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Abstract

This paper provides an extended case study of the cutoff phenomenon for a prototypical
class of nonlinear Langevin systems with a single stable state perturbed by an additive
pure jump Lévy noise of small amplitude ε > 0, where the driving noise process is
of layered stable type. Under a drift coercivity condition the associated family of
processes Xε turns out to be exponentially ergodic with equilibrium distribution µε

in total variation distance which extends a result from [60] to arbitrary polynomial
moments.

The main results establish the cutoff phenomenon with respect to the total varia-
tion, under a sufficient smoothing condition of Blumenthal-Getoor index α > 3

2
. That

is to say, in this setting we identify a deterministic time scale tcutε satisfying tcutε →∞,
as ε→ 0, and a respective time window, tcutε ± o(tcutε ), during which the total variation
distance between the current state and its equilibrium µε essentially collapses as ε
tends to zero. In addition, we extend the dynamical characterization under which the
latter phenomenon can be described by the convergence of such distance to a unique
profile function first established in [9] to the Lévy case for nonlinear drift. This leads
to sufficient conditions, which can be verified in examples, such as gradient systems
subject to small symmetric α-stable noise for α > 3

2
. The proof techniques differ com-

pletely from the Gaussian case due to the absence of a respective Girsanov transform
which couples the nonlinear equation and the linear approximation asymptotically
even for short times.
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1 Exposition

1.1 Introduction

Roughly speaking the term cutoff phenomenon with respect to a distance d1 refers
to the following asymptotic dynamics: consider the setting of a parametrized family
of stochastic processes (Xε)ε>0, Xε = (Xε

t )t>0, such that for each ε > 0 the process
Xε has a unique limiting distribution µε. Then – as ε decreases to 0 – the function
t 7→ dε(X

ε
t , µ

ε) given by a suitably renormalized distance dε (of d1) between the law
of Xε

t and the corresponding limiting distribution µε essentially resembles the step
function t 7→ diam · 1[0,tcut

ε ](t). This function descends from the value diam ∈ (0,∞] to
the value 0, at a deterministic cutoff time scale tcut

ε , which tends to∞ as ε→ 0, where
diam = lim supε→0 diameter(dε) in the respective domain of probability distributions
over the state space. In other words, there exist positive deterministic functions ε 7→ tcut

ε

and ε 7→ wcut
ε satisfying tcut

ε → ∞ and wcut
ε � tcut

ε such that on (tcut
ε − wcut

ε , tcut
ε + wcut

ε )

the transition from diam to 0 is bound to happen. In general, this transition may depend
on subsequences εj → 0 as j → ∞. In certain situations, a proper limit can be taken,
and the limiting function gives rise to a so-called cutoff profile function connecting the
asymptotic values diam and 0 smoothly.

This abrupt convergence phenomenon was first described by Aldous and Diaconis [2]
in the early eighties to conceptualize the collapse of the total variation distance between
Markov chain marginals related to card shuffling to its uniform limiting distribution.
Since then, this behavior has been studied by numerous authors and in different –
mainly discrete – settings. For instance we refer to Diaconis [30], Martínez and Ycart
[54] and Levin et al. [53] for the Markov chain setting, Chen and Saloff-Coste [25]
considered some ergodic Markov processes, Lachaud [50] and Barrera [5] for the
case of the Ornstein-Uhlenbeck processes driven by a Brownian motion, to name but
a few. Further standard texts on the cutoff phenomenon include [1, 3, 13, 15, 11,
14, 17, 18, 25, 29, 31, 32, 51, 52, 53, 55, 74, 79] and the references therein. The
newest developments in this active field of research are found in the recent publications
[16, 19, 20, 21, 24, 49, 40, 41].

This article provides a case study on the cutoff phenomenon in the (unnormalized)
total variation distance for the strong solution process Xε of a class of stochastic
differential equations with nonlinear coercive vector field −b with a non-degenerate
stable state 0 subject to an additive pure jump Lévy process L at ε-small amplitude{

dXε
t = −b(Xε

t )dt+ εdLt for t > 0,

Xε
0 = x ∈ Rd. (1.1)

Similar – and in some sense simpler – settings have been studied before: the case of
nonlinear, coercive vector fields (−b) subject to Brownian perturbation L = W with
respect to the total variation [8, 9] and two cases of linear, asymptotically exponentially
stable drifts −b = −Q – that is, eigenvalues have negative real part, but the matrix is
not necessarily coercive, see [75] – subject to pure-jump Lévy noises L [6, 10] in the
total variation and the Wasserstein distance, respectively. This paper yields the first
results on the cutoff phenomenon for nonlinear coercive, pure-jump Lévy SDEs in the
total variation distance, which is fraught with technical difficulties:

(a) It inherits the regularity issues from the linear case [10] due to the total variation
distance.
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The cutoff phenomenon for nonlinear Langevin systems with small noise

(b) It earns additional challenges due to the nonlinearity. In particular, there is a gap
in the literature concerning available (short-time) coupling results between the
solution of Lévy SDEs with the nonlinear vector fields and its (linear) Ornstein-
Uhlenbeck approximation.

The regularity issue (a) is overcome by the careful choice of the setting of a class of
locally layered stable noise processes, by which we generalize the notion of layered
stable processes – introduced by Houdré and Kawai [42] – and the equator condition
inspired by [71]. Regularity results for densities of SDEs which turn out to be crucial
for results in the total variation distance have been extensively studied for instance in
[27, 36, 43, 46, 67].

The nonlinear coupling problem (b) is essentially reduced to the control of two partial
errors of a different nature addressed in Proposition 2 and Proposition 3. The first error,
which is dominated in the statement of Proposition 2 represents the crucial part of the
proof of the main results. It directly compares the nonlinear process Xε with its linear
inhomogeneous Ornstein-Uhlenbeck approximation for short times. While there are very
recent short-time couplings for SDEs with different (nonlinear) drift under a Brownian
driver (see Eberle and Zimmer [34]), to our knowledge the literature on respective
pure jump counterparts is virtually nonexistent. In order to obtain short-time coupling
between the linear and the nonlinear vector field, we use Plancherel’s theorem, and
appropriate differential inequalities for the characteristic function of a strongly localized
version of Xε for Blumenthal-Getoor index α > 3/2. To the best of our effort it seems hard
to derive with this technique the correct (exponential) integrability of the tails of the
characteristic function – even in the linear, scalar Gaussian case – and at the same time it
is unclear how to relax this condition. The same sort of technical difficulties concerning
the Fourier approach arises in condition (a) p. 345 of [36]. The second error consists
of the total variation distance between the short time linear inhomogeneous Ornstein-
Uhlenbeck (Freidlin-Wentzell first order) approximation under linear and nonlinear initial
conditions. A slight extension of Theorem 3.1 in [42] provides a stable local limit theorem
on the short-range behavior, which allows for an appropriate coupling in the proof of
Proposition 3.

The difficulty of the nonlinear case studied in this article can be informally understood
as follows. In the linear case b(x) = −Qx, it is well-known that by the variation-of-
constants formula Xε

t can be written as the sum of the deterministic matrix exponential
dynamics plus the respective stochastic convolution. Since the total variation distance
is well-behaved under deterministic and mutually independent components, it can be
dominated without too much effort in the linear case. This program was carried out
in [10]. In the nonlinear, additive noise case Xε

t can be written analogously, but it
exhibits an additional error term. That is, Xε is given as the sum of the nonlinear
deterministic dynamics, its stochastic (nonlinear) convolution with the noise and an
additional random term representing the (implicit) nonlinear residual of the noise, which
is neither deterministic nor independent from the noise convolution and therefore not
easily dominated in total variation. Beyond that, the aforementioned random residual
term turns out to be a challenge since there is no analogue of Slutsky’s lemma for
the total variation distance even in the case of smooth densities. For the sake of
completeness and since we are not aware of a reference literature, a counterexample
is given in Subsubsection 1.3.5. On a more abstract level, the additional difficulties
encountered are illustrated for the Wasserstein upper bounds of the total variation which
require additional density gradient estimates (see Theorem 2.1 in [23]).

Our results cover the important examples of overdamped gradient systems, such as
the Fermi-Pasta-Ulam-Tsingou potential, perturbed by pure jump Lévy processes with
Blumenthal-Getoor index α > 3/2 in the sense of Definition 1.3 and 1.4, such as symmetric
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α-stable processes, symmetric tempered α-stable processes in Rosiński [62] and the
symmetric Lamperti-α-stable process [22]. If – in addition – the limiting distributions
turns out to be rotationally invariant, the existence of a cutoff profile is shown to be
equivalent to a computational linear algebra eigenvector problem first established in
[6] for the easier situation of the Wasserstein distance. This characterization is given as
a specific orthogonality condition of the (generalized) eigenvectors of the linearization
−Db(0) of −b in the stable state 0. It allows to carry over several results from the linear
case under the Wasserstein distance in [6], to the case of a nonlinear vector field −b and
the total variation distance. In physics terminology, our results can be restated that the
existence of a cutoff profile is equivalent to the absence of non-normal growth effects in
−Db(0) in the case of rotationally invariant limiting distributions in the nonlinear setting.

For a complete comparison of the different settings and results and in order to avoid
a lengthy introduction, we refer to the following self-explanatory Table 1.1.

Settings [8] [9] [10] [6] this article

Dimension scalar multivariate multivariate multivariate multivariate
Vector field nonlinear nonlinear linear linear nonlinear
Fixed point strong strong neg. real parts neg. real parts strong
stability coercivity coercivity of the eigenvalues of the eigenvalues coercivity
Noise process Brownian Brownian pure jump Lévy pure jump Lévy pure jump Lévy

motion motion
Noise process no no no yes no
degeneracy
Restrictions none none finite log-moment finite moment finite moment
on the noise + Hypothesis (H) of order β > 0 of order β > 0,

+ strongly locally
layered stable
α ∈ (3/2, 2)

Limiting explicitly abstract, characteristic d.n.a. due to completely
distribution known expansions in ε function known shift linearity of abstract

known [69, 57] Wasserstein dist.

Results [8] [9] [10] [6] this article

Distance total variation total variation total variation rescaled total variation
Wasserstein

Window yes yes yes yes yes
cutoff
Profile yes dynamical dynamical dynamical dynamical
cutoff characterization characterization characterization characterization

+ normal growth + normal growth
characterization characterization
(general case) (rot. inv. case)

Short time Girsanov + Girsanov + Fourier inversion does not apply Plancherel
coupling Pinsker’s Hellinger’s isometry of L2

inequality inequality

Table 1: Schematic overview

The nonlinear Wasserstein setting with results in the spirit of [6] are studied in the
paper [7].

In the manuscript we prove several results of interest in its own right which to our
knowledge have not been present in the literature: (1) In Theorem 1 we generalize the
strong ergodicity result Theorem 4.1 in [60] from moments β > 2 to any β > 0. The
proof is given in Subsection D. (2) In Definition 1.3 we introduce the class of locally
layered stable process, which are precisely the class of processes for which the short-
range behavior in Theorem 3.1 in [42] remains valid. (3) In Proposition 7 we give an
elementary proof of the local β-Hölder continuity of the characteristic exponents in case
of β ∈ (0, 1]-moments in Subsection C.1. (4) We also provide a complete overview of the
behavior of the estimates of matrix exponentials and related flows for an asymmetric
matrix in Appendix A, since we are not aware of a reference in the literature.

The manuscript is organized in two large sections and an extended Appendix. The

EJP 26 (2021), paper 119.
Page 4/76

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP685
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The cutoff phenomenon for nonlinear Langevin systems with small noise

first section lays out the setting, the main results formulated as Theorem 2 and 3,
the examples and the skeleton of concluding steps in the proof of the main results,
which boils down to the proofs of Proposition 1, 2, 3 and 4. The respective results are
proven in the (correspondingly ordered) Subsection 2.1, 2.3, 2.2 and 2.4, respectively.
Subsection 2.1 shows the cutoff result for the linear inhomogeneous Ornstein-Uhlenbeck
process. Subsections 2.3 and 2.4 yield the coupling of the inhomogeneous Ornstein-
Uhlenbeck and the nonlinear short-time coupling, which exhibits the core difficulties.
The Appendix is divided in Section A, B, C and D in which several auxiliary results are
shown as a by-product in its own right. Section A provides all necessary fine results on
the derministic dynamics. Appendix B yields s a quantitative estimates of the Freidlin-
Wentzell first order approximation. Appendix C gives several auxiliary technical results,
some of which we have not been aware in the literature, such as the local β-Hölder-
continuity of a Lévy process in the presence of arbitrary β-moments. Appendix D yields
the proof of Theorem 1, which implies the exponential ergodicity of Xε towards µε, which
extends a result by [60] to the case of an arbitrary positive finite moment.

1.2 The setting and the main results

1.2.1 The deterministic dynamics ϕx

Let b ∈ C2(Rd,Rd) be a vector field with b(0) = 0 satisfying the following coercivity
condition.

Hypothesis 1 (Coercivity).
Assume that there exists a positive constant δ such that

〈b(x)− b(y), x− y〉 > δ|x− y|2 for all x, y ∈ Rd, (1.2)

where | · | and 〈·, ·〉 denote the Euclidean norm and the standard inner product on Rd,
respectively.

In this manuscript we are interested in the stochastically perturbed analogue of the
dynamical system given as the global solution flow (ϕ·t)t>0 of the ordinary differential
equation {

dϕxt = −b(ϕxt )dt for any t > 0,

ϕx0 = x ∈ Rd. (1.3)

It is well-known that Hypothesis 1 implies the well-posedness of (1.3), see for instance
Subsection 2.1 in [9]. Furthermore, in our setting inequality (1.2) is equivalent to

〈Db(x)y, y〉 > δ|y|2 for all x, y ∈ Rd,

where Db(x) denotes the derivative of the vector field b at the point x. Moreover, since
b(0) = 0, we have

d

dt
|ϕxt |2 = −2〈ϕxt , b(ϕxt )〉 6 −2δ|ϕxt |2 for any t > 0.

As a consequence |ϕxt | 6 e−δt|x| for any t > 0 and x ∈ Rd, i.e. 0 is an asymptotically
exponentially stable fixed point of (1.3). For our purposes, however, we need the precise
description of the convergence to 0 in terms of the spectral decomposition of −Db(0).
This is the purpose of the following lemma which characterizes the asymptotics of ϕxt as t
tends to∞ and slightly refines the classical and well-known result by Hartman-Grobman
[38, 39] under Hypothesis 1. This lemma turns out to be crucial for the precise shape of
the cutoff time and time window.
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Lemma 1.1 (Hartman-Grobman).
Consider (ϕxt )t>0 defined by (1.3) under Hypothesis 1. Then for any x ∈ Rd \ {0} there
exist

(i) positive constants λ := λx, τ := τx, ` := `x, m := mx, `,m ∈ {1, . . . , d},
(ii) angles θ1 := θ1

x, . . . , θ
m := θmx ∈ [0, 2π), where all angles θk ∈ (0, 2π) come in pairs

(θj∗ , θj∗+1) = (θj∗ , 2π − θj∗) and

(iii) linearly independent vectors v1 := v1
x, . . . , v

m := vmx in Cd satisfying (vj∗ , vj∗+1) =

(vj∗ , v̄j∗) whenever (θj∗ , θj∗+1) = (θj∗ , 2π − θj∗),

such that

lim
t→∞

∣∣∣∣∣ eλtt`−1
· ϕxt+τ −

m∑
k=1

eiθktvk

∣∣∣∣∣ = 0. (1.4)

Moreover,

0 < lim inf
t→∞

∣∣∣∣∣
m∑
k=1

eitθ
k

vk

∣∣∣∣∣ 6 lim sup
t→∞

∣∣∣∣∣
m∑
k=1

eitθ
k

vk

∣∣∣∣∣ 6
m∑
k=1

|vk|. (1.5)

The proof of this result is given in Lemma B.2 of [9].

Remark 1.2. For x ∈ Rd, x 6= 0, λx corresponds to a real part of some eigenvalue of
Db(0) and {vk, k = 1, . . . ,m} are elements of the Jordan decomposition ofDb(0) according
to the flag of eigenspaces (along increasing real parts of the corresponding eigenvalues)
containing x. For any generic choice of x, λx corresponds to the smallest real part of the
eigenvalues of Db(0).

1.2.2 The stochastic perturbation εdL

On a given probability space (Ω,F ,P) consider a Lévy process L = (Lt)t>0 with values in
Rd, i.e. a stochastic process with càdlàg paths, independent and stationary increments
and issued from 0. Its marginals are determined by the celebrated Lévy-Khintchin
formula

E
[
ei〈u,Lt〉

]
= etΨ(u) for any u ∈ Rd,

with the characteristic exponent

Ψ(u) = i〈a, u〉 − 1

2
〈u,Σu〉+

∫
Rd

(
ei〈u,z〉 − 1− i〈u, z〉1B1(0)(z)

)
ν(dz),

where B1(0) = {x ∈ Rd | |x| < 1}, a ∈ Rd, Σ ∈ Rd×d is a non-negative definite square
matrix and ν : B(Rd)→ [0,∞] is a σ-finite Borel measure satisfying

ν({0}) = 0 and

∫
Rd

(1 ∧ |z|2)ν(dz) <∞.

Let (Ft)t>0 be the enhanced natural filtration of L satisfying the usual conditions of
Protter [61].

The stochastic analogue of the dynamical system (1.3) is described by the following
stochastic differential equation. For ε > 0, we consider{

dXε
t = −b(Xε

t )dt+ εdLt for t > 0,

Xε
0 = x,

(1.6)

which under Hypothesis 1 has a unique strong solution Xε,x = (Xε,x
t )t>0. Such strong

solution satisfies the strong Markov property with respect to the filtration (Ft)t>0, see
for instance p. 1026 in [77] and the references therein.
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1.2.3 Exponential ergodicity and regularity of the limiting distributions µε

a) Hypotheses on the Lévy measure: The existence of invariant measures is known
to be true for systems with as little as logarithmic moments [44], however we need expo-
nential ergodicity in the total variation distance, which typically needs some (arbitrarily
low) finite moments and regularity of the transition kernel for the Lévy measure, see for
instance [47]. Both requirements are met by the class of Lévy measures defined below.

The cutoff results we have in mind can be understood as asymptotically precise small
noise formulations of an exponential ergodicity result in total variation distance. Such
results typically need some kind of finite positive moments. We refer to a more detailed
discussion directly after Theorem 1. To our knowledge – apart from dimension d = 1 in
[47] – there are not exponential ergodicity results available in the literature with weaker
moment hypotheses.

Hypothesis 2 (Moment condition).
We assume ∫

|z|>1

|z|βν(dz) <∞ for some β > 0.

Since we consider a smooth exponentially stable dynamical system with a small
random perturbation, it is natural to apply a linearization procedure, which makes
it necessary to compare Xε,x

· with a suitable linearized process Y ε· (x). As they have
different drift terms, this comparison can hold only for short times. In addition, as
explained in the introduction, Xε,x

· can be understood as Y ε· (x) plus some short time
error term, which turns out to be not of independent nature and therefore hard to treat
in the total variation, since the analogous statement of Slutsky’s lemma (for instance
[45], Section 13.2, Theorem 13.18) for the total variation distance is false in general.
We are not aware of this result in the literature and hence provide a counterexample
in Subsection 1.3.5. The resulting difficulty is overcome by a short-time local limit
theorem. Such a result has been given in Theorem 3.1 in [42] and requires some kind
of regularization in terms of a sufficiently steep pole of the Lévy measure at the origin.
With this reasoning in mind it comes not as a surprise that our results are shown for a
specific class of Lévy processes with such a property. In what follows, we assume that
the Lévy process L has no Gaussian component and its Lévy measure belongs to the
following class.

Definition 1.3 (Locally layered stable Lévy measure).
Let ν be a Lévy measure on (Rd,B(Rd)). Then ν is called a locally layered stable Lévy
measure with parameters (ν0, ν∞,Λ, q, c0, α) if the following is satisfied. There exist
σ-finite Borel measures ν0 and ν∞ such that ν = ν0 + ν∞, where ν∞ is a finite measure
with support contained in {|z| > 1} and

ν0(A) =

∫
Sd−1

Λ(dθ)

∫ 1

0

1A(rθ)q(r, θ)dr for any A ∈ B(Rd), 0 /∈ Ā,

where Λ is a finite positive measure on the unit sphere in Rd, Sd−1 = {|z| = 1}, and
q : (0, 1]× Sd−1 → (0,∞) is a locally integrable function for which there exist a positive
function c0 in L1(Λ) and a parameter α ∈ (0, 2) such that

|r1+αq(r, θ)− c0(θ)| → 0, as r → 0

for Λ-almost all θ ∈ Sd−1. A pure jump Lévy process with a locally layered stable Lévy
measure is called a locally layered stable Lévy process.
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This notion generalizes naturally the notion of a layered stable Lévy measure (and
the respective Lévy process) introduced in Definition 2.1 of [42] to all Lévy measures
for which Theorem 3.1 (Short-range behavior) remains valid under Hypothesis 2. They
include more general tail measures ν∞ than layered stable Lévy measures given in
[42], such as tempered stable Lévy measures defined in [62] and Lamperti stable Lévy
measures [22]. The following more restrictive notion is tailor-made to strengthen the
result of Theorem 3.1 in [42] to the convergence in the total variation distance which
turns out to be crucial in the proof of Proposition 3. In addition, in Theorem 4 in
Appendix D we extend Theorem 4.1 of [60] and show that under Hypothesis 2 the system
(1.6) is strongly ergodic under the total variation distance.

Definition 1.4 (Strongly locally layered stable Lévy measure).
Let ν be a locally layered stable Lévy measure with parameters (ν0, ν∞,Λ, q, c0, α). If, in
addition, we have the small jump symmetry

q(r, θ) = q(r,−θ) for any r ∈ (0, 1), θ ∈ Sd−1, (1.7)

the uniform convergence

sup
θ∈Sd−1

|r1+αq(r, θ)− c0(θ)| → 0, as r → 0, (1.8)

and the gradient estimate

|∇ log q(r, θ)| 6 C1r
−1 for some C1 > 0 and all r ∈ (0, 1), (1.9)

we call ν a strongly locally layered stable Lévy measure with the parameters
(ν0, ν∞,Λ, q, c0, α). A pure jump Lévy process with a strongly locally layered stable
Lévy measure is called a strongly locally layered stable Lévy process.

Remark 1.5. Examples of such processes are symmetric α-stable Lévy processes (see
[4, 65]), symmetric tempered α-stable process [62] and symmetric Lamperti α-stable
processes.

Hypothesis 3 (Regularity).
We assume that the Lévy process L has no Gaussian component and its Lévy measure ν
is strongly locally layered stable with parameters (ν0, ν∞,Λ, q, c0, α).

In the sequel, we define sufficient conditions for an abrupt convergence of Xε,x
t to its

unique limiting distribution µε as ε→ 0 in the total variation distance.

b) The total variation distance ‖·‖TV: Before we introduce the concept of cutoff
formally, we recall the notion of the total variation distance. Given two probability
measures P and Q which are defined on the same measurable space (Ω,F), denote the
total variation distance between P and Q as follows

‖P−Q‖TV := sup
A∈F
|P(A)−Q(A)|.

For simplicity, in the case of two random vectors X and Y defined on the same probability
space (Ω,F ,P) we use the following notation for its total variation distance

‖X − Y ‖TV := ‖L(X)− L(Y )‖TV ,

where L(X) and L(Y ) denote the law under P of the random vectors X and Y , respec-
tively. For the sake of intuitive reasoning and in a conscious abuse of notation we write
‖X − µY ‖TV instead of ‖X − Y ‖TV, where µY is the distribution of the random vector Y .
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For a complete understanding of the total variation distance, we refer to Chapter 2 of
the monograph of Kulik [48] and the references therein.

c) Exponential ergodicity with smooth limiting measure.
As we mentioned before, we are interested on the cutoff under the total variation

distance, which is a rather robust distance for continuous distributions and rather
sensitive for discrete distributions. It is therefore natural to assume the following
additional hypothesis which with the help of Hypothesis 3 yields smooth densities for
the finite time marginals and the limiting distribution of (1.6).

Hypothesis 4 (Equator condition [71]).
Let ν satisfy Hypothesis 3. The support of the measure Λ is not contained in any proper
subspace of Rd intersected with Sd−1. Furthermore, we assume

c0 := ess inf
θ∈Sd−1

c0(θ) > 0, (1.10)

where the essential infimum is understood with respect to the spectral measure Λ of ν.

The equator condition is motivated by the definition given in Simon [71], p.4. It
provides a non-degeneracy condition on the support of Λ on Sd−1.

Remark 1.6. It is not hard to see that Hypothesis 4 (1.10) implies

inf
v̄∈Sd−1

∫
Sd−1

cos2(^(v̄, θ))Λ(dθ) > 0, where cos(^(v̄, θ)) = 〈v̄, θ〉. (1.11)

The following lemma links Definition 1.4 and Hypothesis 4 to the celebrated Orey-
Masuda regularity condition, which is used in the proof of Proposition 2.

Lemma 1.7 (Orey-Masuda’s cone condition).
Let ν be a strongly locally layered stable Lévy measure on Rd with the parameters
(ν0, ν∞,Λ, q, c0, α) for α ∈ (0, 2). Under Hypothesis 4 there exist positive constants c^
and C^ such that for all v ∈ Rd with |v| > C^ we have∫

|〈v,z〉|61

|〈v, z〉|2ν(dz) >
∫
|〈v,z〉|61

|〈v, z〉|2ν0(dz) > c^|v|α.

Proof. Observe∫
|〈v,z〉|61

|〈v, z〉|2ν(dz) >
∫
|〈v,z〉|61,|z|61

|〈v, z〉|2ν(dz)

> |v|2
∫
Sd−1

∫ 1

0

r2〈v̄, θ〉21{r|v|| cos(^(v̄, θ))| 6 1}q(r, θ)drΛ(dθ),

where v̄ = v/|v|, r = |z| and θ = z/r. By (1.8) and (1.10) there exists r0 > 0 (without loss
of generality r0 6 1) such that

q(r, θ) >
c0

2r1+α
for any r ∈ (0, r0).

Consequently, for |v| > 1/r0 > 1 we have

|v|2
∫
Sd−1

∫ 1

0

r2〈v̄, θ〉21
{
| cos(^(v̄, θ)| 6 1

r|v|

}
q(r, θ)drΛ(dθ)

> |v|2
∫
Sd−1

∫ 1/|v|

0

r2 cos2(^(v̄, θ))q(r, θ)drΛ(dθ)

>
( c0

2(2− α)
inf

v̄∈Sd−1

∫
Sd−1

cos2(^(v̄, θ))Λ(dθ)
)
|v|α,

which combined with Hypothesis 4 finishes the proof.
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The following result is a slight generalization of Theorem 4.1 in [60] and guarantees
that under Hypotheses 1, 2, 3 and 4 the system (1.6) is strongly ergodic under the total
variation distance.

Theorem 1. Assume Hypotheses 1, 2, 3 and 4 for α ∈ (0, 2) and β > 0. Then for any
ε > 0, there exists a unique invariant distribution µε and positive constants Cε, θε such
that for all x ∈ Rd, the law of the unique strong solution Xε,x of (1.6) satisfies

‖Xε,x
t − µε‖TV ≤ Cεe

−θεt(1 + |x|1∧β) for any t ≥ 0.

The proof is a direct corollary of Theorem 4 given in Appendix D. The tracking
of the dependence ε 7→ (θε, Cε) is typically hard to follow through the discretization
procedure laid out by Meyn and Tweedie [56]. In the special case of finite variation, the
backtracking of ε can be carried out partially, we refer to [47].

We recall that in dimension d = 1, a classical result by Kulik (see Proposition 0.1 in
[47]) implies that the solution of (1.6) enjoys exponential ergodicity without assump-
tion (1.9) and consequently Theorem 1 holds for general locally layered stable Lévy
measures in this case. Very recently, [58] contains exponential ergodicity by control
theoretic methods for multidimensional compound Poisson noise with finite variance.
For higher dimensions, we use the sufficient conditions including (1.9) in [60] and our
generalizations of their results given in Appendix D. We point out that for the special
case of symmetric α-stable Lévy processes, assumption (1.9) is automatically satisfied
and [76] yields exponential ergodicity in any dimension.

1.2.4 The main results: window cutoff (Thm. 2) and profile cutoff (Thm. 3)

Following [12] and the references therein, there are three notions of cutoff phenomenon
with increasing strength. The most restrictive notion is called profile cutoff which
provides the precise asymptotic shape of the collapse for the total variation distance.
Profile cutoff implies a weaker concept which is called window cutoff that states abrupt
convergence within a precise time interval but losing the precise profile. Window cutoff
is generalized further to the notion of cutoff in which we retain the abrupt convergence
along time scale which corresponds to the center of the interval, however, without a
quantification of the error.

Definition 1.8. For any ε > 0 and x ∈ Rd, let Xε,x be the solution of (1.6) with a unique
limiting distribution µε. We say that for x ∈ Rd the family (Xε,x)ε∈(0,1] exhibits

a) a cutoff phenomenon at the time scale (txε )ε∈(0,1], where txε → ∞, as ε → 0, if it
satisfies

lim
ε→0

∥∥∥Xε,x
δ·txε
− µε

∥∥∥
TV

=


1 if δ ∈ (0, 1),

0 if δ ∈ (1,∞).

b) a window cutoff phenomenon at the enhanced time scale (txε , w
x
ε )ε∈(0,1], where

txε →∞ and wxε/txε → 0, as ε→ 0, if it satisfies

lim
ρ→−∞

lim inf
ε→0

∥∥∥Xε,x
txε+ρ·wxε − µ

ε
∥∥∥

TV
= 1 and lim

ρ→∞
lim sup
ε→0

∥∥∥Xε,x
txε+ρ·wxε − µ

ε
∥∥∥

TV
= 0.

c) a profile cutoff phenomenon at the enhanced time scale (txε , w
x
ε )ε∈(0,1] with the

profile function Gx, where txε →∞ and wxε/txε → 0, as ε→ 0, if the limit

Gx(ρ) := lim
ε→0

∥∥∥Xε,x
txε+ρ·wxε − µ

ε
∥∥∥

TV

EJP 26 (2021), paper 119.
Page 10/76

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP685
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The cutoff phenomenon for nonlinear Langevin systems with small noise

is well-defined for all ρ ∈ R and Gx satisfies

lim
ρ→−∞

Gx(ρ) = 1 and lim
ρ→∞

Gx(ρ) = 0.

The cut-off time scale txε is sometimes referred to as the center of the cutoff window
and wxε as its width. As mentioned above iii) implies ii) and ii) implies i).

The first main result of this study reads as follows.

Theorem 2 (Generic window cutoff phenomenon).
Assume Hypotheses 1, 2, 3 and 4 are satisfied for some α ∈ (3/2, 2) and β > 0. For
any ε > 0 and x ∈ Rd \ {0}, let Xε,x be the unique strong solution of (1.6) with a
unique limiting distribution µε. Then the family (Xε,x)ε∈(0,1] exhibits a window cutoff
phenomenon as ε→ 0 at the enhanced time scale (txε , w

x
ε ) given by

txε =
1

λx
ln (1/ε) +

`x − 1

λx
ln (ln (1/ε)) and wxε =

1

λx
+ oε(1), (1.12)

where λx > 0 and `x ∈ {1, . . . , d−1} are the constants appearing in the Hartman-Grobman
decomposition of Lemma 1.1.

Note that x = 0 in Theorem 2 is essential.

Remark 1.9. For x = 0, there is no cutoff phenomenon since the linearization vanishes
and intuitively cannot compete with the ergodicity. For details see Remark 2.2. For a
complete discussion of the easier case of the Wasserstein distance, we refer to Section
3.2 in [6].

Assume the hypotheses of Theorem 2 are satisfied for some x ∈ Rd \ {0}. Let

v(t, x) =
∑m
k=1 e

iθkxtvkx and λx, `x, θ1
x, . . . , θ

m
x and v1

x, . . . , v
m
x given in Lemma 1.1. We

define the ω-limit set for the dynamics of (v(t, x))t>0 by

ω(x) := {v ∈ Rd : there exists a sequence (tj)→∞ and lim
j→∞

v(tj , x) = v}, (1.13)

which due to the left-hand side of (1.5) does not include the null vector, i.e. 0 6∈ ω(x).

Remark 1.10. Note that ω(x) 6= ∅. Indeed, a Cantor diagonal argument for any limiting
sequence in (1.4) yields the existence of a subsequence (tj)j∈N with tj →∞, as j →∞,

such that for any k = 1, . . . ,m the limit lim
j→∞

eitjθ
k

= ϑk exist. Moreover, |ϑk| = 1 for all k.

Since v1, . . . , vm are linearly independent vector in Cd, we deduce v =
∑m
j=1 ϑjv

j ∈ ω(x).

In an abuse of notation let Z∞ denote a parametrization of the unique invariant
distribution of the Ornstein-Uhlenbeck process

dZt = −Db(0)Ztdt+ dLt.

We have the following characterization of profile cutoff.

Theorem 3 (A dynamical characterization of a profile cutoff phenomenon).
Assume the hypotheses of Theorem 2 are satisfied for some x ∈ Rd \ {0}. Recall the
ω-limit set ω(x) given in (1.13). Then the family (Xε,x)ε∈(0,1] exhibits a profile cutoff
phenomenon as ε → 0 at the enhanced time scale (txε , w

x
ε ) given by Theorem 2 with

profile function

Gx(ρ) =

∥∥∥∥(e−ρ · e−λxτxλ`x−1
x

v + Z∞

)
− Z∞

∥∥∥∥
TV

for any ρ ∈ R, v ∈ ω(x)

if and only if for any a > 0 the map

ω(x) 3 v 7→ ‖(av + Z∞)− Z∞‖TV is constant. (1.14)
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Observe that ω(x) = {vx} immediately implies profile cutoff by the preceding theorem.
The latter, indeed, is satisfied in the subsequent case of a gradient potential.

The following special case of gradient systems is particularly of interest in applica-
tions, such as for instance the Fermi-Ulam-Pasta-Tsingou-potential treated in Subsection
1.3.2.

Corollary 1.11. Let the assumptions of Theorem 2 be satisfied and assume b(x) =

∇V(x), x ∈ Rd, for a potential function V : Rd → [0,∞). Then the family (Xε,x)ε∈(0,1]

exhibits a profile cutoff as ε→ 0 at the enhanced time scale (txε , w
x
ε ) given by

txε =
1

λx
ln (1/ε) and wxε =

1

λx
+ oε(1),

where λx > 0 and τx are the positive constants in the Hartman-Grobman decomposition
of Lemma 1.1 such that

lim
t→∞

eλxtϕxt+τx = vx 6= 0 (1.15)

and the profile function is given by

Gx(ρ) =
∥∥(e−ρ · e−λxτxvx + Z∞)− Z∞

∥∥
TV

, ρ ∈ R.

Remark 1.12. Note that the dependence of λx of x can be complicated, however, it is
rather weak in the following qualitative sense: λx = λ for Lebesgue almost every x ∈ Rd,
where λ is the smallest eigenvalue of the positive definite symmetric matrix D2V(0).

We give a more general sufficient conditions for the existence of a cutoff profile in
terms of a symmetry condition.

Corollary 1.13. Assume the hypotheses of Theorem 2 are satisfied for some x ∈ Rd\{0}.
If there exists an invertible d× d-square matrix M such that the distribution of MZ∞ is
rotationally invariant and the image set satisfies Mω(x) ⊂ {|z| = r} for some positive
r = rx, then the family (Xε,x)ε∈(0,1] exhibits a profile cutoff phenomenon as ε→ 0 at the
enhanced time scale (txε , w

x
ε ).

In the Gaussian case we have the following picture.

Remark 1.14. For the non-degenerate Gaussian case we refer to Lemma A.2 in [8].
There, the law of Z∞ is N (0,Σ), where Σ satisfies

Db(0)Σ + ΣDb(0)∗ = Id.

The choice of M = Σ−1/2 yields that MZ∞
d
= N (0, Id) is rotationally invariant. Hence

the sphere condition Mω(x) ⊂ {|z| = r} for some r = rx > 0 is equivalent to the profile
cutoff, see Corollary 2.11 in [8]. However, in the generic Lévy case, no symmetry on
the law of Z∞ can be expected. Note that we always find an invertible bi-measurable
map T : Rd → Rd such that the push-forward T (Z∞) is rotationally invariant (for
instance N (0, Id)), however, it is highly nonlinear and irregular, and therefore the proof
of Corollary 1.13 breaks down.

A sufficient condition for the hypotheses of Corollary 1.13 to be satisfied can be
given in terms of the following density condition on the invariant limiting measure of the
Ornstein-Uhlenbeck process Z.

Corollary 1.15 (Geometric profile characterization under rotational invariant Z∞).
Assume the hypotheses of Theorem 2 are satisfied for some x ∈ Rd \ {0}. If in addition,
the law of Z∞ is rotationally invariant and its density f ∈ C1(Rd, (0,∞)) is unimodal in
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the sense that f(z) = g(|z|) for some function g ∈ C1((0,∞), (0,∞)) with g′(s) < 0 for all
s > 0 and g′ ∈ L1(Rd). Then the image set satisfies ω(x) ⊂ {|z| = r} for some r = rx > 0

if and only if the family (Xε,x)ε∈(0,1] exhibits a profile cutoff as ε → 0 at the enhanced
time scale (txε , w

x
ε ).

In case of a pure jump Lévy noise L the sufficient condition of Corollary 1.13 can be
almost characterized (up to a non-resonance condition) in terms of the following normal
growth condition, which is discussed in detail in [6].

Remark 1.16 (Generic normal growth profile characterization). In the sequel, we
characterize when the function

ω(x) 3 u 7→ |u|

is constant for the generic case of the setting in Corollary 1.15. We enumerate v1, . . . , vm

given in Lemma 1.1 as follows. Without loss of generality we assume that θ1 = 0.
Otherwise we take v1 = 0 and eliminate it from the sum

∑m
k=1 e

iθktvk. Without loss of
generality let m = 2n+ 1 for some n ∈ N. We assume that vk and vk+1 = v̄k are complex
conjugate for all even number k ∈ {2, . . . ,m}. For k ∈ {2, . . . ,m} we write vk = v̂k + iv̌k

where v̂k, v̌k ∈ Rd.

1. If the real parts and the imaginary parts of the (complex) vectors v2, v4, . . . , v2n

in the Hartman-Grobman Lemma 1.1 form an orthogonal family and |Re(v2k)| =

|Im(v2k)| for all k. Then Lemma E.1 in [6] implies that ω(x) ⊂ {|z| = r} for some
r = rx > 0 and hence Corollary 1.13 yields a profile cutoff.

2. Assume the angles θ2, θ4, . . . , θ2n given in the Hartman-Grobman Lemma 1.1 are
rationally independent from 2π. If ω(x) ⊂ {|z| = r} for some r = rx > 0 then
Lemma E.2 implies that the real parts and the imaginary parts of the (complex)
vectors v2, v4, . . . , v2n in the Hartman-Grobman Lemma 1.1 form an orthogonal
family and |Re(v2k)| = |Im(v2k)| for all k.

Proof of Corollary 1.13: We apply the characterization given in Theorem 3. Let v1, v2 ∈
ω(x) and a > 0. For M given in the statement, we have |Mv1| = |Mv2| = r. Then there
exists an orthogonal matrix O such that O(Mv1) = Mv2. Theorem 5.2 of [28] and O,M
being invertible implies∥∥(av1 + Z∞

)
− Z∞

∥∥
TV

=
∥∥(aMv1 +MZ∞

)
−MZ∞

∥∥
TV

=
∥∥(aO(Mv1) +OMZ∞

)
−OMZ∞

∥∥
TV

.

Since O(Mv1) = Mv2 and O is orthogonal, the rotational invariance of MZ∞ implies∥∥(aO(Mv1) +OMZ∞
)
−OMZ∞

∥∥
TV

=
∥∥(aMv2 +MZ∞

)
−MZ∞

∥∥
TV

.

Again, Theorem 5.2 of [28] yields∥∥(aMv1 +MZ∞
)
−MZ∞

∥∥
TV

=
∥∥(av2 + Z∞

)
− Z∞

∥∥
TV

.

Combining the preceding equalities we obtain∥∥(av1 + Z∞
)
− Z∞

∥∥
TV

=
∥∥(av2 + Z∞

)
− Z∞

∥∥
TV

for any v1, v2 ∈ ω(x) and a > 0 which yields (1.14) and hence the desired profile cutoff.

Proof of Corollary 1.15: By Corollary 1.13 (M = Id) it is enough to prove the converse
implication. Since the family (Xε,x)ε∈(0,1] exhibits a profile cutoff as ε → 0 at the
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enhanced time scale (txε , w
x
ε ), Theorem 3 implies for all a > 0 that the following map-

ping v ∈ ω(x) 7→ ‖(av + Z∞)− Z∞‖TV is constant. Since the law of Z∞ is rotationally
invariant, we have

‖(av + Z∞)− Z∞‖TV = ‖(a|v|e1 + Z∞)− Z∞‖TV ,

where e1 = (1, 0, . . . , 0)∗. By Lemma C.5 in Appendix C we have that ω(x) 3 v 7→ a|v| is
constant. That is to say, ω(x) ⊂ {|z| = rx} for some rx > 0. This finishes the proof.

1.3 Examples

1.3.1 More general linear dynamics

When the vector field is given by b(x) = Qx, x ∈ Rd for a general deterministic d×dmatrix
Q whose eigenvalues have positive real parts, the cutoff phenomenon is completely
discussed in [10], Theorem 2.3 under Hypothesis (H), which is covered by Hypothesis 4.
It is well-known that such linear systems are more general than linear systems satisfying
Hypothesis 1. For instance, the classical linear oscillator with friction γ > 0 has negative
real parts in (−∞,−γ/2] but fails to be coercive, [6].

The case of pure Brownian motion is covered in detail in Section 3.3 in [9]. For
degenerate driving noise processes L and general cutoff results in the Wasserstein
distance, we refer to [6]. There, complex systems of linear oscillators in a thermal bath
are covered.

1.3.2 Gradient systems: Fermi-Ulam-Pasta-Tsingou

In the sequel, we consider the generalized Fermi-Ulam-Pasta-Tsingou potential [35, 26]

V(x) = |Ax|2/2 + |Bx|4/4 + η(x), x ∈ Rd, (1.16)

where A and B are d× d deterministic matrices satisfying for some δ1 > 0

〈Ax, x〉 > δ1|x|2 and 〈Bx, x〉 > 0 for all x ∈ Rd (1.17)

and some η : Rd → R with η ∈ C2
b , ∇η(0) = 0, and for Hη being the Hessian of η

〈Hη(x)y, y〉 > −δ2|y|2

for all x, y ∈ Rd and some δ2 < δ1. Note that η needs not be convex. We set b(x) =

∇V(x), x ∈ Rd. Then for all x ∈ Rd we have

b(x) = A∗Ax+ 〈Bx,Bx〉B∗Bx+∇η(x) (1.18)

and satisfies Hypothesis 1. Indeed, the Jacobian of b at x is given by

Db(x) = A∗A+ 3〈Bx,Bx〉B∗B +Hη(x),

where Hη(x) denote the Hessian matrix at x. By (1.17) we obtain for any x, y ∈ Rd

〈y,Db(x)y〉 = 〈Ay,Ay〉+ 3〈Bx,Bx〉〈By,By〉+ 〈Hη(x)y, y〉 > δ|y|2,

where δ = δ1 − δ2 > 0. Hence the vector field b = ∇V satisfies Hypothesis 1. We consider
the solution of (1.3) with vector field b = ∇V. Note that in this case |ω(x)| = 1, where
ω(x) is given in (1.13).

Note that generically equation (1.6) does not have an explicitly known solution for the
Kolmogorov forward equation of the densities, not even in simplest case of d = 1, L = W ,
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a standard Wiener process, A = B = 1 and η ≡ 0. While for any dimension d, L = W

a standard Brownian motion the invariant density is well-known to be proportional to
exp (−2V(x)/ε2), for a complete discussion, see for instance Section 2.2 in [70]. For the
case of dimension d = 1, nonlinear b satisfying Hypothesis 1, L = W a standard Brownian
motion the authors prove profile cutoff for (1.6) in [8]. For higher dimensions, window
cutoff is established in this case and the existence of profile cutoff is characterized, we
refer to [9]. We remark that the authors strongly use the hypo-ellipticity property and
the resulting regularization by the generator of the Brownian diffusion.

For a strongly locally layered stable noise L satisfying Hypotheses 2, 3 and 4, Corol-
lary 1.11 implies for α > 3/2 the presence of a cutoff profile. In particular, the system
exhibits cutoff in the sense of equation (18.3) in Chapter 18 of the monograph [53] as
follows

lim
ε→0

T x,εmix(η)

T x,εmix(1− η)
= 1

for any η ∈ (0, 1), where the mixing time is given by

T x,εmix(η) = inf{t > 0 : ‖Xε
t (x)− µε‖TV 6 η}.

1.3.3 Profile vs Window cutoff for nonlinear oscillations

In the sequel we analyze a class of nonlinear oscillators for which the existence of a
cutoff profile is studied in detail. We consider the nonlinear system (1.6) in R2, where
b : R2 → R2 is given by

b(x1, x2) =

(
ηx2 + ∂1H(x1, x2)

−ηx1 + ∂2H(x1, x2)

)
,

for some η ∈ R,

H(x1, x2) = δ1x
2
1 + δ2x

2
2 + G(x1, x2)

for any x1, x2 ∈ R and some positive constant δ1, δ2, and G ∈ C2(R2,R). Assume that
b(0, 0) = (0, 0)∗. We verify that b is a non-gradient vector field. The Jacobian matrix of b
is given by

Db(x1, x2) =

(
2δ1 + ∂11G(x1, x2) η + ∂12G(x1, x2)

−η + ∂12G(x1, x2) 2δ2 + ∂22G(x1, x2)

)
. (1.19)

Since for any η 6= 0 the Jacobian Db matrix is asymmetric, there is no C2-function
V : R2 → R such that b(x1, x2) = ∇V(x1, x2) and consequently b is non-gradient. Under
the assumption that

x2
1∂

2
11G(u1, u2) + x2

2∂
2
22G(u1, u2) + 2x1x2∂

2
12G(u1, u2) > −δ3(x2

1 + x2
2)

for some δ3 < 2 min{δ1, δ2} and any x1, x2, u1, u2 ∈ R, the vector field b satisfies Hypothe-
sis 1

(x1, x2)Db(u1, u2)(x1, x2)∗ = 2δ1x
2
1 + 2δ2x

2
2 + x2

1∂
2
11G(u1, u2)

+ x2
2∂

2
22G(u1, u2) + 2x1x2∂

2
12G(u1, u2)

> (2δ1 − δ3)x2
1 + (2δ2 − δ3)x2

2 = δ(x2
1 + x2

2).

For a rotationally invariant α-stable noise L in R2 with α > 3/2, Theorem 2 yields window
cutoff. In the sequel, we study the presence of a cutoff profile. We claim that Z∞ is
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rotationally invariant. Indeed, there is Kα > 0 such that the characteristic function of
Z∞ reads

z 7→ exp(−Kα

∫ ∞
0

|e−Db(0,0)tz|αdt) = exp(−Kα|z|α
∫ ∞

0

e−2δ1αtdt) = exp

(
− Kα

2δ1α
|z|α

)
.

For a := ∂11G(0, 0) = ∂22G(0, 0) and ∂12G(0, 0) = 0 we have

Db(0, 0) =

(
2δ1 + a η

−η 2δ2 + a

)
. (1.20)

Assume a negative discriminant ∆ := (2δ2 − 2δ1)2 − 4η2 < 0 and δ1 + δ2 + a > 0. Then
the complex eigenvectors associated to the eigenvalues

λ1 = δ1 + δ2 + a+

√
∆

2
and λ2 = δ1 + δ2 + a−

√
∆

2

are given by

v1 =
(

1,
2(δ2 − δ1) +

√
∆

2η

)
and v2 =

(
1,

2(δ2 − δ1)−
√

∆

2η

)
.

The respective family real and imaginary part vectors are given

v̂1 = v̂2 =
(

1,
δ2 − δ1
η

)
and v̌1 = −v̌2 =

(
0,

√
|∆|

2η

)
.

1. Nonlinear nongradient system with a cutoff profile: For δ1 = δ2 we obtain

e(2δ1+a)t|e−Db(0,0)tx| = |O(ηt)x| = |x|

for all t > 0, where O(ηt) is an orthogonal matrix. Therefore, whenever 2δ1 + a > 0,
Corollary 1.13 for M = I2 yields profile cutoff.

2. Nonlinear counterexample to a cutoff profile: Note that v̂2 is orthogonal to v̌2

if and only if δ1 = δ2. Define θ2 = arg(λ2). For δ1 < δ2, Corollary 1.15 and Remark
1.16 for θ2 6∈ Q · π yield the absence of a cutoff profile. For further examples in the
linear case for the Wasserstein distance we refer to [6].

1.3.4 The shape of cutoff profiles: Gaussian vs α-stable

Since Z∞ is the limiting distribution as t → ∞ of the Ornstein-Uhlenbeck process
(Zt)t>0, Lemma 1.7 implies that Z∞ has a C∞ density f∞. In the sequel we study
the unidimensional case. Theorem 53.1 in [65] yields that f∞ is unimodal with mode
m, that is to say, it is increasing on (−∞,m) and decreasing on (m,+∞) and hence
f∞(m) > 0. In the sequel, we determine the asymptotic behavior of the profile function
ρ 7→

∥∥(e−ρe−λxτxvx + Z∞)− Z∞
∥∥

TV
in zero and at infinity for some special cases. The

density f∞ of Z∞ is explicitly accessible only in a limited number of cases.

We start with the asymptotics for ρ� −1. Without loss of generality we assume that
f∞ is smooth. Then for any z > 0 there exists mz ∈ (m− z,m) such that

1− ‖(z + Z∞)− Z∞‖TV = P(Z∞ 6 mz) + P(Z∞ > mz + z)

=

∫ mz

−∞
f∞(u)du+

∫ ∞
mz+z

f∞(u)du.
(1.21)
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Assume that f∞(u) > 0 for all u ∈ R. By Scheffé’s lemma for densities, see Lemma 3.3.1
in [68], the left-hand side of the preceding equality tends to zero as z →∞. Hence the
right-hand side implies mz → −∞ and mz + z →∞, as z →∞. We have

1−
∥∥(e−ρe−λxτxvx + Z∞)− Z∞

∥∥
TV

= F∞(m(e−ρe−λxτx |vx|)) + (1− F∞(m(e−ρe−λxτx |vx|) + e−ρe−λxτx |vx|)),

which reduces in the symmetric case to

1−
∥∥(e−ρe−λxτxvx + Z∞)− Z∞

∥∥
TV

= 2(1− F∞(e−ρe−λxτx |vx|/2)),

where F∞ is the cumulative function of Z∞.
We compare the prototypical shapes of the tails of the profile functions.

I) For the symmetric α-stable process L we obtain the exponential profile function

1−
∥∥∥(e−(ρ+λxτx)vx + Z∞)− Z∞

∥∥∥
TV
∼ 2α+1Cαe

(ρ+λxτx)α

|vx|α
∝ eρα, as ρ→ −∞,

where Cα is an explicit constant.

II) The asymptotically doubly exponential shape of the profile for the case of Gaussian
tails F∞ is discussed in Remark 2.3 in [5] which reads in our setting as follows

2(1− F∞(e−(ρ+λxτx)|vx|/2))

∼ 4√
2π|vx|

exp
(
− exp

(
− 2(ρ+ λxτx)

)
|vx|2/8 + ρ+ λxτx

) (1.22)

for ρ→ −∞. In particular, (1.22) yields the doubly exponential asymptotic behavior
(ρ→ −∞) for the leading term

2
√

2√
π|vx|

exp
(
− exp

(
− 2(ρ+ λxτx)

)
|vx|2/8

)
∝ exp

(
−Kx exp

(
− 2ρ

))
for some positive Kx.

We continue with the asymptotics at zero of the profile function and show

‖(z + Z∞)− Z∞‖TV

|z|
→ f∞(m), as z → 0,

where m = a
b′(0) , where b is the vector field of (1.3) and (a, 0, ν) is the characteristic

triplet of L. By (1.21) we have

‖(z + Z∞)− Z∞‖TV =

∫ mz+z

mz

f∞(u)du,

where mz ∈ (m−z,m). Since mz → m as z → 0 and m is a Lebesgue point of f∞, it follows

‖(z + Z∞)− Z∞‖TV

z
→ f∞(m), as z → 0.

As a consequence of the preceding limit we obtain

lim
ρ→∞

∥∥(e−(ρ+λxτx)vx + Z∞)− Z∞
∥∥

TV

e−(ρ+λxτx)|vx|
= f∞(m).

In particular, as ρ → ∞, the profile is asymptotically proportional to the respective
Wasserstein profile [6].
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1.3.5 Counterexample to Slutsky’s lemma in total variation distance

The following example is the main motivation for Hypothesis 3. It is given for com-
pleteness since we are not aware of a reference in the literature. It is based on private
communication with professors M. Jara (IMPA) and R. Imbuzeiro Oliveira (IMPA).

Lemma 1.17. Let (Un)n∈N be a sequence of random variable with the discrete uniform
distribution supported on the set {j/n : j = 1, . . . , n}. Let (Rn)n∈N be a sequence of
random variables independent of (Un)n∈N with the continuous uniform distribution
supported on [0, an], where (an)n∈N is any sequence of positive numbers such that
n · an → 0 and an → 0, as n → ∞. For each n ∈ N, we define Xn = Un + Rn and
Yn = −Rn. Then we have:

1. Xn and Yn are absolutely continuous with respect to the Lebesgue measure on R.

2. lim
n→∞

Un
d
= U , where U is (continuously) uniformly distributed on [0, 1].

3. Yn → 0, as n→∞ in probability.

4. lim
n→∞

‖Xn − U‖TV = 0.

5. ‖(Xn + Yn)− U‖TV = 1 for all n ∈ N.

Proof. Items (1), (2), (3) and (5) are straightforward. In the sequel we verify (4). Since
Un and Rn are independent, the convolution formula yields that the density of Xn, fn, is
given by

R 3 z 7→ fn(z) =
1

n

n∑
j=1

g(z − j/n), where g(z) = (1/an)1[0,an](z).

First, for z 6 0, it follows that fn(z) = 0 for all n ∈ N. Next, for z > 1 there exists
n0 = n0(z) ∈ N such that 0 < an < z − 1 for all n > n0. Hence, for all j = 1, . . . , n we
have 0 < an < z − j/n for all n > n0. Consequently, fn(z) = 0 for all n > n0. We continue
with the case z ∈ (0, 1]. Then there exists n1 := n1(z) ∈ N such that z/2 < z − an < z for
all n > n1. Then we have for all n > n1

fn(z) =
1

n

bnzc∑
j=dn(z−an)e

g(z − j/n) =
nan
nan

+
Cn(z)

nan
= 1 +

Cn(z)

nan
,

where 0 < Cn(z) 6 2. Since nan → ∞, n → ∞, we have fn(z) → 1, as n → ∞. In
summary, it is shown for all z ∈ R that fn(z)→ 1(0,1](z), as n→∞. Scheffé’s lemma for
densities implies ‖Xn − U‖TV → 0, as n→∞.

1.4 Global steps of the proofs of Theorem 2 and Theorem 3

The fundamental idea of the proofs of Theorem 2 and Theorem 3 is to carry out a
quantitative asymptotic expansion in ε by probabilistic methods. It turns out that the
hyperbolic contracting nature of the underlying deterministic dynamics ϕx can be used
to show that the correct first order expansion of Xε,x of the sense of Freidlin-Wentzell
[37] Chapter 2.2 given by the inhomogeneous Ornstein-Uhlenbeck defined in (1.26)
provides an asymptotic description of Xε,x which is effective for time scales beyond the
cutoff time scale.

1.4.1 Freidlin-Wentzell first order expansion

It is not hard to see that for any η > 0 and t > 0 the law of large numbers implies

P
(

sup
06s6t

|Xε,x
s − ϕxs | > η

)
→ 0, as ε→ 0. (1.23)
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In the sequel, we analyze the asymptotic fluctuations of Xε,x
t − ϕxt . Let

Zε,xt :=
Xε,x
t − ϕxt
ε

, t > 0.

Then the process (Zε,xt )t>0 is the unique strong solution of the stochastic differential
equation {

dZε,xt = − 1
ε (b(Xε,x

t )− b(ϕxt )) dt+ dLt for any t > 0,

Zε,x0 = 0.

The mean value theorem yields

dZε,xt = −
(∫ 1

0

Db(ϕxt + θ(Xε,x
t − ϕxt ))dθ

)
Zε,xt dt+ dLt for any t > 0. (1.24)

By construction, Xε,x
t = ϕxt + εZε,xt for any t > 0. However, (1.24) has the same level

of complexity as (1.6). Using (1.23) in (1.24) we derive the linear inhomogeneous
approximation of (1.24) as follows. Let (Y xt )t>0 be the unique strong solution of the
linear inhomogeneous stochastic differential equation{

dY xt = −Db(ϕxt )Y xt dt+ dLt for any t > 0,

Y x0 = 0.
(1.25)

Instead of (1.23) we claim the following stronger result, that is, the first order approxi-
mation in the sense of Section 2, Chapter 2 in [37]

P
(
|Xε,x

t − (ϕxt + εY xt )| > ε3/2
)
→ 0, as ε→ 0

for times t� txε , where txε is given in (1.12). For a concise quantification of the approxi-
mation, see Lemma B.1 in Appendix B. Next, we define the first order approximation

Y εt (x) := ϕxt + εY xt for any t > 0. (1.26)

It is not hard to see that for any ε there exists a limiting distribution µε∗ such that for any
x ∈ Rd, the process (Y εt (x))t>0 converges to µε∗ in the total variation distance as t tends
to infinity. For further details see Lemma C.4 in Appendix C. Moreover, it is shown there
that µε∗ is the unique invariant distribution of the homogeneous Ornstein-Uhlenbeck
process

dZεt = −Db(0)Zεt dt+ εdLt,

and has a C∞-density with respect to the Lebesgue measure on Rd. Note that (Y εt (x))t>0

satisfies the inhomogeneous equation

dY εt (x) = (−b(ϕxt ) +Db(ϕxt )ϕxt −Db(ϕxt )Y εt (x)) dt+ εdLt, Y ε0 (x) = x. (1.27)

Since we need to compare solutions of stochastic differential equations with different
initial conditions, we introduce the following notation. Let T be a positive number and ξ
be a given random vector on Rd. We assume that ξ is FT-measurable for (Ft)t>0 defined
in Subsection 1.2.2. Let (Y ε,x(t;T, ξ))t>0 be the unique strong solution of the stochastic
differential equation{

dY ε,x(t;T, ξ) =
(
−b(ϕxt+T) +Db(ϕxt+T)ϕxt+T −Db(ϕxt+T)Y ε,x(t;T, ξ)

)
dt+ εdLt+T,

Y ε,x(0;T, ξ) = ξ.

(1.28)

Let ∆ε > 0 (independently of x) with lim
ε→0

∆ε = 0. For any ρ ∈ R, we define

T xε := txε −∆ε + ρ · wxε ,

where txε and wxε are given in Theorem 2. In what follows, we always take T = T xε . Then
T xε > 0 for 0 < ε� 1.
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1.4.2 Key cutoff estimate

The proofs of the main results Theorem 2 and Theorem 3 are based on the following
fundamental inequality. On the one hand, note that for any ρ ∈ R and ε small enough we
have∥∥∥Xε

txε+ρ·wxε (x)− µε
∥∥∥

TV
=
∥∥∥Xε

∆ε
(Xε

Txε
(x))− µε

∥∥∥
TV

6
∥∥∥Xε

∆ε
(Xε

Txε
(x))− Y ε,x(∆ε;T

x
ε , X

ε
Txε

(x))
∥∥∥

TV

+
∥∥∥Y ε,x(∆ε;T

x
ε , X

ε
Txε

(x))− Y ε,x(∆ε;T
x
ε , Y

ε,x(T xε ; 0, x))
∥∥∥

TV

+ ‖Y ε,x(∆ε;T
x
ε , Y

ε,x(T xε ; 0, x))− µε∗‖TV + ‖µε∗ − µε‖TV .

Conversely, we obtain

‖Y ε,x(∆ε;T
x
ε , Y

ε,x(T xε ; 0, x))− µε∗‖TV

6
∥∥∥Y ε,x(∆ε;T

x
ε , Y

ε,x(T xε ; 0, x))− Y ε,x(∆ε;T
x
ε , X

ε
Txε

(x))
∥∥∥

TV

+
∥∥∥Y ε,x(∆ε;T

x
ε , X

ε
Txε

(x))−Xε
∆ε

(Xε
Txε

(x))
∥∥∥

TV

+
∥∥∥Xε

∆ε
(Xε

Txε
(x))− µε

∥∥∥
TV

+ ‖µε − µε∗‖TV .

Note that Y ε,x(∆ε, T
x
ε , Y

ε,x(T xε ; 0, x)) = Y ε,x(txε + ρ · wxε ; 0, x). Combining both preceding
inequalities we deduce∣∣∣∥∥∥Xε

txε+ρ·wxε (x)− µε
∥∥∥

TV
− ‖Y ε,x(txε + ρ · wxε ; 0, x)− µε∗‖TV

∣∣∣
6
∥∥∥Xε

∆ε
(Xε

Txε
(x))− Y ε,x(∆ε;T

x
ε , X

ε
Txε

(x))
∥∥∥

TV
(1.29)

+
∥∥∥Y ε,x(∆ε;T

x
ε , X

ε
Txε

(x))− Y ε,x(∆ε;T
x
ε , Y

ε,x(T xε ; 0, x))
∥∥∥

TV
+ ‖µε∗ − µε‖TV .

= E1 + E2 + E3,

where

E1 :=
∥∥∥Xε

∆ε
(Xε

Txε
(x))− Y ε,x(∆ε;T

x
ε , X

ε
Txε

(x))
∥∥∥

TV
,

E2 :=
∥∥∥Y ε,x(∆ε;T

x
ε , X

ε
Txε

(x))− Y ε,x(∆ε;T
x
ε , Y

ε,x(T xε ; 0, x))
∥∥∥

TV
,

E3 := ‖µε∗ − µε‖TV .

Roughly speaking, it turns out that the processes (Xε
t (x))t>0 and (Y εt (x))t>0 are close

enough for time scales of order O(ln(1/ε)) in order to carry out the following quantitative
coupling procedure. Since (Xε

t (x))t>0 and (Y εt (x))t>0 have different (inhomogeneous)
drifts, couplings which dominate the total variation distance typically only hold for
short-time horizons. For an excellent introduction on the subject in the diffusive case we
refer to [34]. Since the process (Y εt (x))t>0 is linear, the precise cutoff behavior (cutoff,
window cutoff and profile cutoff) is derived from it in the spirit of [10]. However, it is
inhomogeneous such that the results of [10] cannot be applied directly. They are adapted
in Subsection 2.1. Recall that µε∗ is the limiting distribution of the process (Y ε(t; 0, x))t>0.

Proposition 1 (Window and profile cutoff phenomenon for the first order approximation
Y ε). Assume Hypotheses 1, 2, 3 and 4 are satisfied for α ∈ (0, 2), β > 0 and x ∈ Rd \ {0}.
Let (Y ε,x)ε∈(0,1] be the family of inhomogeneous Ornstein-Uhlenbeck processes given by
Y ε,x := (Y ε(t; 0, x))t>0 in (1.26).
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1. Then (Y ε,x)ε∈(0,1] exhibits a window cutoff phenomenon with respect to µε∗ as ε→ 0

at the enhanced time scale (txε , w
x
ε ) given by

txε =
1

λx
ln (1/ε) +

`x − 1

λx
ln (ln (1/ε)) and wxε =

1

λx
+ oε(1), (1.30)

where λx > 0 and `x ∈ {1, . . . , d− 1} are the constants appearing in the Hartman-
Grobman decomposition of Lemma 1.1.

2. Then (Y ε,x)ε∈(0,1] exhibits a profile cutoff phenomenon with respect to µε∗ as ε→ 0

at the enhanced time scale (txε , w
x
ε ) given by (1.30) with profile function

Gx(ρ) =

∥∥∥∥(e−ρ · e−λxτxλ`x−1
x

v + Z∞

)
− Z∞

∥∥∥∥
TV

for any ρ ∈ R, v ∈ ω(x),

where τx is given in Lemma 1.1 and ω(x) is defined in (1.13) if and only if for any
a > 0 the map

ω(x) 3 v 7→ ‖(av + Z∞)− Z∞‖TV is constant.

The proof is given in Subsection 2.1 and relies on the Hartman-Grobman decomposi-
tion of Lemma 1.1. In what follows, we argue that the upper bound of inequality (1.29)
tends to zero as ε→ 0. To be precise, we show the following.

Proposition 2 (Error term E1: the nonlinear short time coupling). Assume Hypotheses 1,
2, 3 and 4 are satisfied for α ∈ (3/2, 2) and β > 0. Let ∆ε = εα/2. For any x ∈ Rd it follows

lim
ε→0

∥∥∥Xε
∆ε

(Xε
Txε

(x))− Y ε,x(∆ε;T
x
ε , X

ε
Txε

(x))
∥∥∥

TV
= 0.

The complete proof can be found in Subsection 2.3 and it is based on the local limit
theorem for strongly locally layered stable Lévy measures on the short-time scale ∆ε → 0.
The limitation of α ∈ (3/2, 2) is due to the tail integrability of the characteristic function
of Xε

∆ε
(x). It is of technical nature, but it seems difficult to remove.

Proposition 3 (Error term E2: the linear inhomogeneous coupling). Assume Hypothe-
ses 1, 2, 3 and 4 are satisfied for α ∈ (0, 2) and β > 0. Let ∆ε = εα/2. For any x ∈ Rd it
follows

lim
ε→0

∥∥∥Y ε,x(∆ε;T
x
ε , X

ε
Txε

(x))− Y ε,x(∆ε;T
x
ε , Y

ε,x(T xε ; 0, x))
∥∥∥

TV
= 0.

The proof is given Subsection 2.2 and relies on a version of the local limit theorem by
[42] for strongly locally layered stable distributions and small times ∆ε.

We approximate the invariant distribution µε of Xε
· (x) by the limiting distribution µε∗

of the inhomogeneous Ornstein-Uhlenbeck Y ε· (x) in the total variation distance.

Proposition 4 (Error term E3: the equilibrium asymptotics). Assume Hypotheses 1, 2,
3 and 4 are satisfied for α ∈ (3/2, 2) and β > 0. It follows

lim
ε→0
‖µε∗ − µε‖TV = 0.

The proof is given in Subsection 2.4.

Proof of Theorem 2 and Theorem 3: We apply Propositions 2, 3 and 4 to the key
estimate (1.29) and obtain

lim
ε→0

∣∣∣∥∥∥Xε
txε+ρ·wxε (x)− µε

∥∥∥
TV
− ‖Y ε,x(txε + ρ · wxε ; 0, x)− µε∗‖TV

∣∣∣ = 0.

Finally, Proposition 1 implies the main result in Theorem 2 and Theorem 3.

EJP 26 (2021), paper 119.
Page 21/76

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP685
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The cutoff phenomenon for nonlinear Langevin systems with small noise

2 The local results (Prop. 1 - 4) in the proofs of Theorem 2 and
Theorem 3

2.1 Cutoff for the inhomogeneous linearization (Proposition 1)

2.1.1 Cutoff linearization via Hartman-Grobman

By Lemma C.3 in Appendix C we see that µε∗ is the distribution of εZ∞, where Z∞
is the unique invariant distribution of the homogeneous Ornstein-Uhlenbeck process
Z = (Zt)t>0 given by

dZt = −Db(0)Ztdt+ dLt.

As a consequence µε∗ ∼ εZ∞ for any ε ∈ (0, 1). We start with the observation that Z∞ is
absolutely continuous. Indeed, let ζt be the characteristic function of Zt and ζ∞ be the
characteristic function of Z∞. By Theorem 3.1 in Sato and Yamazato [66] we have for
any t > 0

|ζt(θ)| = exp

(∫ t

0

Re(ψ(e−Db(0)sθ))ds

)
, θ ∈ Rd,

where

Re(ψ(ϑ)) =

∫
Rd

(cos(〈ϑ, u〉)− 1) ν(du) 6 0, ϑ ∈ Rd.

Hence, |ζ∞(θ)| 6 |ζt(θ)| for all θ ∈ Rd. Then Item 3. in Section 4 of [10] implies that Z∞
has a bounded C∞-density with respect to the Lebesgue measure on Rd, where we take
κ(v) = c^ |v|α in their notation, and c^, α being given in Lemma 1.7. In particular, Z∞ is
absolutely continuous on Rd.

The following lemma reduces the cutoff phenomenon for the non-homogeneous
linearization Y ε· (x) of Xε,x to the homogeneous linearization Z.

Lemma 2.1 (Elimination of the inhomogeneity in the cutoff linearization). Let the
hypotheses of Proposition 1 be satisfied for some x 6= 0, α ∈ (0, 2) and β > 0. We define

dε,x(t) := ‖Y εt (x)− εZ∞‖TV

and

D̃ε,x(t) :=

∥∥∥∥( (t− τx)`x−1e−λx(t−τx)

ε
v(t− τx, x) + Z∞

)
− Z∞

∥∥∥∥
TV

, t > τx,

where v(t, x) =
∑m
k=1 e

iθkxtvkx and λx, `x, τx, θ1
x, . . . , θ

m
x and v1

x, . . . , v
m
x are the quantities

given by the Hartman-Grobman decomposition in Lemma 1.1.
Then for any ρ ∈ R

lim sup
ε→0

dε,x(txε + ρ · wε) = lim sup
ε→0

D̃ε,x(txε + ρ · wε) and

lim inf
ε→0

dε,x(txε + ρ · wε) = lim inf
ε→0

D̃ε,x(txε + ρ · wε).

Proof of Lemma 2.1: Let ε ∈ (0, 1). We observe that Y ε,x(t; 0, x) = Y εt (x), t > 0, where
Y εt (x) = ϕxt + εY xt and (Y xt )t>0 is the unique strong solution of (1.25). Due to scale and
(deterministic) shift invariance of the total variation distance given in part ii) of Lemma
A.1 of [10], it follows for all t > 0

dε,x(t) = ‖Y εt (x)− µε∗‖TV = ‖Y εt (x)− εZ∞‖TV

6 ‖(ϕxt + εY xt )− (ϕxt + εZ∞)‖TV + ‖(ϕxt + εZ∞)− εZ∞‖TV

= ‖Y xt − Z∞‖TV + ‖(ϕxt/ε + Z∞)− Z∞‖TV︸ ︷︷ ︸
=:Dε,x(t)

. (2.1)
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That is, dε,x(t)−Dε,x(t) 6 ‖Y xt − Z∞‖TV . Analogously, we obtain

Dε,x(t) = ‖(ϕxt + εZ∞)− εZ∞‖TV

6 ‖(ϕxt + εZ∞)− (ϕxt + εY xt )‖TV + ‖(ϕxt + εY xt )− εZ∞‖TV

= ‖Y xt − Z∞‖TV + dε,x(t),

and deduce that

|dε,x(t)−Dε,x(t)| 6 ‖Y xt − Z∞‖TV for all t > 0. (2.2)

Remark 2.2. Note that for x = 0, ϕxt = 0 for any t > 0 and consequently, Dε,x(t) = 0.
Since the right-hand side of inequality (2.2) does not depend on ε and tends to zero
for t → ∞, we have for any time scale (sε)ε∈(0,1) such that sε → ∞, as ε → 0, the limit
lim
ε→0

dε,x(sε) = 0. Hence the family (Y ε,x) does not exhibit a cutoff phenomenon for any

time scale.

As a consequence we continue with x 6= 0 and recall that

Dε,x(t) = ‖(ϕxt/ε + Z∞)− Z∞‖TV .

In addition, let

Rε,x(t) :=

∥∥∥∥(ϕxt/ε + Z∞

)
−
( (t− τx)`x−1e−λx(t−τx)

ε
v(t− τx, x) + Z∞

)∥∥∥∥
TV

, t > τx.

By the triangle inequality it follows

Dε,x(t) 6

∥∥∥∥(ϕxt/ε + Z∞
)
−
( (t− τx)`x−1e−λx(t−τx)

ε
v(t− τx, x) + Z∞

)∥∥∥∥
TV

+

∥∥∥∥( (t− τx)`x−1e−λx(t−τx)

ε
v(t− τx, x) + Z∞

)
− Z∞

∥∥∥∥
TV

= Rε,x(t) + D̃ε,x(t),

and analogously D̃ε,x(t) 6 Rε,x(t) +Dε,x(t) which yields

|Dε,x(t)− D̃ε,x(t)| 6 Rε,x(t) for all t > τx. (2.3)

Combining (2.2) and (2.3) we obtain

|dε,x(t)− D̃ε,x(t)| 6 Rε,x(t) + ‖Y xt − Z∞‖TV for all t > τx. (2.4)

The limit (C.8) in Lemma C.4 in Appendix C shows that

lim
t→∞

‖Y xt − Z∞‖TV = 0.

In particular, for any ρ ∈ R we obtain

lim
ε→0

∥∥∥Y xtxε+ρ·wxε − Z∞
∥∥∥

TV
= 0. (2.5)

Claim: For any ρ ∈ R we have

lim
ε→0

Rε,x(txε + ρ · wxε ) = 0. (2.6)

First, we note that the scale and shift invariance of the total variation distance imply for
all t > 0

Rε,x(t) =

∥∥∥∥( (t− τx)`x−1e−λx(t−τx)

ε

( eλx(t−τx)

(t− τx)`x−1
ϕxt − v(t− τx, x)

)
+ Z∞

)
− Z∞

∥∥∥∥
TV

.
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Secondly, the Hartman-Grobman decomposition in Lemma 1.1 states

lim
ε→0

∣∣∣ eλx(tε+ρ·wε−τx)

(tε + ρ · wε − τx)`x−1
ϕxtε+ρ·wε − v(tε + ρ · wε − τx, x)

∣∣∣ = 0, (2.7)

and the very definition of txε and wxε yields

lim
ε→0

(txε + ρ · wxε − τx)`x−1e−λx(txε+ρ·wxε−τx)

ε
=
e−ρ−λxτx

λ`x−1
x

. (2.8)

Combining (2.7), (2.8) and the absolute continuity of Z∞ with the Scheffé lemma for
densities implies that Rε,x(txε + ρ · wxε ) tends to zero as ε → 0. Joining (2.4), (2.5) and
(2.6) yields that any cutoff phenomenon in the sense of Definition 1.8 can be read off
from the simpler term D̃ε,x.

2.1.2 Window cutoff for the inhomogeneous O-U process (Proposition 1, Item
(1))

Proof of Proposition 1, Item (1): By Lemma 2.1 it is enough to show the window cutoff
phenomenon for D̃ε,x. We observe that lim

t→∞
v(t, x) may not exist in general. Set

D̄x
ρ := lim sup

ε→0
D̃ε,x(txε + ρ · wxε ).

Then there exists a subsequence (txεj + ρ · wxεj )j∈N of (txε + ρ · wxε )ε∈(0,1] such that εj → 0

as j →∞ and for which

D̄x
ρ = lim

j→∞
D̃εj ,x(txεj + ρ · wxεj ).

Notice that the sequence (v(txεj + ρ · wxεj − τx))j∈N is bounded by
∑m
k=1 |vk|. Then the

Bolzano-Weierstrass theorem yields the existence of a subsequence (εjn)n∈N of (εj)j∈N
such that

lim
n→∞

v(εjn , x) =: v̂ρ(x) exists. (2.9)

By construction v̂ρ(x) ∈ ω(x). For convenience, we set

C(n, x, ρ) :=
(txεjn + ρ · wxεjn − τx)`x−1e

−λx(txεjn
+ρ·wxεjn−τx)

εjn
. (2.10)

Combining (2.8), (2.9) and (2.10), and using that the law of Z∞ is absolutely continuous
with respect to the Lebesgue measure on Rd, Scheffé’s lemma for densities implies

D̄x
ρ = lim

n→∞
D̃εjn ,x(txεjn + ρ · wxεjn )

= lim
n→∞

∥∥∥(C(n, x, ρ) · v
(
txεjn + ρ · wxεjn − τx, x

)
+ Z∞

)
− Z∞

∥∥∥
TV

=

∥∥∥∥(e−ρ−λxτxλ`x−1
x

v̂ρ(x) + Z∞

)
− Z∞

∥∥∥∥
TV

.

(2.11)

Analogously, we deduce

Dxρ := lim inf
ε→0

D̃ε,x(txε + ρ · wxε ) =

∥∥∥∥(e−ρ−λxτxλ`x−1
x

v̌ρ(x) + Z∞

)
− Z∞

∥∥∥∥
TV

, (2.12)

where v̌ρ(x) ∈ ω(x). Let ρ > 0. In the sequel we send ρ → ∞. We observe that the
upper limiting vector v̂ρ(x) depends on ρ, however, it is uniformly bounded by

∑m
k=1 |vk|.

EJP 26 (2021), paper 119.
Page 24/76

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP685
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The cutoff phenomenon for nonlinear Langevin systems with small noise

Hence, e−ρv̂ρ(x) tends to zero as ρ→∞. With the help of Scheffé’s lemma for densities
we obtain

lim
ρ→∞

D̄x
ρ = 0. (2.13)

For ρ < 0, by (1.5) we observe that |v̌ρ(x)| > lim inf
t→∞

|v(t, x)| > 0, where the right-hand

side does not depend on ρ. Hence, e−ρ|v̌ρ(x)| → ∞ as ρ → −∞. A standard version of
Scheffé’s lemma for densities with diverging drift (see Lemma A.3 in [10]) implies

lim
ρ→−∞

Dxρ = 1. (2.14)

Combining (2.13) and (2.14) shows the window cutoff limits for D̃ε,x and hence the
window cutoff phenomenon for the family (Y ε(x))ε∈(0,1).

2.1.3 Profile cutoff for the inhomogeneous O-U process (Proposition 1, Item
(2))

Proof of Proposition 1, Item (2): By Lemma 2.1 it is enough to show the window cutoff
phenomenon for D̃ε,x. By (2.11) and (2.12) we have for any ρ ∈ R

lim sup
ε→0

D̃ε,x(txε + ρ · wxε ) =

∥∥∥∥(e−ρ−λxτxλ`x−1
x

v̂ρ(x) + Z∞

)
− Z∞

∥∥∥∥
TV

and

lim inf
ε→0

D̃ε,x(txε + ρ · wxε ) =

∥∥∥∥(e−ρ−λxτxλ`x−1
x

v̌ρ(x) + Z∞

)
− Z∞

∥∥∥∥
TV

,

where v̂ρ(x), v̌ρ(x) ∈ ω(x) defined in (1.13). The limit

lim
ε→0

D̃ε,x(txε + ρ · wxε ) exists

if and only if∥∥∥∥(e−ρ−λxτxλ`x−1
x

v̂ρ(x) + Z∞

)
− Z∞

∥∥∥∥
TV

=

∥∥∥∥(e−ρ−λxτxλ`x−1
x

v̌ρ(x) + Z∞

)
− Z∞

∥∥∥∥
TV

.

We start with the necessary condition for profile cutoff in Theorem 3. If for any a > 0 the
map

v ∈ ω(x) 7→
∥∥∥(av + Z∞

)
− Z∞

∥∥∥
TV

is constant,

then we have

lim
ε→0

D̃ε,x(txε + ρ · wxε ) =

∥∥∥∥(e−ρ−λxτxλ`x−1
x

v + Z∞

)
− Z∞

∥∥∥∥
TV

,

where v is any representative of ω(x). This yields the desired profile cutoff phenomenon
for the family (Y ε,x)ε∈(0,1).

We continue with the sufficient condition for profile cutoff in Theorem 3. Let v ∈ ω(x),
i.e. there exists a subsequence (tj)j∈N such that

lim
j→∞

v(tj , x) = v.

For any x ∈ Rd and ρ ∈ R consider the parametrization ε 7→ txε + ρ · wxε − τx and set
tj := txεj + ρ · wxεj − τx for all j ∈ N. Limit (2.8) and Scheffé’s lemma for densities imply

lim
j→∞

D̃εj ,x(txεj + ρ · wxεj ) =

∥∥∥∥(e−ρ−λxτxλ`x−1
x

v + Z∞

)
− Z∞

∥∥∥∥
TV

. (2.15)
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Since we are assuming profile cutoff, it follows

lim
ε→0

D̃ε,x(txε + ρ · wxε ) =

∥∥∥∥(e−ρ−λxτxλ`x−1
x

v̂ρ(x) + Z∞

)
− Z∞

∥∥∥∥
TV

=

∥∥∥∥(e−ρ−λxτxλ`x−1
x

v̌ρ(x) + Z∞

)
− Z∞

∥∥∥∥
TV

,

where v̂ρ(x), v̌ρ(x) ∈ ω(x). That is, the function

v ∈ ω(x) 7→
∥∥∥∥(e−ρ · e−λxτxλ`x−1

x

v + Z∞

)
− Z∞

∥∥∥∥
TV

is constant.

Proof of Proposition 1: Combining Lemma 2.1 with Subsubsection 2.1.2 and 2.1.3 yields
the Item (1) and (2) of Proposition 1.

2.2 Coupling for the inhomogeneous O-U processes (Proposition 3)

We keep the notation introduced in Subsection 1.4. Let ∆ε = εα/2. For any ρ ∈ R and
x 6= 0, recall that T xε = txε −∆ε + ρ · wxε , where txε and wxε are given in Theorem 2. For
x = 0 any time T xε = O(| ln(ε)|2) can be taken (see Lemma 2.4). We show the following
limit

lim
ε→0

∥∥∥Y ε,x(∆ε;T
x
ε , X

ε
Txε

(x))− Y ε,x(∆ε;T
x
ε , Y

ε,x(T xε ; 0, x))
∥∥∥

TV
= 0. (2.16)

2.2.1 Coupling by the local limit theorem for locally layered stable drivers

We recall that (ϕxt )t>0 is the solution of (1.3). By (1.28) and the variation of constants
formula yields the explicit representation

Y ε,x(t;T xε , z) = (Φεt (x))−1z

+ (Φεt (x))−1

∫ ∆ε

0

Φεs(x)
(
Db(ϕxTxε +s)ϕ

x
Txε +s − b(ϕxTxε +s)

)
ds+ εUxε ,

(2.17)

where (Φεt (x))t>0 is the solution of the matrix valued inhomogeneous differential equation

d

dt
Φt = ΦtDb(ϕ

x
Txε +t), Φ0 = Id, (2.18)

and

Uxε := (Φε∆ε
(x))−1

∫ ∆ε

0

Φεs(x)dLTxε +s. (2.19)

Since ϕxTxε +t → 0, as ε → 0, Uxε resembles the respective homogeneous Ornstein-
Uhlenbeck process. We claim that there exists a scale γε (independent of x) and a
deterministic vector axε such that γεUxε + axε converges in total variation distance to an
absolutely continuous random vector as ε→ 0. To be precise, we state it as Proposition
5 below.

Remark 2.3. Assume that the Lévy measure ν is strongly locally layered stable in the
sense of Definition 1.4 with parameters (ν0, ν∞,Λ, q, c0, α). Let α ∈ (0, 2) and β > 0,
where α is given in Definition 1.4 and β is given in Hypothesis 2. It is not hard to adapt
the proof of Theorem 3.1 in [42] to deduce that

(h−
1/α(Lsh + shηα,β)− sbα,β)s>0

d−→ Sα(Λ1) as h→ 0, h > 0, (2.20)

where Sα(Λ1) is a strictly α-stable process with spectral density Λ1(dθ) = c0(θ)Λ(dθ). If
in addition, we assume (1.7) and (1.8), then c0 is a symmetric function and therefore Λ1,
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too. The vectors ηα,β and bα,β are explicit and their formulas are given in the statement
of Theorem 3.1 in [42]. To be precise, the authors in [42] state the stronger tail condition
(3.3) on the Lévy measure ν. However, in their proof of Theorem 3.1 in [42] which
treats short-range behavior, it is only used to guarantee the following (according to their
notation): for f being a bounded continuous function vanishing in a neighbourhood of
the origin, and h > 0, ε > 0, that the iterated integral below is bounded independently of
h ∫

Sd−1

Λ(dξ)

∫ ∞
ε

f(h−1/αξ)q(r, ξ)dr.

In our setting of Definition 1.4, it is bounded by

|f |∞
∫
Sd−1

Λ(dξ)

∫ 1

ε

q(r, ξ)dr + |f |∞ν∞(Bc1(0)),

which is finite for any ε ∈ (0, 1). As a consequence, (2.20) for L being strongly locally
layered stable.

Proposition 5 (Local limit theorem for the inhomogeneous O-U approximation).
Assume that ν is a strongly locally layered stable Lévy measure in the sense of Defini-
tion 1.4 with parameters (ν0, ν∞,Λ, q, c0, α). Let α ∈ (0, 2) and β > 0, where α and β are
given in Definition 1.4. Then for any K > 0 we have

lim
ε→0

sup
|x|6K

‖(γεUxε + axε )− U‖TV = 0,

where γε := ∆
−1/α
ε , the random vector U has a symmetric α-stable distribution with

spectral density Λ1(dθ) = c0(θ)Λ(dθ), and the deterministic vector axε is given by

axε = ∆1−1/α
ε ηα,β − bα,β − γε

(
ηα,β −

bα,β

∆
1−1/α
ε

)
(Φε∆ε

(x))−1

∫ ∆ε

0

Φεs(x)Db(ϕxTxε +s)sds. (2.21)

In particular, for x = 0 we have lim
ε→0

∥∥(γεU
0
ε + a0

ε)− U
∥∥

TV
= 0.

Proof of Proposition 5: By the continuity shown in Lemma C.2 in Appendix C we have
for any ε > 0 a point xε ∈ Rd with |xε| 6 K such that

sup
|x|6K

‖(γεUxε + axε )− U‖TV = ‖(γεUxεε + axεε )− U‖TV .

In the sequel, we show that the right-hand side tends to 0 as ε→ 0. For simplicity, we
drop the ε-dependence of xε which is denoted by x. We stress that in the proof below the
dependence of x only enters in terms of |x|, which is uniformly bounded by K.

We show the existence of the distributional limit limε→0(γεU
x
ε + axε ) for a suitable

deterministic scale γε such that limε→0 γε =∞ and a deterministic vector axε . By (2.19)
and since the process L is additive, it is not hard to deduce that its characteristic function
has the following shape

z 7→ E
[
ei〈z,U

x
ε 〉
]

= exp

(∫ ∆ε

0

ψ
(
(Φεs(x))∗((Φε∆ε

(x))−1)∗z
)

ds

)
, z ∈ Rd.

The translation invariance of the Lebesgue integral in the preceding exponent implies
that in distribution Uxε = (Φε∆ε

(x))−1
∫∆ε

0
Φεs(x)dLs. Integration by parts yields

Uxε
d
= L∆ε

− (Φε∆ε
(x))−1

∫ ∆ε

0

Φ̇εs(x)Lsds

= L∆ε
− (Φε∆ε

(x))−1

∫ ∆ε

0

Φεs(x)Db(ϕxTxε +s)Lsds = J1 − J2, (2.22)
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where

J1 := L∆ε
and J2 := (Φε∆ε

(x))−1

∫ ∆ε

0

Φεs(x)Db(ϕxTxε +s)Lsds.

We start with the second term. Since |ϕxt | 6 |x| for any t > 0, it follows that∣∣∣∣∣J2 +

∫ ∆ε

0

(Φε∆ε
(x))−1Φεs(x)Db(ϕxTxε +s)

(
s · ηα,β −

s

∆
1−1/α
ε

bα,β

)
ds

∣∣∣∣∣
6
∫ ∆ε

0

|(Φε∆ε
(x))−1Φεs(x)Db(ϕxTxε +s)|

∣∣Ls + s · ηα,β −
s

∆
1−1/α
ε

bα,β
∣∣ds

6 C(|x|)∆ε sup
s∈[0,∆ε]

|Ls + s · ηα,β −
s

∆
1−1/α
ε

bα,β |,

= C(|x|)∆ε sup
s∈[0,1]

|Ls∆ε
+ s ·∆εηα,β −

s

∆
−1/α
ε

bα,β |, (2.23)

where the last inequality follows from inequality (A.3) in Lemma A.3 in Appendix A. Since
γε = ∆

−1/α
ε , we obtain

γε

∣∣∣J2 +

∫ ∆ε

0

(Φε∆ε
(x))−1Φεs(x)Db(ϕxTxε +s)

(
s · ηα,β −

s

∆
1−1/α
ε

bα,β

)
ds
∣∣∣

6 C(|x|)∆ε sup
s∈[0,1]

|γε(Ls∆ε
+ s ·∆εηα,β)− s · bα,β |. (2.24)

By Remark 2.3 we have

(γε(Ls∆ε + s ·∆εηα,β)− s · bα,β)s>0
d−→ Sα(Λ1), ε→ 0, (2.25)

where Sα(Λ1) is a symmetric α-stable process with spectral measure Λ1. It is well-known
in the literature that the supremum norm is continuous with respect to the Skorokhod
topology, see for instance Theorem 6.1 of [78]. Hence the continuous mapping theorem
implies

sup
s∈[0,1]

|γε(Ls∆ε
+ s ·∆εηα,β)− s · bα,β |

d−→ sup
[0,1]

|Sα(Λ1)|, ε→ 0.

Since ∆ε → 0, Slutsky’s lemma yields

∆ε · sup
s∈[0,1]

|γε(Ls∆ε + s ·∆εηα,β)− s · bα,β |
d−→ 0, ε→ 0. (2.26)

As a consequence the right-hand side of (2.24) tends to zero, as ε→ 0.
We continue with the first term J1. Since J1 = L∆ε

, limit (2.25) implies

lim
ε→0

(
∆−

1/α
ε L∆ε

+ ∆1−1/α
ε ηα,β − bα,β

) d
= U, (2.27)

where ηα,β and bα,β are deterministic vectors on Rd, and U has a symmetric α-stable
distribution with spectral measure Λ1. By (2.21) and (2.22) we obtain

γεU
x
ε + axε = γεU

x
ε + ∆1−1/α

ε ηα,β − bα,β

− γε
∫ ∆ε

0

(Φε∆ε
(x))−1Φεs(x)Db(ϕxTxε +s)

(
s · ηα,β −

s

∆
1−1/α
ε

bα,β

)
ds

d
= (γεL∆ε

+ ∆1−1/α
ε ηα,β − bα,β)

− γε
(
J2 +

∫ ∆ε

0

(Φε∆ε
(x))−1Φεs(x)Db(ϕxTxε +s)

(
s · ηα,β −

s

∆
1−1/α
ε

bα,β

)
ds
)
.
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By (2.24), (2.26) and (2.27) we deduce with the help of Slutsky’s lemma

lim
ε→0

(γεU
x
ε + axε )

d
= U, (2.28)

where axε is given in(2.21). We stress that the dependence of x in the preceding limit
only enters via C(|x|) in (2.24) and holds uniformly for |x| 6 K.

Finally, we strengthen the convergence in distribution in (2.28) to the convergence
in total variation distance, using the regularity of the densities and showing their
convergence in L1(Rd). This can be carried out using the Fourier inversion formula of
the explicit characteristic function of the linear process γεUxε + axε and the Orey-Masuda
condition in Lemma 1.7, analogously as in the proof of Lemma C.4 in Appendix C. Since

this procedure is spelt out in full detail in Lemma C.4 for the limit lim
t→∞

Y εt (x)
d
= Z∞

established in Lemma C.3 in Appendix C we refrain from repeating it here.

2.2.2 Proof of Proposition 3

In this subsection we establish an upper bound of∥∥∥Y ε,x(∆ε;T
x
ε , X

ε
Txε

(x))− Y ε,x(∆ε;T
x
ε , Y

ε,x(T xε ; 0, x))
∥∥∥

TV

with the help of Proposition 5, which tends to zero as ε→ 0.

Proof of Proposition 3: For short, let z = Xε
Txε

(x) and z̃ = Y ε,x(T xε ; 0, x). The shift and
scale invariance of the total variation distance and representation (2.17) yield

‖Y ε,x(∆ε;T
x
ε , z)− Y ε,x(∆ε;T

x
ε , z̃)‖TV

=
∥∥∥(γε

ε
(Φε∆ε

(x))−1z + γεU
x
ε + axε

)
−
(γε
ε

(Φε∆ε
(x))−1z̃ + γεU

x
ε + axε

)∥∥∥
TV

=: I1, (2.29)

where axε is given in (2.21) and γε being given in Proposition 5. The triangle inequality
yields

I1 6
∥∥∥(γε

ε
(Φε∆ε

(x))−1z + γεU
x
ε + axε

)
−
(γε
ε

(Φε∆ε
(x))−1z + U

)∥∥∥
TV

+
∥∥∥(γε

ε
(Φε∆ε

(x))−1z + U
)
−
(γε
ε

(Φε∆ε
(x))−1z̃ + U

)∥∥∥
TV

+
∥∥∥(γε

ε
(Φε∆ε

(x))−1z̃ + U
)
−
(γε
ε

(Φε∆ε
(x))−1z̃ + γεU

x
ε + axε

)∥∥∥
TV

,

where U has a Sα(Λ1) distribution given in Proposition 5. The independence of the
increments of L yields that (Φεt (x))−1z and (Φεt (x))−1z̃ are independent of Uxε and U ,
respectively. Then the cancellation property of independent shifts in the total variation
distance given in Item ii) of Lemma A.2 of [10] yields

I1 6 2
∥∥∥(γεUxε + axε

)
− U

∥∥∥
TV

+
∥∥∥(γε

ε
(Φε∆ε

(x))−1z + U
)
−
(γε
ε

(Φε∆ε
(x))−1z̃ + U

)∥∥∥
TV

.

(2.30)

We prove that the right-hand side of the preceding inequality tends to zero as ε→ 0. By
Proposition 5 it remains to prove that

lim
ε→0

∥∥∥(γε
ε

(Φε∆ε
(x))−1z + U

)
−
(γε
ε

(Φε∆ε
(x))−1z̃ + U

)∥∥∥
TV

= 0.

Let Pxε (du,dũ) denote the joint probability measure P
(
Xε
Txε

(x) ∈ du, Y ε,x(T xε ; 0, x) ∈ dũ
)

and keep the notation z = Xε
Txε

(x) and z̃ = Y ε,x(T xε ; 0, x). Since z and z̃ are nondegenerate
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and mutually dependent random variables the shift property for the total variation
distance cannot be applied directly. Nevertheless, the Markov property and the shift
invariance allow to disintegrate Pxε as follows∥∥∥(γε

ε
(Φε∆ε

(x))−1z + U
)
−
(γε
ε

(Φε∆ε
(x))−1z̃ + U

)∥∥∥
TV

6
∫
Aε1(ζ, ζ̃)Pxε (dζ,dζ̃) =

∫
Aε2(ζ, ζ̃)Pxε (dζ,dζ̃), (2.31)

where

Aε1(ζ, ζ̃) :=
∥∥∥(γε

ε
(Φε∆ε

(x))−1ζ + U
)
−
(γε
ε

(Φε∆ε
(x))−1ζ̃ + U

)∥∥∥
TV

,

Aε2(ζ, ζ̃) :=
∥∥∥(γε

ε
(Φε∆ε

(x))−1(ζ − ζ̃) + U
)
− U

∥∥∥
TV

.

We continue with the following split. For any η > 0 we consider

Aε2(ζ, ζ̃) = Aε2(ζ, ζ̃)1{γε|ζ − ζ̃| > ηε}+Aε2(ζ, ζ̃)1{γε|ζ − ζ̃| 6 ηε}. (2.32)

We start with the second term on the right-hand side of (2.32). Since the shift operator
is continuous at 0 in L1(Rd) for any ρ > 0, there exists η = η(ρ) > 0 such that

‖(h+ U)− U‖TV < ρ whenever |h| 6
√
dη. (2.33)

By Lemma A.3 in Appendix A we obtain |(Φε∆ε
)−1(x)| 6

√
d for any ε ∈ (0, 1] and x ∈ Rd,

where | · | denote the standard matrix 2-norm which in abuse of notation we also denote
by | · |. By Hypothesis 1 the event {γε|ζ − ζ̃| 6 ηε} implies∣∣∣γε

ε
(Φε∆ε

(x))−1(ζ − ζ̃)
∣∣∣ 6 √dη for any ε.

The preceding estimate implies∫
Aε2(ζ, ζ̃)1{γε|ζ − ζ̃| 6 ηε}Pxε (dζ,dζ̃) 6 ρPxε (γε|ζ − ζ̃| 6 ηε) 6 ρ. (2.34)

On the other hand, for any η > 0 we have∫
Aε2(ζ, ζ̃)1{γε|ζ − ζ̃| > ηε}Pxε (dζ,dζ̃) 6 Pxε (γε|ζ − ζ̃| > ηε). (2.35)

Combining (2.31)-(2.35) we obtain

lim sup
ε→0

∥∥∥(γε
ε

(Φε∆ε
(x))−1z + U

)
−
(γε
ε

(Φε∆ε
(x))−1z̃ + U

)∥∥∥
TV

6 lim sup
ε→0

P(γε|z − z̃| > ηε) + ρ

for any ρ > 0. Note that η depends on ρ. Sending ρ→ 0 we obtain

lim sup
ε→0

∥∥∥(γε
ε

(Φε∆ε
(x))−1z + U

)
−
(γε
ε

(Φε∆ε
(x))−1z̃ + U

)∥∥∥
TV

6 lim sup
ρ→0

lim sup
ε→0

P(γε|z − z̃| > ηε). (2.36)

By Lemma 2.4 stated below we obtain that the upper bound on the right-hand side of
(2.36) tends to zero, ε → 0, which together with inequality (2.29), (2.30) and Proposi-
tion 5 implies (2.16).
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Lemma 2.4. Let γε = ∆ε
−1/α, where ∆ε = εα/2. Then it follows

lim sup
ε→0

P(γε|z − z̃| > ηε) = 0 for any η > 0.

Proof. Let η > 0 and recall γε = ∆ε
−1/α for some α ∈ (0, 2) as in Proposition 5. Then we

observe

P (|z − z̃| > ηε/γε) = P
(
|Xε

Txε
(x)− Y ε,x(T xε ; 0, x)| > ηε∆ε

1/α
)
→ 0, as ε→ 0. (2.37)

Since T xε = O(| ln(ε)|), Proposition B.1 in Appendix B yields

lim sup
ε→0

P(γε|z − z̃| > ηε) = 0 for any η > 0.

2.3 Nonlinear short-time coupling (Proposition 2)

We keep the notation introduced in Subsection 1.4. Let ∆ε = εα/2. For any ρ ∈ R,
recall that T xε = txε −∆ε + ρ · wxε , where txε and wxε are given in Theorem 2. We show the
following:

lim
ε→0

∥∥∥Xε
∆ε

(Xε
Txε

(x))− Y ε,x(∆ε;T
x
ε , X

ε
Txε

(x))
∥∥∥

TV
= 0.

Recall that (ϕxt )t>0 is the solution of (1.3). By (1.28) the variation of constants formula
yields the explicit representation

Y ε,x(t;T xε , z) = (Φεt (x))−1z

+ (Φεt (x))−1

∫ ∆ε

0

Φεs(x)
(
Db(ϕxTxε +s)ϕ

x
Txε +s − b(ϕxTxε +s)

)
ds+ εUxε ,

(2.38)

where (Φεt (x))t>0 is the solution of the matrix valued inhomogeneous differential equation
given in (2.18) and the random vector Uxε is defined by (2.19). For any z ∈ Rd we consider
the unique strong solution (Zεt (z))t>0 of

dZεt = −Db(0)Zεt dt+ εdLt with Zε0 = z.

The variation of constant formula yields the representation

Zε∆ε
(Xε

Txε
(x)) = Ψ−1

∆ε
Xε
Txε

(x) + εŨxε , where Ũxε = (Ψ−1
∆ε

)

∫ ∆ε

0

ΨsdLTxε +s

and Ψt = eDb(0)t, t ∈ R. It is easily seen that Ψ−1
t = Ψ−t. We start with the estimate∥∥∥Xε

∆ε
(Xε

Txε
(x))− Y ε,x(∆ε;T

x
ε , X

ε
Txε

(x))
∥∥∥

TV

6
∥∥∥Xε

∆ε
(Xε

Txε
(x))− Zε∆ε

(Xε
Txε

(x))
∥∥∥

TV
+
∥∥∥Zε∆ε

(Xε
Txε

(x))− Y ε,x(∆ε;T
x
ε , X

ε
Txε

(x))
∥∥∥

TV

= G1 +G2, (2.39)

where

G1 :=
∥∥∥Xε

∆ε
(Xε

Txε
(x))− Zε∆ε

(Xε
Txε

(x))
∥∥∥

TV
,

G2 :=
∥∥∥Zε∆ε

(Xε
Txε

(x))− Y ε,x(∆ε;T
x
ε , X

ε
Txε

(x))
∥∥∥

TV
.
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2.3.1 Step 1: Domination of the error term G2

In this subsubsection we estimate the second term on the right-hand side of (2.39).

Lemma 2.5. G2 → 0 as ε→ 0.

Proof of Lemma 2.5: Let

Γxε := (Φε∆ε
(x))−1

∫ ∆ε

0

Φεs(x)
(
b(ϕxTxε +s)−Db(ϕxTxε +s)ϕ

x
Txε +s

)
ds. (2.40)

By disintegration combined with the translation and scale invariance of the total variation
distance, we obtain

G2 =
∥∥∥(Ψ−1

∆ε
Xε
Txε

(x) + εŨxε

)
−
(

(Φε∆ε
(x))−1Xε

Txε
(x)− Γxε + εUxε

)∥∥∥
TV

6
∫
Rd

∥∥∥(Ψ−1
∆ε
z + εŨxε

)
−
(

(Φε∆ε
(x))−1z − Γxε + εUxε

)∥∥∥
TV
Pxε (dz)

=

∫
Rd

∥∥∥∥∥
((

Ψ−1
∆ε
− (Φε∆ε

(x))−1
)
z + Γxε

ε
+ Ũxε

)
− Uxε

∥∥∥∥∥
TV

Pxε (dz),

where Pxε (dz) := P(Xε
Txε

(x) ∈ dz). By Proposition 5 there exists a random variable

U
d
= Sα(Λ1) and the deterministic vector axε ∈ Rd defined in (2.21) such that∥∥∥(∆−

1/α
ε Uxε + axε )− U

∥∥∥
TV
→ 0, as ε→ 0. (2.41)

Repeating the same argument of Proposition 5, there exist a random variable Ũ
d
= Sα(Λ1)

and a deterministic vector a0
ε ∈ Rd given by

a0
ε = ∆1−1/α

ε ηα,β − bα,β − γε
(
ηα,β −

bα,β

∆
1−1/α
ε

)
(Ψ∆ε

)−1

∫ ∆ε

0

ΨsDb(0)sds

such that ∥∥∥(∆−
1/α

ε Ũxε + a0
ε)− Ũ

∥∥∥
TV
→ 0, as ε→ 0. (2.42)

We define the deterministic function

gxε (z) =

(
(Ψ∆ε

)−1 − (Φε∆ε
(x))−1

)
z + Γxε

ε
, z ∈ Rd (2.43)

and the pivotal terms

Bε0(z) :=
∥∥∥(gxε (z) + Ũxε

)
− Uxε

∥∥∥
TV

,

Bε1(z) :=
∥∥∥(∆−

1/α
ε gxε (z) + ∆−

1/α
ε Ũxε + a0

ε

)
−
(

∆−
1/α

ε Uxε + a0
ε

)∥∥∥
TV

,

Bε2(z) :=
∥∥∥(∆−

1/α
ε gxε (z) + ∆−

1/α
ε Ũxε + a0

ε

)
−
(

∆−
1/α

ε gxε (z) + Ũ
)∥∥∥

TV
,

Bε3(z) :=
∥∥∥(∆−

1/α
ε gxε (z) + Ũ

)
− U

∥∥∥
TV

,

Bε4(z) :=
∥∥∥U − (∆−

1/α
ε Uxε + a0

ε

)∥∥∥
TV

.

The scale and shift invariance of the total variation distance combined with the triangle
inequality yield

Bε0(z) = Bε1(z) 6 Bε2(z) +Bε3(z) +Bε4(z). (2.44)
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Estimate of Bε2(z) in (2.44). By the cancellation property of independent increments in
the total variation distance we have

Bε2(z) 6
∥∥∥(∆−

1/α
ε Ũxε + a0

ε

)
− Ũx

∥∥∥
TV
→ 0, as ε→ 0,

due to (2.42). As a consequence, we have∫
Rd
Bε2(z)Pxε (dz) 6

∥∥∥(∆−
1/α

ε Ũε + a0
ε

)
− Ũ

∥∥∥
TV
→ 0, as ε→ 0.

Estimate of Bε4(z) in (2.44). Analogously to Bε2(z) we have

Bε4(z) =
∥∥∥(∆−

1/α
ε Uxε + a0

ε

)
− U

∥∥∥
TV

=
∥∥∥(∆−

1/α
ε Uxε + axε + a0

ε

)
−
(
U + axε

)∥∥∥
TV

6
∥∥∥(∆−

1/α
ε Uxε + axε + a0

ε

)
−
(
U + a0

ε

)∥∥∥
TV

+
∥∥∥(U + a0

ε

)
−
(
U + axε

)∥∥∥
TV

=
∥∥∥(∆−

1/α
ε Uxε + axε

)
− U

∥∥∥
TV

+
∥∥∥(a0

ε − axε + U
)
− U

∥∥∥
TV

.

Due to (2.41) we obtain∥∥∥(∆−
1/α

ε Uxε + axε

)
− U

∥∥∥
TV
→ 0, as ε→ 0.

Proposition 5 yields

axε − a0
ε = −∆−

1/α
ε

(
ηα,β −

1

∆
1−1/α
ε

bα,β

)
·
∫ ∆ε

0

s
(

(Φε∆ε
(x))−1Φεs(x)Db(ϕxTxε +s)− (Ψ∆ε

)−1ΨsDb(0)
)

ds,

such that

|aε − a0
ε|

6 ∆1−1/α
ε

∣∣∣ηα,β − 1

∆
1−1/α
ε

bα,β

∣∣∣ ∫ ∆ε

0

∣∣∣(Φε∆ε
(x))−1Φεs(x)Db(ϕxTxε +s)− (Ψ∆ε

)−1ΨsDb(0)
∣∣∣ds

6 ∆1−1/α
ε

∣∣∣ηα,β − 1

∆
1−1/α
ε

bα,β

∣∣∣ ∫ ∆ε

0

∣∣∣(Φε∆ε
(x))−1Φεs(x)

∣∣∣∣∣∣Db(ϕxTxε +s)−Db(0)
∣∣∣ds (2.45)

+ ∆1−1/α
ε

∣∣∣ηα,β − 1

∆
1−1/α
ε

bα,β

∣∣∣|Db(0)|
∫ ∆ε

0

∣∣∣(Φε∆ε
(x))−1Φεs(x)− (Ψ∆ε

)−1Ψs

∣∣∣ds.
We start with the estimate of the first term on the right-hand side. By Lemma A.1 in
Appendix A there exists a positive constant C(|x|) depending continuously on |x| such
that

|ϕxTxε | 6 C(|x|)ε for all ε� 1. (2.46)

With the help of inequality (A.3) in Lemma A.3 in Appendix A, the mean value theorem
and the fact that |ϕxt | 6 |x|, t > 0, we have

∆1−1/α
ε

∣∣∣∣ηα,β − bα,β

∆
1−1/α
ε

∣∣∣∣ ∫ ∆ε

0

∣∣(Φε∆ε
(x))−1Φεs(x)

∣∣ ∣∣∣Db(ϕxTxε +s)−Db(0)
∣∣∣ds

6
√
d∆1−1/α

ε

∣∣∣∣ηα,β − bα,β

∆
1−1/α
ε

∣∣∣∣ ∫ ∆ε

0

∣∣∣Db(ϕxTxε +s)−Db(0)
∣∣∣ds

6 C(|x|, d)ε∆2−1/α
ε

∣∣∣∣ηα,β − bα,β

∆
1−1/α
ε

∣∣∣∣
6 C(|x|, d)ε∆2−1/α

ε |ηα,β |+ C(|x|, d)ε∆ε|bα,β |.
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Since ∆ε = εα/2, both preceding terms on the right-hand side tend to zero as ε→ 0.
We continue with the second term on the right-hand side of (2.45). By Lemma A.3.v)

in Appendix A we have for ε sufficiently small that

|Φ−1
∆ε

(x)Φs(x)−Ψ−1
∆ε

Ψs| 6
C1(|x|)d2

2δ
|ϕxTxε |e

− δ2 ∆ε

√
1− e−4δ(∆ε−s) 6 C1(|x|)ε, s ∈ [0,∆ε],

where C1(|x|) is a constant that depends continuously on |x|. Then for small values of ∆ε

we have

∆1−1/α
ε

∣∣∣∣ηα,β − bα,β

∆
1−1/α
ε

∣∣∣∣ |Db(0)|
∫ ∆ε

0

∣∣(Φε∆ε
)−1Φεs − (Ψ∆ε

)−1Ψs

∣∣ds
6 |Db(0)|C1(|x|)ε∆2−1/α

ε

∣∣∣∣ηα,β − bα,β

∆
1−1/α
ε

∣∣∣∣
6 |Db(0)|C1(|x|)ε∆2−1/α

ε |ηα,β |+ |Db(0)|C1(|x|)ε∆ε|bα,β |.

Since ∆ε = εα/2, we have |aε − a0
ε| → 0, as ε→ 0 and consequently by the Scheffé lemma

for densities we obtain ∥∥(aε − a0
ε + U

)
− U

∥∥
TV
→ 0, as ε→ 0.

With the same reasoning we get∫
Rd
Bε4(z)Pxε (dz)→ 0, as ε→ 0.

Estimate of Bε3(z) in (2.44). The remainder of Step 1 is dedicated to show that∫
Rd
Bε3(z)Pxε (dz)→ 0, as ε→ 0.

For ϑ ∈ (0, 1/4) we define rε := ε1−ϑ and estimate∫
Rd
Bε3(z)Pxε (dz) 6

∫
|z|6rε

Bε3(z)Pxε (dz) + P
(
|Xε

Txε
(x)| > rε

)
.

By Lemma D.5 in Appendix D we have for the second term

P
(
|Xε

Txε
(x)| > rε

)
→ 0, as ε→ 0.

We continue with the first term of the right-hand side of the preceding inequality. Recall
that

Bε3(z) =
∥∥∥(∆−1/α

ε gxε (z) + Ũ
)
− U

∥∥∥
TV

,

where U and Ũ are Sα(Λ1) distributed, and

gxε (z) =

(
(Ψ∆ε)

−1 − (Φε∆ε
(x))−1

)
z + Γxε

ε
, z ∈ Rd,

where Γxε was defined in (2.40). By Lemma A.3.v) in Appendix A there exists a positive
constant C(|x|) depending continuously on |x| such that

|(Φε∆ε
(x))−1 −Ψ−1

∆ε
| 6 C(|x|)d2

2δ
|ϕxTxε |e

− δ2 ∆ε(1− e−4δ∆ε).

The preceding inequality combined with inequality (2.46) yields for ε sufficiently small

|(Φε∆ε
(x))−1 − (Ψ∆ε

)−1| 6 C1(|x|)ε∆ε.
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Therefore,

sup
|z|6rε

∆
−1/α
ε |(Φε∆ε

(x))−1z − (Ψ∆ε)
−1z|

ε

6 sup
|z|6rε

∆
−1/α
ε |(Φε∆ε

(x))−1 − (Ψ∆ε
)−1||z|

ε
6 C1(|x|)∆1−1/α

ε rε. (2.47)

It remains to estimate

|Γxε | =
∣∣∣ ∫ ∆ε

0

[
(Φε∆ε

(x))−1Φεs(x)− (Ψ∆ε
)−1Ψs

][
b(ϕxTxε +s)−Db(ϕxTxε +s)ϕ

x
Txε +s

]
ds
∣∣∣

6 C(|x|, d)

∫ ∆ε

0

∣∣b(ϕxTxε +s)−Db(ϕxTxε +s)ϕ
x
Txε +s

∣∣ds
6 C1(|x|, d)

∫ ∆ε

0

∣∣ϕxTxε +s

∣∣2ds 6 Cε2∆ε,

where the last inequality follows from Lemma A.1 in Appendix A. As a consequence we
have

∆
−1/α
ε |Γxε |
ε

6 C1(|x|, d)ε∆1−1/α
ε . (2.48)

Finally we estimate ∫
|z|6rε

Bε3(z)Pxε (dz) 6 sup
|z|6rε

Bε3(z).

The continuity of the shift operator in L1 and the compactness of the Euclidean closed
ball imply

sup
|z|6rε

Bε3(z) = Bε3(zε) for some |zε| 6 rε.

Since ∆ε = εα/2, the preceding inequality combined with estimates (2.47) and (2.48)
yields ∫

|z|6rε
Bε3(z)Pxε (dz)→ 0, as ε→ 0.

This finishes the proof of Lemma 2.5.

2.3.2 Step 2: Domination of the error term G1 up to a term in distribution

In the sequel we treat the error term G1 in two consecutive steps (Step 2 and Step 3). By
the end of Step 3 (Subsubsection 2.3.3) we obtain the desired result G1 → 0 as ε→ 0 by
a suitable localization procedure combined with the Fourier inversion technique applied
to the result of Step 2.

First note that by disintegration we have

G1 =
∥∥∥Xε

∆ε
(Xε

Txε
(x))− Zε∆ε

(Xε
Txε

(x))
∥∥∥

TV
6
∫
Rd

∥∥Xε
∆ε

(z)− Zε∆ε
(z)
∥∥

TV
Pxε (dz)

=

∫
|z|6rε

∥∥Xε
∆ε

(z)− Zε∆ε
(z)
∥∥

TV
Pxε (dz) +

∫
|z|>rε

∥∥Xε
∆ε

(z)− Zε∆ε
(z)
∥∥

TV
Pxε (dz)

6 sup
|z|6rε

∥∥Xε
∆ε

(z)− Zε∆ε
(z)
∥∥

TV
+ P(|Xε

Txε
(x)| > rε),

(2.49)

where Pxε (dz) = P(Xε
Txε

(x) ∈ dz) and rε = ε1−ϑ, ϑ ∈ (0, 1/4). By Lemma D.5 in Appendix D
we have

P(|Xε
Txε

(x)| > rε)→ 0, as ε→ 0. (2.50)

EJP 26 (2021), paper 119.
Page 35/76

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP685
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The cutoff phenomenon for nonlinear Langevin systems with small noise

It remains to treat the first term on the right-hand side of (2.49). The variation of
constant formula yields

Xε
t (z) = Ψ−1

t z + Ψ−1
t

∫ t

0

Ψsb̃(X
ε
s (z))ds+ εΨ−1

t

∫ t

0

ΨsdLs, (2.51)

and

Zεt (z) = Ψ−1
t z + Ψ−1

t

∫ t

0

ΨsdLs, (2.52)

where b̃(x) = b(x)−Db(0)x, x ∈ Rd and Ψt = eDb(0)t. We denote

Uε := Ψ−1
∆ε

∫ ∆ε

0

ΨsdLs and Dε(z) := Ψ−1
∆ε

∫ ∆ε

0

Ψsb̃(X
ε
s (z))ds,

such that

Xε
∆ε

(z)− Zε∆ε
(z)

ε∆
1/α
ε

=
(Dε(z)

ε∆
1/α
ε

+
1

∆
1/α
ε

Uε + a0
ε − U

)
−
( 1

∆
1/α
ε

Uε + a0
ε − U

)
,

where a0
ε is given in Proposition 5 and U is Sα(Λ1)-distributed. By Proposition 5 we have∥∥∥∥U − ( 1

∆
1/α
ε

Uε + a0
ε

)∥∥∥∥
TV

→ 0, as ε→ 0. (2.53)

In this subsection we show the following.

Lemma 2.6. Assume Hypotheses 1, 2, 3 and 4 are satisfied for α ∈ (0, 2) and β > 0.
Then

Dε(z)

ε∆
1/α
ε

+
1

∆
1/α
ε

Uε + a0
ε → U, as ε→ 0. (2.54)

This convergence is strengthened to the total variation distance in Step 3 below.

Proof of Lemma 2.6: By (2.53) and Slutsky’s lemma we have the following statement:

If
|Dε(z)|
ε∆

1/α
ε

P−→ 0 as ε→ 0, then
Dε(z)

ε∆
1/α
ε

+
1

∆
1/α
ε

Uε+a0
ε

d−→ U as ε→ 0. (2.55)

Consequently, the remainder of the proof is dedicated to the verification of

|Dε(z)|
ε∆

1/α
ε

P−→ 0, as ε→ 0. (2.56)

For η > 0, rε = ε1−ϑ, ϑ ∈ (0, 1/4), and |z| 6 rε we have

P
( |Dε(z)|
ε∆

1/α
ε

> η
)

6 P
( 1

ε∆
1/α
ε

∫ ∆ε

0

∣∣∣b̃(Xε
s (z))

∣∣∣ds > η
)

6 P
( 1

ε∆
1/α
ε

∫ ∆ε

0

∣∣∣b̃(Xε
s (z))

∣∣∣ds > η, sup
06s6∆ε

|Xε
s (z)| 6 2rε

)
+ P

(
sup

06s6∆ε

|Xε
s (z)| > 2rε

)
.

(2.57)

We start with the first term of the preceding inequality. Since b̃ ∈ C2, there are positive
constants C, r such that

|b̃(y)| = |b(y)−Db(0)y| 6 C|y|2 for any |y| 6 r.
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Bearing in mind that rε → 0 we have

P
( 1

ε∆
1/α
ε

∫ ∆ε

0

∣∣∣b̃(Xε
s (z))

∣∣∣ds > η, sup
06s6∆ε

|Xε
s (z)| 6 2rε

)
6 P

( 4C

ε∆
1/α
ε

∆εr
2
ε > η, sup

06s6∆ε

|Xε
s (z)| 6 2rε

)
= 0,

for all ε small enough, since the choice rε = ε1−ϑ, ϑ ∈ (0, 1/4) and ∆ε = ε
α
2 yields

1

ε∆
1/α
ε

∆εr
2
ε 6 ∆1−1/α

ε ε1−2ϑ = εα/2ε1/2−2ϑ → 0, as ε→ 0.

It remains to treat the second term on the right-hand side of (2.57). More precisely we
show

P
(

sup
06s6∆ε

|Xε
s (z)| > 2rε

)
→ 0, as ε→ 0. (2.58)

By Theorem 1 in [72], we have the following almost sure estimate

sup
06s6∆ε

|Xε
s (z)| 6 6

√
[Xε(z)]∆ε

+ 2

∫ ∆ε

0

Hε
s−(z)dXε

s (z),

where

Hε
s (z) =

Xε
s−(z)√

sup
06u6s

|Xε
u−(z)|2 + [Xε(z)]s−

.

Recall that by the Lévy-Itô decomposition [65], Chapter 4, the driving noise process
(Lt)t>0 under Hypotheses 3 has the following representation as Poisson random integrals

Lt =

∫
|z|61

zÑ(dsdz) +

∫
|z|>1

zN(dsdz),

where N is the Poisson random measure associated to the Lévy measure ν on Rd \ {0}
and Ñ is its compensated counterpart

Ñ([a, b]×A) = N([a, b]×A)− (b− a)ν(A), a < b, A ∈ B(Rd).

In particular, we have the representation of the quadratic variation of Xε given by

[Xε(z)]t = [L]t = ε2

∫ t

0

∫
|u|61

|u|2N(dsdu).

Furthermore, we have∫ t

0

Hε
s−(z)dXε

s (z) =

∫ t

0

〈Hε
s−(z),−b(Xε

s (z))〉ds

+

∫ t

0

∫
|u|61

〈Hε
s−(z), εu〉Ñ(dsdu) +

∫ t

0

∫
|u|>1

〈Hε
s−(z), εu〉N(dsdu).

Since b(0) = 0, Hypothesis 1 yields∫ t

0

〈Hε
s−(z),−b(Xε

s (z))〉ds 6 0, a.s.
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Hence

P
(

sup
06s6∆ε

|Xε
s (z)| > 2rε

)
6 P

(
6ε

√∫ ∆ε

0

∫
|u|61

|u|2N(dsdu)

+ 2

∫ ∆ε

0

∫
|u|61

〈Hε
s−(z), u〉Ñ(dsdu) + 2

∫ ∆ε

0

∫
|u|>1

〈Hε
s−(z), u〉N(dsdu) > 2rε

)
6 P

(
ε2

∫ ∆ε

0

∫
|u|61

|u|2N(dsdu) >
r2
ε

92

)
+ P

(∫ ∆ε

0

∫
|u|61

〈Hε
s−(z), εu〉Ñ(dsdu) >

1

3
rε

)
+ P

(∫ ∆ε

0

∫
|u|>1

〈Hε
s−(z), εu〉N(dsdu) >

1

3
rε

)
= P

(∫ ∆ε

0

∫
|u|61

|u|2N(dsdu) >
ε−2ϑ

92

)
+ P

(∫ ∆ε

0

∫
|u|61

〈Hε
s−(z), u〉Ñ(dsdu) >

1

3
ε−ϑ

)
+ P

(∫ ∆ε

0

∫
|u|>1

〈Hε
s−(z), u〉N(dsdu) >

1

3
ε−ϑ

)
.

We continue term by term. The first term on the right side of the preceding inequality
satisfies

P
(∫ ∆ε

0

∫
|u|61

|u|2N(dsdu) >
ε−2ϑ

92

)
6 92∆εε

2ϑ

∫
|u|61

|u|2ν(du)→ 0, as ε→ 0. (2.59)

The second term can be estimated as follows

P
(∫ ∆ε

0

∫
|z|61

〈Hε
s−(z), z〉Ñ(dsdz) >

1

3
ε−ϑ

)
6 9ε2ϑE

[( ∫ ∆ε

0

∫
|u|61

〈Hε
s−(z), u〉Ñ(dsdu

)2]
= 9ε2ϑE

[ ∫ ∆ε

0

∫
|u|61

〈Hε
s−(z), u〉2ν(du)ds

]
= 9ε2ϑ∆ε

∫
|u|61

|u|2ν(du)→ 0, as ε→ 0.

(2.60)

Finally, the third term is treated as follows. For β > 1 we have

P
(∫ ∆ε

0

∫
|u|>1

〈Hε
s−(z), u〉N(dsdu) >

1

3
ε−ϑ

)
6 P

(∫ ∆ε

0

∫
|u|>1

|u|N(dsdu) >
1

3
ε−ϑ

)
6 3εϑ∆ε

∫
|u|>1

|u|ν(du)→ 0, as ε→ 0.

(2.61)

For β ∈ (0, 1) we use the subadditivity of the root for sums of nonnegative terms (see
[63]), Markov’s inequality and Hypothesis 2 and obtain

P
(∫ ∆ε

0

∫
|u|>1

〈Hε
s−(z), u〉N(dsdu) >

1

3
ε−ϑ

)
6 P

(( ∫ ∆ε

0

∫
|u|>1

|u|N(dsdu)
)β
>

1

3β
ε−βϑ

)
6 P

(∫ ∆ε

0

∫
|u|>1

|u|βN(dsdu) >
1

3β
ε−βϑ

)
6 3βεβϑ∆ε

∫
|u|>1

|u|βν(du)→ 0, as ε→ 0.

(2.62)

This finishes the proof of Lemma 2.6.

2.3.3 Step 3: Strengthening Step 2 to ‖·‖TV by localization for α > 3/2

In this step we prove that G1 → 0, ε → 0. More precisely, we show for ∆ε = εα/2,
α ∈ (3/2, 2), β > 0 the following limit

lim
ε→0

∥∥∥Xε
∆ε

(Xε
Txε

(x))− Zε∆ε
(Xε

Txε
(x))

∥∥∥
TV

= 0. (2.63)
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Note that the scale and shift invariance property of the total variation imply∥∥Xε
∆ε

(z)− Zε∆ε
(z)
∥∥

TV

=

∥∥∥∥∥(Xε
∆ε

(z)− e−Db(0)∆εz

ε∆
1/α
ε

+ a0
ε

)
−
(Zε∆ε

(z)− e−Db(0)∆εz

ε∆
1/α
ε

+ a0
ε

)∥∥∥∥∥
TV

6

∥∥∥∥∥(Xε
∆ε

(z)− e−Db(0)∆εz

ε∆
1/α
ε

+ a0
ε

)
− U

∥∥∥∥∥
TV

−

∥∥∥∥∥(Zε∆ε
(z)− e−Db(0)∆εz

ε∆
1/α
ε

+ a0
ε

)
− U

∥∥∥∥∥
TV

(2.64)

By (2.53) it remains to prove the following result.

Proposition 6 (Nonlinear local short-time coupling). For α ∈ (3/2, 2) and β > 0 it follows

sup
|z|6rε

∥∥∥∥∥(Xε
∆ε

(z)− e−Db(0)∆εz

ε∆
1/α
ε

+ a0
ε

)
− U

∥∥∥∥∥
TV

→ 0, as ε→ 0, (2.65)

where a0
ε is given in Proposition 5, U

d
= Sα(Λ1) and rε = ε1−ϑ, ϑ ∈ (0, 1/4), defined below

(2.56).

The proof is given after the subsequent localization results. Note that (2.54) states
exactly (2.65) in distribution in a slightly different notation. In order to strengthen the
result to the total variation we apply the following consecutive localization procedures to
bounded jumps and a bounded vector field. The proof relies on the Plancherel isometry
and Fourier inversion. We stress that the following two lemmas are true in full generality,
that is, for any α ∈ (0, 2) and β > 0.

Lemma 2.7 (Jump size localization). Let

Tε := inf{t > 0 | |ε(Lt − Lt−)| > 1}, ε ∈ (0, 1). (2.66)

Then for any z ∈ Rd,

Xε,Tε
t (z) := Xε

t∧Tε(z) and Zε,Tεt (z) := Zεt∧Tε(z),

we have ∣∣∣∥∥Xε
∆ε

(z)− Zε∆ε
(z)
∥∥

TV
−
∥∥∥Xε,Tε

∆ε
(z)− Zε,Tε∆ε

(z)
∥∥∥

TV

∣∣∣ 6 2P(Tε 6 ∆ε).

In addition, β > 0 and Hypothesis 2 imply, for ε small enough,∣∣∣∥∥Xε
∆ε

(z)− Zε∆ε
(z)
∥∥

TV
−
∥∥∥Xε,Tε

∆ε
(z)− Zε,Tε∆ε

(z)
∥∥∥

TV

∣∣∣ 6 2∆εε
β . (2.67)

Proof. It is well-known that Tε and (Xε,Tε
t (z))t>0 are conditionally independent (as well

as Tε and (Zε,Tεt (z))t>0, respectively). Hence disintegration yields∥∥∥Xε,Tε
∆ε∧Tε(z)− Z

ε,Tε
∆ε∧Tε(z)

∥∥∥
TV

6
∫ ∞

0

E
[∥∥∥Xε,Tε

∆ε∧Tε(z)− Z
ε,Tε
∆ε∧Tε(z)

∥∥∥
TV

∣∣Tε = s
]
P(Tε ∈ ds)

=

∫ ∞
0

∥∥Xε
∆ε∧Tε(z)− Z

ε
∆ε∧Tε(z)

∥∥
TV
P(Tε ∈ ds)

=

∫ ∆ε

0

‖Xε
s (z)− Zεs (z)‖TV P(Tε ∈ ds) +

∥∥Xε
∆ε

(z)− Y ε∆ε
(z)
∥∥

TV

∫ ∞
∆ε

P(Tε ∈ ds)

6 P(Tε 6 ∆ε) +
∥∥Xε

∆ε
(z)− Zε∆ε

(z)
∥∥

TV
.
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On the other hand, we notice∥∥Xε
∆ε

(z)− Zε∆ε
(z)
∥∥

TV

6
∥∥∥Xε

∆ε
(z)−Xε,Tε

∆ε
(z)
∥∥∥

TV
+
∥∥∥Xε,Tε

∆ε
(z)− Zε,Tε∆ε

(z)
∥∥∥

TV
+
∥∥∥Zε,Tε∆ε

(z)− Zε∆ε
(z)
∥∥∥

TV

6 2P(Tε 6 ∆ε) +
∥∥∥Xε,Tε

∆ε
(z)− Zε,Tε∆ε

(z)
∥∥∥

TV
.

Consequently, it follows∣∣∣ ∥∥∥Xε,Tε
∆ε∧Tε(z)− Z

ε,Tε
∆ε∧Tε(z)

∥∥∥
TV
−
∥∥Xε

∆ε
(z)− Zε∆ε

(z)
∥∥

TV

∣∣∣ 6 2P(Tε 6 ∆ε). (2.68)

Finally we calculate

P(Tε 6 ∆ε) = 1− P(Tε > ∆ε) = 1− e−∆εν( 1
εB

c
1(0)). (2.69)

Since β > 0, Hypothesis 2 implies lim
r→∞

rβν(rBc1(0)) = 0, which yields

lim sup
ε→0

∆εν
(1

ε
Bc1(0)

)
6 lim sup

ε→0
εβ∆ε = 0. (2.70)

Combining (2.68)-(2.70) we obtain (2.67).

Since Tε > ∆ε with high probability, we can assume without loss of generality the
presence of only bounded jumps even in the total variation distance.

Lemma 2.8 (Spatial localization).
Let h ∈ C∞b (Rd, [0, 1]) be given by

h(ζ) =


1 for |ζ| 6 1,

∈ (0, 1) for 1 < |ζ| < 2,

0 for |ζ| > 2.

(2.71)

Consider the following localized solutions

dX̂ε
t (z) = −b(X̂ε

t (z))h(X̂ε
t (z))dt+ εdLt, X̂ε

0(z) = z,

dẐεt (z) = −Db(0)Ẑεt (z)h(Ẑεt (z))dt+ εdLt, Ẑε0(z) = z,

of (Xε
t )t>0 and (Zεt )t>0 defined in (2.51) and (2.52), respectively. Then for |z| < 1/2 we

have for all t > 0∣∣∣ ‖Xε
t (z)− Zεt (z)‖TV −

∥∥∥X̂ε
t (z)− Ẑεt (z)

∥∥∥
TV

∣∣∣ 6 P(τ̂ε(z) < t) + P(σ̂ε(z) < t), (2.72)

where

τ̂ε(z) = inf{s > 0 : |Xε
s (z)| > 1} and σ̂ε(z) = inf{s > 0 : |Zεs (z)| > 1}.

In particular, we have

lim
ε→0

∣∣∣ ∥∥Xε
∆ε

(z)− Zε∆ε
(z)
∥∥

TV
−
∥∥∥X̂ε

∆ε
(z)− Ẑε∆ε

(z)
∥∥∥

TV

∣∣∣ = 0. (2.73)

Proof. By the triangle inequality and the coupling representation of the total variation
distance, we have

‖Xε
t (z)− Zεt (z)‖TV 6

∥∥∥Xε
t (z)− X̂ε

t (z)
∥∥∥

TV
+
∥∥∥X̂ε

t (z)− Ẑεt (z)
∥∥∥

TV
+
∥∥∥Ẑεt (z)− Zεt (z)

∥∥∥
TV

6 P(Xε
t (z) 6= X̂ε

t (z)) +
∥∥∥X̂ε

t (z)− Ẑεt (z)
∥∥∥

TV
+ P(Zεt (z) 6= Ẑεt (z))

6 P(τ̂ε(z) < t) +
∥∥∥X̂ε

t (z)− Ẑεt (z)
∥∥∥

TV
+ P(σ̂ε(z) < t).
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Exchanging the roles of Xε
t (z) and Zεt (z) with X̂ε

t (z) and Ẑεt (z) yields (2.72). Since
∆ε → 0, we have

P
(
τ̂ε(z) < ∆ε

)
6 P

(
sup

s∈[0,∆ε]

|Xε
s (z)| > 1/2

)
which tends to zero due to (2.58). Analogously, the same result holds true for the linear
process (Zεs (z))t>0 and σε(z). This implies the desired result (2.73).

Remark 2.9.

1. We stress the following intentional abuse of notation. Lemma 2.7 yields that it is
enough to prove (2.65) for Xε being replaced by Xε,Tε . In other words, we may
assume that Xε has bounded jumps beforehand and consequently all polynomial
moments finite.

2. In addition, Lemma 2.8 allows us to consider bounded vector fields in the spirit of
Section 4 in [33]. That is to say, it is enough to prove (2.65) for Xε being replaced
by Xεt (z) = X̂ε,T ε

t (z).

3. We emphasize that due to Hypothesis 3, in particular, (1.9) the process (Xεt (z))t>0

is a strong Feller process with C1
b density fε. Since |fε|∞ <∞, we have fε ∈ L2(Rd).

See Theorem 1.1 and Theorem 1.3 in [73] for details.

Proof of Proposition 6: For simplicity we keep the same notation except for the driving
noise which we denote by L̃. We set

L̃t =

∫ t

0

∫
|u|61

uÑ(dsdu).

Note that since Ψt = eDb(0)t we have

Xε∆ε
(z)−Ψ−1

∆ε
z

ε∆
1/α
ε

+ a0
ε =

Dε(z)

ε∆
1/α
ε

+
1

∆
1/α
ε

Uε + a0
ε, (2.74)

where

Uε := Ψ−1
∆ε

∫ ∆ε

0

ΨsdL̃s, Dε(z) := Ψ−1
∆ε

∫ ∆ε

0

Ψsb̃(X
ε
s(z))ds

and b̃(x) = b(x)h(x) − Db(0)x, x ∈ Rd, where h is given in (2.71). Note that the limit
(2.56) is shown for Xε. It is easily seen – going through the proof of Lemma 2.6 line by
line – that with the help of (2.74) the limit (2.54) remains valid for Xε being replaced by
Xε, i.e.,

Xε∆ε
(z)−Ψ−1

∆ε
z

ε∆
1
α
ε

+ a0
ε

d−→ Sα(Λ1), as ε→ 0. (2.75)

Recall

Xεt (z) = Ψ−1
t z −Ψ−1

t

∫ t

0

Ψsb̃(X
ε
s(z))ds+ εΨ−1

t

∫ t

0

ΨsdL̃s,

and set X εt (z) = Xεt (z)−Ψ−1
t z which satisfies

X εt (z) = −Ψ−1
t

∫ t

0

Ψsb̃(X εs (z) + Ψ−1
s z)ds+ εΨ−1

t

∫ t

0

ΨsdL̃s. (2.76)

In the sequel, we strengthen the convergence of (2.75) to the convergence in the total
variation distance. Since L̃ has absolutely continuous marginals and Xε∆ε

is a continuous
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push-forward of L̃, it retains the absolute continuity property. In addition, it is not hard
to see that Lemma 1.7 yields a C∞-density for Sα(Λ1). Hence it is enough to prove∫

Rd
|fε(u)− f0(u)|du→ 0, as ε→ 0,

where fε is the density of X ε∆ε (z)/(ε∆
1
α
ε ) + aε and f0 is the density of Sα(Λ1). By Scheffé’s

lemma for densities it is sufficient show that fε → f0, as ε → 0, Lebesgue almost
everywhere in Rd. For this sake, it is sufficient to prove that∫

Rd
|fε(u)− f0(u)|2du→ 0, as ε→ 0.

Since fε, f0 ∈ L2(Rd), by Plancherel’s identity we have a positive constant Cπ such that∫
Rd
|fε(u)− f0(u)|2du = Cπ

∫
Rd
|f̂ε(θ)− f̂0(θ)|2dθ.

Since the weak convergence (2.75) implies that f̂ε → f̂0 uniformly on compacts, we have
for any K > 0

lim sup
ε→0

∫
Rd
|f̂ε(θ)− f̂0(θ)|2dθ 6 lim sup

ε→0

∫
|θ|>K

|f̂ε(θ)− f̂0(θ)|2dθ

6 2 lim sup
ε→0

∫
|θ|>K

|f̂ε(θ)|2dθ + 2

∫
|θ|>K

|f̂0(θ)|2dθ.

The exponential decay of f̂0 yields f̂0 ∈ L2(Rd). Sending K to infinity we deduce that

lim sup
ε→0

∫
Rd
|f̂ε(θ)− f̂0(θ)|2dθ 6 2 lim sup

K→∞
lim sup
ε→0

∫
|θ|>K

|f̂ε(θ)|2dθ. (2.77)

In order to conclude, it remains to show that the right-hand side of the preceding
inequality is 0. Recall the differential version of (2.76)

dX εt (z) = −Db(0)X εt (z)dt− b̃(X εt (z) + Ψ−1
t z)dt+ εdL̃t

with initial datum X ε0 (z) = 0. In the sequel, we calculate φt(θ) := E
[
ei〈θ,X

ε
t (z)〉]. Itô’s

formula yields

exp
(
i〈θ,X εt (z)〉

)
= 1 +

∫ t

0

exp
(
i〈θ,X εs (z)〉

)
i〈θ,−Db(0)X εs (z)− b̃(X εs (z) + Ψ−1

s z)〉ds

+

∫ t

0

∫
|z|61

(
exp

(
i〈θ,X εs−(z) + εu〉

)
− exp(

(
i〈θ,X εs−(z)〉

))
Ñ(dsdu)

+

∫ t

0

exp
(
i〈θ,X εs−(z)〉

)∫
|z|61

(
exp

(
i〈θ, εu〉

)
− 1− i〈θ, εu〉

)
ν(du)ds.

Since the process Xε has finite first moment, taking expectation and using Fubini’s
theorem we obtain

φt(θ) = E
[

exp
(
i〈θ,X εt (z)〉

)]
= 1 +

∫ t

0

E
[

exp
(
i〈θ,X εs (z)〉

)
i〈θ,−Db(0)X εs (z)− b̃(X εs (z) + Ψ−1

s z)〉
]
ds

+

∫ t

0

E
[

exp
(
i〈θ,X εs−(z)〉

)∫
|z|61

(
exp

(
i〈θ, εu〉

)
− 1− i〈θ, εu〉

)
ν(du)

]
ds.
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Note that

ψ(εθ) =

∫
Rd

(
exp

(
i〈θ, εu〉

)
− 1− i〈θ, εu〉

)
ν(du),

where ψ is the characteristic exponent of the Lévy measure ν. We set θε := θ/(ε∆
1
α
ε ) for

|θ| > K. For the real and the imaginary part of φt(θ) we have the equalities

E
[

cos
(
〈θε,X εt (z)〉

)]
= 1−

∫ t

0

E
[

sin
(
〈θε,X εs (z)〉

)
〈θε,−Db(0)X εs (z)− b̃(X εs (z) + Ψ−1

s z)〉
]
ds

+ Reψ(εθε)

∫ t

0

E
[

cos
(
〈θε,X εs (z)〉

)]
ds− Imψ(εθε)

∫ t

0

E
[

sin
(
〈θε,X εs (z)〉

)]
ds

and

E
[

sin
(
〈θε,X εt (z)〉

)]
= 1 +

∫ t

0

E
[

cos
(
〈θε,X εs (z)〉

)
〈θε,−Db(0)X εs (z)− b̃(X εs (z) + Ψ−1

s z)〉
]
ds

+ Reψ(εθε)

∫ t

0

E
[

sin
(
〈θε,X εs (z)〉

)]
ds+ Imψ(εθε)

∫ t

0

E
[

cos
(
〈θε,X εs (z)〉

)]
ds.

The chain rule for the respective differential forms reads as follows

d

dt

(
E
[

cos
(
〈θε,X εt (z)〉

)])2

= 2E
[

cos
(
〈θε,X εt (z)〉

)] d

dt
E
[

cos
(
〈θε,X εt (z)〉

)]
= −2E

[
cos
(
〈θε,X εt (z)〉

)]
E
[

sin
(
〈θε,X εt (z)〉

)
〈θε,−Db(0)X εt (z)− b̃(X εt (z) + Ψ−1

t z)〉
]

+ 2Reψ(εθε)
(
E
[

cos
(
〈θε,X εt (z)〉

)])2

− 2Imψ(εθε)E
[

cos
(
〈θε,X εt (z)〉

)]
E
[

sin
(
〈θε,X εt (z)〉

)]
,

with
(
E
[

cos
(
〈θε,X ε0 (z)〉

)])2

= 1 and

d

dt

(
E
[

sin
(
〈θε,X εt (z)〉

)])2

= 2E
[

cos
(
〈θε,X εt (z)〉

)] d

dt
E
[

cos
(
〈θε,X εt (z)〉

)]
= 2E

[
sin
(
〈θε,X εt (z)〉

)]
E
[

cos
(
〈θε,X εt (z)〉

)
〈θε,−Db(0)X εt (z)− b̃(X εt (z) + Ψ−1

t z)〉
]

+ 2Reψ(εθε)
(
E
[

sin
(
〈θε,X εt (z)〉

)])2

+ 2Imψ(εθε)E
[

sin
(
〈θε,X εt (z)〉

)]
E
[

cos
(
〈θε,X εt (z)〉

)]
,

with
(
E
[

sin
(
〈θε,X ε0 (z)〉

)])2

= 0. We sum up the preceding equations and obtain

d

dt
|φt(θε)|2 = 2Reψ(εθε)|φt(θε)|2

− 2E
[

cos
(
〈θε,X εt (z)〉

)]
E
[

sin
(
〈θε,X εt (z)〉

)
〈θε,−Db(0)X εt (z)− b̃(X εt (z) + Ψ−1

t z)〉
]

+ 2E
[

sin
(
〈θε,X εt (z)〉

)]
E
[

cos
(
〈θε,X εt (z)〉

)
〈θε,−Db(0)X εt (z)− b̃(X εt (z) + Ψ−1

t z)〉
]
.

We start with the first term on the right-hand side. By |θ| > K and Lemma 1.7 we have
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for small ε (where the smallness of ε only depends of K and C^) the estimate

Reψ(εθε) =

∫
|u|61

(
cos
(〈 θ

∆
1/α
ε

, u
〉)
− 1
)
ν(du)

6
∫
|〈 θ

∆
1/α
ε

,u〉|61

|u|61

(
cos
(〈 θ

∆
1/α
ε

, u
〉)
− 1
)
ν(du)

6 − 2

π2

∫
|〈 θ

∆
1/α
ε

,u〉|61

|u|61

∣∣∣〈 θ

∆
1/α
ε

, u
〉∣∣∣2ν(du) 6 − 2

π2
c^

∣∣∣ θ

∆
1/α
ε

∣∣∣α = −C |θ|
α

∆ε
.

We continue with the second term. Recall that α ∈ (3/2, 2). By the Cauchy-Schwarz
inequality and the classical Young inequality for p = p∗ = 2 we have∣∣∣− 2E

[
cos
(
〈θε,X εt (z)〉

)]
E
[

sin
(
〈θε,X εt (z)〉

)
〈θε,−Db(0)X εt (z)− b̃(X εt (z) + Ψ−1

t z)〉
]∣∣∣

6 2
∣∣E[ cos

(
〈θε,X εt (z)〉

)]∣∣ |εθε|3/4 |θε|1/4
ε3/4

E
[
| −Db(0)X εt (z)− b̃(X εt (z) + Ψ−1

t z)|
]

6 |εθε|3/2 E
[

cos
(
〈θε,X εt (z)〉

)]2
+
|θε|1/2

ε3/2
E
[
| −Db(0)X εt (z)− b̃(X εt (z) + Ψ−1

t z)|
]2
.

For the third term we infer analogously∣∣∣2E[ sin
(
〈θε,X εt (z)〉

)]
E
[

cos
(
〈θε,X εt (z)〉

)
〈θε,−Db(0)X εt (z)− b̃(X εt (z) + Ψ−1

t z)〉
]∣∣∣

6 |εθε|3/2 E
[

sin
(
〈θε,X εt (z)〉

)]2
+
|θε|1/2

ε3/2
E
[
| −Db(0)X εt (z)− b̃(X εt (z) + Ψ−1

t z)|
]2
.

Since α ∈ (3/2, 2) we obtain for sufficiently small ε and |θ| > K

Reψ(εθε) + |εθε|3/2 6 −2C|εθε|α + |εθε|3/2 6 −C |θ|
α

∆ε
.

Therefore for |θ| > K and ε small enough we have the following differential inequality

d

dt
|φt(θε)|2 6

(
Reψ(εθε) + |εθε|3/2

)
|φt(θε)|2

+ 2
|θε|1/2

ε3/2
E
[
| −Db(0)X εt (z)− b̃(X εt (z) + Ψ−1

t z)|
]2

6 −C |θ|
α

∆ε
|φt(θε)|2 + 2

|θε|1/2

ε3/2
E
[
| −Db(0)X εt (z)− b̃(X εt (z) + Ψ−1

t z)|
]2
.

In the sequel, we dominate the term E
[
| −Db(0)X εt (z)− b̃(X εt (z) + Ψ−1

t z)|
]2

. Recall the

definition of b̃(x) = b(x)h(x)−Db(0)x, x ∈ Rd, where h is given in (2.71). Note that

−Db(0)X εt (z)− b̃(X εt (z) + Ψ−1
t z)

= −Db(0)X εt (z)− b(X εt (z) + Ψ−1
t z)h(X εt (z) + Ψ−1

t z) +Db(0)(X εt (z) + Ψ−1
t z)

= −b(X εt (z) +Db(0)Ψ−1
t z)h(X εt (z) + Ψ−1

t z) +Db(0)Ψ−1
t z.

Since X εt (z) = Xεt (z)−Ψ−1
t z, (2.58) implies

lim
ε→0

P
(

sup
s∈[0,∆ε]

|X εs (z) +Db(0)Ψ−1
s z| > 2rε

)
= lim
ε→0

P
(

sup
s∈[0,∆ε]

|X εs (z)| > 2rε

)
= 0

for |z| 6 rε for sufficiently small ε. Taylor’s theorem combined with the jump size and
spatial localizations yields for ε sufficiently small

sup
s∈[0,∆ε]

E
[∣∣∣−Db(0)X εs (z)− b̃(X εs (z) + Ψ−1

s z)h(X εs (z) + Ψ−1
s z)

∣∣∣]2 6 C2r
2
ε ,
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where C2 > 0 only depends max|u|62 |b(u)|, max|u|62 |Db(u)| and max|u|62 |D2b(u)|. Hence
the variation of constants formula yields

|φ∆ε
(θε)|2 6 e−C

|θ|α
∆ε

∆ε1 + C2ε
2(1−ϑ) |θε|1/2

ε3/2
e−C

|θ|α
∆ε

∆ε

∫ ∆ε

0

eC
|θ|α
∆ε

sds

= e−C|θ|
α

+ C3
∆

1− 1
2α

ε

ε−2ϑ|θ|α− 1
2

(
1− e−C

|θ|α
∆ε

∆ε

)
6 e−C|θ|

α

+ C3
∆

1− 1
2α

ε

ε−2ϑ|θ|α− 1
2

. (2.78)

Note that the shift a0
ε does not change the modulus of f̂ε(θ) and hence the integrability

in θ. The parameter value α ∈ (3/2, 2) implies that∫
|θ|>K

|f̂ε(θ)|2dθ 6
∫
|θ|>K

e−C|θ|
α

dθ + 2C3
∆

1− 1
2α

ε

ε−2ϑ

∫
|θ|>K

1

|θ|α− 1
2

dθ <∞.

Since ∆ε = ε
α
2 we have the desired limit (2.77) for any |z| 6 rε

lim
K→∞

lim sup
ε→0

∫
|θ|>K

|f̂ε(θ)|2dθ 6 lim
K→∞

∫
|θ|>K

e−C|θ|
α

dθ = 0.

In order to see the uniformity we refer to the continuity of the map

z 7→

∥∥∥∥∥Xε
∆ε

(z)−Ψ−1
∆ε
z

ε∆
1/α
ε

+ a0
ε − U

∥∥∥∥∥
TV

.

That is, the supremum is taken at some value zε such that

sup
|z|6rε

∥∥∥∥∥Xε
∆ε

(z)−Ψ−1
∆ε
z

ε∆
1/α
ε

+ a0
ε − U

∥∥∥∥∥
TV

=

∥∥∥∥∥Xε
∆ε

(zε)−Ψ−1
∆ε
zε

ε∆
1/α
ε

+ a0
ε − U

∥∥∥∥∥
TV

.

In the previous calculation the only property of z we use is that |z| 6 rε. Hence all
previous results remain valid for z being replaced by zε. This finishes the proof of
Proposition 6.

Proof of Proposition 2: The proof consists of the domination of the error terms G1 and
G2 in (2.39). The result of Subsubsection 2.3.1 is the convergence G2 → 0 as ε→ 0. The
term G1 is estimated by inequality (2.49) whose right-hand side is dominated by the
terms given in (2.50), Proposition 5 and Proposition 6, all of which tend to 0 as ε → 0.
This finishes the proof of Proposition 2.

2.4 Inhomogeneous O-U approximation of the limiting distribution (Prop. 4)

Proof of Proposition 4: Let x0 ∈ Rd and t > 0. The triangle inequality yields

‖µε − µε∗‖TV

6 ‖µε −Xε
t (x0)‖TV + ‖Xε

t (x0)− Y ε,x0(t; 0, x0)‖TV + ‖Y ε,x0(t; 0, x0)− µε∗‖TV .
(2.79)

Here, we estimate the first-term of the right-hand side of inequality (2.79). By disinte-
gration and the invariance property of µε it follows

‖µε −Xε
t (x0)‖TV 6

∫
Rd
‖Xε

t (u)−Xε
t (x0)‖TV µ

ε(du).

Let sε � tx0
ε for sufficiently small ε. The triangle inequality for the total variation distance

implies∫
Rd

∥∥Xε
sε(u)−Xε

sε(x0)
∥∥

TV
µε(du) 6

∫
Rd

∥∥Xε
sε(u)− Y ε,u(sε; 0, u)

∥∥
TV

µε(du)

+

∫
Rd
‖Y ε,u(sε; 0, u)− Y ε,x0(sε; 0, x0)‖TV µ

ε(du) +
∥∥Y ε,x0(sε; 0, x0)−Xε

sε(x0)
∥∥

TV
.
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Since the total variation distance is bounded by one, we have for any K > 0∫
Rd

∥∥Xε
sε(u)− Y ε,u(sε; 0, u)

∥∥
TV

µε(du)

6
∫
|u|6K

∥∥Xε
sε(u)− Y ε,u(sε; 0, u)

∥∥
TV

µε(du) + µε(|u| > K)

and ∫
Rd
‖Y ε,u(sε; 0, u)− Y ε,x0(sε; 0, x0)‖TV µ

ε(du)

6
∫
|u|6K

‖Y ε,u(sε; 0, u)− Y ε,x0(sε; 0, x0)‖TV µ
ε(du) + µε(|u| > K).

Combining the preceding inequalities with inequality (2.79) we obtain

‖µε − µε∗‖TV 6 I1 + 2I2 + 2I3 + I4 + I5, (2.80)

where

I1 := ‖Y ε,x0(sε; 0, x0)− µε∗‖TV , I2 :=
∥∥Y ε,x0(sε; 0, x0)−Xε

sε(x0)
∥∥

TV
,

I3 := µε(|u| > K), I4 :=

∫
|u|6K

∥∥Xε
sε(u)− Y ε,u(sε; 0, u)

∥∥
TV

µε(du) and

I5 :=

∫
|u|6K

‖Y ε,u(sε; 0, u)− Y ε,x0(sε; 0, x0)‖TV µ
ε(du),

for any x0 ∈ Rd and sε � tx0
ε for sufficiently small ε > 0. The remainder of the proof

consists of showing that each of the terms Ii → 0 as ε→ 0, i = 1, . . . , 5.

Estimates for I1 in (2.80). Let x0 6= 0. By Proposition 1 we have

lim
ε→0
‖Y ε,x0(sε; 0, x0)− µε∗‖TV = 0 for any sε � tx0

ε , as ε→ 0. (2.81)

By (2.1) and Lemma C.2 in Appendix C we have that for any K > 0

lim
ε→0

sup
|x0|6K

‖Y ε,x0(sε; 0, x0)− µε∗‖TV = 0 for any sε � ln(1/ε) as ε→ 0.

Estimates for I2 in (2.80). We estimate the second term as follows∥∥Xε
sε(x0)− Y ε,x0(sε; 0, x0)

∥∥
TV

6
∥∥Xε

∆ε
(Xε

sε−∆ε
(x0))− Y ε,x0(∆ε; sε −∆ε, X

ε
sε−∆ε

(x0))
∥∥

TV

+
∥∥Y ε,x0(∆ε; sε −∆ε, X

ε
sε−∆ε

(x0))− Y ε,x0(∆ε; sε −∆ε, Y
ε,x0(sε −∆ε; 0, x0))

∥∥
TV

.

(2.82)

By Proposition B.1 in Appendix B our estimates in the previous sections remain valid up
to times of order ε−ϑ for some ϑ > 0. In the sequel, we set sε := ln2(ε).

We start with the second term on the right-hand side of (2.82) and lighten the notation.
By Proposition B.1 it is not hard to see that Lemma 2.4 remains valid for

z = Xε
sε−∆ε

(x0) and z̃ = Y ε,x0(sε −∆ε; 0, x0).

For the convenience of the reader, we restate it here.

Lemma 2.10. Let γε = ∆ε
−1/α, where ∆ε = εα/2. Then

lim
ε→0

Pε(γε|z − z̃| > ηε) = 0 for any η > 0, (2.83)

for the joint distribution Pε(du,dũ) = P
(
Xε
sε−∆ε

(x0) ∈ du, Y ε,x0(sε −∆ε; 0, x0) ∈ dũ
)
.
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By (2.29), (2.30), Proposition 5 and the application the preceding statement to (2.36)
we deduce

lim
ε→0

∥∥Y ε,x0(∆ε; sε −∆ε, X
ε
sε−∆ε

(x0))− Y ε,x0(∆ε; sε −∆ε, Y
ε,x0(sε −∆ε, 0, x0))

∥∥
TV

= 0.

In the sequel, we continue with the first term on the right-hand side of (2.82). By
Corollary D.5 in Appendix D we have for any η > 0, ϑ ∈ (0, 1) and K > 0

lim
ε→0

sup
|x0|6K

P(|Xε
sε−∆ε

(x0)| > ηrε) = 0.

Since sε −∆ε � tx0
ε , it is straightforward to see that the limit (2.63) remains valid for T xε

being replaced by sε −∆ε. Consequently, we have

lim
ε→0

∥∥Xε
∆ε

(Xε
sε−∆ε

(x0))− Y ε,x0(∆ε; sε −∆ε, X
ε
sε−∆ε

(x0))
∥∥

TV
= 0.

Estimates for I3 in (2.80). By Corollary D.4 in Appendix D we have for all β′ 6 β ∧ 1 a
positive constant C such that

E[|Xε
t (x)|β

′
] 6 Cεβ

′
+ |ϕxt |β

′
6 Cεβ

′
+ e−δβ

′t|x|β
′

for t > 0, x ∈ Rd.

Let n ∈ N. Then

E[|Xε
t (x)|β

′
∧ n] 6 e−δβ

′t|x|β
′
∧ n+ Cεβ

′
∧ n for t > 0, x ∈ Rd.

Since µε is stationary, we estimate for all t > 0∫
Rd

(|u|β
′
∧ n)µε(du) =

∫
Rd
E[|Xε

t (u)|β
′
∧ n]µε(du)

6
∫
Rd

(e−δβ
′t|u|β

′
∧ n)µε(du) + Cεβ

′
∧ n.

By the dominated convergence theorem we infer

lim
t→∞

∫
Rd

(e−δβ
′t|u|β

′
∧ n)µε(du) = 0 for all n ∈ N, ε ∈ (0, 1].

Therefore, we have for all n ∈ N such n > Cε∫
Rd

(|u|β
′
∧ n)µε(du) 6 Cεβ

′
∧ n 6 Cεβ

′
.

By the monotone convergence theorem we obtain∫
Rd
|u|β

′
µε(du) 6 Cεβ

′
. (2.84)

The Markov inequality and (2.84) imply

µε(|u| > K) 6

∫
Rd
|u|β′µε(du)

Kβ′
6
Cεβ

′

Kβ′
.

Estimates for I5 in (2.80). We start with the triangle inequality∫
|u|6K

‖Y ε,u(sε; 0, u)− Y ε,x0(sε; 0, x0)‖TV µ
ε(du)

6 sup
|u|6K

‖Y ε,u(sε; 0, u)− µε∗‖TV + ‖µε∗ − Y ε,x0(sε; 0, x0)‖TV .
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The second term of the preceding inequality is equal to I1 and tends to 0 as ε→ 0. By
(2.1) and since in Lemma C.3, Item (1), in Appendix C it is shown that µ∗ε is the law of
εZ∞ we have

‖Y ε,u(sε; 0, u)− µε∗‖TV 6 ‖Y ε,u(sε; 0, u)− Z∞‖TV + ‖ϕusε/ε + Z∞ − Z∞‖TV

for any u ∈ Rd. We start with the first term. By Lemma C.4 in Appendix C we have

lim
ε→0

sup
|u|6K

‖Y ε,u(sε; 0, u)− Z∞‖TV = 0.

We treat the second term. Let η > 0. By the shift-continuity of L1 distance yields that
there exists ρ := ρ(η) > 0 such that

‖u+ Z∞ − Z∞‖TV 6 η whenever |u| 6 ρ.

Note that for |u| 6 K we have

∣∣ϕusε
ε

∣∣ 6 e−δsε |u|
ε

6
e−δsεK

ε
< ρ for sufficiently small ε.

Therefore

lim sup
ε→0

∫
|u|6K

∥∥∥∥ϕusεε + Z∞ − Z∞
∥∥∥∥

TV

µε(du) 6 η,

and consequently

lim
ε→0

∫
|u|6K

∥∥∥∥ϕusεε + Z∞ − Z∞
∥∥∥∥

TV

µε(du) = 0.

Estimates for I4 in (2.80). Note that∥∥Xε
sε(x)− Y ε,x(sε; 0, x)

∥∥
TV

6
∥∥Xε

∆ε
(Xε

sε−∆ε
(x))− Y ε,x(∆ε; sε −∆ε, X

ε
sε−∆ε

(x))
∥∥

TV
(2.85)

+
∥∥Y ε,x(∆ε; sε −∆ε, X

ε
sε−∆ε

(x))− Y ε,x(∆ε; sε −∆ε, Y
ε,x(sε −∆ε; 0, x))

∥∥
TV

.

We start with the first term. Recall that rε = ε1−ϑ for ϑ ∈ (0, 1/4). By disintegration we
have Pxε (dz) = P(Xε

sε−∆ε
(x) ∈ dz)∫

|u|6K

∥∥Xε
∆ε

(Xε
sε−∆ε

(u))− Y ε,u(∆ε; sε −∆ε, X
ε
sε−∆ε

(u))
∥∥

TV
µε(du)

6
∫
|u|6K

∫
|z|62rε

∥∥Xε
∆ε

(z)− Y ε,u(∆ε; sε −∆ε, z)
∥∥

TV
Puε (dz)µε(du)

+ sup
|u|6K

P(|Xε
sε−∆ε

(u))| > 2rε)

6 sup
|u|6K

sup
|z|62rε

∥∥Xε
∆ε

(z)− Y ε,u(∆ε; sε −∆ε, z)
∥∥

TV
+ sup
|u|6K

P(|Xε
sε−∆ε

(u)| > 2rε)

=
∥∥Xε

∆ε
(zε)− Y ε,uε(∆ε; sε −∆ε, zε)

∥∥
TV

+ sup
|u|6K

P(|Xε
sε−∆ε

(u)| > 2rε)

for some |uε| 6 K and |zε| 6 2rε. The right-hand side of the preceding inequality tends
to zero, as ε→ 0. This is due to Proposition 2 and Corollary D.5 in Appendix D.

We continue with the second term on the right-hand side of (2.85). Let

Puε (dz,dz̃) = P(Xε
sε−∆ε

(u) ∈ dz, Y ε,u(sε −∆ε; 0, u) ∈ dz̃).
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Using the shift continuity (2.33) we fix ρ and choose η > 0 accordingly. Again, by
disintegration we have∫
|u|6K

∥∥Y ε,u(∆ε; sε −∆ε, X
ε
sε−∆ε

(u))− Y ε,u(∆ε; sε −∆ε, Y
ε,u(sε −∆ε; 0, u))

∥∥
TV

µε(du)

6
∫

|u|6K

∫
|z−z̃|6ηε∆1/α

ε ,
|z|62rε,|z̃|62rε

‖Y ε,u(∆ε; sε −∆ε, z)− Y ε,u(∆ε; sε −∆ε, z̃)‖TV P
u
ε (dz,dz̃)µε(du)

+ sup
|u|6K

P(|Xε
sε−∆ε

(u)− Y ε,u(sε −∆ε, u, 0)| > ηε∆1/α
ε )

+ sup
|u|6K

P(|Xε
sε−∆ε

(u)| > 2rε) + sup
|u|6K

P(|Y ε,u(sε −∆ε; 0, u)| > 2rε). (2.86)

where the first term on the right-hand side is estimated by

sup
|u|6K

sup
|z−z̃|6ηε∆1/α

ε ,
|z|62rε,|z̃|62rε

‖Y ε,u(∆ε; sε −∆ε, z)− Y ε,u(∆ε; sε −∆ε, z̃)‖TV . (2.87)

We prove that the right-hand sides of (2.86) and (2.87) tend to zero, as ε → 0. Due to
limit (2.83) it follows

lim
ε→0

sup
|u|6K

P(|Xε
sε−∆ε

(u)− Y ε,u(sε −∆ε, u, 0)| > ηε∆1/α
ε ) = 0.

By Corollary D.5 in Appendix D and a straightforward adaptation for the linearization
Y ε,u, we have

lim
ε→0

sup
|u|6K

P(|Xε
sε−∆ε

(u)| > 2rε) = lim
ε→0

sup
|u|6K

P(|Y ε,u(sε −∆ε; 0, u)| > 2rε) = 0.

We continue with the term (2.87)

sup
|u|6K

sup
|z−z̃|6ηε∆1/α

ε ,
|z|62rε,|z̃|62rε

‖Y ε,u(∆ε; sε −∆ε, z)− Y ε,u(∆ε; sε −∆ε, z̃)‖TV .

By (2.38) we have

Y ε,u(∆ε; sε −∆ε, z) = (Φε∆ε
(u))−1z

+ (Φε∆ε
(u))−1

∫ ∆ε

0

Φεs(u)
(
Db(ϕusε−∆ε+s)ϕ

u
sε−∆ε+s − b(ϕ

u
sε−∆ε+s)

)
ds+ εUε.

By the shift and scale invariance of the total variation distance we obtain

‖Y ε,u(∆ε; sε −∆ε, z)− Y ε,u(∆ε; sε −∆ε, z̃)‖TV

=
∥∥(Φε∆ε

(u))−1z + εUε)− (Φε∆ε
(u))−1z̃ + εUε)

∥∥
TV

=
∥∥∥((Φε∆ε

(u))−1(z − z̃) + εUε

)
− εUε

∥∥∥
TV

=

∥∥∥∥( (Φε∆ε
(u))−1(z − z̃)
ε∆

1/α
ε

+
Uε

∆
1/α
ε

+ auε

)
−
( Uε

∆
1/α
ε

+ auε

)∥∥∥∥
TV

.
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Hence

‖Y ε,u(∆ε; sε −∆ε, z)− Y ε,u(∆ε; sε −∆ε, z̃)‖TV

6

∥∥∥∥( (Φε∆ε
(u))−1(z − z̃)
ε∆

1/α
ε

+
Uε

∆
1/α
ε

+ auε

)
−
( (Φε∆ε

(u))−1(z − z̃)
ε∆

1/α
ε

+ U
)∥∥∥∥

TV

+

∥∥∥∥( (Φε∆ε
(u))−1(z − z̃)
ε∆

1/α
ε

+ U
)
− U

∥∥∥∥
TV

+

∥∥∥∥U − ( Uε

∆
1/α
ε

+ auε

)∥∥∥∥
TV

= 2

∥∥∥∥U − ( Uε

∆
1/α
ε

+ auε

)∥∥∥∥
TV

+

∥∥∥∥( (Φε∆ε
(u))−1(z − z̃)
ε∆

1/α
ε

+ U
)
− U

∥∥∥∥
TV

,

where U
d
= Sα(Λ1). Proposition 5 yields

lim
ε→0

sup
|u|6K

∥∥∥∥U − ( Uε

∆
1/α
ε

+ auε

)∥∥∥∥
TV

= 0.

It remains to show for η > 0

sup
|u|6K

sup
|z−z̃|6ηε∆1/α

ε ,
|z|62rε,|z̃|62rε

∥∥∥∥( (Φε∆ε
(u))−1(z − z̃)
ε∆

1/α
ε

+ U
)
− U

∥∥∥∥
TV

. (2.88)

Recall that (2.33) implies that ∣∣∣ (Φε∆ε
(u))−1(z − z̃)
ε∆

1/α
ε

∣∣∣ 6 √dη
yields that (2.88) is bounded from above by ρ. Sending first ε→ 0 and then ρ→ 0 yields
the limit of (2.88) equals 0.

By (A.3) we have for |z − z̃| 6 ηε∆
1
α
ε that∣∣∣ (Φε∆ε

(u))−1(z − z̃)
ε∆

1/α
ε

∣∣∣ 6 √dη.
Hence I4 → 0 as ε→ 0. This completes the proof of Proposition 4.

A The deterministic dynamics

This section gathers all results concerning the deterministic fine dynamics of the
solution ϕxt of (1.3) under Hypothesis 1. The following lemma is of interest since it shows
that the time scale txε yields an estimate on the deterministic dynamics with of order
exactly ε.

Lemma A.1. Let ∆ε > 0 such that lim
ε→0

∆ε = 0. Let ρ ∈ R we define T xε = txε −∆ε + ρ ·wxε ,

where txε and wxε are given in Theorem 2. Then there exists a positive constant C(|x|, ρ)

that depends continuously on |x| such that |ϕxTxε | 6 C(|x|, ρ)ε.

Proof. By Lemma 1.1 we have

lim
t→∞

∣∣∣∣ eλxtt`x−1
ϕxτx+t − v(t, x)

∣∣∣∣ = 0, (A.1)

where v(t, x) =
∑m
k=1 e

iθkxtvkx. A straightforward calculation shows that

lim
ε→0

(T xε )`x−1e−λxT
x
ε

ε
= λ1−`x

x e−ρ. (A.2)
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Then the triangle inequality yields

|ϕxTxε | 6 |ϕ
x
Txε
− (T xε )`x−1e−λxT

x
ε v(T xε , x)|+ (T xε )`x−1e−λxT

x
ε |v(T xε , x)|

= (T xε )`x−1e−λxT
x
ε

∣∣∣∣∣e
λxT

x
ε ϕxTxε

(T xε )`x−1
− v(T xε , x)

∣∣∣∣∣+ (T xε )`x−1e−λxT
x
ε |v(T xε , x)| 6 C(|x|, ρ)ε,

where the last inequality follows from limit (A.1) and limit (A.2).

The following strong version of the Grönwall-Bellman lemma frequently used and
given for completeness.

Lemma A.2 (Grönwall-Bellman inequality).
Let T > 0 be fixed. Let g : [0, T ]→ R be a C1-function and h : [0, T ]→ R be continuous. If

d

dt
g(t) 6 −ag(t) + h(t) for any t ∈ [0, T ],

where a ∈ R, and the derivative at 0 and T are understanding as the right and left
derivatives, respectively. Then

g(t) 6 e−atg(0) + e−at
∫ t

0

eash(s)ds for any t ∈ [0, T ].

Moreover, if a 6= 0 we have

|g(t)| 6 e−at|g(0)|+ (1− e−at)
a

max
s∈[0,t]

|h(s)| for any t ∈ [0, T ].

For the proof, see for instance Theorem 1.3.3 page 15 of [59]. Due to the variation of
constants formula, the proof of linear cutoff relies essentially on precise norm estimates
of the homogeneous and inhomogeneous linear solution flow, which are gathered in the
following lemma.

Lemma A.3. Let (ϕxt )t>0 be the solution of (1.6). We consider for any fixed T > 0 the
solution Φ = (Φt(x))t>0 of the matrix differential equation

d

dt
Φt = ΦtDb(ϕ

x
T+t) with Φ0 = Id,

the solution Ψ = (Ψt)t>0 of the matrix differential equation

d

dt
Ψt = ΨtDb(0) with Ψ0 = Id

and the standard matrix 2-norm | · |. Then the following statements are valid for any
0 6 s 6 t.

i) It follows

|Φ∗s(x)(Φ−1
t (x))∗| 6

√
de−δ(t−s) and |Ψ∗s(Ψ−1

t )∗| 6
√
de−δ(t−s). (A.3)

ii) For C(|x|) = max
|u|6|x|

|Db(u)| we have

|Φ∗t (x)(Φ−1
s (x))∗| 6

√
de−C(|x|)(t−s) and |Ψ∗t (Ψ−1

s )∗| 6
√
de−|Db(0)|(t−s).

iii) Let c1 = 1/
√
d, c2 = C(|x|), c3 =

√
d and c4 = δ, where C(|x|) is the constant obtained

in item ii). Then for all z ∈ Rd

c1e
−c2(t−s)|z| 6 |Φ∗s(x)(Φ−1

t (x))∗z| 6 c3e
−c4(t−s)|z|.
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iv) There exist positive constant c̃1, c̃2, c̃3 and c̃4 such that for all z ∈ Rd

c̃1e
−c̃2(t−s)|z| 6 |Ψ∗s(Ψ−1

t )∗z| 6 c̃3e
−c̃4(t−s)|z|.

v) For C(|x|) given in item iii) we have

|Φ−1
t (x)Φs(x)−Ψ−1

t Ψs|2 6
C2(|x|)d3

4δ2
|ϕxT |2e−δt(1− e−4δ(t−s)). (A.4)

In particular,

|Φ−1
t (x)Φs(x)−Ψ−1

t Ψs|2 6
C2(|x|)d3

4δ2
|ϕxT |2e−δt. (A.5)

Proof. Let t > s > 0 be fixed.

Proof of item i). Define Πs
t (x) := Φ−1

t (x)Φs(x). Note that

d

dt
Πs
t (x) =

d

dt
Φ−1
t (x)Φs(x) = −Db(ϕxT+t)Φ

−1
t (x)Φs(x) = −Db(ϕxT+t)Π

s
t (x).

We denote by Πs
t (x) = ((Πs

t (x))i,j)i,j∈{1,...,d}. Observe that

d

dt
|Πs
t (x)|2 = −2

d∑
i,j=1

(Πs
t (x))i,j

d∑
k=1

(Db(ϕxT+t))i,k(Πs
t (x))k,j

= −2

d∑
j=1

d∑
i,k=1

(Πs
t (x))i,j(Db(ϕ

x
T+t))i,k(Πs

t (x))k,j 6 −2δ|Πs
t (x)|2,

where the last inequality follows from Hypothesis 1. Since Πs
s(x) = Id, we have from

Lemma A.2 that |Φ−1
t (x)Φs(x)|2 6 de−2δ(t−s).

Proof of item ii). Let Π̃s
t (x) := Φ−1

s (x)Φt(x). Note that

d

dt
Π̃s
t (x) = Φ−1

s (x)
d

dt
Φt(x) = Φ−1

s (x)Φt(x)Db(ϕxT+t) = Π̃s
t (x)Db(ϕxT+t).

Observe that |〈z̃, Db(ϕxT+t)z̃〉| 6 |Db(ϕxT+t)||z̃|2 for z̃ ∈ Rd. By Hypothesis 1 we obtain
|ϕxt | 6 |x|e−δt combined with b ∈ C2 implies |Db(ϕxt )| 6 max

|u|6|x|
|Db(u)|. Let C(|x|) :=

max
|u|6|x|

|Db(u)|. Here, we denote by Π̃s
t (x) = ((Π̃s

t (x))i,j)i,j∈{1,...,d}. Then we have

d

dt
|Π̃s
t (x)|2 = 2

d∑
i,j=1

(Π̃s
t (x))i,j

d∑
k=1

(Π̃s
t (x))i,k(Db(ϕxT+t))k,j

= 2

d∑
i=1

d∑
k,j=1

(Π̃s
t (x))i,j(Db(ϕ

x
T+t))k,j(Π̃

s
t (x))i,k 6 2C|Π̃s

t (x)|2.

Since Π̃s
s = Id, Lemma A.2 yields |Φ−1

s (x)Φt(x)|2 6 de2C(|x|)(t−s).

Proof of item iii). Let z ∈ Rd be fixed. On the one hand, item i) yields

|Φ∗s(x)(Φ−1
t (x))∗z| 6 |Φ∗s(x)(Φ−1

t (x))∗||z| 6
√
de−δ(t−s)|z|.
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On the other hand, we have

|z| = |(Φt(x))∗(Φ−1
s (x))∗Φ∗s(x)(Φ−1

t (x))∗z| 6 |(Φt(x))∗(Φ−1
s (x))∗||Φ∗s(x)(Φ−1

t (x))∗z|

6
√
deC(|x|)(t−s)|Φ∗s(x)(Φ−1

t (x))∗z|,

where the last inequality follows from item ii). Consequently,

|Φ∗s(x)(Φ−1
t (x))∗z| > 1√

d
e−C(|x|)(t−s)|z|.

Proof of item iv). It follows analogously from item i) and ii). We omit the details.

Proof of item v). Let ∆s
t (x) := Φ−1

t (x)Φs(x)−Ψ−1
t Ψs. Then

d

dt
∆s
t (x) =

d

dt
Φ−1
t (x)Φs(x)− d

dt
Ψ−1
t Ψs

= −Db(ϕxT+t)Φ
−1
t (x)Φs(x) +Db(0)Ψ−1

t Ψs

= −Db(ϕxT+t)∆
s
t (x) + (Db(0)−Db(ϕxT+t))Ψ

−1
t Ψs.

Here we denote by ∆s
t (x) = ((∆s

t (x))i,j)i,j∈{1,...,d}. Note that

d

dt
|∆s

t (x)|2 = 2

d∑
i,j=1

(∆s
t (x))i,j

d

dt
(∆s

t (x))i,j

= 2

d∑
i,j=1

(∆s
t (x))i,j

(
d∑
k=1

−(Db(ϕxT+t))i,k(∆s
t (x))k,j + (Db(0)−Db(ϕxT+t))i,k(Ψ−1

t Ψs)k,j

)

= −2

d∑
j=1

d∑
i,k=1

(∆s
t (x))i,j(Db(ϕ

x
T+t))i,k(∆s

t (x))k,j

+ 2

d∑
i,j,k=1

(∆s
t )i,j(Db(0)−Db(ϕxT+t))i,k(Ψ−1

t Ψs)k,j .

By Hypothesis 1 we obtain

d

dt
|∆s

t (x)|2 6 −2δ|∆s
t (x)|2 + 2

d∑
i,j,k=1

(∆s
t (x))i,j(Db(0)−Db(ϕxT+t))i,k(Ψ−1

t Ψs)k,j . (A.6)

The Young inequality yields

2

d∑
i,j,k=1

|(∆s
t (x))i,j(Db(0)−Db(ϕxT+t))i,k(Ψ−1

t Ψs)k,j |

6
d∑

i,j,k=1

(
δ

d
|(∆s

t (x))i,j |2 +
d

δ
|(Db(0)−Db(ϕxT+t))i,k(Ψ−1

t Ψs)k,j |2
)

= δ|∆s
t (x)|2 +

d

δ

d∑
i,j,k=1

|(Db(0)−Db(ϕxT+t))i,k(Ψ−1
t Ψs)k,j |2.

(A.7)

Since b ∈ C2, there exists a positive constant C := C(|x|) such that

|Db(y)−Db(0)| 6 C|y| for any y with |y| 6 |x|.
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By Hypothesis 1 we observe that |ϕxt | 6 |x|e−δt 6 |x|. Lemma A.3.ii) yields the following
inequality |(Ψ−1

t Ψs)|2 6 de−2δ(t−s). Then

d∑
i,j,k=1

|(Db(0)−Db(ϕxT+t))i,k(Ψ−1
t Ψs)k,j |2 6 C2

d∑
i,j,k=1

|ϕxT+t|2|(Ψ−1
t Ψs)k,j |2

6 C2|ϕxT+t|2d2e−4δ(t−s).

(A.8)

Combining (A.6), (A.7) and (A.8) we infer

d

dt
|∆s

t (x)|2 6 −δ|∆s
t (x)|2 +

C2d3

δ
|ϕxT+t|2e−4δ(t−s).

Since ∆s
s(x) = 0, the preceding differential inequality with the help of Lemma A.2 imply

|∆s
t (x)|2 6

C2d3

δ
e−δ(t−s)

∫ t

s

|ϕxT+u|2e−3δ(u−s)du.

Observe that |ϕxT+t| = |ϕ
ϕxT
t | 6 e−δt|ϕxT |. Then

|∆s
t (x)|2 6

C2d3

δ
|ϕxT |2e−δ(t−s)

∫ t

s

e−δue−3δ(u−s)du.

The integral version of the Grönwall-Bellman lemma given in [57], Lemma 1, yields

|∆s
t (x)|2 6

C2d3

4δ2
|ϕxT |2e−δt(1− e−4δ(t−s)).

B Freidlin-Wentzell first order approximation

The result of this section yields a precise quantification of the inhomogeneous lin-
earization error of Xε,x by Y ε· (x) given in (1.26) under the Hypothesis 1 and 2 for any
moment β > 0.

Lemma B.1 (Quantitative first order expansion).
Assume Hypothesis 1 and 2 for some β > 0. For (tε)ε>0 with tε → ∞ as ε → 0 let the
following limit hold true

lim
ε→0

tεε
1

1+2(β∧1) = 0.

Then for any α ∈ (0, 2), K > 0 and ∆ε = ε
α
2 there exist positive constants ε0 =

ε0(K,α, β, δ) and C = C(K,α, β, δ) such that for all ε ∈ (0, ε0]

sup
|x|6K

P(|Xε,x
tε − Y

ε
tε(x)| > ∆1/α

ε ε) 6 C(K)ε
β∧1

1+2(β∧1) .

Proof. Let t > 0. Recall that Y εt (x) = ϕxt + εY xt , by (1.26), where

εY xt = −
∫ t

0

Db(ϕxs )εY xs ds+ εdLt.

That is W ε
t = εY xt satisfies

W ε
t = −

∫ t

0

Db(ϕxs )W ε
s ds+ εdLt.
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Hence

Xε,x
t − Y εt (x) = Xε,x

t − ϕxt −W ε
t

=

∫ t

0

(
− b(Xε,x

s )−
(
− b(Y εs (x))

))
ds

+

∫ t

0

(
− b(Y εs (x))−

(
− b(ϕxs )−Db(ϕxs )W ε

s

))
ds.

The chain rule yields

|Xε,x
t − Y εt (x)|2 = −2

∫ t

0

〈b(Xε,x
s )− b(Y εs (x)), Xε,x

s − Y εs (x)〉ds

+ 2

∫ t

0

〈−b(Y εs (x))−
(
− b(ϕxs )−Db(ϕxs )εYs

)
, Xε,x

s − Y εs (x)〉ds.

By the mean value theorem, the Cauchy-Schwarz and the Young inequality we have

| − b(Y εs (x))−
(
− b(ϕxs )−Db(ϕxs )εY xs

)
| = | − b(ϕxs + εY xs )−

(
− b(ϕxs )−Db(ϕxs )εY xt

)
|

6
∫ 1

0

∫ 1

0

‖D2b(ϕxs + θ1θ2εY
x
s )‖dθ1dθ2 |W ε

s |2.

Together with Hypothesis 1 we obtain

|Xε,x
t − Y εt (x)|2 6 −δ

∫ t

0

|Xε,x
s − Y εs (x)|2ds

+
1

δ

∫ t

0

(∫ 1

0

∫ 1

0

‖D2b(ϕxs + θ1θ2εY
x
s )‖dθ1dθ2 |W ε

s |2
)2

ds.

Then the integral version of the Grönwall-Bellman lemma given in [57], Lemma 1, yields

|Xε,x
t − Y εt (x)|2 6

ε2−θ

δ

∫ t

0

(∫ 1

0

∫ 1

0

‖D2b(ϕxs + θ1θ2εY
x
s )‖dθ1dθ2

)2

εθ|Y xs |2ds.

Let M > 0 and θ ∈ (0, 1) and introduce

AεM :=
{
εθ sup

06s6t
|Y 1
s (x)|2 6M

}
.

For ε ∈ (0, 1] we have

AεM ⊂
{

sup
06s6t

|Y 1
s (x)|2 6M

}
.

Then on the event AεM it follows

|Xε,x
t − Y εt (x)|2 6 ε2−θCM t.

Observe that

P(|Xε,x
tε − Y

ε
tε(x)| > ∆1/α

ε ε) 6 P(|Xε,x
tε − Y

ε
tε(x)| > ∆1/α

ε ε,AεM ) + P((AεM )c).

Then

P
(
|Xε,x

tε − Y
ε
tε(x)| > ∆1/α

ε ε,AεM

)
6 P

(
CMε

2−θtε > ∆1/α
ε ε,AεM

)
= P

(
CM tε >

∆
1/α
ε

ε1−θ , A
ε
M

)
.
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Choosing ∆ε = εα/2 we obtain

P
(
|Xε,x

tε − Y
ε
tε(x)| > ∆1/α

ε ε,AεM

)
6 P

(
CM tε >

1√
ε1−θ

, AεM

)
= 0 for ε� 1.

In the sequel, we estimate the term

P
(

sup
06s6tε

|Y 1
s (x)|2 > M

εθ

)
.

By Theorem 1 in [72] we have

sup
06s6tε

|Y 1
s (x)| 6 6

√
[Y 1
· (x)]tε + 2

∫ tε

0

Hs−dY 1
s (x) a.s.,

where

Hs− =
Y 1
s (x)√

sup06s6tε |Y 1
s (x)|2 + [Y 1

· (x)]s−
.

In particular, we have

[Y 1
· (x)]t = [L]t =

∫ t

0

∫
|z|61

|z|2N(dsdz) such that∫ t

0

Hs−dY 1
s (x) =

∫ t

0

〈Hs−,−Db(ϕxs )Y 1
s (x)〉ds+

∫ t

0

∫
|z|61

〈Hs−, z〉Ñ(dsdz)

+

∫ t

0

∫
|z|>1

〈Hs−, z〉N(dsdz).

We apply Hypothesis 1 and obtain a.s.∫ t

0

〈Hs−,−Db(ϕxs )Y 1
s (x)〉ds 6 0.

Hence

P
(

sup
06s6tε

|Y 1
s (x)| > M

εθ

)
6 P

(
6
(∫ tε

0

∫
|z|61

|z|2N(dsdz)
)1/2

+

∫ tε

0

∫
|z|61

〈Hs−, z〉Ñ(dsdz)

+

∫ tε

0

∫
|z|>1

〈Hs−, z〉N(dsdz) >
M

εθ

)

6 P
(∫ tε

0

∫
|z|61

|z|2N(dsdz) >
1

182

M2

ε2θ

)
+ P

(∫ tε

0

∫
|z|61

〈Hs−, z〉Ñ(dsdz) >
1

3

M

εθ

)
+ P

(∫ tε

0

∫
|z|>1

〈Hs−, z〉N(dsdz) >
1

3

M

εθ

)
.

We continue term by term. First we obtain

P
(∫ tε

0

∫
|z|61

|z|2N(dsdz) > (
1

18
)2M

2

ε2θ

)
6 tεε

2θ (18)2

M2

∫
|z|61

|z|2ν(dz) = C tεε
2θ. (B.1)
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By the Markov inequality we bound the second term and obtain

P
(∫ tε

0

∫
|z|61

〈Hs−, z〉Ñ(dsdz) >
1

3

M

εθ

)
6 ε2θ

( 3

M

)2

E
[( ∫ tε

0

∫
|z|61

〈Hs−, z〉Ñ(dsdz
)2]

= ε2θ
( 3

M

)2

E
[ ∫ tε

0

∫
|z|61

〈Hs−, z〉2ν(dz)ds
]

= ε2θtε

( 3

M

)2
∫
|z|61

|z|2ν(dz). (B.2)

Finally,

P
(∫ tε

0

∫
|z|>1

〈Hs−, z〉N(dsdz) >
1

3

M

εθ

)
6 P

(∫ tε

0

∫
|z|>1

|z|N(dsdz) >
1

3

M

εθ

)
6 ε(β∧1)θ

( 3

M

)(β∧1)

E
[( ∫ tε

0

∫
|z|>1

|z|N(dsdz)
)(β∧1)]

6 ε(β∧1)θ
( 3

M

)(β∧1)

E
[ ∫ tε

0

∫
|z|>1

|z|(β∧1)N(dsdz)
]

(B.3)

= ε(β∧1)θtε

( 3

M
)
(β∧1

) ∫
|z|>1

|z|(β∧1)ν(dz), (B.4)

where we have used the subadditivity of the power β ∧ 1 in the sense of Subsection 1.1.2,
see formula (1.6) in [63]. Optimizing over θ we obtain θ = 1

1+2(β∧1) .

C The linear inhomogeneous dynamics Y ε
· (x)

This section gathers properties of the inhomogeneous first order expansion Y ε· (x) of
Xε,x mainly with the help of Fourier techniques.

C.1 β-Hölder continuity of the characteristic exponent of a Lévy process

It is classical that β > 1 in Hypothesis 2 implies that the characteristic function is
continuously differentiable, and hence locally Lipschitz continuous. This remains valid
for the characteristic exponent ψ. In the sequel, we provide an elementary proof for the
respective fractional case β ∈ (0, 1).

Proposition 7 (Local Hölder continuity of the characteristic exponent).
Let L = (Lt)t>0 be a Lévy process on Rd. Denote by ψ its characteristic exponent and by
ν its Lévy measure. Assume that∫

|z|>1

|z|βν(dz) <∞ for some β > 0.

Then we have the following.

1. If β > 1, ψ is C1. In particular, it is Lipschitz continuous.

2. If β ∈ (0, 1), ψ is locally Hölder continuous with Hölder index β.

Proof. The proof of item (1) is given in Theorem 15.32 of [45]. We continue with the
proof of (2). Assume that β ∈ (0, 1). We prove that ψ is locally Hölder continuous. Recall
that

ψ(z) =

∫
Rd

(
ei〈u,z〉 − 1− i〈u, z〉1{|u|61}(u)

)
ν(du), z ∈ Rd.
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For any z ∈ Rd, let

f1(z) =

∫
|u|61

(
ei〈u,z〉 − 1− i〈u, z〉

)
ν(du) and f2(z) =

∫
|u|>1

(
ei〈u,z〉 − 1

)
ν(du).

First, we analyze f2. Let z1, z2 ∈ Rd. Notice that

|f2(z1)− f2(z2)| 6
∫
|u|>1

|ei〈u,z1〉 − ei〈u,z2〉|ν(du)

=

∫
|u|>1

|ei〈u,z1−z2〉 − 1|ν(du) =
√

2

∫
|u|>1

√
1− cos(〈u, z1 − z2〉)ν(du)

= 2

∫
|u|>1

∣∣∣∣sin( 〈u, z1 − z2〉
2

)∣∣∣∣ ν(du)

= 2

∫
|u|>1,

|〈u,z1−z2〉|>1

∣∣∣∣sin( 〈u, z1 − z2〉
2

)∣∣∣∣ ν(du) + 2

∫
|u|>1,

|〈u,z1−z2〉|61

∣∣∣∣sin( 〈u, z1 − z2〉
2

)∣∣∣∣ ν(du)

6 2

∫
|u|>1,

|〈u,z1−z2〉|>1

|〈u, z1 − z2〉|βν(du) + 2

∫
|u|>1,

|〈u,z1−z2〉|61

∣∣∣∣sin( 〈u, z1 − z2〉
2

)∣∣∣∣ ν(du)

6 2|z1 − z2|β
∫
|u|>1

|u|βν(du) + 2

∫
|u|>1,

|〈u,z1−z2〉|61

∣∣∣∣sin( 〈u, z1 − z2〉
2

)∣∣∣∣ ν(du)

= Cβ |z1 − z2|β + 2

∫
|u|>1,

|〈u,z1−z2〉|61

∣∣∣∣sin( 〈u, z1 − z2〉
2

)∣∣∣∣ ν(du),

where Cβ = 2
∫
|u|>1

|u|βν(du) <∞. Let C̃β = sup
{
| sin(θ/2)|
|θ|β : |θ| 6 1

}
. Since β ∈ (0, 1) we

have C̃β <∞. Indeed, notice that lim
θ→0

| sin(θ/2)|
|θ|β = 0 then C <∞. Furthermore,∫

|u|>1,
|〈u,z1−z2〉|61

∣∣∣∣sin( 〈u, z1 − z2〉
2

)∣∣∣∣ ν(du) 6
∫

|u|>1,
|〈u,z1−z2〉|61

C̃β |〈u, z1 − z2〉|βν(du)

6 C̃β |z1 − z2|β
∫
|u|>1

|u|βν(du).

Hence, |f2(z2)− f2(z1)| 6 C(β)|z2 − z1|β for any z1, z2 ∈ Rd. In the sequel, we analyze f1.
We calculate for z1, z2 ∈ Rd

|f1(z1)− f1(z2)| 6
∫
|u|61

∣∣∣ei〈u,z1〉 − ei〈u,z2〉 − i〈u, z1 − z2〉
∣∣∣ ν(du)

6 C|z1 − z2|
∫
|u|61

|u|2ν(du) = C1|z1 − z2|,

where we have used the mean value theorem for the integrand∣∣∣ei〈u,z1〉 − ei〈u,z2〉 − i〈u, z1 − z2〉
∣∣∣ =

∣∣∣∣∫ 1

0

ei〈u,z1+θ(z2−z1)〉〈u, z1 − z2〉dθ − 〈u, z1 − z2〉
∣∣∣∣

=

∫ 1

0

|ei〈u,z1+θ(z2−z1)〉 − 1|dθ|〈u, z1 − z2〉|

with C1 = C
∫
|u|61

|u|2ν(du) <∞. If |z1| 6 1
2 and |z2| 6 1

2 , then |z1 − z2| 6 |z1 − z2|β . This
concludes the proof of (2).
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Remark C.1.

1. Note that the above calculations for f1 give an elementary proof of the fact that
any pure jump Lévy process with uniformly bounded jumps-sizes has a globally
Lipschitz continuous characteristic exponent ψ.

2. The calculations for f2 yield that any compound Poisson process with β-integrability∫
|z|>1

|z|βν(dz) <∞ for some β > 0

has a locally Hölder continuous characteristic exponent ψ with Hölder index β. This
extends the well-known result that the existence of integer moments translates to
the respective order of differentiability of the characteristic function to the case of
fractional moments.

C.2 Continuous dependence of the total variation in the nonlinearity

Lemma C.2 (Continuous dependence on the initial value).
Let t > 0, x ∈ Rd and denote by (Y xt )t>0 the unique strong solution of (1.25) as well as
by gxt the respective density of Y xt .

Then x 7→ gxt (u) is continuous for any fixed t > 0 and u ∈ Rd. In addition, the map
x 7→ ‖Y xt − U‖TV is continuous for any fixed t > 0 and U any random vector on Rd.

Proof. Let x, x′ ∈ Rd. The Fourier inversion formula yields

gxt (u)− gx
′

t (u) = Cπ

∫
Rd
ei〈u,θ〉

(
f̂xt (θ)− f̂x

′

t (θ)
)

dθ

= Cπ

∫
|θ|6K

ei〈u,θ〉
(
f̂xt (θ)− f̂x

′

t (θ)
)

dθ + Cπ

∫
|θ|>K

ei〈u,θ〉
(
f̂xt (θ)− f̂x

′

t (θ)
)

dθ (C.1)

for any u ∈ Rd. We start with the first term of the right-hand side of the preceding
inequality. Recall

f̂xt (θ) = exp

(∫ t

0

ψ(Φ∗s(x)(Φ∗t )
−1(x)θ)ds

)
, f̂x

′

t (θ) = exp

(∫ t

0

ψ(Φ∗s(x
′)(Φ∗t )

−1(x′)θ)ds

)
.

For any |θ| 6 K we have

sup
06s6t

|ψ(Φ∗s(x
′)(Φ∗t )

−1(x′)θ)− ψ(Φ∗s(x)(Φ∗t )
−1(x)θ)| → 0, as x′ → x.

Indeed, by Proposition 7, Item (2), in Appendix C there exists a positive constant CK
such that for all |θ| ≤ K, x, x′ ∈ Rd we have

|ψ(Φ∗s(x
′)(Φ∗t )

−1(x′)θ)−ψ(Φ∗s(x)(Φ∗t )
−1(x)θ)|

6 CK |θ|1∧β |Φ∗s(x′)(Φ∗t )−1(x′)− Φ∗s(x)(Φ∗t )
−1(x)|1∧β

6 CK |θ|1∧β(|Φ∗s(x′)(Φ∗t )−1(x′)|1∧β + |Φ∗s(x)(Φ∗t )
−1(x)|1∧β)

6 2Ck|θ|1∧β(
√
de−δ(t−s))1∧β .

Then the dominated convergence theorem in the exponent yields for any |θ| 6 K

f̂x
′

t (θ)→ f̂xt (θ), as x′ → x.

Again, by dominated convergence we have∫
|θ|6K

ei〈u,θ〉
(
f̂xt (θ)− f̂x

′

t (θ)
)

dθ → 0, as x′ → x.
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We continue with the second term of the right-hand side. Let |θ| > K and we assume
that |x′| 6 r and |x| 6 r where r = 2|x|. We analyze

|f̂xt (θ)| = exp

(∫ t

0

∫
Rd

(cos(〈Φ∗s(x)(Φ∗t )
−1(x)θ, w〉)− 1)ν(dw)ds

)
6 exp

(∫ t

0

∫
|〈Φ∗s(x)(Φ∗t )−1(x)θ,w〉|6π

(cos(〈Φ∗s(x)(Φ∗t )
−1(x)θ, w〉)− 1)ν(dw)ds

)

6 exp

(
− 2

π2

∫ t

0

∫
|〈Φ∗s(x)(Φ∗t )−1(x)θ,w〉|6π

|〈Φ∗s(x)(Φ∗t )
−1(x)θ, w〉|2ν(dw)ds

)
.

By Lemma A.3 we have

|Φ∗s(x)(Φ∗t )
−1(x)θ| > c1e

−c2(r)(t−s)|θ| for any s ∈ [0, t], |x| 6 r, θ ∈ Rd.

Note that

c1e
−c2(r)(t−s)|θ| > c1Ke

−c2(r)t.

Since t > 0 is fixed. The choice K > ec2(r)tC^
c1

yields c1e−c2(r)(t−s)|θ| > C^ where C^ is
the constant that appears in Lemma 1.7. Then we have for |θ| > K

|f̂xt (θ)| 6 exp

(
− 2

π2
c^

∫ t

0

|Φ∗s(x)(Φ∗t )
−1(x)θ|αds

)
6 exp

(
− 2

π2
c^|θ|α

∫ t

0

cα1 e
−c2(r)sαds

)
.

Then∫
|θ|>K

|f̂x
′

t (θ)− f̂xt (θ)|dθ 6
∫
|θ|>K

|f̂x
′

t (θ)|dθ +

∫
|θ|>K

|f̂xt (θ)|dθ

6 2

∫
|θ|>K

exp

(
− 2

π2
c^|θ|α

∫ t

0

cα1 e
−c2(r)sαds

)
dθ <∞.

Sending x′ → x and subsequently K →∞ we obtain

lim
K→∞

lim sup
x′→x

∫
|θ|>K

|f̂x
′

t (θ)− f̂xt (θ)|dθ = 0.

By (C.1) we obtain

lim
x′→x

∫
Rd
|f̂x
′

t (θ)− f̂xt (θ)|dθ = 0.

The preceding limit yields that x ∈ Rd 7→ gxt (u) ∈ [0,∞) is continuous for any t > 0 and
u ∈ Rd fixed. This proves the first part of the statement.

We show the second part of the statement. The Scheffé lemma applied to the densities
gxt , gx

′

t implies for any t > 0∥∥∥Y x′t − Y xt ∥∥∥
TV
→ 0, as x′ → x.

The triangle inequality yields for any random vector U on Rd∣∣∣∥∥∥Y x′t − U∥∥∥
TV
−
∥∥∥Y xt − U∥∥∥

TV

∣∣∣ 6 ∥∥∥Y x′t − Y xt ∥∥∥
TV

for any t > 0 and x, x′ ∈ Rd. Combining both preceding expressions finishes the proof.
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C.3 Ergodicity of the inhomogeneous O-U process Y εt (x)

C.3.1 Existence of the limiting distribution µε∗ and its convergence in law

Lemma C.3.

1. For any ε ∈ (0, 1) and x ∈ Rd we have that Y εt (x) converges in distribution to µε∗ as
t→∞, where εZ∞ has the law of µε∗.

2. For any ε ∈ (0, 1], K > 0, t > 0 and (xε,t)ε,t with |xε,t| 6 K we have that Y εt (xε,t)

converges in distribution to µε∗ as t→∞, where εZ∞ has the law of µε∗.

Proof. We start with the proof of (1). Let x ∈ Rd and ε ∈ (0, 1] be fixed. Recall that
Y εt (x) = ϕxt + εY xt for any t > 0 by (1.26), where Y x = (Y xt )t>0 is the solution of the
stochastic differential equation

dY xt = −Db(ϕxt )Y xt dt+ dLt with Y0 = 0

and (ϕxt )t>0 is the solution of (1.6). By the variation of constants formula, it is not hard
to see that

Y xt = Φ−1
t (x)

∫ t

0

Φs(x)dLs for t > 0,

where Φ(x) := (Φt(x))t>0 is the solution of the matrix differential equation

d

dt
Φt(x) = Φt(x)Db(ϕxt ) with Φ0 = Id.

In addition, examining the Wronskian at 0 we have that det Φt(x) 6= 0 for all t > 0. The
inverse matrix Φ−1

t (x) exists for any t > 0 and Φ−1(x) := (Φ−1
t (x))t>0 is the solution of

the matrix differential equation

d

dt
Φ−1
t (x) = −Db(ϕxt ) Φ−1

t (x) with Φ0 = Id.

Recall that Z = (Zt)t>0 is the solution of

dZt = −Db(0)Ztdt+ dLt with Z0 = 0.

Since this equation is also linear, its solution Z is also given explicitly by the variation-of-
constants formula

Zt = Ψ−1
t

∫ t

0

ΨsdLs for any t > 0,

where Ψ := (Ψt)t>0 is the solution of the matrix differential equation

d

dt
Ψt = ΨtDb(0) with Ψ0 = Id.

Note that the inverse matrix Ψ−1
t exists for any t > 0 and Ψ−1 := (Ψ−1

t )t>0 satisfies the
matrix differential equation

d

dt
Ψ−1
t = −Db(0) Ψ−1

t with Ψ0 = Id.

Since we are interested in convergence in distribution, we analyze the characteristic
function of Y xt and Zt for t > 0. By Theorem 3.1 in [66] we know that

E
[
ei〈z,Zt〉

]
= exp

(∫ t

0

ψ(Ψ∗s(Ψ
−1
t )∗z)ds

)
for z ∈ Rd, (C.2)
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where ψ : Rd → C is the characteristic exponent of the Lévy process L. For the
inhomogeneous process (Y xt )t>0, a standard discretization procedure combined with
(C.2) yields

E
[
ei〈z,Y

x
t 〉
]

= exp

(∫ t

0

ψ(Φ∗s(x)(Φ−1
t (x))∗z)ds

)
for z ∈ Rd.

By Lemma A.3 part iii) we note that there exist uniform positive constants c3 and c4 such
that

|Φ∗s(x)(Φ−1
t (x))∗z| 6 c3e

−c4(t−s)|z| and |Ψ∗s(Ψ−1
t )∗z| 6 c3e

−c4(t−s)|z|

for any t > 0, s ∈ [0, t] and z ∈ Rd. For t > 0 and z ∈ Rd, we define the error term by

Θz
t (x) :=

∫ t

0

ψ(Φ∗s(x)(Φ−1
t (x))∗z)ds−

∫ t

0

ψ(Ψ∗s(Ψ
−1
t )∗z)ds.

Since we are assuming that the Lévy process L = (Lt)t>0 has β-moment for some
β > 0 (see Hypothesis 2), the characteristic exponent ψ is differentiable for β > 1 and
locally Hölder continuous with index β for β ∈ (0, 1), a proof is given in Proposition 7 in
Appendix C. Let z ∈ Rd with |z| 6 1

2c3
. Then there exists a positive constant C1 := C(c3, β)

such that

|Θz
t (x)| 6

∫ t

0

|ψ(Φ∗s(x)(Φ−1
t (x))∗z)− ψ(Ψ∗s(Ψ

−1
t )∗z)|ds

6 C1

∫ t

0

|Φ∗s(x)(Φ−1
t (x))∗ −Ψ∗s(Ψ

−1
t )∗|β∧1ds for t > 0.

(C.3)

By Lemma A.3, part v), there is a positive constant C = C(|x|) such that

|Φ∗s(x)(Φ−1
t (x))∗ − (Ψs)

∗(Ψ−1
t )∗|2 6

C2(|x|)d3

4δ2
|ϕx0 |2e−δt(1− e−4δ(t−s)) 6 C2(|x|)e−δt

for any s ∈ [0, t], where C2(|x|) is a constant that depends continuously on |x|. Using
then the preceding inequality in (C.3) we obtain

|Θz
t (x)| 6 C3(|x|)e− δ2 (β∧1)tt for t > 0, (C.4)

where C3(|x|) is a constant that depends continuously on |x|. Sending t→∞, we obtain

Θz
t (x)→ 0 for any |z| 6 1

2c3
. In the sequel, we prove Y xt

d−→ Z∞. By Theorem 4.1 in [66]

we know that Zt
d−→ Z∞, that is,

lim
t→∞

E
[
ei〈z,Zt〉

]
= exp

(∫ ∞
0

ψ(e−Db(0)sz)ds
)

=: χ(z) for z ∈ Rd. (C.5)

Recall that for each t > 0, Zt is infinitely divisible (see for instance Theorem 9.1 in [64]),
then E[ei〈z,Zt〉] 6= 0 for any z ∈ Rd (see Lemma 7.5 in [64]). Hence, (C.4) implies

lim
t→∞

E
[
ei〈z,Y

x
t 〉
]

E
[
ei〈z,Zt〉

] = lim
t→∞

exp (Θz
t (x)) = 1 for |z| 6 1

2c3
. (C.6)

By (C.5) we infer lim
t→∞

E
[
ei〈z,Y

x
t 〉
]

= χ(z) for |z| 6 1
2c3

. Since χ is a characteristic function,

it is uniquely determined by its values in an open neighborhood of the origin. As a result
we obtain lim

t→∞
E
[
ei〈z,Y

x
t 〉
]

= χ(z) for any z ∈ Rd. By the Lévy continuity theorem we

obtain Y xt
d−→ Z∞. Recall that Y εt (x) = ϕxt + εY xt , t > 0. Since ϕxt → 0, as t → ∞, the

Slutsky lemma yields Y εt (x)
d−→ εZ∞ as t→∞. This finishes the proof of (1).

We finish with the proof of (2). By (C.4) we have that the convergence (C.6) only
depends of x via |x| 6 K and consequently is valid for all |xt,ε| 6 K as stated in (2).
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C.3.2 Convergence of Y εt (x) to µε∗ in the total variation distance

Lemma C.4. For any K > 0 and ε > 0 we have

lim
t→∞

sup
|x|6K

‖Y εt (x)− µε∗‖TV = 0, (C.7)

where εZ∞ has the law of µε∗. In particular,

lim
t→∞

sup
|x|6K

‖Y xt − Z∞‖TV = 0. (C.8)

Proof. The idea is to show that convergence in distribution (Lemma C.3 (2)) combined
with the Orey-Masuda cone condition (Lemma 1.7) implies lim

t→∞
sup|x|6K ‖Y εt (x)−µε∗‖TV =

0. It is enough to prove that Z∞ has a continuous density and lim
t→∞

sup|x|6K ‖Y xt −Z∞‖TV =

0. The latter implies lim
t→∞

sup|x|6K ‖Y εt (x)− µε∗‖TV = 0. Let |x| 6 K. Indeed,

‖Y εt (x)− µε∗‖TV 6 ‖(ϕxt + εY xt )− (ϕxt + εZ∞)‖TV + ‖(ϕxt + εZ∞)− (εZ∞)‖TV

= ‖Y xt − Z∞‖TV + ‖(ϕxt/ε + Z∞)− Z∞‖TV

6 sup
|x|6K

‖Y xt − Z∞‖TV + sup
|x|6K

‖(ϕxt/ε + Z∞)− Z∞‖TV . (C.9)

We start with the second term in (C.9). Since Z∞ has a continuous density (see for
instance, Case 3 in Section 4 in [10]), the Scheffé lemma yields

sup
|x|6K

‖(ϕxt/ε + Z∞)− Z∞‖TV =
∥∥(ϕ

x̃
t/ε + Z∞)− Z∞

∥∥
TV

for some |x̃| 6 K. By Hypothesis 1 we have |ϕxt | 6 e−δt|x| 6 e−δtK whenever |x| 6 K.
Again by the Scheffé lemma we deduce∥∥(ϕ

x̃
t/ε + Z∞)− Z∞

∥∥
TV
→ 0, t→∞.

The latter, together with inequality (C.9) and sup|x|6K ‖Y xt − Z∞‖TV → 0 for t → ∞
implies

sup
|x|6K

‖Y εt (x)− εZ∞‖TV → 0 for t→∞.

In the sequel, we dominate sup|x|6K ‖Y xt − Z∞‖TV. By Lemma C.2 we have

sup
|x|6K

‖Y xt − Z∞‖TV =
∥∥Y x̃t − Z∞∥∥TV

for some |x̃| 6 K. For convenience of notation we drop the tilde and write x. The proof
is divided in 2 steps.

Step 1. We start with the proof that for any 0 < t 6 ∞, Y xt has a continuous density.
From Theorem 28.1 in [64], it is sufficient to show that∫

Rd

∣∣E[ei〈z,Y xt 〉]∣∣dz <∞ for all t > 0. (C.10)

Fix t > 0. Since

E
[
ei〈z,Y

x
t 〉
]

= exp
(∫ t

0

ψ(Φ∗s(x)(Φ−1
t (x))∗z)ds

)
for z ∈ Rd,
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we have∣∣E[ei〈z,Y xt 〉]∣∣ 6 exp

(∫ t

0

∫
Rd

(
cos(〈(Φ∗s(x)(Φ−1

t (x))∗z, θ〉)− 1
)
ν(dθ)ds

)
6 exp

(∫ t

0

∫
|〈(Φ∗s(x)(Ψ−1

t (x))∗z,θ〉)|6π

(
cos(〈(Φ∗s(x)(Φ−1

t (x))∗z, θ〉)− 1
)
ν(dθ)ds

)

6 exp

(
−2

∫ t

0

∫
|〈(Φ∗s (x)(Φ

−1
t (x))∗z/π,θ〉)|61

|〈(Φ∗s(x)(Φ−1
t (x))∗z/π, θ〉)|2ν(dθ)ds

)
, (C.11)

where the last inequality follows from the well-known inequality 1− cos(x) > 2
(
x
π

)2
for

|x| 6 π. By Lemma A.3 we know that there exist positive constants c1, c2(|x|) such that

c1e
−c2(|x|)(t−s)|z| 6 |Φ∗s(x)(Φ−1

t (x))∗z| (C.12)

for any t > 0, s ∈ [0, t] and z ∈ Rd. Due to the boundedness of the characteristic function
it is enough to prove that∫

|z|>R

∣∣E[ei〈z,Y xt 〉]∣∣dz <∞ for some R > 0.

Let R > C^
πec2(|x|)t

c1
and |z| > R, where C^ is given in Lemma 1.7. Then

|Φ∗s(x)(Φ−1
t (x))∗z|
π

>
c1e
−c2(|x|)(t−s)

π
|z| > C^e

c2(|x|)s > C^ for any s ∈ [0, t].

By (C.11) and Lemma 1.7 we obtain∣∣E[ei〈z,Y xt 〉]∣∣ 6 exp

(
−2c^c

α
1 |z|α

πα

∫ t

0

e−c2(|x|)α(t−s)ds

)
6 exp

(
− 2c^c

α
1 |z|α

παc2(|x|)α
(1− e−c2(|x|)αt)

)
for any |z| > R, which implies the existence of C∞b density (see for instance Theorem 28.1
in [64]). For Y∞, we just notice that Y∞ = Z∞ in distribution and Z∞ has a C∞b density
(see Case 3 Section 4 in [10]).

Step 2. Convergence in total variation. We prove ‖Y xt − Z∞‖TV → 0, as t→∞. For any
R > 0 fixed we split∫

Rd

∣∣E[ei〈z,Y xt 〉]− E[ei〈z,Z∞〉]∣∣dz =

(∫
|z|6R

+

∫
|z|>R

)∣∣E[ei〈z,Y xt 〉]− E[ei〈z,Z∞〉]∣∣dz.
By Lemma C.3 and the uniform convergence of the characteristic functions on compact
sets we have that

lim
t→∞

∫
|z|6R

∣∣E[ei〈z,Y xt 〉]− E[ei〈z,Z∞〉]∣∣dz = 0.

Note that∫
|z|>R

∣∣E[ei〈z,Y xt 〉]− E[ei〈z,Z∞〉]∣∣dz 6 ∫
|z|>R

∣∣E[ei〈z,Y xt 〉]∣∣dz +

∫
|z|>R

∣∣E[ei〈z,Z∞〉]∣∣dz.
It is easy to see that the Orey-Masuda condition implies condition (H) in [10]. In the
proof of Proposition 5.3 there it is shown that under condition (H) we have

lim
R→∞

lim sup
t→∞

∫
|z|>R

∣∣E[ei〈z,Z∞〉]∣∣dz = 0.
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Therefore, the limit

lim
R→∞

lim sup
t→∞

∫
|z|>R

∣∣E[ei〈z,Y xt 〉]∣∣dz = 0 (C.13)

yields the desired result. Indeed,

lim sup
t→∞

∫
Rd

∣∣E[ei〈z,Y xt 〉]− E[ei〈z,Z∞〉]∣∣dz
6 lim sup

t→∞

∫
|z|>R

∣∣E[ei〈z,Y xt 〉]∣∣dz + lim sup
t→∞

∫
|z|>R

∣∣E[ei〈z,Z∞〉]∣∣dz,
where the left-hand side does not depend on R. Sending R→∞ we obtain

lim
t→∞

∫
Rd

∣∣E[ei〈z,Y xt 〉]− E[ei〈z,Z∞〉]∣∣dz = 0.

In the sequel, we prove inequality (C.13). By inequality (C.11) we have

∣∣E[ei〈z,Y xt 〉]∣∣ 6 exp

(
−2

∫ t

0

∫
|〈(Φ∗s (Φ

−1
t )∗z/π,θ〉)|61

|〈(Φ∗s(x)(Φ−1
t (x))∗z/π, θ〉)|2ν(dθ)ds

)
.

By Lemma A.3 we know that there exist positive constants c1, c2(|x|) such that

c1e
−c2(|x|)(t−s)|z| 6 |Φ∗s(x)(Φ−1

t (x))∗z| for t > 0, s ∈ [0, t], z ∈ Rd.

Let R > πC^
C1

, t > 1
c2(|x|) ln(C1R

π ) =: t0(R), s ∈ [0, t] and |z| > R, where C^ is given in
Lemma 1.7. Then we obtain

|Φ∗s(x)(Φ−1
t (x))∗z|
π

>
c1e
−c2(|x|)(t−s)R

π
> C^ whenever s ∈ [t− t0(R), t].

Observe that

∣∣E[ei〈z,Y xt 〉]∣∣ 6 exp

(
−2

∫ t−t0(R)

0

∫
|〈(Φ∗s (x)(Φ

−1
t (x))∗z/π,θ〉)|61

|〈(Φ∗s(x)(Φ−1
t (x))∗z/π, θ〉)|2ν(dθ)ds

)

· exp

(
−2

∫ t

t−t0(R)

∫
|〈(Φ∗s (x)(Φ

−1
t (x))∗z/π,θ〉)|61

|〈(Φ∗s(x)(Φ−1
t (x))∗z/π, θ〉)|2ν(dθ)ds

)

6 exp

(
−2

∫ t

t−t0(R)

∫
|〈(Φ∗s (x)(Φ

−1
t (x))∗z/π,θ〉)|61

|〈(Φ∗s(x)(Φ−1
t (x))∗z/π, θ〉)|2ν(dθ)ds

)
.

The Orey-Masuda cone condition (Lemma 1.7) and equality (C.12) yield

∣∣E[ei〈z,Y xt 〉]∣∣ 6 exp

(
−2c^c

α
1 |z|α

πα

∫ t

0

e−c2(|x|)α(t−s)ds

)
6 exp

(
−c̃(|x|)|z|α(1− e−c2(|x|)αt0(R))

)
for any |z| > R and t > t0(R), where c̃(|x|) :=

2c^c
α
1

παc2(|x|)α > 0. Therefore for |x| 6 K there

are positive constants c̃(K) and c2(K) such that

lim sup
t→∞

∫
|z|>R

∣∣E[ei〈z,Y xt 〉]∣∣dz 6 ∫
|z|>R

exp
(
− c̃(K)|z|α(1− e−c2(K)αt0(R))

)
dz

for any R > πC^
C1

. Sending R → ∞, the dominated convergence theorem implies
(C.13).
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C.4 Geometric profile characterization for rotationally invariant Z∞

Lemma C.5. Let f ∈ C1(Rd, (0,∞)) be a smooth density such that f(z) = g(|z|) for some
function g ∈ C1((0,∞), (0,∞)) with g′(s) < 0 for all s > 0 and g′ ∈ L1(Rd). Then the map

(0,∞) 3 r 7→
∫
Rd
|f(z + re1)− f(z)|dz ∈ (0,∞)

is strictly increasing. In particular, it is injective.

Proof. First we rewrite∫
Rd
|f(z + re1)− f(z)|dz = 2− 2

∫
Rd

(f(z + re1) ∧ f(z))dz.

By the definition of the minimum we have

d

dr

(
f(z + re1) ∧ f(z)

)
=

{
0 for all z : f(z) < f(z + re1),
d
drf(z + re1) for all z : f(z) > f(z + re1).

In the sequel we determine the shape of {z ∈ Rd | f(z) > f(z + re1)}. Since

f(z) < f(z̃) if and only if |z| > |z̃|,

the continuity of f yields

f(z + re1) ∧ f(z) =

{
f(z) for all z : |z + re1| < |z|,
f(z + re1) for all z : |z + re1| > |z|.

That is, we obtain geometrically the shifted half space

{z ∈ Rd | |z + re1|2 > |z|2} = {z ∈ Rd | z1 > −r/2}.

Consequently, it follows

d

dr

(
f(z + re1) ∧ f(z)

)
=

{
0 for all z : z1 < − r2 ,
d
drf(z + re1) for all z : z1 > − r2 .

We continue with the computation of d
drf(z + re1). For all z 6= 0 we have

d

dr
f(z + re1) =

d

dr
g(|z + re1|) = g′(|z + re1|)

〈z + re1, e1〉
|z + re1|

= g′(r|z
r

+ e1|)
(1 + 〈 zr , e1〉)
|e1 + z

r |
,

such that the Leibniz integral rule and the implicit function theorem imply

d

dr

∫
Rd
f(z + re1) ∧ f(z)dz =

∫
Rd

d

dr
f(z + re1) ∧ f(z)dz

=

∫
z1
r >−

1
2

g′(r|z
r

+ e1|)
(1 + z1

r )

|e1 + z
r |

dz

=

∫
v1>− 1

2

g′(r|v + e1|)︸ ︷︷ ︸
<0

(1 + v1)

|e1 + v|︸ ︷︷ ︸
>0

rddv < 0.

Consequently, we obtain the desired result

d

dr

∫
Rd
|f(z + re1)− f(z)|dz = −2

d

dr

∫
Rd
f(z + re1) ∧ f(z)dz

= −2

∫
v1>− 1

2

g′(r|v + e1|)︸ ︷︷ ︸
<0

(1 + v1)

|e1 + v|︸ ︷︷ ︸
>0

rddv > 0.
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D Exponential ergodicity of coercive Lévy SDEs in Lβ, β > 0

In this section we fix the following standing assumptions. Let b be a vector field
satisfying Hypothesis 1 and A a d-squared matrix with real entries. Consider a Lévy
process L = (Lt)t>0 with values in Rd with strongly locally layered stable Lévy measure
ν with given parameters (ν0, ν∞,Λ, q, c0, α) satisfying Hypotheses 2, 3 and 4 and the
strong solution X = (Xt)t>0 of the SDE{

dXt = −b(Xt)dt+AdLt for t > 0,

X0 = x ∈ Rd. (D.1)

Definition D.1 (Hörmander condition, nonlinear Kalman rank condition).
Under the standing assumptions we denote by B0 = Id be the identity matrix on Rd and
define for n ∈ N the (d× d)-matrix-valued function Bn(x) recursively by

Bn(x) := −b(x) ·DBn−1(x) +Db(x)Bn−1(x), x ∈ Rd,

where b ·DF :=
∑d
k=1 bk

∂
∂k
F , and F is a (d× d)-matrix-valued function. We say that the

SDE (D.1) satisfies a Hörmander condition if its coefficients b = (b1, . . . , bd)
∗ and the

matrix A satisfy the following: For each x ∈ Rd there exists some n = n(x) ∈ N ∪ {0}
such that

Rank[B0A,B1(x)A, . . . , Bn(x)A] = d. (D.2)

Lemma D.2 (Orey-Masuda type condition). Under the standing assumptions, the limit
(1.8) implies

lim
h→0

hα−2

∫
|z|6h

|z|2ν(dz) := κ1 > 0.

The latter is Condition (1.2) in [73].

Proof. Observe that ∫
|z|6h

|z|2ν(dz) =

∫
Sd−1

∫ h

0

r2q(r, θ)drΛ(dθ).

Let η > 0 be fixed. By limit (1.8) we deduce that there exists r0 := r0(η) ∈ (0, 1) such
that for any 0 < r < r0 we have

r1−α(c0(θ)− η) < r2q(r, θ) < r1−α(c0(θ) + η) for any θ ∈ Sd−1.

Let h ∈ (0, r0). Then

1

2− α

∫
Sd−1

(c0(θ)− η)Λ(dθ) 6 hα−2

∫
Sd−1

∫ h

0

r2q(r, θ)drΛ(dθ)

6
1

2− α

∫
Sd−1

(c0(θ) + η)Λ(dθ).

Sending h→ 0 followed by sending η → 0, we obtain

lim
h→0

hα−2

∫
Sd−1

∫ h

0

r2q(r, θ)drΛ(dθ) =
1

2− α

∫
Sd−1

c0(θ)Λ(dθ) > 0,

where the last inequality follows from the fact that c0 : Sd−1 → (0,∞) and c0 ∈ L1(Λ).

In the sequel we extend Theorem 4.1 in [60] to Lβ for arbitrary β > 0.
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Theorem 4 (Exponential ergodicity).
Under the standing assumptions and the Hörmander condition (D.2) there exists a
unique invariant distribution µ for (D.1) satisfying exponential ergodicity in the total
variation distance.

Proof. For β > 2, it is the statement of Theorem 4.1 in [60]. Let β ∈ (0, 2). We apply
Theorem 2.1 in [60]. Therefore, we verify Conditions LC, H1 and H2 in [60], p. 2-3.
Condition LC in [60]. We stress that the fulfilment of Condition LC only requires
Hypothesis 1 and Hypothesis 2. We define | · |c :=

√
|x|2 + c2 for c > 0 satisfying for all

x ∈ Rd

c 6 |x|c 6 |x|+ c, ∇|x|c :=
x

|x|c
and 0 6

|x|
|x|c

< 1.

In addition, we have

D2|x|c =



|x|2c−x
2
1

|x|3c
−x1x2

|x|3c
−x1x3

|x|3c
. . . −x1xd

|x|3c
−x1x2

|x|3c
|x|2c−x

2
2

|x|3c
−x2x3

|x|3c

−x1x3

|x|3c
−x2x3

|x|3c
|x|2c−x

2
3

|x|3c

...
...

. . .

−x1xd
|x|3c

. . .
|x|2c−x

2
d

|x|3c


.

Consequently,

‖D2|x|c‖1 =
∑
i,j

|(D2|x|c)ij | =
∑
i

|(D2|x|c)i,i|+
∑
i6=j

|(D2|x|c)ij |

=
d|x|2c −

∑
i x

2
i +

∑
i 6=j |xixj |

|x|3c
6

1

|x|c

(
d+
|x|2

|x|2c

)
6
d+ 1

c
.

Let 0 < γ 6 β ∧ 1. We calculate the gradient and the Hessian of |x|γc as follows:

∇|x|γc = γ|x|γ−1
c ∇|x|c = γ|x|γ−1

c

x

|x|c
= γ|x|γ−2

c x

and

∂ii|x|γc = ∂i(γ|x|γ−2
c xi) = γ|x|γ−2

c + γ(γ − 2)|x|γ−4
c x2

i ,

∂ij |x|γc = ∂i(γ|x|γ−2
c xj) = γxj∂i(|x|γ−2

c ) = γ(γ − 2)|x|γ−4
c xixj for i 6= j.

Hence,∑
i,j

|∂ij |x|γc | = γ(2− γ)|x|γ−4
c

∑
i,j

|xixj |+ dγ|x|γ−2
c γ(2− γ)|x|γ−4

c ‖x‖2 + dγ|x|γ−2
c ,

where ‖ · ‖ denotes the 1-norm. Since ‖x‖ 6
√
d|x|, we obtain∑

i,j

|∂ij |x|γc | 6 (γ(2− γ)d+ dγ)|x|γ−2
c 6 (γ(2− γ)d+ dγ)cγ−2.

With the help of the preceding calculations Itô’s formula yields

|Xt|γc = |x|γc − γ
∫ t

0

〈|Xs|γ−2
c Xs, b(Xs)〉ds+

∫ t

0

∫
|z|<1

(
|Xs− +Az|γc − |Xs−|γc

)
Ñ(dsdz)

+

∫ t

0

∫
|z|>1

(
|Xs− +Az|γc − |Xs−|γc

)
N(dsdz)

+

∫ t

0

∫
|z|<1

(
|Xs− +Az|γc − |Xs−|γc − 〈γ|Xs|γ−2

c Xs, Az〉
)
ν(dz)ds,
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where N is a Poisson random measure with compensator dt⊗ ν(dz). Moreover, we have
the Lévy-Iô decomposition such that P-a.s. for all t > 0

Lt =

∫ t

0

∫
|z|61

zÑ(dsdz) +

∫ t

0

∫
|z|>1

zN(dsdz),

where Ñ is the compensated version of N . Taking expectations we obtain

E
[
|Xt|γc

]
= |x|γc − γ

∫ t

0

E
[
〈|Xs|γ−2

c Xs, b(Xs)〉
]
ds

+ E
[ ∫ t

0

∫
|z|<1

(
|Xs− +Az|γc − |Xs−|γc

)
Ñ(dsdz)

]
+ E

[ ∫ t

0

∫
|z|>1

(
|Xs− +Az|γc − |Xs−|γc

)
N(dsdz)

]
+

∫ t

0

E
[ ∫
|z|<1

(
|Xs− +Az|γc − |Xs−|γc − 〈γ|Xs|γ−2

c Xs, Az〉
)
ν(dz)

]
ds.

First, since the moment of order β is finite, a localization argument yields

E
[ ∫ t

0

∫
|z|<1

(
|Xs− +Az|γc − |Xs−|γc

)
Ñ(dsdz)

]
= 0 for t > 0.

Secondly, by the Itô isometry for Poisson random measures (see [4]) we obtain

E
[ ∫ t

0

∫
|z|>1

(
|Xs− +Az|γc − |Xs−|γc

)
N(dsdz)

]
= E

[ ∫ t

0

∫
|z|>1

(
|Xs− +Az|γc − |Xs−|γc

)
ν(dz)ds

]
=

∫ t

0

E
[ ∫
|z|>1

(
|Xs− +Az|γc − |Xs−|γc

)
ν(dz)

]
ds.

Hence, for almost all t we have

E
[
|Xt|γc

]
= |x|γc − γ

∫ t

0

E
[
〈|Xs|γ−2

c Xs, b(Xs)〉
]
ds

+

∫ t

0

E
[ ∫
|z|>1

(
|Xs− +Az|γc − |Xs−|γc

)
ν(dz)

]
ds

+

∫ t

0

E
[ ∫
|z|<1

(
|Xs− +Az|γc − |Xs−|γc − 〈γ|Xs|γ−2

c Xs, Az〉
)
ν(dz)

]
ds.

Taking derivatives we obtain

d

dt
E
[
|Xt|γc

]
= −γE

[
〈|Xs|γ−2

c Xs, b(Xt)〉
]

+ E
[ ∫
|z|>1

(
|Xt− +Az|γc − |Xt−|γc

)
ν(dz)

]
+ E

[ ∫
|z|<1

(
|Xt− +Az|γc − |Xt−|γc − 〈γ|Xs|γ−2

c Xs, Az〉
)
ν(dz)

]
.

By Hypothesis 1 it follows that

−γ|Xs|γ−2
c 〈Xs, b(Xs)〉 6 −δγ|Xs|γ−2

c |Xs|2 = −δγ|Xs|γ−2
c (|Xs|2c − c2)

= −δγ|Xs|γc + δγc2|Xs|γ−2
c 6 −δγ|Xs|γc + δγcγ .
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Hence

d

dt
E
[
|Xt|γc

]
6 −δγE

[
|Xt|γc

]
+ δγcγ + E

[ ∫
|z|>1

(
|Xt− +Az|γc − |Xt−|γc

)
ν(dz)

]
+ E

[ ∫
|z|<1

(
|Xt− +Az|γc − |Xt−|γc − 〈γ|Xs|γ−2

c Xs, Az〉
)
ν(dz)

]
.

For γ ∈ (0, 1], the subadditivity of the power of order γ yields

E
[ ∫
|z|>1

(
|Xt− +Az|γc − |Xt−|γc

)
ν(dz)

]
6
∫
|z|>1

|Az|γc ν(dz)

6 ‖A‖γ
∫
|z|>1

|z|γν(dz) = ‖A‖γC1,

and

E
[ ∫
|z|<1

(
|Xt− +Az|γc − |Xt−|γc − 〈γ|Xs|γ−2

c Xs, Az〉
)
ν(dz)

]
6 (γ(2− γ)d+ dγ)cγ−2

∫
|z|<1

|Az|2ν(dz)

6 ‖A‖2cγ−2(γ(2− γ)d+ dγ)

∫
|z|<1

|z|2ν(dz)) =: ‖A‖2cγ−2C2.

Therefore we have

d

dt
E
[
|Xt|γc

]
6 −δγE

[
|Xt|γc

]
+ δγcγ + ‖A‖γC1 + ‖A‖2cγ−2C2

and the Grönwall lemma yields

E
[
|Xt|γ

]
6 E

[
|Xt|γc

]
6 |x|γc e−δγt +

1− e−δγt

δγ
(δγcγ + ‖A‖γC1 + ‖A‖2cγ−2C2)

6 |x|γc e−δγt +
1

δγ
(δγcγ + ‖A‖γC1 + ‖A‖2cγ−2C2)

6 |x|γ e−δγt + C3, (D.3)

where C3 = cγ + 1
δγ (δγcγ + ‖A‖γC1 + ‖A‖2cγ−2C2).

Condition H1 in [60]. We emphasize that Condition H1 also only requires Hypothesis 1
and Hypothesis 2. In the sequel we consider the solution (Xt(x))t>0 of (D.1) with initial
condition x. By Hypothesis 1 we have for all x, y ∈ Rd

d

dt
|Xt(x)−Xt(y)|γc = −γ|Xt(x)−Xt(y)|γ−2

c 〈Xt(x)−Xt(y), b(Xt(x))− b(Xt(y))〉

6 −γδ|Xt(x)−Xt(y)|γ−2
c |Xt(x)−Xt(y)|2

= −γδ|Xt(x)−Xt(y)|γ−2
c (|Xt(x)−Xt(y)|2c − c2)

= −γδ|Xt(x)−Xt(y)|γc + γδ|Xt(x)−Xt(y)|γ−2
c c2

6 −γδ|Xt(x)−Xt(y)|γc + γδcγ , (D.4)

where in the last inequality we use that |x|c > c and γ ∈ (0, 1]. Grönwall’s lemma applied
to (D.4) yields

E
[
|Xt(x)−Xt(y)|γ

]
6 E

[
|Xt(x)−Xt(y)|γc

]
6 |x− y|γc e−δγt + cγ 6 |x− y|γe−δγt + 2cγ .

(D.5)
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Let R > 0 and ∆ > 0. Here, we analyze the quantity

P
(
|Xt(x)−Xt(y)| 6 ∆︸ ︷︷ ︸

=:D

, |Xt(x)| 6 R0︸ ︷︷ ︸
=:B

, |Xt(y)| 6 R0︸ ︷︷ ︸
=:C

)
,

where x, y ∈ BR0(0) for a suitable R0 > 0. Observe that

P((D ∩B ∩ C)c) = P(Dc ∪Bc ∪ Cc) 6 P(Dc) + P(Bc) + P(Cc). (D.6)

For any ∆ > 0 and R > 0 we set R0 = max{R, (4C3)1/γ}, where C3 is the positive constant
in estimate (D.3) and take x, y ∈ BR(0). By estimate (D.3) we obtain for any t > 0

P(Bc) = P(|Xt(x)| > R0) 6
E[|Xt(x)|γ ]

Rγ0

6
|x|γ e−δγt + C3

Rγ0
6
Rγe−δγt + C3

Rγ0
=
Rγ

Rγ0
e−δγt +

C3

Rγ0
6 e−δγt +

1

4
. (D.7)

Switching the role of x and y we have

P(Cc) = P(|Xt(y)| > R0) 6 e−δγt +
C3

Rγ0
= e−δγt +

1

4
. (D.8)

We continue with the analysis of P(Dc). Again, let x, y ∈ BR(0). Define T ′0(∆, R) as the
unique positive solution of

((2R)γ + cγ)e−δγT
′
0

∆γ
=

1

4
,

where cγ = ∆γ

8 . Hence for any x, y ∈ BR(0) and t > T0 we have by (D.5) the estimate

P(Dc) = P
(
|Xt(x)−Xt(y)| > ∆

)
6
E
[
|Xt(x)−Xt(y)|γ

]
∆γ

6
|x− y|γc e−δγt + cγ

∆γ

6
((2R)γ + cγ)e−δγt + cγ

∆γ
6

3

8
. (D.9)

By taking T0 = max{T ′0,
ln(32)
δγ } and combining (D.6), (D.7), (D.8) and (D.9) it follows

uniformly for any x, y ∈ BR(0) and t > T0 that

P((D ∩B ∩ C)c) 6 2e−δγt +
7

8
6

15

16
< 1.

The preceding inequality yields the weak form of irreducibility condition H1 in [60] for
the canonical coupling.

Condition H2 in [60]. The proof is virtually identical to [60] p.15-16.

The following corollaries are Taylor-made statements for the error estimates in
Subsection 2.4.

Corollary D.3. For any 0 < γ 6 β ∧ 1 there exists a positive constant C such that for all
ε > 0, x ∈ Rd and t > 0 we have

E
[
|Xε,x

t |γ
]
6 |x|γ e−δγt + Cεγ . (D.10)

Proof. The statement follows taking A = εId and c = ε in inequality (D.3).
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Corollary D.4. For any 0 < γ 6 β ∧ 1 there exists a positive constant C = C(δ, d, γ) such
that

E [|Xε,x
t |γ ] 6 Cεγ + |ϕxt |γ (D.11)

for all t > 0 and ε ∈ (0, 1].

Proof. Note that the difference X̃ε,x
t := Xε,x

t − ϕxt satisfies

dX̃ε,x
t = −

(∫ 1

0

Db(ϕxt + θX̃ε,x
t )dθ

)
X̃ε,x
t dt+ εdLt, X̃ε,x

0 = 0.

Hypothesis 1 together with the analogous computations to the proof of Condition LC
in Theorem 4 in Appendix D yields that for A = εId, c = ε and 0 < γ 6 1 ∧ β there is a
constant C > 0 such that ε ∈ (0, 1], x ∈ Rd and t > 0 imply

E
[
|X̃ε,x

t |γ
]
6 Cεγ .

Using the subadditivity of the γ-power we obtain (D.11).

Corollary D.5. For any x ∈ Rd and 0 < γ 6 β ∧ 1 there exists a positive constant
C = C(|x|, γ) such that for all ϑ ∈ (0, 1) and ε ∈ (0, 1) we have

P
(
|Xε,x

Txε
| > rε

)
6 C(|x|)εγϑ.

Proof. By Corollary D.4 and Lemma A.1 we have

E
[
|Xε,x

Txε
|γ
]
6 C1ε

γ + C2(|x|)εγ

for some positive constants C1 and C2(|x|). The preceding inequality with the help of
Markov’s inequality yields

P
(
|Xε,x

Txε
| > rε

)
6
E
[
|Xε,x

Txε
|γ
]

εγ(1−ϑ)
6 (C1 + C2(|x|))εγϑ,

which concludes the statement.
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