift b: Ry — R is C?, with b(0) > 0 and sup,> [b'(x)| + [b"(z)| <

00.
Assumption 1.2. The function f : R, — R is C?, strictly increasing, with SUp, > ‘f;(gf))l <
oo and there exists a constant C; such that

1.2(a) forallz,y >0, f(zy) < Cp(1+ f(2))(1+ f(y)).
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1.2(b) forall A > 0, sup,>q Af'(z) — f(z) < co.

1.2(c) forallz > 0, |b(z)| < Cr(1 + f(x)).

Remark 1.3. If a non-decreasing function f satisfies Assumption 1.2(a), there exists
another constant C; such that for all z,y > 0, f(z +y) < C¢(1 + f(z) + f(y)). Moreover,
it also implies that f grows at most at a polynomial rate: there exists a constant p > 0
such that

sup f(x)/z? < 0.
r>1

Note that for instance, for all p > 1, the function f : z — zP satisfies Assumption 1.2.
More generally, any continuous function such that f(z) ~,_~ zP for some p > 0 satisfies
Assumption 1.2(a).

Jump rate Raster plot of the first 500 neurons
T T T T T T T
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Figure 1: Consider the following example where for all z > 0, f(z) = 2!, b(z) = 2 — 2z
and J = 0.8. Using a Monte-Carlo method, we simulate the particle systems with
N = 8-10° neurons, starting at ¢t = 0 with i.i.d. uniformly distributed random variables
on [0, 1]. Stable oscillations appear. (a) Empirical mean number of spikes per unit of time.
(b) Each red cross corresponds to a spike of one of the first 500 neurons (spike raster
plot).

The Volterra integral equation

As in [5, 6], we study the long time behavior of the solution of (1.1) through its “lin-
earized” version: given a non-negative scalar function a € L*°(R;; R, ), consider the
non-homogeneous linear SDE:

t t
Vit > S, Y;?’S’U — Y; + / [b(Yua:;’/) + au]du — / ‘/]R Yuailjsﬂ{zﬁf(Yf;”,s)}N(d% dZ), (13)
s s +

starting with law v at time s. That is, equation (1.3) is (1.1) where the interactions
JE f(X,) have been replaced by the “external current” a,. For all ¢ > s and for all
a € L*(R4;Ry), consider 72" the time of the first jump of Y* after s

o =it > s VR A YL (1.4)

We introduce the spiking rate r% (¢, s), the survival function H (¢, s) and the density of
the first jump K%(¢,s) to be

d
ralt;s) =EIVE), H(ts) =P > 1), Kits):=—2PE" >1t). (L5
EJP 26 (2021), paper 121. https://www.imstat.org/ejp
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Notation 1.4. We detail our conventions and notations.

1. We use bold letters a for time dependent currents and regular greek letters a for
constant currents.

2. When v = 6,, we write rZ(t, s) := = (t, s).
3. When v = §,, we remove the x superscript and write r,(t, s) := r2(t, s).

4. When a is constant and equal to « > 0, it holds that r%(t,s) = r%(t — s,0) and we
simply note % (t) := r%(¢,0).

5. Finally, we extend the function rY, for s > t by settingVs > t, r%(t,s) :=0.

We use the same conventions for H}, and K.

It is known from [5, Prop. 19] (see also [6, Prop. 6] for a shorter proof) that 7 is the
solution of the following Volterra integral equation

¢
ru(t,s) = K.(t,s) +/ Ko (t,u)rs(u, s)du. (1.6)
Moreover, by [5, Lem. 17], one has
¢
1=H.(t,s) +/ Hg(t,u)ry(u, s)du. (1.7)

Following [17], given c;, ¢; : R? — R two measurable functions, it is convenient to use
the notation

t
(c1 % c2)(t,8) = / c1(t, u)ea(u, s)du,
such that (1.6) and (1.7) simply write

TZ:KZ+KG*TZ and ].ZH(I;“FHQ*TZ

The invariant measures of (1.1).

Let a > 0, define
0o = inf{x >0, b(z) +a =0}, (1.8)

and
vl(x) = b(;gc—?a exp (—/0 b(j)(?ﬁady>]l[07%)(m), (1.9)

where ~(«) is the normalizing factor, such that flR+ v (z)dz = 1. Note that v(«) is the
jump rate under v2°:

v(a) = vl (f). (1.10)
By [5, Prop. 26], v3° is the unique invariant measure of the linear SDE (1.3) driven by
the constant “external current” a = . We define here a central quantity in our work

J(a) = ——. (1.11)

It is readily seen that v° is an invariant measure of the non-linear equation (1.1) with
J = J(«). Reciprocally, for a fixed value of .J, the number of invariant measures of (1.1)
is the number of solutions a > 0 to the scalar equation

a = Jy(a). (1.12)

Any such invariant measure is characterized by its corresponding value of a.
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Stability of an invariant measure

Fix J > 0 and consider a > 0 a solution of (1.12). So v$° is an invariant probability
measure of (1.1). A sufficient condition for v2° to be locally stable is given in [6].

First, consider H,(t), defined by (1.5) (with v = §p and a = «). For z € C, we denote
by R(z) and J(z) its real and imaginary parts. The Laplace transform of H,(¢) is defined
for z with (z) > —f(04) (04 is given by (1.8)):

Ho(z) = /0 h e " H, (t)dt.

We assumed that b(0) > 0 (see Assumption 1.1) and that a > 0. So o, > 0. Because f is
strictly increasing (see Assumption 1.2), we deduce that f(o,) > 0. Let

AL = —sup{R(2)| R(z) > —f(0a), Ha(z) =0} (1.13)

By [5, Lem. 34, 36], it holds that A}, > 0. The constant A}, is related to the rate of
convergence of ()@%’50) to its invariant measure v5°. In particular we have

YA <AL, sup|ra(t) — y(a)leM < oo. (1.14)
>0

This describes the long time behavior of an isolated neuron subject to a constant current
a>0.

Assumption 1.5. Assume that the deterministic flow is not degenerate at o,:

0o <oo and b(o,) <0 (1.15)
or 0, =00 and ir>1f0b(x) +a>0. (1.16)

Recall that rZ(t) is given by (1.5) (with a = «,v = ¢, and s = 0). Following [6], define

Vi >0, O4(t) ::/ i7“3(1€)V2°(clﬂc) (1.17)
0 dzx

By [6, Prop. 19], = + rZ(t) is C! and integrable with respect to v2°. Moreover, we have

Theorem 1.6 ([6]). Grant Assumptions 1.1, 1.2 and 1.5. It holds that for all A < A, one
hast+— eMO,(t) € LY(Ry), so that z — ©,(z) is holomorphic on R(z) > \’,. Assume that

sup{R(2) | z € C, R(z) > =A%, J(2)Oqu(z) =1} <0, (1.18)

then the invariant measure v_° is locally stable.

We refer to [6, Def. 16] for definition of local stability, in particular for the choice of
the distance between two probability measures.

Assume that there exists a > 0 such that (1.18) holds, and so v5° is locally stable.
There are two “canonical” ways to break (1.18) at some bifurcation point «g: either
there exists some 7y > 0 such that J(ao)@ao(i%) =1lor J(ao)@ao(o) = 1. The first case
is the subject of this paper: we give explicit conditions to have a Hopf bifurcation.

In the second case, the following lemma shows that J'(ag) = 0. So, at least in the
non-degenerate case where J” () # 0, the function o — J(«) is not strictly monotonic
in the neighborhoods of «ag: this is a fold bifurcation which typically leads to bistability
(or multistability, etc.).

Lemma 1.7. Grant Assumptions 1.1 and 1.2, and consider oy > 0 such that Assump-
tion 1.5 holds in ;. Then the function o — J(«) is C? in a neighborhood of o with

oy = 122050,

¥(a
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Proof. First, recall that J(«) = (a7 So it suffices to show that a — v() is C? and that

/() = ©,(0). Note that if i > 0 satisfies Assumption 1.5, then there exists a neighbor-
hood of a; such that for any « in this neighborhood, « also satisfies Assumption 1.5. We
will see later by Proposition 3.11 that a + () is C? in the neighborhood for «;. This
can also be checked directly: by [5, eq. (31)], it holds that y(a)~* = H,(0) and we can
conclude using the explicit expression satisfied by H,(t) (see (3.3) below). To end the
proof, using again that y(a)~! = fIa(O), we have to deduce that

d = éa(o)
7Hoz(0) -
dex ()]
Following [6], let:
e d x o0

It holds that (see [6])

(21,(0)) = f(¥5(0))

b2 (0)) + a du. (1.20)

(1) =v<a>/0°°Ha<t+u>f

Moreover, let

VE>0, Za(t) = %\I!a(t). (1.21)

We have oa g
Wt >0, Ea(t):/ 4 w102 (2)da. (1.22)

o dx

So, using (1.6) (with v = §, and a = o) we deduce that (see [6, eq. (43)] for more
details):
Op =24+ 74 * 20 (1.23)

Note that W, (0) = 0, limy_,. ¥, () = 0 and s0 Z,(0) = 0. Let
a(t) == ra(t) — ().
Using (1.14) (with v = §y), we deduce that &, € L'(R,). So (1.23) yields

O =Z0 +7()Ty + &, % Eq. (1.24)
We deduce that ©,(0) = v(c) ¥, (0). Finally, we have

d = *d
%HQ(O) =/, @Ha(t)dt

o] t

[l (0) = feg(0)
=— H,(t dédt
Lm0 [ i e

[ F(9514(0) = F(5(0) . B
= _/O /o H,(u+6) g(gog(O)) o dfdu  (using Fubini

and the change of variables u =t — 0).
T, (0)
v(a)
This ends the proof. O

The paper is structured as follows: in Section 2, we state the spectral assumptions
and the main result, Theorem 2.8. We give a layout of its proof at the end of Section 2.
In Section 3, we give the proof of Theorem 2.8. Finally, in Section 4, we give an explicit
example of a drift b and a rate function f for which such Hopf bifurcations occur and the
spectral assumptions can be analytically checked.
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2 Assumptions and main result

Following [5, 6], we assume that the law of the initial condition belongs to
M(f?) = {v e P(R,): fA(x)v(dr) < oo}
R

For such initial condition, under Assumptions 1.1 and 1.2, the non-linear SDE (1.1) has a
unique path-wise solution (see [6, Th. 9]).

Definition 2.1. A family of probability measures (v(t)):c[o,r] is said to be a T-periodic
solution of (1.1) if

1. v(0) € M(f?).

2. Forallt € [0,T], v(t) = L(X;) where (X;):c[o,1] is the solution of (1.1) starting from
XQ ~ V(O)

3. It holds that v(T) = v(0).

In this case, we can obviously extend (v(¢)) for ¢t € R by periodicity. Considering now
the solution (X;);>o of (1.1) defined for ¢ > 0, it remains true that v(t) = £(X,) for any
t>0.

We study the existence of periodic solutions ¢ — £(X;) where (X;) is the solution of
(1.1), near a non-stable invariant measure ngJ. We assume that the stability criterion
(1.18) is not satisfied for ag:

Assumption 2.2. Assume that there exists oy > 0 and 79 > 0 such that

~ ) d ~ .
J(0)Oa,(7) =1 and @6%(%) #0.

Assumption 2.3 (Non-resonance condition). Assume that for all n € Z\{—1,1},
J(ao)éao(%) 7é L.

Remark 2.4 (Local uniqueness of the mvariant measure in the neighborhood of ag).
Under Assumption 2.3, we have .J (ao) «(0) # 1 and so, by Lemma 1.7, it holds that
J'(ap) # 0. Fix J in the neighborhood of J(«p). Recall that the values of « such that
v>° is an invariant measure of (1.1) are precisely the solutions of J(«) = J. So, in the
neighborhood of a = «a, the invariant measure of (1.1) is unique.

Lemma 2.5. Under Assumption 2.2, there exists 1y, 0o > 0 and a function 3¢ € C*((ag —
N0, o +10); C) with 30(ap) = Tio such that for all z € C with |z — %| < po and foralla > 0
with |a — ag| < 19 we have

J(@)Ou(z) =1 < z = 3y(a). (2.1)
Proof. It suffices to apply the implicit function theorem to (a, ) — J(a)(:)a(z) -1. O

Assumption 2.6. Assume that « — 3¢(«) crosses the imaginary part with non-vanishing
speed, that is

R3p(cg) #0, where 3p(a)= %30(04).

Remark 2.7. Using (2.1), Assumption 2.6 is equivalent to

% (J(@8,)
75,

a=a =) £ 0.
o(7)

s

J(ao)
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Our main result is the following.

Theorem 2.8. Consider b, f satisfying Assumptions 1.1 and 1.2. Let oy, 79 > 0 be such
that Assumptions 1.5, 2.2, 2.3 and 2.6 hold. Then, there exists a family of 2nt,-periodic
solutions of (1.1), parametrized by v € (—vg,vg), for some vy > 0. More precisely, there
exists a continuous curve {(v,(-), aw, 7y), v € (—vg, vo)} such that

1. For allv € (—vp,v9), (Vy(t))ier is a 2n7,-periodic solution of (1.1) with J = J (o).

2. The curve passes through (v3°, ag, 79) at v = 0. In particular we have for allt € R,

ag?
vo(t) = Iz

3. The “periodic current” a,,, defined by
t ay(t) = J(aw) f(z)vy(t, dx), (2.2)
R+

is continuous and 27 T,-periodic. Moreover, its mean over one period is «,:

1 27Ty,
/ ay(u)du = .
0

27T,

4. Furthermore, v is the amplitude of the first harmonic of a,, that is for all v €
(—’Uo, UO)

1

27T,

27Ty, 27Ty,
/ ay,(u) cos(u/7,)du =v and / ay(u) sin(u/1,)du = 0.
0 0

27T,

Every other periodic solution in a neighborhood of v, is obtained from a phase-shift
of one such v,. More precisely, there exists small enough constants €jy,e; > 0 (only
depending on b, f, o and 79) such that if (v(t));cr is any 2n7-periodic solution of (1.1)
for some value of J > 0 such that

J (x)v(t,dz) — ag
Ry

|7 — 70| < e and sup
te[0,277)

< €1,

then there exists a shift 6 € [0,2n7) and v € (—wvg,vo) such that J = J(a,) and
VieR, v(t)=v,(t+90).

Remark 2.9. Given the “periodic current” a, defined by (2.2), the shape of the solution
is known explicitly: for all v € (—wvg,vp), it holds that

Vy = Va,,

where 7,,, defined by (3.24) below, is known explicitly in terms of b, f and a,,.

Notation 2.10. For T' > 0, we denote by C% the space of continuous and T-periodic
functions from R to R and by C%O the subspace of centered functions

T
0= {h ey, / h(t)dt = 0}.
0

We now give an outline of the proof of Theorem 2.8. The proof is divided in two main
parts.

The first part is devoted to the study of an isolated neuron subject to a periodic
external current. That is, given 7 > 0 and a € CY, ., we study the jump rate of an isolated
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neuron driven by a. We give in Section 3.1 estimates on the kernels K, and H,. We want
to characterize the “asymptotic” jump rate of a neuron driven by this external periodic
current. That is, informally
VieR, pa(t)= ke]Nl,irl?—mo ro(t, —27kT).

In order to characterize such limit p,, we introduce in Section 3.2 a discrete-time Markov
Chain corresponding to the phases of the successive spikes of the neuron driven by a.
We prove that this Markov Chain has a unique invariant measure, which is proportional
to p,. This serves as a definition of p,. Given this periodic jump rate p, € C9.__, we give
in Section 3.3 an explicit description of the associated time-periodic probability densities,
that we denote (74(t)):c[0,2x-]- Consequently, to find a 277-periodic solution of (1.1), it is
equivalent to find @ € C9__ such that

a=Jpg. (2.3)

One classical difficulty with Hopf bifurcation is that the period 277 itself is unknown: 7
varies when the interaction parameter J varies. To address this problem, we make in
Section 3.4 a change of time to only consider 2w-periodic functions. We define for all
teR

vd € CY VT >0, par(t):=pa(rt), where a(t):=d(t/7). (2.4)

We shall see that this change of time has a simple probabilistic interpretation by scaling
b, f and d appropriately. In Section 3.5, we prove that the function CS_ x R% > (d,7) —
pa- € CY is C>-Fréchet differentiable. Furthermore, consider d = o + h with h € CJ’
and « > 0 is the mean of d over one period. We prove that the mean number of spikes
over one period only depends on «. The common value is obtained with the particular
case h =0 and (1.10). Thus, we prove

1 27
Vh e C9° v > 0, o Path,r(w)du = v(a). (2.5)
T Jo
In the second part of the proof, we find self-consistent periodic solutions using the
Lyapunov-Schmidt method. We introduce in Section 3.6 the following functional

CYY x R: x R 3 (h,a,7) = G(h,a,7) := (a + h) — J(@)path,r-

Using (2.5), this functional takes values in CS;TO. The roots of G, described by Proposi-
tion 3.17, match with the periodic solutions of (1.1). For instance if G(h,a,7) = 0, we
set a(t) := a+ h(t/7). This current a solves (2.3) with J = J(«) and so it can be used to
define a periodic solution of (1.1). Conversely, to any periodic solution of (1.1), we can
associate a root of G. So Theorem 2.8 is equivalent to Proposition 3.17. Sections 3.7, 3.8,
3.9 and 3.10 are then devoted to the proof of Proposition 3.17. In Section 3.7, we prove
that the linear operator Dy, G(0, «, 7) can be written using a convolution involving O,
given by (1.17). We then follow the method of [19, Ch. 1.8]. In Section 3.8, we study the
range and the kernel of D, G(0, ag, 79): we prove that under the spectral Assumptions 2.2
and 2.3, DpG(0, ag, 79) is a Fredholm operator of index zero, with a kernel of dimension
two. The problem of finding the roots of G is a priori of infinite dimension (h belongs
to C’S;TO). In Section 3.9 we apply the Lyapunov-Schmidt method to obtain an equivalent
problem of dimension two. Finally in Section 3.10 we study the reduced 2D-problem.

3 Proof of Theorem 2.8

Without risk of confusion, we alleviate the notation in the proofs: we no more use
bold letters for small perturbations h of a constant current «y.
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3.1 Preliminaries
Let T >0, s € R and a € C¥ such that

inf a; > —b(0). (3.1)
te[0,T)

For z > 0, we consider ¢f () the solution of the ODE

d

7 Phs (@) = b9 (2)) + ar (3.2)

¢5,s (@)

xX.

By Assumption 1.1, this ODE has a unique solution. Moreover, the kernels HZ(t, s) and
K¥(t,s), defined by (1.5), have explicit expressions in term of the flow

t

s = [ e (- [ et aeniu)vta, (3.3)

t
Kyfts) = [ stetsenes (- [ et @) v (3.4

R4 s

The function s — ¢ (0) belongs to C*((—oo,t]; Ry ) and
t

25780 == b0+ oo ([ V65, 0)at ). (35)

In particular, under the assumption (3.1), s > ¢f(0) is strictly decreasing on (—oo, ],
for all ¢. Define then
oa(t) == lim ¢ (0) € R} U{+oo}. (3.6)

S5—r— 00

Given d € CY and 7 > 0, we consider the following open balls of C9.:

Bg(d) ={acCy sup |a;—di| <n}. (3.7)
t€[0,T)

Lemma 3.1. Let T > 0 and b : Ry — R such that Assumption 1.1 holds. Let oy > 0
satisfying Assumption 1.5. There exists g > 0 such that for all a € B,% (), it holds that

1. If 64, = oo, then for allt € [0,T], g4(t) = 4o0.
2. If5,, < oo, then the function t — o,(t) belongs to CY and

inf inf o4(t) > 0.
a€B] (o) t[0,T]

Proof. Assume first that o,, = oo, and let 7y := % [inf,>0 b(x) + o], which is strictly
positive by assumption. Then it holds that inf;>¢ inf, > b(z) + a; > 1o and so

@ (0) > mo(t —s). (3.8)

Letting s tend to —oco, we deduce that o4 (t) = +o00.
Assume now that o,, < co. Using (1.15), we apply the implicit function theorem to

(z,m) = b(z) + a0 +1
at (04,,0): there exists 79 > 0 and a function n — 04,1y € C*([0,70]; R% ) such that

Vn €10,7m], Tap < Tagtn <00  and oagtn = ig%{b(:z:) +ap +n =0}
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In addition, we choose 7y such that 779 < b(0) + . Let @ € C}. such that sup(y 7 [ar —
ap| < mo. It holds that

Vs, 08 (0) < G0 (0) < Cagn- (3.9

In particular o,(t) < co. We prove that this function is right-continuous in ¢. We fixt > s
and 7 € [0, 7], we have

t+n t+n
o (0) — o (0) = / by (0))du + / Gudls.
t t

Let Ay = sup,cio g ., 10()] < 00 50 g, (0) — 9, (0)] < (Ao + [alls)r. Letting s
tend to —oo we deduce that ¢ — o0,(¢) is right-continuous. Left-continuity is proved
similarly. Using ¢, 1., 7(0) = ¢¢,(0), it holds that ¢ ~ 04(t) is T-periodic. Finally,
because s — ¢ (0) is strictly decreasing, and takes value 0 when s = t, we deduce that
0a(t) > 0. More precisely, let

mo:=— min b (z).
2€[0,0aq+n0]

By (1.15), it holds that my > 0. Moreover, using (3.5), we deduce that

d
Z90s(0) < =(b(0) + a0 — ng)e—mo(t=3)
and so

1— e—mo(t—s)

Vs < t, @ZS(O) > (b(0) + ap — nO)T. (3.10)

It ends the proof. O

Lemma 3.2. Grant Assumptions 1.1 and 1.2. Let ag > 0 such that Assumption 1.5 holds.
There exists Ay, 19, S0 > 0 (only depending on « and b) such that for all T > 0, for all
a € Bl (ap), it holds that

Vt,s, t—s>s9) — @ZS(O) > Ao. (3.11)
Moreover, if 0,, = 00, Ao can be chosen arbitrarily large. Finally, it holds that

sup sup sup Hgl(t, s)ef(/\o)(tfs) < 00, (3.12)
T>0 aEB?;O(ao) t>s

sup sup sup Kg(t,s)ef Po)t=9) < o0, (3.13)
>0 aGB%(ao) t>s

Proof. The inequality (3.11) is a direct consequence of (3.10) if 0,, < oo and of (3.8) if
0a, = 00. Then, (3.12) follows from the explicit expression (3.3) of H, and (3.11).

If 04, < 00 or f is bounded on R, (3.13) follows from (3.12) by (3.4).

It remains to prove (3.13) if 0, = 0o and lim,_, f(z) = co. Denote by L the Lipschitz
constant of b. The Gronwall’s lemma gives the existence of a constant C; (only depending
on b, o, 7o) such that ¢ (0) < C1e(t=*) By Remark 1.3, we know that f(z) < ChazP.
Overall, f(p#,(0)) < CeP(t=5) Fix \g > 0. There exists A; such that f(\;) > f(\o) + Lp
and (3.11) holds with A1. It ends the proof of (3.13). O
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3.2 Study of the non-homogeneous linear equation

In this section, we study the asymptotic jump rate of an “isolated” neuron driven
by a periodic continuous function. Grant Assumptions 1.1, 1.2 and let oy > 0 such
that Assumption 1.5 holds. Let A\y,n9 > 0 be given by Lemma 3.2 and 7" > 0. Consider
ac B,ﬁ(ao). Following the terminology of [5], we say that a is the “external current”.
Let r, be the solution of the Volterra equation r, = K, + K, * r,. We consider the
following limit

vVt e [0,T], pa(t) = kemlirg;C>O ra(t,—kT).

The goal of this section is to show that p, is well defined and to study some of its
properties. First, (1.6) and (1.7) write
t
VieR, rq(t,—kT)=K,(t,—kT)+ K, (t,s)r (s, —kT)ds,

—kT
¢

1=H,(t,—kT)+ H,(t,s)r,(s,—kT)ds.
—kT

Letting £ — oo, we find that p, has to solve
t
VieR, pqolt)= / K, (t,s)pa(s)ds. (3.14)
—00

t
1= / H,(t,3)pa(s)ds. (3.15)

Note that if p, is a solution of (3.14), then it automatically holds that the function
t— jfoo H,(t,s)pa(s)ds is constant (its derivative is null). In Lemma 3.4 below, we prove
that the solutions of equation (3.14) form a linear space of dimension 1. Consequently
(3.14) together with (3.15) have a unique solution: this will serve as the definition of pg,.

A probabilistic interpretation of (3.14) and (3.15)

Let = be a T-periodic solution of (3.14). We have for all ¢ € [0, T

T
x(t) :/ K, (t,s)x(s)ds, (with the convention K, (t,s) = 0 for s > t)

T—kT
-y / K (ts)r(s)ds

k>0"

T
= Z/ K,(t,u— kT)x(u)du (by the change of variable u = s + kT).
k>070

Define for all ¢, s € [0, T

K2 (t,s) =Y K,(t,s —kT).
k>0

Note that by Lemma 3.2 we have normal convergence since
Vi, s €[0,T], Kq(t,s—kT) < Ce fQokT

for some constant C' only depending on b, f, ag, 9 and A\q. We deduce that z solves
T
x(t) = / KEI(t,s)x(s)ds. (3.16)
0
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Using that a is T-periodic, we have
Vt>s, Ko(t+T,s+T)=Ka(ts). (3.17)

Moreover, K, is a probability density so
Vs € R, / Kqu(t,s)dt = 1. (3.18)
From (3.17) and (3.18), we deduce that
T
Vs € 10,7, / KI(t s)dt =1. (3.19)
0

In view of (3.19), KI(-,s) can be seen as the transition probability kernel of a Markov
Chain acting on the continuous space [0,T]. The interpretation of this Markov Chain is
the following. Let (YV,;*"");>0 be the solution of (1.3), starting at time 0 with law v and
driven by the T-periodic current a. Define (7;);>1 the times of the successive jumps of
(Y, "")t>0. Let ¢; € [0,T) and A; € N be defined by:

Ti
Qi =T — {TJ T, Tig1—7i = D1 T + Pip1 — 5. (3.20)

That is, ¢; is the phase of the i-ith jump, while A; is the number of “revolutions” between
Ti—1 and Ti:
Ai :#{kEIN, kT € [7—7;7177—1')}“

In other words, if one considers that a period is a “lap”, 4A; is the number of times we
cross the start line of the lap between two spikes.
Then, (¢;, A;);>0 is Markov, with a transition probability given by

VA e B([O,T]), Vn € N, IP(¢7;+1 € A7Ai+1 = n\qﬁz) = / Ka(t + nT, ¢1)dt
A

In particular, (¢;);>o is Markov, with a transition probability given by K. With
some slight abuse of notations, we also write K for the linear operator which maps
y € LY([0,T)) to

KX(y) :=t»—>/0 KE(t,s)y(s)ds € L*(]0,T]). (3.21)

Lemma 3.3. Let a € C%. The linear operator K. : L'([0,T]) — L([0,T]) is a compact
operator. Moreover, ify € L*([0,T]), then KX (y) € C.

Proof. First, the function [0,T)? > (¢,s) — KL(t,s) is (uniformly) continuous. Let ¢ > 0,
there exists > 0 such that

t=t|+]s—s'| <n = [Kq(t,s) - KS(t',s)| <e

It follows that
T
KT ()(t) - KT()(#)] < / KT (t,5) — KX (¢, )| [y(s)| ds < cllylls,

and so the function K2 (y) is continuous. Note that

Vs €[0,T], KI(T,s)=KL(0,s),

EJP 26 (2021), paper 121. https://www.imstat.org/ejp
Page 14/40


https://doi.org/10.1214/21-EJP688
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Hopf bifurcation in a Mean-Field model of spiking neurons

and so K (y) can be extended to a T-periodic function. Altogether, KX (y) € C%. To
prove that Kff is a compact operator, we use the Weierstrass approximation The-
orem: there exists a sequence of polynomial functions (¢,s) — P,(t,s) such that
sup; sejo.r) | Pu(t,s) — KX (t,s)| —n 0 asn — oco. For each n € N, the linear operator
LY[0,T)) 2y P,(y) =t fOT P,(t,s)y(s)ds is of finite-rank. Moreover, the sequence
P, converges to K for the norm operator, and so K. is a compact operator (as the limit
of finite-rank operators, see [1, Ch. 6]). O

Lemma 3.4. Let a € C%. The Markov Chain (¢;);>o with transition probability kernel
KT has a unique invariant probability measure 7, € C}. Moreover, the solutions of
(3.16) in L*([0,T]) span a vector space of dimension 1.

Proof. Step 1: any solution of (3.16) has a constant sign. Let z € L'([0, T]) be a solution
of (3.16). Because the kernel K is strictly positive and continuous on [0, 7]?, it holds
that
§:= inf KZI(ts)>0. (3.22)
t,s€[0,T
We write z, for the positive part of =, x_ for its negative part and define § :=
min(||z |1, ||z_||1). We have KL (z,)(t) > §3 and KX (z_)(t) > §3. Consequently

IKa ()|l = || Ka (x4) — K& (x_)|l1 < ||Ka (x4) — 68|l + ||Kg (x—) = 68|11 = [|=||, — 208

To obtain the right-most equality, we used that for all y € L'([0,T]), y > 0 yields
[|KXy||1 = ||ly||1. But the identity K1 (x) = x implies that 8 = 0 and so either =, or z_ is
a.e. null.

Step 2: existence and uniqueness of the invariant probability measure. Let (K g )
L>(]0,T]) — L>°(]0,T)) be the dual operator of K. We have:

Yo € L=([0,T]), (KZI)(v)=sr /0 KZL(t,s)v(t)dt.

From (3.19), we deduce that 1 is an eigenvalue of (Kg)’ (its associated eigenvector is 1,
the constant function equal to 1). Denoting by N the null space, the Fredholm alternative
[1, Th. 6.6] yields dim N(I — KI') = dim N(I — (KZ)"). So there exists 7, € L'([0,T])
such that:

Ta = Kg(ﬁa% l[malli = 1.

By Step 1, 7, can be chosen positive, and by Lemma 3.3, 7, € C%. Uniqueness follows
directly from Step 1: if 71, o are two invariant probability measures, then x = m; — 12
solves (3.16) and so it has a constant sign. Because the mass of z is null, we deduce that
xz=0.

By Steps 1 and 2, we deduce that the solutions of (3.16) in L*([0,7]) are the {\7q, A €
R}. O

Remark 3.5. The estimate (3.22) is a strong version of the Doeblin’s condition. It holds
that
inf KI(.,s)>6TUnif(-),
s€[0,T

where Unif is the uniform distribution on [0,7]. A classical coupling argument shows
that for all i > 1, ||£(¢;) — 7a|ltv < (1 — 6T)°, where (¢;) is the Markov Chain defined
by (3.20) and || - ||rv denotes the total variation distance between probability measures.
This argument provides an alternative proof of the existence and uniqueness of 7.
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We define for all § € R the following shift operator

Sp: C) — CY
x = (z(t+0)):.

Corollary 3.6. Given a € Y, equations (3.14) and (3.15) have a unique solution Pa €
C%. Moreover, it holds that for all 0 € R,

PSe(a) = So(pa)- (3.23)

Proof. Note that there is a one to one mapping between periodic solutions of (3.14)
and solutions of (3.16). So by Lemma 3.4, the solution p, of equations (3.14) and (3.15)

is pg = :—: where 7, is the invariant measure (on [0,7]) of the Markov Chain with

transition probability kernel K. and ¢, is given by

t
Ca :z/ Hy(t,8)mq(s)ds.
Note that ¢, is constant in time. Define for all ¢, s € [0, T:

HTts: ZH

k>0
Using the same notation that in (3.21), we have ¢, = H! (7,). Moreover, we have
S a
Vs 0 €R, 0,0 (0) = g 41g(0),

because both sides satisfy the same ODE with the same initial condition at t = s. We
deduce from (3.3) and (3.4) that

Hsg(a)(t78> ZHa(t+9,S+9) and KSg(a)(t?S) ZKa(t+9,S+9).

So Sy(pa) solves (3.14) and (3.15), where the kernels are replaced by KSB(Q) and Hsg(a)-
By uniqueness it follows that pg,(q) = So(pa)- O

Remark 3.7. Using that jo ma(s)ds = 1, we find that the average number of spikes over

one period [0, 7] is given by
I 1
- o(s)ds = —.
7 | et =

The probabilistic interpretation of ¢, is the following: remembering the Markov chain
defined by (3.20), we have

IP(Aerl > k‘(bz) ((k+ )T7 ¢z)a

and so, if £L(¢;) = 14, we deduce that

EAip =BEAil¢) =B | Y P(Aiyy > kley) | = HY (ma) = ca-
k>0

In other words, ¢, is the expected number of “revolutions” between two successive
spikes, assuming the phase of each spike follows its invariant measure m,. We shall see
in Proposition 3.16 that ¢, only depends on the mean of a. Furthermore, it holds that for

a=a>0
= HI'(1/T) = / H( ,
T ( )
and so for all ¢, p,(t) = v(«).
EJP 26 (2021), paper 121. https://www.imstat.org/ejp
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3.3 Shape of the solutions

Let a € C9 such that (3.1) holds. Let 0,(t) be defined by (3.6), such that s — gags(o)
is a bijection from (—o0, ] to [0,04(t)). We denote by x — S2(z) its inverse. Note that
t — 04(t) is T-periodic and

Vt e R,Vx € [0,04(t)), Bir(x) =67 x)+T.
Using that ¢f,(0) = 0, we have 3{(0) = ¢.

Notation 3.8. Given a € C{, we define for allt € R

pa(ﬁg(CE»
b(0) + a(Bf(2))

where p, is the unique solution of the equations (3.14) and (3.15).

¢
Ua(t, ) = exp <_/5 (f + b/)((pg’ﬁg(m)(o)m) Li0,000)) (),  (3.24)

7 (2)

By the change of variables u = 2(x), one obtains that for any non-negative measur-
able test function ¢

[e%e] t

/ 9(2) Vg (t, x)dx :/ 9(0¢,(0)) palu) Ha(t, u)du. (3.25)
0 —00

Note moreover that when a is constant and equal to a > 0 (a = «), (3.24) matches with

the definition of the invariant measure v° given by (1.9):

VteR, o04(t) =0, and 0,(t) =vy.

[e3

The main result of this section is

Proposition 3.9. Let a € CY such that inf,cg a; > —b(0). It holds that (74(t,-)); is the
unique T-periodic solution of (1.3).

Proof. Existence. We first prove that 7,(¢, ) is indeed a T-periodic solution. We follow
the same strategy that [5, Prop. 26]. First note that, by (3.25), one has

| r@rateante = [ Kaltupaturdn = pao)
0 —00

Consider the solution (Yt'fdﬂ“(o)) of (1.3) starting with law 7,(0) at time ¢ = 0 and let

ras (1) = BAYG ).

Claim: It holds that for all £ > 0, 75*'”) (t) = pa(¢).

Proof of the Claim. Recall that rZ"(O) (t) is the unique solution of the Volterra equation
r(’ia(o) = KZ“(O) + K * TZ“(O).

So, to prove the claim it suffices to show that p, also solves this equation. For all
u < 0 < t, one has
K (1,00 Ha (0,u) = Kalt,u).

Consequently, we deduce from (3.25) that

0
Kga(o)(t,()):/ Ka(t, u)pa(u)du.
— 00

So
t t
pall) = / Ka(t u)pa(u)du = K7O(t,0) + / Ko (t, 1) pa(u)du,
o 0
and the conclusion follows. O
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Finally, using [5, Prop. 19] and the claim, we deduce that for any non-negative
measurable function g

N t e}
Eg(vS7) = / 00 (0)) Ha(t, 1) pa (1)t + / 90 () HE (£,0)7 (0, )de.

s

By (3.25) (with ¢t = 0 and g replaced by = — g(¢f,(z))Hg (t,0)), the second term is equal
to

0
/ 980 (0)) Ha(t, w)pa(u)du,

— 00

and so

t fe%e]
a,ivg a (3.25) -
¥t >0, Eg(v ) = / 9(8.,(0)) Ha (t, u)pa (u)du °2 / 9(x)a(t, z)da.
—00 0

This ends the proof of the existence.
Uniqueness. Consider (v(t)):c[o,r] a T-periodic solution of (1.3) and define p(t) =

Ef(Y,% ”(0)) The function p is T-periodic. Moreover, it holds that for all k£ > 0, p(t) =
E f(Y, a ”(0)) and so (1.6) and (1.7) yields

t
p(t) = KOt —kT) + Ka(t, u)p(u)du
—kT
t

1=H!O ¢, —kT) + Hg(t, u)p(u)du.
—kT

Letting k goes to infinity, we deduce that p solves (3.14) and (3.15). By uniqueness, we
deduce that for all ¢, p(t) = pa(t) (and so p is continuous). Finally define 7, the time of
the last spike of Ya ”(0) before t (with the convention that 7, = —kT if there is no spike
between —k7T and t) The law of 7 is

L(7)(du) = 6_pr(du) HZO (t, —kT) + pa(u)Hg(t, u)du.
Consequently, for any non-negative test function g:

,v(0 v(0 a
Eg(Y,"9) = BEg(¥, "1, _11) + Eg(p&,, (0)L,e(—rr,q
t

- / g (@) HE (1, —kT)0(0) (dx) + / 0% (0)) pa (1) Ha (£, u) .

—kT

Using that I g(Y,*" ”(O)) = Eg(}/fd"(o)) and letting again & to infinity we deduce that
t
Eg(V,5"") = [ 9(¢?.(0))palu)Ha(t, u)du.

— o0

So for all ¢, v(t) = Ug(t). O
3.4 Reduction to 27-periodic functions
Convention: For now on, we prefer to work with the reduced period 7, such that
T=:2n7, 7>0.
Consider d € (Y. and let a be the 2r-periodic function defined by:
Vit eR, a(t):=d(rt).

We define
VteR, pa-(t):=pa(tt),

where pq is the unique solution of (3.14) and (3.15) (with kernels K; and H ;). Because
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pd is 2mT-periodic, p, - is 2m-periodic. Note that when a = o is constant we have
V7T >0,Vt € R, por(t) =7(a). (3.26)

To better understand how p, - depends on 7, consider ( ) the solution of (1.3), starting
with law v and driven by d. Note that forall t > s

Tt
Y‘r(ffl;s _YT(%S’;'S / b(Yud‘er)du—’_/ d du_/ ~/]R Yudflf'rs {‘rz<‘rf(Yd‘” )}N(du>d’z)
TS +

u—,Ts

_Yrcéis / Tb(YTiVTs)du—’—/ Ta’udu_/ / Y‘rtii TS {z<Tf(Yd’u )}N(du,dz)

Here, N := g« NN is the push-forward measure of N by the function

g(t, z) := (1t, z/7).

Note that N(du, dz) is again a Poisson measure of intensity dudz, and so (Yﬁﬂs) is a
(weak) solution of (1.3) for f =7f, b:=rband a := Ta. So, in particular (taking v = ),
if we define:

d a, T a,T a,T
7Pt (0) = 7b(p7(0) + 7a(t); 75(0) =0,

s

Hor(t,5) = exp (- / PO,
Karlt,8)i= 02 O esp (- [ t I O ). 3.27)

we have
Lemma 3.10. Let 7 > 0 and a € C3,.. Set, forallt € R, d(t) := a(%). Then it holds that

Vt>s, Hgr(t,s) = Hg(rt,7s) and Kg,(t,s)=71Kqa(Tt,T5).

In view of this result, we deduce that p, . solves

t t
Pa,r(t) :/ Ko - (t,s)pa,r(s)ds, 1= T/ Hg, - (t,5)pa,r(s)ds, (3.28)

or equivalently, setting

Vt,s €[0,2n], K2(t,s):=> Kar(t,s—2rk) and HZ(t,s):=» Ha,(t s—27k),
k>0 k>0
(3.29)

one has, using the same operator notation as in (3.21)
—K% w(Par), 1 —TH% " (Pa,r)-

Note that p. . and p. are linked by (2.4). Consequently equations (3.28) define a unique
27-periodic continuous function
Par = 2T, (3.30)

Ca,r
where 7, ; is the unique invariant measure of the Markov Chain with transition probabil-
ity kernel K7’ 27 and ¢, . is the constant given by

Cayr :=TH (Tar)-

3.5 Regularity of p

The goal of this section is to study the regularity of p,  with respect to a and 7. For
no > 0, recall that ng is the open ball of ng defined by (3.7). The main result of this
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section is

Proposition 3.11. Grant Assumptions 1.1, 1.2 and let oy > 0 such that Assumption 1.5
holds. Let 19 > 0. There exists €y, 19 > 0 small enough (only depending on b, f, oy and
Tp) such that the function

B%;’(ao) X (7'0 — €9, 70 t+ 60) — Cgﬂ.
(a, 7—) = Pa,r
is C? Fréchet differentiable.

The proof of Proposition 3.11 relies on (3.30) and on Lemma 3.14 below, which states
that the function (a,7) — 74 - is C2. Recall Notation 2.10

2m
CY0 = {ue C’g,r|/ u(s)ds = 0}.
0

Leta € B?](’; and 7 > 0. Because fo% Ta,r(u)du = 1, the space CY can be decomposed in
the following way
CY_ = Span(me,) ® CS;TO.

We denote by K27 |,
’ 27
h— K7 h is defined for all h € L'([0,2n])). Similarly, we denote by I|, the identity
operator on CY_. Given a linear operator L, we denote by N (L) its kernel (null-space)
and by R(L) its range.

the restriction of K, 27; to C9_ (recall that the linear operator

Lemma 3.12. Grant Assumptions 1.1 and 1.2, let oy > 0 such that Assumption 1.5 holds
and let a € B,ng(ao), where 19 > 0 is given by Lemma 3.2. It holds that

N(I|oy — Kg7| g ) =Span(ta ) and  R(I|g — K™ | 0o )= 90,

Proof. We proved in Lemma 3.4 that N(I — K2".) = Span(7g,). It remains to show that

R(I |ng - K2™ | ng) = C9°. The Fredholm alternative [1, Th. 6.6] yields

R(I - K%)= N(I - (KZ%)")*
where (K27.)" € L (L>([0,2x]); L>=([0, 27])) is the dual operator of
K2 € L (L'(]0,2x]); L'([0,27])). In the proof of Lemma 3.4, it is shown that
le N(I - (Kczz?r'r)/)v

where 1 denotes the constant function equal to 1 on [0, 27|. The Fredholm alternative
yields
dim N(I — (K27)') =dim N(I — KJ™) = 1.
So
N(I — (K2.)') = Span(1).
It follows that

27
R(I — K27.) = Span(1)* = {u € L*([0, 27r])|/0 u(s)ds = 0}.

Finally, using that for € L'([0, 27]), one has K2 .h € C3,, one obtains the result for the

27
restrictions to C3,.. O

As a consequence, the linear operator I — K, 2’*7 : CS;P — C’S;TO is invertible, with a
continuous inverse.

Lemma 3.13. Grant Assumptions 1.1, 1.2 and let oy > 0 such that Assumption 1.5 holds.
Let 7y > 0. There exists 1y, ¢g > 0 small enough (only depending on b, f, ag and ) such
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that the following function is C?> Fréchet differentiable

B?,Z)T(ag) X (10 — €0, T0 +€0) — L(CY :CY)
(a,7) — HZT.

The same result holds for K_T,.

Proof. We only prove the result for H, the proof for K being similar. Let ¢y > 0 be chosen
arbitrary such that ¢y < 79.
Step 1. We introduce relevant Banach spaces: E denotes the set of continuous functions

=C([0,27]%;R), equipped with ||w||g := sup |w(t, s)|
t

yS

Ey:={w e E, Vs €[0,2n], w(2m,s) =w(0,s)}, equipped with |||z
We define the following application ,
Ey — L(C3:;C3,)
q)::h(Q”t,hd) .
w = D(w) [ — fo w(t, s)h(s)ds re02n]
Note that @ is linear and continuous, so in particular C2. So, to prove the result, it

suffices to show that

B%g(ao) X (TQ*€0,70+60) — EO
(aa T) = (Hgfr-r(tv S))t,se[o,%r]z

is C*, where H_", (t, s) is explicitly given by the series (3.29).
Step 2. Let k € IN be fixed. We prove that the function

By (o) X (10 — €0,70 +€0) — E
(a,7) — (Hay,r(t,s—QWk))tvse[Oﬁzﬂ]z

is C2. To proceed, we use the explicit expression of H, . (t, s), given by (3.27). Note that
we have first to show that the function (a,7) — ¢{ (0) € R is C?. This follows (see [12,
Th. 3.10.2]) from the fact thatb: Ry — R is C? and so the solution of the ODE (3.27) is
C? with respect to a and 7. Moreover, we have for all h € C'QW,

Dol (0)-h = /Th exp( /b' vy (0 )du.

A similar expression holds for d%goz 7(0). Using that f is C?, we deduce that the function
(a,7) — (Hq - (t,s —21k)) s € E

is C2. Furthermore, we have for instance

DaHa o (t5) h=—Ha(t,s) / T F(627(0)) [DagT - h] du.

So, proceeding as in the proof of Lemma 3.2, we deduce the existence of 1y, A\g, Ag > 0
(only depending on b, f, ag, To and ) such that for all h € C9_and for all 7 € (75 —
€0, To + 60), it holds that

sup sup |DqHgq - (t,s —2mk) - h| < A0Hh|‘oo€72ﬂk>\0.
t,s€[0,27]? aeng(ao)

Similar estimates hold for the second derivative with respect to a and for the first and
second derivatives with respect to 7.
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Step 3. We have

sup sup sup |DoHea - (t,s — 27k) - h| < ZAoe—meU < oo,
k>0 ts€02m® a€BiT(a0)  heCy, Il <1 k>0

Using [3, Th. 3.6.1], we deduce that a — (H7(t,s)):s € E is Fréchet differentiable,
with for all h € C9,.

DoHZ(t,5) - h = DaHgr(t,s —2mk) - h.
k>0

Note that this last series converges again normally, and so a — (HJ7 (¢, s)):s is in fact
C'. Applying again [3, Th. 3.6.1], we prove similarly that a — H_."(t,s) is C>. The same
arguments shows that 7 — HZ2" (¢, s) is C*.

Step 4. It remains to prove that (a,7) — (H3™.(t,s)):,s € Eo is C* (we have proved the
result for E, not Ey, in the previous step). Let ¢, s € [0, 27] be fixed, define

weE, & (w):=uwt,s)ecR.
The application &! is linear and continuous. Moreover, we have seen that H, i’; € Ey, so

Vs € [0,27], E2M(HZ) = EXHLT,).

Differentiating with respect to a, we deduce that for all h € CY_,

Vs € [0,27], E2T(DH.T. - h) =EN(D HZT - h),

and so DaHng € L(CY., Ey). The same results holds for the second derivative with
respect to a and the two derivatives with respect to 7. This ends the proof. O

Lemma 3.14. Grant Assumptions 1.1, 1.2 and let ay > 0 such that Assumption 1.5 holds.
Let 9 > 0. There exists €y, 19 > 0 small enough (only depending on b, f, oy and 1y) such
that the function
BT (o) x (10 — €0, 70 + €0) — €3,
(a,7) — 7Tar

is C? Fréchet differentiable.

Remark 3.15. Recall that 7, ; is the unique invariant measure of the Markov Chain
having K27 has kernel transition probability. So, we study the smoothness of the
invariant measure with respect to the parameters (a, 7), knowing the smoothness of the
transition probability kernel (a,7) — K Z’TT We refer to [16] for such sensibility result in
the setting of finite discrete-time Markov Chains. Our approach is different and based
on the implicit function theorem. In this proof, we consider independent functions a and
h (that is we do not have a = ag + h).

Proof. Let o and 7y be fixed. Let dp,¢p > 0 be given by Lemma 3.13. Consider the
following C2-Fréchet differentiable function:

F 0207’70 X ngr(ao) X (10 — €0, 70 + €0) — Cg;ro
(h.a,7) —
It holds that F'(0, g, 79) = 0. Moreover

DyF(0,a0,70) = I — K27 € L(C3y,C32),

@0,T0

which is invertible with continuous inverse by Lemma 3.12. So the implicit function
theorem applies: there exists (V2OT;O, V3, V) open neighborhoods of (0, ag, 79) in C’S;TO X
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C9. x R% and a C?-Fréchet differentiable function U : Vi) x V,, — V,." such that
Vh,a,7 € Vil x VR x Vyy, F(h,a,7) =0 <= h=U(a,7).

By uniqueness of the invariant measure of the Markov chain with transition kernel K ?l’TT
we deduce that
Ta,r =g+ Ula, ),

which is a C?-Fréchet differentiable function of (a, 7). O

T

Proof of Proposition 3.11. Recall that p, , = -*=, where the constant ¢, - is given by

s

Ca,r = THZ,J(TFG,T)'
= and pa,,r, = V(o) (see (3.26)). So capry =
> 0. So for €y, 779 small enough, it holds that

Furthermore, it holds that n,, -, =
1
27y (o)

Va € B%g(ao),VT € (’7’0 — €0,70 + 60), Ca,r > 0.
Using Lemmas 3.13 and 3.14, it holds that c and p are (2, which ends the proof. O
As a first application of this result, we prove that the mean number of spikes of a

neuron driven by a periodic input only depends on the mean of the input current.

Proposition 3.16. Grant Assumptions 1.1, 1.2 and let ag > 0 such that Assumption 1.5
holds. Let 7y > 0 and consider ng be given by Proposition 3.11. Let h € CS;TO such that
oo+ h € B2 (ap). It holds that

o
2my(ev)

Cag+h,70 = Cag,70 =

We denote by c,, this last quantity. In particular, the mean number of spikes per period:

1 2
% . Pao+h,To (u)du = fY(O‘O)
only depends on o (which is the mean of the external current (ao + h(t))ie[0,2x])-

Proof. Let a € B."(ap). We prove that

Vh € CY°, Dacar -h=0.

27

We have cq -, = T0HZ2". (7a -, ). Differentiating with respect to a, one gets

a,To

DacCayry - h =10 [DoHZ,

a,To

“h] (Tayry) + T0HZT DaTa,r, - h.

Recall that 74, -, = K2" 7a,r, SO

a,To

Damary - h = [DaKzTTO : h} Ta,mo T Ki?ro [Dama,r, - h].
So, using Lemma 3.12, one has
Daayry - h=[I - K2 |7 [DaK2T - h] o s (3.31)

Define on C5” the linear operator

t

27
Vhe C°, 1% (h)(t) ::/ IL{tZS}h(s)ds:/ h(s)ds.
0 0
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We have
Lx Koy =1—Hanry, (3.32)
so on C°,
HZ =1*"[I-K, ]. (3.33)
So

H27T [I _ K27T ]71 _ ﬂQﬂ'.

a,To a,To

Consequently, we have

DacCamy - h =70 [DaHZ™ - h] (Tar) + 701%™ [Da K2™ - h] Ta r

a,To a,To
Differentiating (3.33), one has
Do H." - h=—1°" [Da K,

a,To a,To

~h],

and so for all h € C3°, Daca.r, - h = 0. Then for all € C5.° such that ag + h € B2 (o),
one has

1
Cag+h,m0 — Cag,m0 = / [Dacf¥0+th,To ’ h} dt = 0.
0

Finally we have 7o, -, = % and, by (3.26), pa,.7, = 7(a0). By definition (3.30), we have

— Tagim
Cag,mo = o Tt ends the proof. O

3.6 Strategy to handle the non-linear equation (1.1)

Grant Assumptions 1.1, 1.2 and let oy > 0 such that Assumption 1.5 holds. Let 7 > 0
be given by Assumption 2.2. For 7, g > 0, define G : B%g(ao) QCS;TO x (g — 1Mo, g +10) ¥
(10 — €0, 70 + €0) — C’S;TO such that

G(h,o,7) == (a+ h) — J(&)path,r (3.34)

Using Propositions 3.11 and 3.16, we choose 7, ¢y small enough such that G is C2-Fréchet
differentiable and indeed takes values in CS;TO. For any constant o, 7 > 0, we have, by
(3.26), pa,r = 7(®). Recalling that J(a)vy(a) = «, we have

V(Q,T) S (Cko—’l]o,O[o—Q—T]o) X (’7’0—60,7’0+60), G(0,0é,’l’) =0. (3.35)
Those are the trivial roots of GG. To construct the periodic solutions to (1.1), we find the

non-trivial roots of G. In fact, Theorem 2.8 is deduced from the following proposition.

Proposition 3.17. Consider b, f and «g, 79 > 0 such that Assumptions 1.1, 1.2, 1.5,
2.2, 2.3 and 2.6 hold. Let G be defined by (3.34). There exists X x V,, x V., an open
neighborhood of (0, g, 70) in (C°, || - [|eo) X R x R such that:

27

1. There exists a continuous curve {(h,,o,,7,), v € (—vo,vp)} passing through
(0, g, 70) at v = 0 and such that for all v € (—vp, vp)

(hyy Qyy Tp) € X X Voo x Vpy  and G (hy, 7)) = 0.

Moreover; it holds that
1
27

In particular, h, # 0 forv # 0.

2

27 1
/ hy(t)cos(t)dt =v and — h, (t) sin(t)dt = 0.
0

Vv € (—vo,v0), o
0

2. For all (h,a,7) € X X Vy, x V,,, with h # 0, it holds that
G(hya,7) =0 < [Jv € (—vo,v9),30 € [0,27), (h,a,7) = (Se(hy), 0w, Tv)]-

We here prove that our main result is a consequence of this proposition.
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Proof that Proposition 3.17 implies Theorem 2.8. Let (h,, o, 7,) be the continuous curve
given by Proposition 3.17. Define a,

Vi eR, ay(t) =y + hy(t/70).

The function a, is 277,-periodic and continuous. From G(h,, ay, 7,,) = 0, we deduce that
a, solves (2.3):
a, = J(ay)pa,-

Consider 7,, defined by (3.24). By Proposition 3.9, (7, (t)) is a 277,-periodic solution
of (1.1) and (7, , au, 7,) satisfies all the properties stated in Theorem 2.8: this gives the
existence part of the proof. We now prove uniqueness.

Let €9 > 0 small enough such that (7o — €y, 70 + €0) C V4, V;, being given by Propo-
sition 3.17. Let J,7 > 0 be fixed, consider v(t) a 2n7-periodic solution of (1.1) such
that

J (x)v(t,dz) — ag
Ry

|7 — 70| <€ and  sup
te[0,277]

<617

for some constant €; > 0 to be specified later. Define a

VieR, a(t):=J f(z)v(t,dx).
R
The function a is 277-periodic. Let (X;);>¢ be the solution of the non-linear equation
(1.1), starting with the initial condition v(0) € M(f?). The arguments of [5, Lem. 24]
show that, under Assumptions 1.1 and 1.2, the function ¢t — E f(X,) is continuous, and
soa € CY .. We write
a(t) = a+ h(t/7),

for some constant o and some h € CS;TO. Because v(t) is a periodic solution of (1.1), it
holds that

a = Jpa,

or equivalently,
o+ h=Jpaih,r (3.36)

We have by assumption

|a7040| = < €1.

1 27‘(‘ 1 271'
— dx)du — — > (dx)d
27r/0 J - f(z)v(Tu, dx)du o7 /. J (o) - (z)uao( x)du

Recall that «g satisfies Assumption 1.5. By Lemma 3.1 and using the continuity of ¥/,
we can assume that ¢; is small enough such that Assumption 1.5 is also satisfied by a.
Let 79 be given by Proposition 3.11 (19 only depends on b, f, ag and 7y). Provided that
€1 < 1o, we can apply Proposition 3.16 at («, 7). It holds that

1 27

% 0 Pa+h,7—(u)du = 'Y(O[),

so (3.36) gives

a = Jy(a).
This proves that J = J(«) and so (3.36) yields G(h, a, 7) = 0. By the uniqueness part of
Proposition 3.17, there exists 6 € [0,27) and v € (—wp, vp) such that

Vt, h(t)=h,(t+0), a=a, T=T,.

So, we deduce that a(t) = a, + hy (ﬂ) and J = J(a,). This ends the proof. O

Ty

It remains to prove Proposition 3.17.
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3.7 Linearization of G.
Define:
VteR, On(t) :=T104(Tt)1R, (1), (3.37)
where O, is given by (1.17). The main result of this section is the following.
Proposition 3.18. Let h € C3.°. It holds that

[DrLG(0,,7) - B] (t) = h(t) — J(«) /IR(_)a’T(t — s)h(s)ds.

The proof of this proposition relies on Lemmas 3.19 and 3.20 below. Let h € 020;9. The
definition of G yields
DyG(0,a,7)-h=h—J(a)Dgpa,r - h.

By equation (3.30) and Proposition 3.16, one has

1
Dapa,r-h=—Damgr-h.
C,

(03

Recall that 7, is the uniform law on [0, 27]. To compute D, 7, . - h, we use (3.31) with
a = Q.
DaTar-h=(I—K20) " [DaK2T - h] (55). (3.38)

27

The next lemma is devoted to the computation of (I — K27)~". Consider ¢ — r,(t) the
solution of the convolution Volterra integral equation (1.6) (with v = §y and a = «a). That
is, rq solves r, = K, + K, * ro. By [5, Prop. 37], there exists a function &, € Ll(]R+)
such that forallt > 0,

ra(t) = (@) + &a(t).
Define for all t > 0, 7o - (t) := 774 (7t). It solves

Ta,r = Ba,r + Ka,T *Ta,rs (339)

where K, ; is given by (3.27). Similarly, let &, - (t) := 7€, (7t). We have

Ta,r(t) = 7y(a) + &u - (1)

Recall that by definition, we have
2m
K3 (h)(t) = K27 (t,s)h(s)ds —/ Ko (t — s)h(s)ds.
0

and

21
ﬁymm=A H" (¢, 5)h @—/‘mT— Yh(s)ds.

Lemma 3.19. The inverse of the linear operator I — K27, : Cg’ — C% is given by
I+ 12" where for all h € Cy;’ andt € [0, 2n]

rare(h) = Ty()L(h) + €27 (h),

L(h)(t) := / s)ds — — /Qﬂ/ w)duds,
_ [ sl - 9)hls)ds
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Proof. Note that I'(h) is the only primitive of » which belongs to C’QO;TO. Moreover, because
t — Ear(t) € LY(R, ), we have for h € C3.:

/:ﬂ /_; Sor(t = 8)h(s)dsdt = /0 K /O " e (Wh(t — u)dudt

e’} 27
_ / Ear (W)h(t — uw)dbdu = 0.
0 0

So €27 (h) € C5;. Altogether, r27_ € Cy:’. To conclude, we have to show that on C5;’

o, T

27 2 27 27 27 27
K(x;r o roz,‘r - T(x,‘r o Ka;r - T(Jn,‘r - Ka,'r'

Note that for all ¢ € [0, 27],

d

7 [L)(#) = HT (M) ()] = K27 (h)(¢).

o, T

Because I'(h), H2™.(h) € €59, we deduce that

D27, (k) = T(h) — B,

o,T*

Moreover, we have (using that &, ,, K, € L'(R4))
t s
ELn ) = [ tarlt=9) [ Karls = whlu)duds
—too . —o0
= / h(u)/ Ear(t —8)Kq (s —u)dsdu
t
= / h(uw)(Ea,r * Ko r)(t — u)du.

— 00

Using (3.32) and (3.39), we deduce the identity

Ka,‘r * fa,'r = ga,‘r * Koz,'r = ga,'r - Ka,f + T’Y(a)Ha,T' (3.40)
So
iTT(ngjr‘r(h)) = 5(2177‘-7'(]1) - Ki?‘r(h) + TV(a)H?x‘,n—T(h’)
Altogether,

To (Ko (h) = 37 (h) — K37 (h).

o, T

We now prove that K27 (27 (h)) =727 (h)— K37, (h). Using (3.40), we have K27 (€27, (h)) =

a,T .

(K2™.(h)). Moreover, because K27, (1) = 1, we have

K2T (T(h))(t) = /_; Ko (t—5) /0 h(u)duds — ;ﬂ/:ﬂ /O h(u)duds

= {HQ)T(t—s) /O h(u)duym —/_; Hor(t — s)h(s)ds

1 2 s
- — / h(u)duds
2T 0 0

=T (h)(t) = H3T(h)(t) = DK (h))(1).

a,T

It ends the proof. O
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Let (a,7) € (g — Mo, 0 + 10) X (70 — €0,70 + €0) and h € C’QO;TO. Using (3.30) and
Proposition 3.16, it holds that

Dapa,r ~h =

1
Dafar - h "2 (I 4727) [Da K27, - h] (v(a). (3.41)

o, T

Consider =, (t) be defined by (1.21) and define for all ¢t > 0, Z, ;(¢) := T7E,(7¢). We also
denote by Ei"T the linear operator

—a,T

t
VheCd vte0,2n], 227 (R)(t) = / B (£ — w)h(u)du.

Lemma 3.20. For all h € C, we have [Do K27, - h] (v(a)) = 27 (h).

Proof. Given h € C3_, we have

[DuKZ, 1] (@)(®) = (@) [ [Dakar 1 (1, )ds

So we have to prove that

t t

(DaKar - ] (£ 5)ds / Zr(t — 8)h(s)ds. (3.42)

—0Q0

VheCl, (o) /

— 00
When 7 = 1, we know by Lemma 3.10 that K, = K., Hy1 = H,, etc.. In [6], eq. (72)

gives

~(a) / [DaH, - 1] (£, 5)ds = — /R U, (t — 5)h(s)ds,

— 00

where U, (¢) is given by (1.20). Using that ¥, (0) =0, E4(¢) (12h 4y, (t) and

/_oo [Do K, - h](t,s)ds = —% /_Oo [DaH, - h](t,s)ds,

we deduce (3.42) with 7 = 1. The result for~7- #1 can be deduced from thg case 7 = 1.
Indeed, given o > 0 and A GNCSE, deﬁnq f:=71f,b:=7b, &@:=71a, and h := Th. By
applying the result for 7 := 1, b, f, & and h, we obtain exactly the stated equality. O

Proof of Proposition 3.18. We use Lemma 3.20 together with (3.41). For all h € OS;P,
one obtains

Dapar - h = Z25,(h) + 125 (Z25, (h)).

o, T\ a,T

The definition of 727, yields

T

Torr (Zarr (h) = (@)D (E3T, (1)) + €7 (Z27(h).

Let ¥, ,(t) := Uo(7t), such that £V, (t) = =, (t). From the identity

% / Uyt —u)h(u)du = / Ear(t —u)h(u)du,

— 00 — 00

we find that

(227 (h)(t) = / U s (t — w)h(u)du = / (1% B ) (t — w)h(u)du.
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So

[Dapo,r-h](t) = / Ea,r(t —wh(u)du + (o) / (1% Zq,7)(t —uw)h(u)du

+/t o r(t —u) f Ea,r(u — 0)h(0)dOdu.

Fubini’s Theorem yields

[ artt=0) [ Zartu-0hOtdu= [ (o Za)t - OO0,

Finally, we have

—_

Ear +7y(@)(1%EZ0,r) +€ar *Zar = Zar +Tar *Ea,r (because ror = 7y(a) + &a,r)

123 g
- o,T)

SO .
(Dapar - ] (t) = /_ Our (t — u)h(u)du.

It ends the proof. O

3.8 The linearization of G at (0, o, 79) is a Fredholm operator

For notational convenience we now write
BO = DhG(O, «Qp, 7'0).

Proposition 3.21. We have N(By) = R(Q), R(By) = N(Q), where Q is the following
projector on C9.:

2m 2m
Vze CYY Q2)(t) == [ ! / z(s)e‘isds} et + [2171_/ z(s)eisds] e ™, (3.43)
0 0

2

0,0

27

Remark 3.22. In particular, By € £(CS:°, C3:°) is a Fredholm operator of index 0, with

dim N(B) = 2.

Proof. First, let h € N(Byp). One has forallt € R

h(t) = J(ao) /]R@amm(t — s)h(s)ds.

Consider foralln € Z )
- 1 G

P, = o ; h(s)e™""%ds

the n-th Fourier coefficient of h. We have
Vn e Z, hy=J(0)Ouy.r(in)hy.
Assumption 2.3 ensures that
Vn € Z\{-1,1}, J(a)®aq.r(in) # 1,
and so

Vn € Z\{-1,1}, h, =0.
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We deduce that h € R(Q). Conversely, if h € R(Q), there exists ¢ € C such that
h(t) = ce™ +ce ™
and so
J(ap) /]R Oup.mo (t — 8)h(s)ds = ce™ J () /]R Oup,mo (8)e™#ds + e~ J(ap) /]R Ouy.ro(5)e™ds

e J(00)Oung.ro (i) + e T (0) Oy (—i)
= h(t).

~ ~

We used here that J(a)Oay.7, (1) = J(0)Oay, 7 (—i) = 1 (Assumption 2.2). This proves
that N(By) = R(Q). Consider now k € R(B,), there exists i € C5:’ such that By(h) = k.
We have forallt € R

h(t) — J(ao) /]R@amm (t — s)h(s)ds = k(t).

~

Using that J(ag)Oq,,r (1) = 1, we deduce that

1 2 ] 1 2 ] R
o, k(s)e™*®ds = [27r ; h(s)e_”ds} (1 = J(00)Onp,m (1)) = 0.
e . 1 27 i .
Similarly, 5~ [, k(s)e'*ds = 0 and so k € N(Q). It remains to show that N(Q) C R(By).
Consider h € N(Q) and let
- 1 2m

n =g ; h(s)e™"*ds

be its n-th Fourier coefficient. We have ﬁl = ﬁ_l = 0. The function A is continuous, and
so h belongs to L%(]0, 27]). We deduce that

Z |hn|? < 0.

neZ\{-1,1}

Define R
J(@0)O a7 (0
V€ Z\{-1,1}, e = —L(20)O00n(in)
1= J(@0)Oag.ro (in)

Using [6, Lem. 33, 34], the function ¢ — ¥, (¢), explicitly given by (1.20), is C* and its
derivative Z,,(t) = 4V, (¢) belongs to L' (R ). The same holds true for ¢ — Z,,(t). So,
using (1.24) and (3.37), we deduce that ¢ — O, -, (t) is C! and its derivative belongs to
L'(R.). This gives the existence of a constant C' such that for n € Z,

C
In| >1 = |e,| < —.

n|
We deduce that

Z Inenhn|? < oc.
nezZ\{-1,1}

Consequently, defining

VieR, w(t):= Z €nhne™,
nezZ\{-1,1}

it holds that w € Hl([O7 27]), and so w is continuous (see for instance [1, Th. 8.2]). Finally,
let k := h +w. It holds that k € €90 and the n-th Fourier coefficient of k is equals to

—— M We deduce that By(k) = h. This ends the proof. O
1-J(a0)Oaq,rq (in)
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3.9 The Lyapunov-Schmidt reduction method

The problem of finding the roots of G defined by (3.34) is an infinite dimensional
problem. We use the method of Lyapunov-Schmidt to obtain an equivalent problem of
finite-dimension - here of dimension 2. The equation G = 0 is equivalent to

QG(Qh+ (I — Q)h,a,7) =0
(I = Q)G(@Qh+ (I = Q)h,a,7) =0

where the projector () is defined by (3.43). Define the following function W:

W U x Wy % Vao X Vq—o — R(Bo)
(’U,’LU,O[,T) = (I*Q)G(’U‘FU},O@T),

where U; x W, are open neighborhood of (0,0) in N(By) x R(By).

We have W(0,07a0,70) = 0 and DwW(O7O,Oé0,T0) = (I - Q)DhG(07a0,T0) = (I -
Q)By € L(R(By), R(By)) which is bijective with continuous inverse. The implicit function
theorem applies: there exists a C! function ¢ : N(Bg) x V,, x V,, — R(By) such that

W (v,w,a,7) =0 for (v,w,a,7) € Uz x Wy x V,, x V, is equivalent to
w=Y(v,a,T).

Again, the neighborhoods Us, W3, V;,, V,,, may be shrunk in this construction. We deduce
that

G(h,a,7) =0 for (h,a,7) € X X V, x V, is equivalent to (3.44)
QG(Qh+ v (Qh,a,7),a,7) = 0. (3.45)
Indeed, if G(h, a, 7) = 0, we have in particular W(Qh, (I —Q)h,a,7) = 0and so (I-Q)h =
Y(Qh, «, 7): this gives (3.45). Reciprocally, if (3.45) holds, we set h = Qh + ¥(Qh, «, T)

and obtain (3.44). Note that for all § € R, we have forall 7 > 0 and a € C_, PSe(a),r =
So(pa,r)- It follows by definition of G that

G(So(h),a,7) = Se(G(h,a, T)).

Moreover, it is clear that the projection Q commutes with Sy (for all § € R, SpQ = QSp)
and by the local uniqueness of the implicit function theorem, we deduce that

Using that any element Qh € N(By) can be written
Qh =t s ce' + e = ceg + e

for some ¢ € C and using the definition of ), we deduce that (3.44) is equivalent to the
complex equation:

O(c,a,7) =0 for (c,a,7) € Vo x Vi, X Vo, where

1 27

O(c 0, 7) = G(ceg + ceo + Y (ceq + céo, o, 7), a, T)teiitdt

2 Jo

and Vj is an open neighborhood of 0 in C. We have moreover

Vo € R, @(ceie, a,T) = ew(i)(c, a,T),
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and so (3.44) is equivalent to

®(v,a,7) =0 for v € (—vg, vy).

Note that &(—v,a,7) = —®(v, o, 7) and in particular

Va,T € Voo X Vo, @(0,a,7) = 0.

This is coherent with (3.35). In order to eliminate these trivial solutions, following [19],
we set for v € (—vg,vg) \ {0}:

- )
®(v,a,T) ::7@’&’7—)

v
1
= / D, ®(0v, ov, 7)db.
0

To summarize, we have proved that

Lemma 3.23. There exists vy > 0 and open neighborhoods X x V,, x V, of (0, &g, 79) in
90 x R% x R% such that the problem

G(h, o, 7) = 0 for (h,a,7) € X x Vi, x Vi, with h # 0

is equivalent to

®(v,a,7) =0 for (v, 0, T) € (—vg,v0) X Voo X Vi
The next section is devoted to the study of this reduced problem.
3.10 Study of the reduced 2D-problem

We denote by cos the cosinus function, such that vey + vég = 2v cos.
Lemma 3.24. We have:

1. ®(0,a0,70) = 0.

2. D;9(0,a0,70) = 3= 027r [D}.G(0, a0, 70) - 2 cos|, e~ dt.

3. Da®(0,a0,70) = 5= 027r [D},G(0,0,70) - 2 cos|, e~ dL.
Proof. We have ®(0, g, 79) = D, ®(0, g, 70) and

. 1 2 .
D,®(0, 0, 70) = o Dy G(0, a0, 70) - [2cos +Dy1p(0, avg, 7o) - 2 cos), e~ dt.
0

Moreover, it holds that (see [19, Coroll. 1.2.4])
D, (0, ap,10) - cos =0

and cos € N(DypG(0,a9,7)), SO (f)(O,ag,To) = 0. To prove the second point (the third
point is proved similarly), we have D, ®(0, ag, ) = D?_®(0, ap, 79). Moreover,

27
D;®(v,a,7) =5 D, G(2vcos +1)(2r cos, a, T), o, T) e~ Lt
™ Jo
1 27 |
+ o A (DG (2r cos +9(2v cos, o, T), &, T) - Dr1p(2v cos, o, )], o—itdt.
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So

. 1 27 )
Dgrtb(o, g, ) = %/ [D,QLTG(O, a0, 70) - (2cos +D, (0, ap, 7o) - 2COS)]t e tdt
0
1 27

+ % ) [DhG(0,0éo,To) . DzT’(,ZJ(O,Oto, 7’0) . 2COS}t eiitdt

1 2m
+ — D}QLhG(O7a057—O)

27T 0
-[2 cos +D, (0, ag, 7o) - 2 cos, Db (0, ag, )] e dt.
Note that for all o, 7 in the neighborhood of «g, 7y, one has

w(ov «, T) = 07

so D,9(0,a9,79) = 0. Consequently the third term is null. Recall now that B, :=
D, G(0, o, 79) and by Proposition 3.21, it holds that @By = 0. So the second term is also
null. Finally, using again that D,% (0, ag, 7o) - cos = 0 we obtain the stated formula. O

By Proposition 3.18, we have for all h € CS;TO
DyG(0,0,7) - h=h — J(a)Bq,+ * h,

where the function ©,_; is given by equation (3.37). It follows that

D?_G(0,ap, o) - 2cos = —2J(0z0)§ (Oag,r * cOS)|
T

T=Tp ’

and so we have

9 ~
D-,—@((LOZU,TO) - _J(ao)i @aoﬂ'(z)
87' T=To
Similarly;,
s 9 N
D, ®(0, ag, 70) ~%a ( (@)Oq, (@ ) .
Lemma 3.25. Write J(ao)%@ao(%) =: o + iyo. It holds that

1. D,,-&)(O,C((),TO) = (Zl’o - yo)/TO2
2. Da®(0, a9, 70) = 3 () (o + iyo), where 3)(ay) is defined in Lemma 2.5.
Proof. From O, ,(t) = 70,(7t), we have

0 0

E@aﬁ (t) = L[rO4(rt) + 7o (7t)], with TI(t) := ta(%a(t).
So o
0 lra /2 ~ (2
Moreover, an integration by parts shows that
~ o0 . 0
Iy (z) = TEH—0,(t)dt
@)= [ etigen
= —Oa(2) + z/ e O, (t)dt.
0
= 04(2) — 2 00(2)
= alz Zaz al2).
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Choosing z = ¢ ends the proof of the first point. Define now
Az, ) == J(a)O4(z) — 1.
By the definition of 3¢(«) (see Lemma 2.5), we have
Vo € Vo, A(3o(a), ) = 0.

We differentiate with respect to a and obtain

0 , 0 B
5-A(30(), )3(@) + 5-A(30(a). a) = 0.
Evaluating this expression at a = «ag gives
3 ~ i .
g (J@8a)| () = =34(00) (w0 + i)

which concludes the proof. O

Lemma 3.26. There exists vy > 0, an open neighborhood Vo, x V;, of (ag, 7o) in (R%)?
and two functions v — T, a, € C1((—vo, o)) such that for all (v,a, 7) € (—vg, Vo)X Vg X Vi,
we have

d(v,0,7) =0 <= 7 =1, and a = a,.

Proof. We decompose & into real part and imaginary part (without changing the nota-
tions), such that now

D : (—vg,vg) X Viy % Vg — R
We have <f>(0,a0, 70) = 0 and

O Cko/]'o) % Té(O,OZQ,T@))

. _ a®( D
D(Ot’T)(I)(O’aO,TO) o < é(O Ck(hT()) %D-,—‘i((LOZ(),TQ)
x()@??)g(a ) - y0\536(0¢0) —%03
( ) =)

~ 2033} (a0) + yoR3H (o
The determinant of this matrix is %(m% + y2) and this quantity is non-null by
Assumptions 2.2 and 2.6. Consequently, the implicit function theorem applies and gives
the result. O

The proof of Proposition 3.17 then follows immediately from this result and Lemma 3.23.
This ends the proof of Theorem 2.8.

4 An explicit example

We now give a simple example of functions f and b such that Hopf bifurcations occurs
and such that the spectral assumptions of Theorem 2.8 can be analytically verified. First,
by [6, Th. 21], if

Vo >0, f(z)+b(z)>0, (4.1)
then any invariant probability measure of (1.1) is locally stable. So, to have Hopf
bifurcations, the drift b has to be sufficiently attractive to break (4.1). Our minimal
example satisfies all the assumptions of Theorem 2.8, except Assumption 1.2, because
the function f we consider is not continuous. Indeed, to simplify the computation, we
consider the step function

0 for0 <z <1,

Ve € Ry, fl2) = {1/6 forz >1

where 3 > 0 is a (small) parameter of the model.
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4.1 Some generalities when f is a step function

We shall specify later the exact shape of b, for now we only assume that

inf b(z) > 0.
zér[h,l] (.73)

This ensures in particular that the Dirac mass at 0 is not an invariant measure. We now
consider some fixed constant o > 0. Let, for all z € [0, 1]
th(x) :=1inf{t > 0, ¢ (x) =1},

the time required for the deterministic flow to hit 1, starting from z. A simple computation

shows that )
dy
t* = _
o) = [ st

Let HZ(t) be defined by (1.5) (with v = §,, @ = a and s = 0). Using the explicit shape of
f, we find for all z € [0, 1],

i 1 for 0 <t < t}(x),
Ha<t) = 7t—t:;(z)
e 8 for ¢t >t} (x).
Moreover,
Vo> 1, Hi(t) =0 “2)
Altogether,
' N 1 — = 2ta(0)  o—2t5(0)
Vz € Cwith R(2) > —1/8 H,(z) = > +z+1/ﬁ'

Note that in particular (using that 1/v(«a) = ﬁa(O))
/() = t,(0) + 8.

So

o a 1 dy o
@)= 1) ‘/o T b(y)ja “-3)

is a strictly increasing function of «a: for a fixed value of J > 0, there is a unique a > 0
solution of o = Jv(«) and the corresponding v5° is the unique invariant measure of (1.1).
Let 04 = lim;_, o0 ¢ (0). This invariant measure is given by

b&()?a for x € [0,1),
ve (x) = b&(ﬁ)a exp <_% flx b(yd)zia) forx € [1,04)
0 otherwise.
Moreover, for z € [0,1] and ¢ > t} (),
t—t} ()
d le 8

x

—H*(t) = —————.
dx a(t) B b(x)+«
So the Laplace transform of - HZ(t) is, for all z € C with R(z) > —1/3

e—t;(x)z 1

*° d
vz € [0,1], L grgygp = - L
€01 /0 ‘ a(t) b(z) +al+ B2

dxr
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Let ¥, be defined by (1.19). For all z € C with ®(z) > —f, one has

~ « Ta [0 d
J()¥,(z :——/ e #' —HE(t)dt v (x)dw
@Fae) =~ [ [T e L mznde @)
a )

1 e_t; (m
= / dz.
1482z J, (b(z)+ a)?
Indeed, using (4.2), it holds that %:H(f(t) = 0 for x > 1. Finally, the change of variable
r=,(0), uel0,t:(0)),

such that ¢} (z) = ¢}

[e3%

(0) — u, shows that
R aefzt:;(o) t> (0) Uz
J(a)W = — ————du.
(@%al) = 7775, /0 b(s () +a"

Using [6, Remark 35], the (local) stability of the invariant measure v3° is given by the
location of the roots of the following holomorphic function, defined for all R(z) > —1/3:

ez 1— efztj; (0) Befzt; (0)

~ ~ ae*Zt; (0) t:z (0)
To(z) = Ha(z) =28~ du — -
J()¥al2) (2) 1+ Bz /0 b(p2(0)) + « u z 14 B8z

4.2 A linear drift b.
We now specify the shape of b. For some parameter m > 1, we choose:
Ve >0, bx)=m—ux,

It holds that b(z) + @ = 04 — © with 0, = m + . We have ¢ (0) = 0,(1 —e™™*) and so

t*

*(0) = log (o;i1>'

t;,(0) uz ts,(0) 2+1)t5(0) _
/ T gu= i/ DU — iw,
0 b(5(0)) + a oa Jo Ou 241

N R a ela(0) _gm2ti(0) | _ o=2ti(0)  ge—2ti(0)
Uo(2) = Ho(2) = — — - :

Consequently, we have to study the complex solutions of

Finally

SO

- () T - ()T s(eme)
R > B <1<+;z><lz)+1> - (Z ) (11/32) =0

(4.4)
Remark 4.1. In fact this analysis can be easily extended to any linear drift

b(z) = k(m — x),

with x,m € R. Indeed, adapting slightly the proof of [6, Th. 21] when « < 0, it holds that
f + b >0 and so the unique non trivial invariant measure is locally stable: there is no
Hopf bifurcation. If on the other hand « > 0, by setting

- ~ « ~ >
k=1, a=—, m=m (=&,
K

we can easily reduce the problem to x = 1.
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We now make the following change of variable

w = 10g (Tm) and 6= ﬁ,

with w > 0 et d € (0,1). That is, we have

1-6
o= and m=1+ . (4.5)
ev —1 ew —1
With this change of variable, (4.4) becomes
1 1— efw(z+1) 1 — w2 Befwz
R(z) > —1 0 — — =0. 4.6
(2) /B 14 Bz 1+ 2 z 1+ Bz (4.6)

Recall that the strictly increasing function « — J(«) is given by (4.3). With (4.5), we
have
J()=8+w—-3561-e")#£0.

We deduce that z = 0 is not a solution of (4.6). Multiplying by (1 + 5z)z on both side of
(4.6), we finally find that we have to study the zeros of

R(z) > —-1/8, U(B,0,w,z)=0,

with

o < _ —w(z+1) —wz __
U(B,0,w,z):= 572_’_1(1 e )+e (14 B2). 4.7)

4.3 On the roots of U

An explicit parametrization of the purely imaginary roots

We now describe all the imaginary roots of U. If z = iy, y > 0, the equation U (S, J,w, z) =
0 yields
{ cos(wy) + sin(wy)y(l —de ) = 1—By? 4.8)
—sin(wy) + cos(wy)y(1 —de ) = y(1+8-9). ’

For w > 0 et y > 0 fixed, (4.8) admits a unique solution in (8, §), given by

(14 e)(1 = cos(wy)) — (e — Dysin(wy)
y?e? — y? cos(wy) — ysin(wy)
0. e(1+y*)(A — cos(wy))
%) = y2e — y? cos(wy) — ysin(wy)’

Buly) = ’ (4.9)

Proposition 4.2. The parametric curve (3°(y), 52 (y)),~>0 admits exactly two multiple

points given by
2

T e

Apart from those two points, the curve does not intersect itself.

(0,0) and (0

Proof. Squaring the two equations of (4.8) and summing the result, one gets
1+ y*(1=de7)? = (1= By*)? +y*(1 + B - 0)%,

that is
(1-de “)?==28+ 8%+ (1+B—0)% (4.10)
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Parametric plot in (3, 6) Parametric plot in (3, J)
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Figure 2: Description of the purely imaginary roots of U. (a) The parametric curve
(B%(y), 8% (y)), plotted with w = 1 and y € [0, 15.57]. Each point of the curve corresponds
to a purely imaginary roots of U. (b) Purely imaginary solutions of U plotted in the plane
(B8, J), the value of m being fixed (m = 3/2).

Note that if § # 0, for fixed values of §, 5, there is a unique y satisfying this equation.
This proves that all the multiple points are located on the axis 8 = 0. When 8 = 0, the
equation becomes

(1-de7)% = (1-4)%,

whose solutions are

2
0=0 and 06=-—-—.
14+e v
Those are indeed multiple points. For (0,0) for instance, it suffices to consider y =
21k | € IN*. This ends the proof. O

4.4 Construction of the bifurcation point satisfying all the spectral assump-
tions.

Let wo > 0 being fixed, chosen arbitrarily. Let o := 27 (1 — &) with € > 0 (small) to

wo
be chosen later. Let 8 := 3 (yo) and dy := 03, (o). We have

Bo=¢eo+O(e) asey— 0.

and

do = (e — 1) (1 + wg ) eg+O(ey) asey— 0.

We then have from (4.7)
oUu . . 2
E(ﬂo,do,wo, iyo) = —wo — (1 + 2im)eg + O(eg) as ey — 0.

This quantity is non-null provided that ¢y is sufficiently small. The implicit function
theorem applies and gives the existence of a C! function (3,6, w) — 2¢(3, 6, w) defined in
the neighborhood of (5, dg, wg) such that

U(5757w720(5767(“])) = 07 Wlth ZO(ﬂOad(JawU) :ZyO
Furthermore, one has

9 (Bo, do, wo, iYo) @.7) 27Tl —e7®0 27 + jwp
9 (Bo, do, wo, io) wo  (2m)2 +wj

0
%Zo(ﬂo,do,wo) = - +O(ep) ase —0
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and

U (B, dy, wo, i 2
g, (0, dos o, i) w _HT 4 oy g0 50

0
—20(Bo, do, wo) = —

Ow %(5OadOaWOaiy0) wo
We finally set
do 1—dy
(7)) .:m, mo :1+m,
and
« mo + «
= — 1 _
30(0{) ZO(BO’mO+OZ—17 0g <m0+a_1>)7
such that
d 1—e 0 27+ dwg mgo — 1
el -9
da30(010) — (2m)2 + wi (mp — 1 — ap)?
2i 1
+ il + O(eg) asey— 0.

wo (mo -1+ Oég)(’ﬂlo + 010)
The second term on the right hand side is purely imaginary. So

1—e w0 (2m)2 mo — 1
wo  (2m)2+wd (mo—1—ap)?

d
f——30() = +O(ey) ase— 0.

da
This quantity is strictly positive provided that ¢; is small enough. By choosing the
parameters of the model to be 8 = 3y and m = mg, the Assumptions 2.2, 2.3 and 2.6 are
satisfied at the point o = a. In particular, Assumption 2.3 follows from Proposition 4.2.
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