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The q-voter model on the torus*
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Abstract

In the q-voter model, the voter at x changes its opinion at rate fqx , where fx is the
fraction of neighbors with the opposite opinion. Mean-field calculations suggest that
there should be coexistence between opinions if q < 1 and clustering if q > 1. This
model has been extensively studied by physicists, but we do not know of any rigorous
results. In this paper, we use the machinery of voter model perturbations to show that
the conjectured behavior holds for q close to 1. More precisely, we show that if q < 1,
then for any m <∞ the process on the three-dimensional torus with n points survives
for time nm, and after an initial transient phase has a density that it is always close to
1/2. Readers familiar with long time survival results for the contact process and other
praticle systems might expect the conjecture to say survival occurs for time exp(γn)

with γ > 0, however we show persistence does not hold for exp(nβ) with β > 1/3. If
q > 1, then the process rapidly reaches fixation on one opinion. It is interesting to note
that in the second case the limiting ODE (on its sped up time scale) reaches 0 at time
logn but the stochastic process on the same time scale dies out at time (1/3) logn.
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1 Introduction

In the linear voter model, the state at time t is ξt : Zd → {0, 1}, where 0 and 1 are
two opinions. The individual at x changes opinion at a rate equal to the fraction fx of
its neighbors with the opposite opinion. For the last decade physicists have studied the
q-voter model, in which the flip rate at x is fqx . When q is an integer, the dynamics may be
thought of as: select q neighbors of x uniformly at random, and change the opinion of x if
all q neighbors disagree with x. However, there is no reason to restrict q to be an integer.
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The q-voter model on the torus

Abrams and Strogatz [1] introduced this system in 2003 as a model of language death,
and argued based on data on languages in 42 regions that q = 1.31± 0.25. In the physics
literature there have been many studies of the system on lattices, complex networks, and
even on graphs that co-evolve with the state of individuals. See [6, 17, 21, 24, 25, 27, 28]
and references therein. According to [24], for finite but large systems, the process
with q < 1 can remain in a dynamically active phase for observation times that grow
exponentially with n, while for q > 1 the transition into an absorbing state is ‘abrupt’.

The difference between q < 1 and q > 1 is due to the different types of frequency
dependence in the two models. When q < 1, rare opinions spread more rapidly compared
to the voter model, while for q > 1, they spread more slowly. A more quantitative
viewpoint is provided by mean field theory. This analysis is often done by writing an
equation by pretending sites are always independent of each other. Here, we will instead
consider the system on the complete graph in which each site interacts equally with all
the others. In this case, the frequency of 1’s, u, satisfies

du/dt = −u(1− u)q + (1− u)uq = u(1− u)g(u)

where g(u) = uq−1 − (1− u)q−1. This system has three fixed points: 0, 1/2 and 1.

• If q < 1, g(u) decreases from ∞ to −∞ as u increases from 0 to 1. So the fixed
points 0 and 1 are unstable and the interior one is attracting. In this case it is
expected that coexistence occurs.

• If q > 1, g(u) increases from −1 to 1 as u increases from 0 to 1. So the fixed points
0 and 1 are stable and the interior one is unstable. In this case it is expected that
clustering occurs. That is, we will see larger and large regions occupied by one
type.

For more on the heuristics that lead to these conclusions, see the 1994 paper by Durrett
and Levin [12]. In most of the papers in the physics literature, the analysis is done by
using the pair-approximation, which is equivalent to supposing that the state of the
system is always a Markov chain.

Recently, Vasconclos, Levin, and Pinheiro [29] have considered a version of the q-voter
in which the powers q1 and q0 for flipping to 1 and 0 can be different. They did this
to study complex contagions which have been used to model the spread of idioms and
hashtags on Twitter [26] and in many other situations, see the book by Centola [7]. When
q1 6= q0, situations arise when one opinion dominates the other, see Figure 2a in [29], but
the situation with q1 = q0 seems to capture of all of the interesting behavior.

1.1 Voter model perturbations

The linear voter model has a rich theory due to its duality with coalescing random
walk. This duality exists because the process can be constructed from a graphical
representation. See Section 2.1 for details. However, the inherent asymmetry between
1’s and 0’s in the graphical representation makes it impossible to construct nonlinear
voter models where the flip rates depend only on fx. See Section 2.2 for a proof.

To get around this difficulty, we will suppose q is close to 1 and view the q-voter model
as a voter model perturbation in the sense of Cox, Durrett, and Perkins [10]. On Zd, this
theory requires d ≥ 3 so that the voter model has a one parameter family of stationary
distributions νu, 0 ≤ u ≤ 1. That is, for an initial voter configuration generated from the
product measure with marginals u, the distribution νu is the limiting invariant measure
of the voter model. For this and other elementary facts about the voter model that we
use, see Liggett’s 1999 book [23].
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The q-voter model on the torus

In general, for a voter at x, the rate of flipping from state i to j 6= i in a voter
perturbation has the form

cδi,j(x, ξ) = fj(x, ξ) + δ2hi,j(x, ξ)

where fj(x, ξ) is the fraction of neighbors of the voter at x in state j, and hi,j(x, ξ) is the
perturbation to the rate of flipping from i to j. Usually the perturbation variable is ε, but
here it will be convenient to let ε = δ2. To simplify formulas we will assume hi,j(x, ξ) = 0

when ξ(x) 6= i. Here we will consider the special case in which the neighborhood has
size k and the flip rate only depends on the number of neighbors n(x) in state j:

cδi,j(x, ξ) = fj(x, ξ) + δ2rkn(x) for 1 ≤ n(x) ≤ k,

where rkn(x) is the perturbation to the rate of flipping from i to j and depends only on the

number of neighbors of x in state j. The rkn(x) do not have to be nonnegative, see (1.7) in

[10], but we will suppose rk0 = 0 so that ≡ 0 and ≡ 1 are absorbing states. For simplicity,
we will restrict our attention to three dimensions. In that context, we will consider
neighborhoods x+N with 0 /∈ N and |N | ≥ 3 chosen so that the group generated by N
is Z3

q-voter model. The rate at which a site x flips to 0 in the q-voter model is fqx , where
fx is the fraction of neighbors with the opposite opinion. Suppose for the moment that
q < 1. In this case, if we write

fqx = fx + (fqx − fx),

then the term in parentheses is ≥ 0. Let q = 1− δ2 and write u instead of fx Then,

uq − u = u
(
u−δ

2

− 1
)

= u
(
exp(δ2 log(1/u))− 1

)
≈ δ2u log(1/u).

From this we see that if q < 1 and m = n(x), then the perturbation is

rkm = (m/k) log(k/m). (1.1)

which vanishes when n(x) = 0 or k.
If we let q = 1 + δ2 and again write u instead of fx, then

uq − u = u
(
uδ

2

− 1
)

= u
(
exp(δ2 log(u))− 1

)
≈ −δ2u log(1/u).

Hence when q > 1, for m = n(x), the perturbation is

rkm = −(m/k) log(k/m). (1.2)

Intuitively, Theorem 1.1 holds due to a separation of time scales. The voter model
runs at a fast rate, so when the density is u on the torus, the system has distribution
≈ νu. The rate of change of the density can then be computed by looking at the expected
rate of change when the state is νu. Writing 〈 〉u for expected value with respect to νu,
the right hand side of the ODE is

φ(u) = 〈h0,1 − h1,0〉u =

k−1∑
m=1

rkm(ρ0m(u)− ρ1m(u)). (1.3)

This result will be proved by constructing the process on a graphical representation and
then defining a dual that is a coalescing branching random walk. The voter part of the
process leads to a coalescing random walk. When a perturbation event occurs at a point
x, the dual branches to include all of the points in x+N . This will be described in detail
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The q-voter model on the torus

in Section 2.3. The proof of Theorem 1.1 is almost identical to the proof of Theorem 6 in
Cox and Durrett [8] so we will only outline the proof, referring to [8] for details. When
εn � n−2/3 the particles in the dual have time to wrap around the torus and come to
equilibrium in between branching events. It is known that on the torus if we start two
random walks from independent randomly chosen locations, then the time to coalesce
is of order n. Thus the assumption εn � n−1 is needed for the perturbation to have an
effect.

1.2 ODE limit

Following the approach of Cox and Durrett [8], who used the voter perturbation
machinery to study evolutionary games on the torus in dimension d ≥ 3, we will consider
the q-voter model in what they called the weak-selection regime. (For results in the
strong selection regime see Section 1.4.) Let Tn be the three dimensional torus with n
points and hence side length L = n1/3. Let εn > 0 and define δn such that εn = δ2n. The
first thing to do is to prove convergence of the density of 1’s in a scaled time regime,

Un(t) =
1

n

∑
x∈Tn

ξt/εn(x),

to the solution of an ODE. Let ρim denote the probability that in νu the origin is in state
i while exactly m of the neighbors are in state 1 − i. We write an � bn for positive
quantities an and bn to indicate an/bn → 0 as n→∞.

Theorem 1.1. Suppose q = 1 − εn with n−1 � εn � n−2/3. If Un(0) → u0, then Un(t)

converges uniformly on compact sets to the solution of the ODE

du

dt
=

k−1∑
m=1

rkm(ρ0m(u)− ρ1m(u)), u(0) = u0, (1.4)

where rkm is as defined in (1.1).

Intuitively, Theorem 1.1 holds due to a separation of time scales. The voter model
runs at a fast rate, so when the density is u on the torus, the system has distribution
≈ νu. The rate of change of the density can then be computed by looking at the expected
rate of change when the state is νu. Writing 〈 〉u for expected value with respect to νu,
the right hand side of the ODE is

φ(u) = 〈h0,1 − h1,0〉u =

k−1∑
m=1

rkm(ρ0m(u)− ρ1m(u)).

This result will be proved by constructing the process on a graphical representation and
then defining a dual that is a coalescing branching random walk. The voter part of the
process leads to a coalescing random walk. When a perturbation event occurs at a point
x, the dual branches to include all of the points in x+N . This will be described in detail
in Section 2.3. The proof of Theorem 1.1 is almost identical to the proof of Theorem 6 in
Cox and Durrett [8] so we will only outline the proof, referring to [8] for details. When
εn � n−2/3 the particles in the dual have time to wrap around the torus and come to
equilibrium in between branching events. It is known that on the torus if we start two
random walks from independent randomly chosen locations, then the time to coalesce
is of order n. Thus the assumption εn � n−1 is needed for the perturbation to have an
effect.

Computing the rkm, see Section 5, leads to the following ODE
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The q-voter model on the torus

Theorem 1.2. In three dimensions, when the neighborhood has size k, the limiting ODE
is

du

dt
= ±cku(1− u)(1− 2u)fk(u)

where ck > 0 and fk is a polynomial that is positive on [0, 1] and f(0) = f(1) = 1. We
have + for q < 1 and − for q > 1.

When q < 1, the fixed point at 1/2 is attracting and we have

Theorem 1.3. Suppose q = 1 − εn and εn ∼ Cn−a for some a ∈ (2/3, 1). There is a T0
that only depends on u0, so that for any γ > 0 and m < ∞, if n is large then with high
probability

|Un(t)− 1/2| ≤ γ for all t ∈ [T0, n
m].

Here and in what follows “with high probability” means with probability→ 1 as n→∞.
To prove Theorem 1.3, we will follow the approach of Huo and Durrett [20] who

proved a similar result for the latent voter model on a random graph generated by the
configuration model. Although the random graph has a more complicated geometry than
the torus, the proof in that setting is simpler than the one given here, since on the graph
random walks mix in time O(log n) rather that in time O(n2/3).

Figure 1: Cross-section from a simulation of q = 0.9 on a 100 × 100 × 100 grid with
periodic boundary conditions.

Outline of the proof of Theorem 1.3.

• Section 3.1 introduces a general result for proving convergence of stochastic
processes to limiting ODEs, due to Darling and Norris [11], which is the key to the
proofs of the persistence results for our model (and for the latent voter model).
The main difficulty is to bound the difference between the drift in the density Un
of the particle system and the drift in the ODE. In particular, one must prove that
the drift in the density of Un, which is a function of the configuration, is almost a
function of the overall density.

• In Section 3.2 we take the first step in the proof, which is to show that if 2/3 < b < a

then we can ignore the perturbation on [t/εn − nb, t/εn], i.e., the process will evolve
like the voter model. This has the consequence that if there are n · u 1’s at time
t/εn − nb, then at time t/εn the process is close to the voter equilibrium νu. The
argument here is an improvement over the one in Section 3.1 of [20]. We use
Azuma’s inequality to get error estimates that are stretched exponentially small,
i.e., ≤ C exp(cn−α) with α > 0 rather than polynomial, i.e., ≤ Ct−p.
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The q-voter model on the torus

• In Section 3.3 we introduce a result about “renormalizing” the voter model, that
comes from work of Bramson and Griffeath [4] in d = 3 and Zähle [30] in d ≥ 3.
They show that if we consider the number of 1’s in the voter model equilibrium
with density λ, ξλ, in a cube Q(r) of side length r, then

Ŝr = (λ(1− λ))−1/2r−5/2

 ∑
x∈Q(r)

ξλ(x)− λ

⇒ Normal(0, C) (1.5)

We use this to obtain information about a similar normalized sum Tr of the number
of ones in a cube of side r on the torus at time t/εn when the number of 1’s at time
t/εn − nb is λn. To be specific, we let S̄n be the normalized sum of ξλσ(n)(x) in the
process that starts at time 0 from product measure with density λ and is run for
time σ(n) = n0.6. We show that S̄r ≤ T ′r ≤ Ŝr, where T ′r is a small modification of
Tr.

• In Section 3.4 we bound the difference between T ′r and Tr. This in turn gives us
a bound on the largest coalescing random walk cluster in Tr in Q(r), see (3.14),
and a bound on the fluctuations of the density in the cubes, which is important for
completing the next step.

• In Section 3.5 we bound the difference between the drifts in the particle system and
the ODE. To do this, we have to show that the empirical finite distributions on the
torus Tn (see Section 3.5 for a precise definition) are close to the values that come
from voter model stationary distributions νu. In doing this we rely on the result
about the density in cubes proved in Section 3.3 to divide space at time t/εn + sn
into cubes with nb(3) sites, where r = nb(2)/3 and b(3) > b(2). Here sn = n(2+α)b(2)/3

with α small, so that the empirical f.d.d.’s in cubes of volume nb(3) that do not touch
are almost independent. This leads to errors of size C exp(−n1−b(3)−2α).

• In Section 3.6 we put the pieces together to prove the result. As in Section 3.5 of
[20] we do this by showing that if the density Un(t) reaches |Un(t)− 1/2| = 4ε, then
with very high probability (i.e., for any k with probability ≥ 1 − n−k for large n)
it will return to |Un(t)− 1/2| ≤ ε before we have |Un(t)− 1/2| > 5ε. Taking δ = 5ε

gives the desired result

In all of our estimates except those in Sections 3.3 and 3.4, the errors are stretched
exponentially small, so we have the following:

Conjecture. When q < 1 the process persists for time exp(nβ) for some β > 0.

The could be proved with a rather small value of β if the errors in (3.12) and (3.14)
could be improved to be stretched exponentially small. Readers familiar with long time
survival results for the contact process, see e.g., Section 3 in part I of Liggett [23],
might expect the conjecture to say survival occurs for time exp(γn) with γ > 0. However,
the conjecture above cannot hold for β > 1/3. If we run time backwards from t/εn to
t/εn − n2/3 then the n initial particles in the CRW will have coalesced to n1/3 particles. If
all of these happen to land on sites in state 0 at time t/εn − n2/3, then the process will go
extinct at time t/εn.

1.3 Rapid Extinction when q > 1

When q > 1, the fixed point at 1/2 is unstable while the ones at 0 and 1 are locally
attracting. To get rid of the constant ck in the ODE limit in Theorem 1.2 we consider

Un(t) =
1

n

∑
x∈Tn

ξt/εnck(x)
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The q-voter model on the torus

Theorem 1.4. Suppose q = 1 + εn and εn ∼ Cn−a for some a ∈ (2/3, 1). If Un(0) = u0 <

1/2 and α > 1/3 then

P (Un(α log n) = 0)→ 1 as n→∞.

This is proved in Section 5. Much of the work for the proof of Theorem 1.4 has
already been done in the proof of Theorem 1.3. Those results imply that the density in
the particle system stays close to the solution of the ODE. To be precise, we can show
that with high probability.

|Un(t)− u(t)| ≤ εu(t) until τ = inf{t : xt ≤ n−(1−b(0))}

where 2/3 < b(0) < min{b, 1 − α}. Since the ODE is u′(t) = −f(u) with f(u)/u → 1 as
u → 0, the limiting ODE has u(α log n) ≈ n−α. Our proof shows that when the density
gets to ≤ n−b(0) fluctuations in the voter model make the system go extinct in a time that
is ≤ Cnb. See Section 4 for details. The keys to the voter extinction result are (i) the
observation that the number of 1’s in the voter model is a time change of continuous-time
symmetric random walk, and (ii) results on the size of the boundary of the voter model
in the low density regime due to Cox, Durrett, and Perkins [9].

Figure 2: Cross-section from a simulation of q = 1.1 on a 100 × 100 × 100 grid with
periodic boundary conditions.

1.4 Results for strong selection

Let ξεt be a voter model perturbation on Zd with flip rates

cδni,j(x, ξ) = fj(x, ξ) + δ2nhi,j(x, ξ)

where fj(x, ξ) is the fraction of neighbors in state j and the second term is the pertur-
bation. As before we let εn = δ2n. In this section we will examine the case εn � n−2/3,
which we call the strong selection regime.

Intuitively, the next result says that if we rescale space to δnTn (recall Tn is the three
dimensional torus with n points) and speed up time by δ−2n , then the process converges
to the solution of a partial differential equation on R3. The torus turns into R3 in the
limit because δn � n−1/3 while the torus has side n1/3. To make a precise statement, the
first thing we have to do is to define the mode of convergence. To simplify the writing we
drop the subscript n on δ. Given r ∈ (0, 1), let aδ = dδr−1eδ, Qδ = [0, aδ)

3, and |Qδ| the
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The q-voter model on the torus

number of points in Qδ. For x ∈ aδZ3 and ξ ∈ Ωδ, the space of all functions from δZ3 to
S = 0, 1, let

Di(x, ξ) = |{y ∈ Qδ : ξ(x+ y) = i}|/|Qδ|.

We endow Ωδ with the σ-field Fδ generated by the finite-dimensional distributions.
Given a sequence of measures λδ on (Ωδ,Fδ) and continuous functions wi : R3 → [0, 1],
we say that λδ has asymptotic densities wi if for all 0 < η,R <∞ and all i ∈ S

lim
δ→0

sup
x∈aδZ3,|x|≤R

λδ(|Di(x, ξ)− wi(x)| > η)→ 0.

Theorem 1.5. Suppose d = 3. Let wi : Rd → [0, 1] be continuous with
∑
i∈S wi = 1.

Suppose the initial conditions ξδ0 have laws λδ with asymptotic densities wi and let

uδi (t, x) = P (ξδtδ−2(x) = i).

If xδ → x, then uδi (t, xδ) → ui(t, x), were ui is the solution of the system of partial
differential equations:

∂

∂t
ui(t, x) =

σ2

2
∆ui(t, x) + φi(u(t, x)) (1.6)

with initial condition ui(0, x) = wi(x). The reaction term is

φi(u) =
∑
j 6=i

〈hj,i(0, ξ)− hi,j(0, ξ)〉u, (1.7)

where the brackets are expected value with respect to the voter model stationary
distribution νu in which the densities are given by the vector u.

This result is Theorem 2 in [8]. For more details see that paper.
The intuition is similar to that for the ODE limit in Theorem 1.1. On the fast time scale

the voter model runs at rate δ−2 versus the perturbation at rate 1, so the states of sites
near x at time t is always close to the voter equilibrium νu(t,x). Thus, we can compute
the rate of change of ui(t, x) by assuming the nearby sites are distributed according to
the voter model equilibrium νu(t,x).

Cox and Durrett considered evolutionary games on the torus in d ≥ 3 with game
matrix 1 + wG, where 1 is a matrix of 1’s. Their w corresponds to our εn. When w = 0

the system reduces to the voter model. They found convergence to an ODE when
n−1 � w � n−2/d and convergence to a PDE when w � n−2/d. Their results can be used
prove a PDE limit for our system when εn � n−2/d. Since there are only two opinions we
only need one variable u1, which corresponds to our u. The φ in (1.7) is the same as the
second term on the right hand side of our ODE, which should be clear from (1.3).

In the case of a 2 × 2 game with a stable mixed strategy equilibrium that uses
strategy 1 with probability ρ and strategy 2 with probability 1− ρ, the limiting function
is φ(u) = cu(ρ − u)(1 − u) with c > 0. Here, as in the case q < 1, the fixed point ρ is
attracting.To translate Theorem 4 in [8] to our situation, we note that w = ε2L and n = L3.

Theorem 1.6. Suppose that w ∼ Cn−2α/3, where 0 < α < 1, and that we start from a
product measure in which each type has positive density. Let N1(t) be the number of
sites occupied by 1’s at time t. There is a c > 0 so that for any η > 0 if n is large and
log n ≤ t ≤ exp(cn(1−α)), then N1(t)/N ∈ (ρ− η, ρ+ η) with high probability.

The intuition behind the answer is that after space is rescaled the volume of the torus
is asymptotically n(1−α). Theorem 1.6 is a lower bound so it does not rule out survival for
time exp(cn). However, Cox and Durrett proved for the contact process with fast voting
introduced by Durrett, Liggett, and Zhang [13]
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The q-voter model on the torus

Theorem 1.7. There is a C <∞ so that extinction in the contact process plus fast voting
occurs by time exp(cn1−2α/d log n) in d ≥ 3.

Theorem 1.6 can be generalized to the q-voter with q < 1 since it only relies on the
hydrodynamic limit in Theorem 1.5 and a block construction. Theorem 1.7 does not
extend, because ξ ≡ 1 is an absorbing state, and this limits our ability to suddenly kill
the process.

2 Graphical representation, duality

2.1 Voter model

We begin by describing the graphical representation and duality for the voter model
in which the neighbors of x are x+N and N = {y1, . . . yk}. The state of the voter model
at time t is ξt : Zd → {0, 1} where ξt(x) gives the opinion of the individual at x at time t.
We write y ∼ x to indicate that y is a neighbor of x. In the usual voter model, the rate at
which the voter at x changes its opinion from i to j is

cvi,j(x, ξ) = 1(ξ(x)=i)fj(x, ξ),

where fj(x, ξ) = (1/k)
∑k
i=1 1(ξ(x+ yi) = j) is the fraction of neighbors in state j.

To study the voter model, it is convenient to construct the process on a graphical
representation, introduced by Harris [18] and further developed by Griffeath [16]. For
each x ∈ Zd and y ∈ x + N let T x,ym , m ≥ 1, be the arrival times of a Poisson process
with rate 1/k. At the times T x,yn , n ≥ 1, the voter at x decides to change its opinion to
match the one at y. To indicate this, at time T x,yn we write a δ at x and draw an arrow
from y to x. To calculate the state of the voter model on a finite set, we start at the
bottom and work our way up. We think of the 1’s in the initial configuration as sources
of fluid, the δ’s as dams that block the fluid, while the arrows move the fluid in the
direction indicated. Arrows from y to x arrive just after the δ. A nice feature of this
approach is that it simultaneously constructs the process for all initial conditions so that
if ξ0(x) ≤ ξ′0(x) for all x, then for all t > 0 we have ξt(x) ≤ ξ′t(x) for all x.

0 0 0 1 0 1 0

1 1 1 1 1 1 0

0

t

- δ
- δ

�δ

- δ-
δ

�δ
�δ

�δ

Figure 3: Voter model graphical representation
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The q-voter model on the torus

To define the dual process starting from x at time t, we set ζx,t0 = x and work down
the graphical representation. A particle stays at its current location until the first time
that it encounters a δ. At this point it jumps across the edge in the direction opposite its
orientation. A little thought reveals that the path of a single particle in ζx,ts , 0 ≤ s ≤ t, is
a random walk that at rate 1 jumps to a randomly chosen neighbor. Intuitively, ζx,ts gives
the source at time t− s of the opinion at x at time t. That is,

ξt(x) = ξt−s(ζ
x,t
s ).

The example in Figure 3 should help explain the definitions. Here we work backwards to
determine the states of the two sites marked by ‘?’. The dark lines indicate the locations
of the two dual particles. The family of particles ζx,ts are coalescing random walks. That
is, if a particle ζx,ts lands on the site occupied by ζy,ts , the two particles coalesce to form
a single particle, and we know that ξt(x) = ξt(y).

0 0 0 1 0 1 0

? ?

0

t

- δ
- δ

�δ

- δ
- δ

�
δ

�δ
�δ

Figure 4: Dual coalescing random walk

To illustrate the power of duality, we analyze the asymptotic behavior of the voter
model on Zd, proving a result of Holley and Liggett [19]. In dimensions 1 and 2, nearest
neighbor random walk is recurrent, so the voter model clusters, i.e.,

P (ξt(x) 6= ξt(y)) ≤ P (ζx,tt 6= ζx,tt )→ 0.

In d ≥ 3 random walks are transient so differences in opinion persist as t → ∞. Let
ξut be the voter model starting from product measure in which 1’s have density u, i.e.,
the initial voter opinions are independent and = 1 with probability u. For a finite set
B ⊂ Zd, let ζB,ts = ∪x∈Bζx,ts . The distribution of ζB,ts does not depend on t so we drop the
superscript t. Duality implies

P (ξut ≡ 0 on B) = P (ξu0 (y) = 0 for all x ∈ ζBt ) = E
(

(1− u)|ζ
B
t |
)

As t ↑ ∞, |ζBt | ↓ |ζB∞|. From this it follows that

P (ξut (x) ≡ 0 on B)→ E
(

(1− u)|ζ
B
∞|
)

(2.1)
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The probabilities on the left-hand side of (2.1) are enough to determine the distribution
of the limit ξu∞. Since the limit exists, it is a stationary distribution that we denote by νu.

Before moving on, we note that the duality equation can be written as

P (ξAt ∩B 6= ∅) = P (A ∩ ζBt 6= ∅) (2.2)

where ξAt is the voter model starting with 1’s on A and ζBt is the coalescing random walk
starting with particles on B. This holds because the left-hand side is the probability of a
path from A× {0} up to B × {t}, while the right-hand side is the probability of a path
from B × {t} down to A× {0}.

2.2 Nonlinear voter models

There are several types of duality. In general, see page 11 in [23], ηt and ζt (with
possibly different state spaces) are in duality with respect to the function H if

EηH(ηt, ζ) = EζH(η, ζt)

The one we have introduced above corresponds to H(A,B) = 1 of A ∩ B 6= ∅, and 0
otherwise. Harris introduced this class of process [18] and showed that they wer e
exactly the processes that could be constructed from a graphical representation of the
type used in the previous section. since ξAt is defined to be the set of sites at time t that
can be reached from a path starting in A,

ξA∪Bt = ξAt ∪ ξBt .

For this reason the duality is called additive.

Claim. Using the graphical representation described in the previous section we cannot
construct a voter model in which the flip rates depend only on the number of neighbors
with the opposite opinion nx and are nonlinear.

Proof. For simplicity, we only prove the result when the neighborhood has size 4. Con-
sulting Griffeath’s book we see that the only gadgets than can be used in the graphical
representation are combination of arrows and δ’s. To begin, we will consider the set of
processes that can be constructed by only using gadgets that have a δ at x and a number
of arrows that point to x from its neighbors. We call these objects arrow-δs. Since the
flip rates only depend on the number of sites, all arrow-δs with k arrows have the same
rate, ak.

• When there is a 1 at x the δ will cause the 1 to flip to a 0. However, the site will
only stay a 0 if all neighbors connected to x by arrows are in state 0.

• When there is a 0 at x then the δ does nothing, and the site will flip to 1 if there is
at least one neighbor in state 1 connected to x by an arrow.

The number of k-arrow gadgets is
(
k
2

)
so the flip rates are as follows

nx rate 1→ 0 rate 0→ 1

0 0 0
1 a1 a1 + 3a2 + 3a3 + a4
2 2a1 + a2 2a1 + 5a2 + 4a3 + a4
3 3a1 + 3a2 + a3 3a1 + 6a2 + 4a3 + a4
4 4a1 + 6a2 + 4a3 + a4 4a1 + 6a2 + 4a3 + a4

If we add δ’s with no arrows then they will flip 1s even when all their neighbors are
1. If a2, a3, or a4 is positive the rate of flipping 1 → 0 is < the rate of flipping 0 → 1.
when nx = 1, 2, 3. Adding arrows with no δs will only further increase the rates of flips
0→ 1.
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2.3 Duality for voter model perturbations

In the previous section we have shown that the q-voter does not have an additive
dual. In this section we will introduce a generalization of the graphical representation
used in Section 2.1 that allows us to construct voter model perturbations. This idea goes
back to [10]. Calculating the state of the process is not as simple as in the additive case,
but it does allow us to compute the state of the process on a finite set B at time t by
working backwards from time t.

Voter model perturbations have flip rates

cδi,j(x, ξ) = fj(x, ξ) + δ2hi,j(x, ξ), (2.3)

where fj(x, ξ) is the fraction of neighbors of x in state j. The perturbation function hij ,
j 6= i, may be negative (and this happens when q > 1) but in order for the analysis in [10]
to work, there must be a law q of (Y1, . . . Yk) ∈ (Zd)k and a functions gi,j ≥ 0, so that for
some γ <∞, we have

hi,j(x, ξ) = −γfj(x, ξ) + EY [gi,j(ξ(x+ Y1), . . . ξ(x+ Yk))]. (2.4)

In our situation Y1, . . . Yk are k neighbors in N and gi,j , which does not depend on ε, is
the fraction of sites x+ Y1, . . . x+ Yk in state j = 1− i raised to the qth power.

Suppose now that we have a voter model perturbation of the form (2.3) which satisfies
(2.4). We construct the voter model portion as in Section 2.1. We call the arrow-δs voter
events. To add the perturbation we let

‖gi,j‖ = sup
η∈{0,1}k

gi,j(η1, . . . ηk)

and introduce Poisson processes T x,i,jm , m ≥ 1 with rate ri,j = ε‖gi,j‖, where ε = δ2, and
independent random variables {Ux,i,jm }m≥1, uniform on (0, 1). At the times t = T x,i,jm with
m ≥ 1 we draw arrows from x+ Y i to x for 1 ≤ i ≤ k. We call this a branching event.
If ξt−(x) = i and

ri,jU
x,i,j
k < gi,j(ξt−(x+ Y1), . . . ξt−(x+ Yk)) (2.5)

then we set ξt(x) = j. The uniform random variables slow down the transition rate from
the maximum possible rate ri,j to the one appropriate for the current configuration.

To define the dual, we proceed as before. When a particle encounters a δ associated
with a voter event, it jumps to the other end of the arrow. When a particle encounters
the head of an arrow associated with a branching event it gives birth to new particles
at the other ends of all of the arrows. If either action results in two particles on the
same site they coalesce to 1. Let IB,ts be the set of particles at time t− s when we start
with particles on B at time t. Durrett and Neuhauser [14] called IB,ts the influence set
because

Lemma 2.1. If we know the values of ξt−s on IB,ts , then using the graphical representa-
tion (including the associated uniform random variables) we can compute the values of
ξt in B by working our way up the graphical representation starting from time t− s and
determining the changes that should be made in the configuration at each jump time.

This fact should be clear from the construction. A formal proof can be found in
Section 2.6 of [10]. The computation process, as it is called in [10], is complicated,
but is useful because up to time t/εn there will only be O(1) branching events affecting
particles in the dual.
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3 Prolonged persistence

In this section, we will prove Theorem 1.3. The key is to bound the difference between
the density of the particle system and the ODE, using a result of Darling and Norris [11].
Section 3.1 describes this result and the work needed to apply it to finish the proof of
Theorem 1.3. Sections 3.2, 3.3, 3.4, and 3.5 complete this work and Section 3.6 gives
the final details.

3.1 Darling-Norris theorem

To state the result from [11] result we need to introduce some notation. Let ξt be
a continuous time Markov chain with countable state space S and jump rates q(ξ, ξ′).
In our case ξt will be the state of the q-voter model on the torus. We are interested in
proving an ODE limit for Xt = x(ξt/εn) where

x(ξt/εn) =
1

n

∑
y∈Tn

ξt/εn(y).

For each ξ ∈ S we define the infinitesimal drift

β(ξ) =
∑
ξ′ 6=ξ

(x(ξ′)− x(ξ))q(ξ, ξ′)

We let b be the drift of the proposed deterministic limit xt. In our case

xt = x0 ±
∫ t

0

b(xs) ds, b(y) = cky(1− y)(1− 2y)fk(y),

where fk is a polynomial with fk(0) = fk(1) = 1 that is positive on [0, 1] and only depends
on the number of neighbors k. The sign is + for q = 1 − εn and − for q = 1 + εn. The
crucial theorem from [11] is

Theorem 3.1. For each fixed t0 and η > 0,

P

(
sup
s≤t0
|Xs − xs| > η

)
≤ 2e−γ

2/(2At0) + P (Ωc0 ∪ Ωc1 ∪ Ωc2)

To make this statement meaningful we need more definitions. To measure the size of
the jumps we let σθ(y) = eθ|y| − 1− θ|y| and let

φ(ξ, θ) =
∑
ξ′ 6=ξ

σθ(x(ξ′)− x(ξ))q(ξ, ξ′).

The good sets Ωi, i = 0, 1, 2 are given by

Ω0 = {|X0 − x0| ≤ γ} (3.1)

Ω1 =

{∫ t

0

|β(ξs/εn)− b(Xs)| ds ≤ γ
}
, (3.2)

Ω2 =

{∫ t

0

φ(ξs/εn , θ) ds ≤ θ
2At/2

}
. (3.3)

The parameters in these events are coupled by the following relationships. If we let K
be the Lipschitz constant of the drift b and η be the upper bound on the error in the
approximation by the differential equation in Theorem 3.1, then

γ = ηe−Kt0/3 and θ = γ/(At0), where A > 0.

It is clear that b is Lipschitz continuous. Our assumption that Un(0)→ u0 implies that
Ωc0 = ∅ for large n. To bound P (Ωc2), we will choose an A > 0 that works well. We begin
with a useful lemma:
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Lemma 3.2. If Z ∼ Poisson(λ), then

P (Z ≥ 2λ) ≤ exp(−γ(2)λ)

where γ(2) is a constant independent of λ.

Proof. The moment generating function of Z is

E exp(θZ) ≤ exp(λ(eθ − 1)).

Taking θ = log 2, we have E exp(Z log 2) = exp(λ), so using Chebyshev’s inequality we
have

P (Z ≥ 2λ) ≤ exp(−2 log 2λ), exp(λ)

which proves the result with γ(2) = 2 ln 2− 1.

The process Xt has jumps of size 1/n at total rate n/εn. As θ|y| → 0, we have
σθ(y) ∼ θ2y2/2. So, when θ|y| is small, σθ(y) ∼ θ2y2. Using Lemma 3.2, the probability of
2t0n/εn jumps during time [0, t0] is ≤ exp(−γ(2)t0n/εn). When this occurs, and n is large,
the integral in Ω2 is

≤ θ2

n2
· 2t0n

εn
= θ2t0 ·

2

nεn
.

Thus, for the event Ω2 to hold, we need 2/(nεn)� A/2. Since εn ∼ Cn−a with 2/3 < a < 1,
we have

Lemma 3.3. If t0 and γ are fixed and A = n−(1−a)/3 then e−γ
2/(2At0) → 0 and P (Ωc2)→ 0

exponentially fast as n→∞.

3.2 Ignoring branching

The remainder of Section 3 is devoted to bounding P (Ωc1). To begin to do this,
we return to the original time scale. We define ξ̃s to be the same as ξs at time s =

t/εn − nb, while on the time interval [t/εn − nb, t/εn], ξ̃s only has voter events, ignoring
the perturbation. The value b ∈ (2/3, a) is chosen so that lineages in the dual coalescing
random walk will have time to wrap around the torus but, as we will now show, the
perturbation will not have much effect. Let

X̃t =
1

n

∑
x∈Tn

ξ̃t/εn(x)

be the density of this new process ξ̃.
We will now show that ignoring the perturbation changes the values of more that ηn

sites with a stretched exponentially small probability.

Step 1. The number of perturbation events M in time nb is bounded by a Poisson(λ)
random variable with λ = Cn1+b+a. Lemma 3.2 implies that

P (M ≥ 2λ) ≤ exp(−γ(2)λ) ≤ exp(−Cγ(2)nb), (3.4)

since λ ≥ Cnb.

Step 2. Let ηt(x) = |ξt(x)− ξ̃t(x)|, so that ηt(x) = 1 means there is a discrepancy between
the two processes ξt and ξ̃t at position x. We want to prove that

∑
x ηt/εn(x) is more than

ηn with a stretched exponentially small probability. To do this, note that when an edge
(x, y) with ηs(x) = 0 and ηs(y) = 1 is hit by a voter event (that is, there is an arrival in
the Poisson process T x,y or T y,x), then the 1 is changed to 0 with probability 1/2 (when
the arrival is in T x,y) and the 0 is changed to a 1 with probability 1/2 (when the arrival
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is in T y,x). Thus, the change in the number of discrepancies due to voter events is a
martingale. Let Ym denote this value after m jumps. The change is always ≤ 1 so if there
are N jumps, then by Azuma’s inequality

P (|YN − Y0| ≥ z | N = n0) ≤ 2 exp(−z2/2n0)

If N is the number of changes due to voter events in the time interval [t/εn − nb, t/εn],
then N ≤ Poisson(nb+1). By Lemma 3.2,

P (N ≥ 2n1+b) ≤ exp(−γ(2)n1+b).

Note that if n0 < 2n1+b, then 2 exp(−z2/2n0) < 2 exp(−z2/4n1+b). So, taking z = ηn and
N = 2n1+b, we get

P (|YN − Y0| ≥ ηn) ≤ 2 exp(−η2n1−b/4). (3.5)

3.3 Bounding the density

The results in the previous section show that on the interval [t/εn − nb, t/εn] we
can ignore the perturbation and assume that the process evolves like the voter model.
To understand the distribution of 1’s at time t/εn we will use results of Bramson and
Griffeath [4], and Zähle [30]. The first reference only treats d = 3. The second covers
d ≥ 3 and is more detailed, so we will follow it.

Let ζλ : Zd → {0, 1} have the distribution of the equilibrium of a finite range voter
model on Zd with density νλ. For an explanation of this and the other basic facts about
the voter model that we will use, see Liggett’s book [23]. For simplicity we will do
calculations for the nearest neighbor case. The results are the same in the finite range
case, but are more awkward to write since, for example, the limiting normal has a
general covariance matrix, we cannot use the reflection principle, etc. To formulate the
limit theorem in [30], we will write the process at a fixed time as a random field

Fλ(φ) =
∑
i∈Zd

[ζλ(i)− λ]φ(i),

where φ is a member of a suitable class of test functions. To rescale space, we let

Fλ,r(φ) = Fλ(φr) where φr(x) = r−(d+2)/2φ(x/r).

Theorem 1 on pages 1265–1266 of [30] shows that in our nearest neighbor case

Fλ,r(φ)⇒ Normal(0, adλ(1− λ)B(φ, φ)),

where ⇒ denotes weak convergence as r → ∞, Normal(µ, σ2) is a one-dimensional
normal distribution with mean µ and variance σ2, and B is the bilinear function

B(φ, ψ) =

∫∫
φ(x)ψ(y)

|x− y|(d−2)/2
dx dy.

Restricting our attention now to d = 3, Zähle’s result implies that

Ŝr ≡ [λ(1− λ)]−1/2r−5/2
∑

x∈[−r/2,r/2]3

[
ζλ(x)− λ

]
⇒ Normal(0, c3,λ) (3.6)

Bramson and Griffeath [4] prove (3.6) by the method of moments, which gives

E(Ŝr)
2m → c2m3,λµm where µm = (2m− 1)(2m− 3) · · · 3 · 1. (3.7)
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In our situation, we need a slightly different result. In particular, these results are for
the voter model on Z3, and we need a result for the voter model on the 3-d torus. Let

Tr ≡ [λ(1− λ)]−1/2r−5/2
∑

x∈Q(r)

[ξt/εn(x)− λ]

where λ is the fraction of sites in state 1 at time t/εn − nb, and Q(r) is a fixed cube with
side r = nβ with β < 1/3. To prove a limit result for Tr we will sandwich it between Ŝr
and

S̄r ≡ [λ(1− λ)]−1/2r−5/2
∑

x∈Q(r)

[ζ̄λσ(n)(x)− λ],

where ζ̂λσ(n) is the voter model on the torus starting from product measure with density λ

and run for time σ(n) = n0.6. To couple this with Tr we create S̄r by running coalescing
random walks starting at time t/εn from points in Q(r) backwards in time for σ(n), and
then use independent coin flips with probability λ of heads (1) and 1− λ of tails (0) to
determine the states of the sites.

(i) With stretched exponentially small probability, no coalescing random walk
will move more than n0.33 in any coordinate by time σ(n) = n0.6.

Proof. We will use a special case of (7.3) on page 553 in Feller volume II [15].

Lemma 3.4. Let w1, w2, . . . wk be i.i.d. with P (wi = 1) = P (wi = −1). Then if Wk =

w1 + · · ·wk, ε > 0, and x = o(k), we have

P (Wk/
√
k ≥ x) ≤ exp(−(1− ε)x2/2).

Taking k = n0.6 and x = 0.03, it follows that the probability some coalescing random
walk starting inside the cube Q(r) and run for time σ(n) moves by more than n0.33 in any
coordinate is

≤ 2 · 6r3 exp(−(1− ε)n0.06/2).

Here the 2 comes from using the reflection principle to relate the maximum to the value
at time n0.6, and 6 is 3 coordinates times 2 signs.

The result (i) implies that with very high probability there is no difference between
the coalescing starting from Q(r) with r = nβ for β < 1/3, run to time σ(n) = n0.6 on the
torus or on Z3.

(ii) There is a γ > 0 so that at all times t ≥ (k + 1)n2/3, the total variation be-
tween the distribution of a nearest neighbor random walk on the torus and the
uniform distribution is ≤ (1− γ)k.

Proof. To prove the result, we use a simple coupling. At time n2/3 the distribution of
each particle has a density that is ≥ γ/n at each point of the torus. At time n2/3 the
distribution has the form γ · µn + (1− γ)qn, where µn is uniform on the torus and qn is
some transition probability. Uncoupled mass at time (k − 1)n2/3 can be coupled to the
uniform distribution with probability ≥ γ at time kn2/3 and the desired result follows.

Definition of T ′n. We continue the construction of Tr: from the end of the construction
of S̄r at time σ(n), we run the coalescing random walk particles on Z3. To assign values
to the lineages at time nb we extend the configuration on the torus at that time to be
periodic on Z3. It follows from (ii) that with very high probability there is no difference
between flipping coins at time n0.6 to determine the states of the sites in the sum S̄n or
continuing to run the coalescing random walks on Z3 until time nb. Having done this, we
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no longer perfectly reproduce Tn, so we call the result T ′n. The good news is that when
we run the coalescing random walk on Z3 starting at σ(n), we will have T ′r ≺ Ŝn. That is,
the coalescing random walk clusters in T ′r are contained in clusters in Ŝr.

To prove the result in (3.6), Zähle defines a cluster to be a set of sites that coalesce to
the same limiting particle, and lets Zr,k, 1 ≤ k ≤ K(r) be the cluster sizes and lets ηr,k
be independently = 1 with probability λ and = 0 with probability 1− λ. As she notes in
(3.6) on page 1274,

Ŝr =d r
−5/2

K(r)∑
k=1

Zr,k · (ηn,k − λ) (3.8)

If we condition on the Zr,k, then we have a sum of independent random variables. If
we let v2n =

∑
k Z

2
n,k, then using Lyapunov’s theorem (see the bottom of page 1275) it

follows that
(Ŝr/vn | Z)⇒ χ,

where Z is the σ-field generated by the Zr,k and χ is a standard normal. In Lemma 1
on page 1276 in [30] she shows that v2n converges in probability to a constant, so if we
remove the conditioning we get the same limit. Lemma 2 computes the limit of Ev2n and
(3.6) follows.

The last argument can be applied to S̄n to conclude that it converges to a normal
distribution. To find the limiting variance we compute∑

x,y∈Q(r)

E(ζ̄λσ(n)(x)− λ)(ζ̄λσ(n)(y)− λ)

When the coalescing random walks starting from x and y do not coalesce, the states at x
and y are independent; otherwise, they are equal. Thus, if we let τx,y be the time the
two coalescing random walks hit, then the above sum is∑

x,y∈Q(r)

λ(1− λ)P (τx,y ≤ n0.6)

Using the local central limit theorem,

P (n0.6 ≤ τx,y <∞) ≈ 2βd

∫ ∞
n0.6

1

(2πt)3/2
exp

(
−|x− y|2/2t

)
dt

The right-hand side gives the expected amount of time the two particles spend together.
When they hit they spend an exponential rate 2 amount of time together. In addition, they
will hit a geometric number of times with success probability βd. Changing variables
t = |x− y|2/2s, dt = −|x− y|2/(2s2) the integral becomes∫ |x−y|2/n0.6

0

(
s

π|x− y|2

)3/2

e−s
(
π|x− y|2

2s2

)
ds

=
1

2π3/2|x− y|

∫ |x−y|2/n0.6

0

s−1/2e−s ds ≤ Cn−0.3.

Consulting Lemma 4 in [30] we find

P (τx,y <∞) ∼ c′3/|x− y|

Using the formula for c′3 it follows that the asymptotic variance for S̄r is the same as for
Ŝr.
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Limit theorem for T ′r. Let Xr,k ≺ Y ′r,k ≺ Zr,k be the cluster sizes in S̄r, T ′r, and Ŝr. The
limiting variances of the unnormalized sums are∑

k

EX2
r,k ≤

∑
k

E(Y ′r,k)2 ≤
∑
k

EZ2
r,k

Since the top and bottom sums have the same asymptotics, this gives us the Gaussian
limit theorem for T ′n. Replacing 2 by 2m and recalling that Bramson and Griffeath [4]
proved their result for Ŝr by the method of moments gives the desired results for T ′r:

T ′r ≡ [λ(1− λ)]−1/2r−5/2
K(r)∑
k=1

Y ′r,k(ηr,k − λ)⇒ N (0, c3,λ) (3.9)

E(T ′r)
2m → c2m3,λ(2m− 1)(2m− 3) · · · 3 · 1 (3.10)

The last result implies

r2mβP (|T ′r| ≥ rβ) ≤ E(S̄r)
2m → Eχ2m (3.11)

so if we let D̃′r = [λ(1− λ)]1/2r5/2T ′r, (i.e., we remove the scaling) then

P (|D′r| ≥ [λ(1− λ)]1/2r5/2+β) ≤ Cmr−2mβ . (3.12)

This is the concentration result we desired for T ′n. Recall that T ′n was constructed as a
slight modification of Tn, which is the true rescaled and centered density that we which
to prove results about.

3.4 Controlling the difference between T ′n and Tn

The goal in this section is to generalize (3.12) to Tr.

Bounding the number of extra coalescences in T ′n. When we went from the
torus to Z3 we may have eliminated some coalescence in Tn at times in [n0.6, nb]. For
this to happen the difference in two particles positions must have wrapped around the
torus, an event we call G, and the particles projected back to the torus must have hit, an
event we call H. To bound this event we note that

P (G ∩H) ≤ min{P (G), P (H)}.

Let α = 2(1− ε)/3. Lemma 3.4 implies that the probability G happens during [n0.6, nα] is
≤ exp(−nη) for some η > 0. On [nα, nb], the probability that a random walk is at a fixed
site is ≤ 1/n1−ε. Thus, for a fixed pair of particles,

P (H) ≤ Cnb/n1−ε.

If r = nb(2)/3, then nb(2) is a trivial upper bound for the number of particles at time
σ(n), which holds with probability 1. We will now estimate the number of collisions of a
fixed particle with all of the others. This number is increased if we ignore coalescence,
and run the particles as independent. We do this so that

Lemma 3.5. If m ≥ 1 and a particle belongs to a cluster of size 2m or 2m+ 1 with m ≥ 1

formed by coalescence during [nα, nb], then there are at least m disjoint pairs of particles
that have coalesced.

Proof. Recall that on this time interval we are running the lineages on Z3. We will prove
the result by induction. To be able to disentangle the graph constructed by coalescence
we will number the particles. Once two particles hit the two future trajectories could
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be assigned to either particle so we allow ourselves the liberty of be exchanging the
labels at any collision. If the cluster has size 2 or 3, this is trivial. Suppose now that
m ≥ 2. Locate the time t0 at which the first two particles coalesced. Call them x and y
and let t1 be the first time after t0 that the coalesced particle collided with another one
that we call z. Remove the Y -shaped part of the genealogy leading from x and y to the
coalescence at time t1. Label the lineage coming out t1 the same as the one coming in
on z’s trajecctory. We have identified one pair of coalescing particles and reduced the
number of sites in the cluster by 2, so the result follows by induction.

Given Lemma 3.5, our next task is to estimate the probability that m disjoint pairs
will coalesce. Using the trivial upper bound nb(2) on the number of lineages, the number
of coalescing pairs is

N ≤ Binomial(n2b(2), Cnb/n1−ε).

Note that this bounds the number of coalescing pairs that coalesce in the system, not
just those that form one cluster. The expected number is Cnb+2b(2)+ε−1, where b is larger
than 2/3 and can be assumed to be ≤ 0.7. If b(2) ≤ 0.1, then −ν = b+ 2b(2) + ε− 1 < 0

when ε < 0.5. In this case,

P (N = k) ≤
(
n2b(2)

k

)
(Cnb+ε−1)k ≤ Ckn−kν

k!
,

so summing gives

P (N ≥ k) ≤ eCn−kν . (3.13)

Bounding the size of clusters in Ŝr. Formula (3.7) tells us that

E(Ŝr)
2m → c2m3,λµm

Using (3.8) we have [(1− λ)λ2m + λ(1− λ)2m]
∑K(r)
k=1 Z

2m
r,k ≤ E(Ŝr)

2m. From this we see
that when r is large

r11m/2P (max
k

Zr,k ≥ r5.5/2) ≤ Cmr5m

so we have

P (max
k

Zr,k ≥ r5.5/2) ≤ Cm,λr−m/2. (3.14)

Combining (3.13) and (3.14) we see that if Yr,k are cluster sizes in Tn, then

P

(
max
k

Yr,k ≥
m

2ν
r5.5/2

)
≤ Cm,λr−m/2 (3.15)

Combining (3.13) with k = m/2ν and (3.15) we see that the combined size of the
clusters in T ′n but not in Tn is

≤ m

2ν
n5.5/2 with probability 1− Cm,λr−m/2. (3.16)

Using this with (3.12) and letting Dr = [λ(1− λ]1/2r5/2Tn it follows that

P (|Dr| ≥ [λ(1− λ)]1/2r5/2+β ≤ Cm,λr−mβ/2. (3.17)

Suppose r = nb(2)/3 where 0 < b(2) < 1, then

P
(
|Dr| ≥ [λ(1− λ)]1/2n5b(2)/6+β

)
≤ Cmn−mβb(2)/6
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Now, partition the torus into cubes of side nb(2)/3. Letting Ni be the number of 1’s in the
ith cube we have

P

(∣∣∣∣ Nr,inb(2)
− λ
∣∣∣∣ ≥ [λ(1− λ)]1/2n−b(2)/6+β

)
≤ Cmn−mβb(2)/6.

For fixed β > 0, given a k <∞ we can pick m large enough then the right hand side is
≤ n−(1−b(2))−k. Then we have,

P

(
for some i

∣∣∣∣ Ninb(2)
− λ
∣∣∣∣ ≥ [λ(1− λ)]1/2n−b(2)/6+β

)
≤ n−k. (3.18)

3.5 Bounding the difference in the drifts

For x, y1, . . . yk ∈ Zd and v0, v1, . . . vk ∈ {0, 1} fixed we let

Gx,y,v = {ξ(x) = v0, ξ(x+ y1) = v1, . . . ξ(x+ yk) = vk}

be a finite dimensional event. For simplicity, we do not display the dependence on the
sites y and the states i. The probabilities of these events for ξt are the empirical finite
dimensional distributions.

Thus far we have been concerned with the overall density of particles on the torus.
However, to successfully bound P (Ωc1) we need to show that if u is the density of ones in
the voter model at time t/εn − nb, then the empirical finite dimensional distributions on
the torus are close to those of the voter model equilibrium νu at time t/εn + sn, where

sn = n(2+β)b(2)/3. (3.19)

The reasoning for introducing this extra time sn is described below.

The first step is to partition the torus at time t/εn into boxes with side r = nb(2)/3.
Using (3.18), we can conclude that with high probability the density in each box is close
to u, the density of 1’s at time t/εn − nb. We divide the torus at time t/εn + sn into
cubes with side nb(3)/3, where b(3) > b(2). The β in the time guarantees that if we work
backwards from time t/εn + sn to t/εn, the probability a random walk particle will move
by an amount much larger than nb(2)/3, the size of the boxes at time t/εn, is stretched
exponentially small. See Lemma 3.4. As in [14] and [10] this implies the conditional
distribution of the position given that the lineage ends in a specific box is almost uniform,
and hence the probability it lands on a 1 will be close to u. A second consequence is that

Lemma 3.6. With very high probability, the empirical finite dimensional distributions at
time t/εn + sn will be close to νu(Gx,y,v).

Proof. To see this, note that we compute the probabilities of finite dimensional sets in
the voter model equilibrium νu by starting the CRW with points at y0, . . . ym, and running
time to sn. The particles that coalesce are a partition of the original set. We then flip a
coin with a probability u of heads (state 1) to determine the states. Here we are only
running time to sn so our partition is finer, but the final particles are roughly independent
and uniform on the torus so whether they land on 1 or 0 are roughly independent coin
flips.

The last paragraph shows that probabilities of the f.d.d.’s are close to the voter model
equilibrium νu. This enables us to conclude that the expected value of the drift of our
process when the density is x is close to b(x). The next step is control the fluctuations
about the mean. Using normal tail bounds on random walks in Lemma 3.4, it follows that
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if Bn is the event that some coalescing random walk at time t/εn + sn moves by more
than nb(3)/3 in time sn, then for any γ > 0 we have for large n

P (Bn) ≤ n exp(−(1− γ)n2b(3)/3/2n(2+β)b(2)/3)

= n exp

(
−1− γ

2
n[2b(3)−(2+β)b(2)]/3

)
(3.20)

cube
sizes nb(2) nb(3)

t/εn − nb time t/εn t/εn + sn

•

density f.d.d.

Figure 5: Picture summarizing the proof. Here sn = n(2+β)b(2)/3. The words at the top
indicate the quantity that is “good” at each time, i.e., close to its average value on the
cubes. The dark line at time t/εn shows the interval in which we will with high probability
find the lineage of the black dot when it is worked backwards in time.

For the last inequality to be useful we need to choose β so that 2b(3)− (2 + β)b(2) > 0.
The estimate in (3.20) implies that the states of sites in cubes in the decomposition at
time t/εn + sn that do not touch are independent on Bcn. We can divide our collection of
cubes into 27 subcollections Ci of size n1−b(3)/27 so that no two cubes in the subcollection
touch. For 1 ≤ i ≤ 27, let Ni be the number of times Gx,y,v occurs in the union of the
cubes in Ci, let Ni,j be the number of times Gx,y,v occurs for x in the jth cube in Ci. If x
is close to the edge of the cube then some of the x+ yi may be outside. However, the yi
are fixed, so for large n they will at worst be in an adjacent cube.

For fixed i, the Ni,j are independent on the event Bcn, and 0 ≤ Ni,j/n
b(3) ≤ 1. Let

ρi,j = ENi,j/n
b(3). Let

Xi,j =
Ni,j
nb(3)

− ρi,j ∈ [−ρi,j , 1− ρi,j ].

Finally, let ψi,j(θ) = E exp(θXi,j), let Yi =
∑
j Xi,j , and let M = n1−b(3)/27 be the number

of cubes in each collection Ci. If θ > 0, then, assuming Bcn, we have

eθMηP (Yi ≥Mη) ≤
∏
j

ψi,j(θ),
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using the independence of the Ni,j across j. So, we have

P (Yi ≥Mη) ≤ e−θMη
∏
j

ψi,j(θ)

= exp

M
−θη +M−1

∑
j

logψi,j(θ)

 (3.21)

Since we do not know much about ψi,j(θ), we will let ηn = n−α, and later choose θn
so that limn→∞ θn = 0. Expanding logψi,j around 0:

d

dθ
logψi,j(θ) =

ψ′i,j(θ)

ψi,j(θ)
,

d2

dθ2
logψi,j(θ) =

ψ′′i,j(θ)

ψi,j(θ)
−

(ψ′i,j(θ))
2

ψ2
i,j(θ)

.

When θ = 0, we have ψi,j(0) = 1 by definition, and also

d

dθ
logψi,j(0) = EXi,j = 0,

d2

dθ2
logψi,j(0) = EX2

i,j .

So, if θi,n → 0, then we have the approximation

logψi,j(θi,n) ∼
θ2i,n
2
EX2

i,j .

Since Xi,j ∈ [−ρi,j , 1− ρi,j ] and EXi,j = 0,

EX2
i,j ≤ ρi,j(1− ρi,j)

To optimize the bound in (3.21) we d/dθ the term in square brackets in (3.21) to get

0 = −ηn + θi,nM
−1
∑
j

ρi,j(1− ρi,j), (3.22)

which says we want to take θn = ηn/τi, where τi = M−1
∑
j ρi,j(1− ρi,j). This gives the

following large deviations bound

P (Yi ≥Mηn) ≤ exp

(
M

[
−η

2
n

τi
+

η2n
2τ2i

τi

])
= exp

(
−Mη2n

2τi

)
≤ exp(−Mη2n),

since 2τi ≤ 1. The same reasoning can be used to get a bound on the other deviation.
Since we have expanded the moment generating function around 0 the bound is the
same, giving the final result

P (|Yi| ≥Mηn) ≤ exp(−Mη2n)

Define Y =
∑27
i=1 Yi, and then use the triangle inequality to get

P (|Y | ≥ 27Mηn) ≤ 27 exp(−Mη2n)

EJP 26 (2021), paper 118.
Page 22/33

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP682
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The q-voter model on the torus

The last task is to relate this to the difference of the drifts. To do this, we note that

Y = n−b(3)
∑
i,j

Ni,j −
∑
i,j

ρi,j

so we have
Y

n1−b(3)
= n−1

∑
x

1(Gx,y,v)−
1

n1−b(3)

∑
i,j

ρi,j

Let pnx,y,v be the probability of Gx,y,v when we work backwards in the coalescing random
walk starting from x, x+ y1, . . . x+ yk then we have

1

n1−b(3)

∑
i,j

ρi,j =
1

n

∑
x

pnx,y,v

In the three neighbor case we only have to consider: y1 = e1, y2 = e2, and y3 = e3.
When there are more neighbors, we have to consider a number of other possibilities, see
the calculations in Section 5. Let r(v) = r(v0, v1, v2, v3) be the jump rate of vertex x when
the states are vi. Multiplying by r(v), summing over the relevant values of y, v we have

n−1
∑
x,y,v

1(Gx,y,v)r(v) = β(ξt/εn+sn)

so we have

P

(∣∣∣∣∣β(ξt/εn+sn)− 1

n

∑
x,y,v

pnx,y,vr(v)

∣∣∣∣∣ ≥ 16n−α

)
≤ 27 exp

(
−n1−b(3)−2α/27

)
(3.23)

The choice of sn guarantees that as we work backwards in time the particles in the CRW
move by an amount� nb(3). The bound in (3.18) implies that each particle in the CRW
lands on a 1 with probability close to u. It follows that∣∣∣∣∣ 1n∑

y,v

pnx,y,v − b(u)

∣∣∣∣∣ ≤ η/2
with very high probability. The bounds derived above only works for fixed t. However,
it is easy to extend them so that they hold uniformly on [0, t0] and hence are valid for
the integral. To do this, we subdivide the interval into subintervals of length 1/n1/2εn.
Within each interval the probability there are more than 2n1/2 flips is ≤ exp(−c

√
n). If

we add this to previous error probability and multiply by the number of subinterval we
still have a result that holds with very high probability.

3.6 Final details

To get long time survival, we will iterate. Let

T0 = inf{t : |xt − 1/2| < η}

and note that xt is the solution of the ODE so this is not random. Theorem 3.1 implies
that |X(T0)− 1/2| ≤ 2η with very high probability. Let

T1 = inf{t > T0 : |Xt − 1/2| ≥ 4η}

and note that on [T0, T1] we have |Xt − 1/2| ≤ 4η. There is a constant tη so that if
x(0) = 1/2 + 4η or x(0) = 1/2 − 4η then |x(tη) − 1/2| ≤ η. Let S1 = T1 + tη. Since T1 is
random, S1 is a random time. However, due to the Markov process, we can translate time
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to apply Theorem 3.1 again. That is, consider X̃t := Xt+T1
. Then since |X̃0 − 1/2| = 4η,

Theorem 3.1 implies that with high probability |X̃tη − 1/2| = |X(S1) − 1/2| ≤ 2η and
|Xt − 1/2| ≤ 5η on [T1, S1]. For m ≥ 2, let

Tm = inf{t > Sm−1 : |Xt − 1/2| ≥ 4η} and Sm = Tm + tη.

We can with high probability iterate the construction nk times before it fails. Since each
cycle takes at least t0 units of time, taking η = γ/5 the proof of Theorem 1.3 is complete.

4 Rapid extinction for q > 1

In this section we will prove Theorem 1.4. There are two steps to the proof. First, we
use the results in Section 4 to show that the fraction of 1’sin the random process is close
to solution of the ODE until time

τ = min{t : xt < n−(1−b(0)}, (4.1)

where b(0) will be defined in the proof of Lemma 4.1. The second step is to prove that
when we start with ≤ nb(0) ones, then fluctuations in the voter model will cause it to
hit 0 in time ≤ Cnb(0). This time is < nb for large n, so by results in Section 3.2, it is
legitimate to assume that the process acts like the voter model. The proof for the second
step is based on a Green’s function calculation and estimates for the rate of change of
the number of ones in the voter model.

4.1 First step

Lemma 4.1. Suppose X0 < 1/2 and let τ be defined in (4.1). Then, for any η > 0, as
n→∞,

¶
(
|Xτ − n−(1−b(0))| < ηn−(1−b(0))

)
→ 1.

Proof. We use (3.18) from Section 3.4. If X0 = u and we divide the torus at time t/εn
into boxes of side r = nb(2)/3, then taking m large in(3.18) gives

P

(
for some i

∣∣∣∣ Nr,inb(2)
− u
∣∣∣∣ ≥ [u(1− u)]1/2n−b(2)/6+β

)
≤ n−k, (4.2)

for any β > 0 and k <∞. Since u1/2 > (u(1− u))1/2, we can change this to

P

(
for some i

∣∣∣∣ Nr,inb(2)
− u
∣∣∣∣ ≥ u1/2n−b(2)/6+β) ≤ n−k. (4.3)

For this estimate to be useful, we need u � u1/2n−b(2)/6+β which is equivalent to
u� n−b(2)/3+2β . If b(2) is close to 1 and β is small, we can define b(0) by

1− b(0) = b(2)/3− 2β,

so that b(0) < min{b, 1− α} where α > 1/3 is the quantity from Theorem 1.4. Combining
these estimates and using results from the previous section we have that if x0 < 1/2 and
η > 0 then as n→∞

P (|Xt − xt| ≤ ηxt for all t ≤ τ)→ 1.

Lemma 4.1 follows.

This result shows that the number of 1’s gets driven to ≤ (1 + ε)nb(0) at the deter-
ministic time τ . To complete the process of extinction we will rely on fluctuations in the
voter model.
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4.2 Green’s function calculation

To motivate the calculation in the next lemma we note that the voter model is a time
change of simple random walk.

Lemma 4.2. Let St be continuous-time simple random walk on {0, . . . , n} with jump-rate
r(j) at position j. Let 0 < x < z ≤ n be integers, and T0,z the first time that St hits 0 or z.
Then,

ExT0,z =

x∑
y=1

2y

r(y)
+

z∑
y=x+1

2x

r(y)
−

z∑
y=1

2xy

zr(y)
. (4.4)

Since Px(Tz < T0) = x/z, this is enough to bound the extinction time if x/z → 0.

Proof. First consider the embedded discrete-time chain of St. For 0 ≤ y ≤ z, let Nx(y) be
the number of times the random walk visits y before hitting 0 or z, starting from position
x. Consider the Green’s function

G0(x, y) = E[Nx(y)].

Fix y and write g(x) = G0(x, y). Then we have that g satisfies
g(0) = 0

g(x) = 1
2 (g(x+ 1) + g(x− 1)) , x 6= 0, y, z

g(y) = 1 + 1
2 (g(y + 1) + g(y − 1))

g(z) = 0

.

From this it is clear that g should be linear and increasing on [0, y] and linear and
decreasing on [y, z]. That is,{

g(x) = c1x 0 ≤ x ≤ y
g(x) = c2(z − x) y ≤ x ≤ z.

.

To satisfy the conditions for g(x) and g(y), the constants must be

c1 =
2(z − y)

z
, c2 =

2y

z
.

The walk will spend an average of 1/r(y) units of time at position y before jumping.
Thus, if G(x, y) is defined to be the expected amount of time the continuous time walk
spends at y, started from x, before hitting 0 or z, we have:

G(x, y) =
1

r(y)
·G0(x, y) =

1

r(y)
·

{
2x(z − y)/z x ≤ y
2(z − x)y/z x ≥ y

Thus, the expected total time before being absorbed, started from x, is

Ex[T0,z] =

z∑
y=1

G(x, y) =

x∑
y=1

2y

z
· (z − x) · 1

r(y)
+

z∑
y=x+1

2(z − y)

z
· x · 1

r(y)

=

x∑
y=1

2y

r(y)
+

z∑
y=x+1

2x

r(y)
−

z∑
y=0

2xy

zr(y)
,

which establishes (4.4)
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4.3 Boundary size calculations

To use (4.4) to bound the extinction time, we need to understand the size of the
boundary of the voter model: ∂ξ = {{x, y} : x ∼ y, ξ(x) 6= ξ(y)}. Here x ∼ y means that x
and y are neighbors and {x, y} is the un-oriented edge that connects them. For a voter
model configuration ξ, let |ξ| =

∑
x ξ(x) be the number of 1s. The next result gives trivial

upper and lower bounds on |∂ξ| when |ξ| = k:

Cdk
1/d ≤ |∂ξ| ≤ 2dk. (4.5)

Using (4.4), we see that if x = np and z = nq for some 0 < p < q < 1, then for r(y) = y,

ExT0,z ≤
x∑
y=1

2y

y
+

z∑
y=x+1

2x

y
≤ Cx+ 2x[log(z)− log(x)] ≤ C ′x log(z) (4.6)

If p = b(0) and q > p, this gives us what we want, an extinction time� nb.
On the other hand, if we use the lower bound and plug in r(y) = y1/3, then

ExT0,z ≤
x∑
y=1

2y

y1/3
+

z∑
y=x+1

2x

y1/3
≤ C(x5/3 + x2/3z) ≤ C ′x2/3z (4.7)

If we take x = nb(0) and z = nc then this is ≤ Cn5b(0)/3, which is much longer than the
interval of length nb over which the process behaves like the voter model. Combining
(4.5) and (4.7) gives

Lemma 4.3. If x = np with p < 3b/5 and z = nq with q > p and 2p/3 + q < b then

Px(T0,z ≤ nb)→ 1 as n→∞.

This will let us show that the time spent at small values of |∂ξt| can be ignored. For
larger values, we need a more precise statement about the size of the boundary. This has
been done by Cox, Durrett, and Perkins [9], in order to show that in d ≥ 2 the rescaled
voter model converged in distribution to super-Brownian motion. This was later used by
Bramson, Cox, and LeGall [3] to prove a result for the voter model in d ≥ 3 started at 0.
See Theorem 4 on page 1012 in [3].

To prepare for stating our lemma we describe the result from [9]. They use a general
probability kernel p(z). In our case p(z) = 1/6 for the nearest neighbors of 0. If ξt(x) = 1

we let
Vt(x) =

∑
y

p(y − x)1(ξt(y)=1)

If ξt(x) = 0 we set Vt(x) = 0. This part of the definition is not really needed in the
statement since XN

s is supported by points on the rescale lattice in state 1. On page 202
of their result you find the following result.

(I1) There is a finite γ > 0 so that for all φ ∈ C∞0 (Rd) and T > 0

E

(∫ T

0

XN
s ([VN,s − γ]φ2) ds

)2→ 0

Here XN
t is the voter model with space scaled by

√
N and time scaled by N and turned

into a measure by assigning mass 1/N to states in state 1, see (1.4), and VN,s(x) is a
suitably rescaled version of Vt(x). The formula on page 202 has V ′ because they want to
write the formula so that it is valid for d = 2 and d ≥ 3.

In our situation γ = 2dβd. However, in this proof we need control on the size of the
error. The reader should think of s as a point in the time interval [t/εn − nb/2, t/εn] over
which our process behaves like the voter model.
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Lemma 4.4. If k is large and the density of 1’s is small then

P

(
|∂ξs|
|ξs|

6∈ [(1− ε)2dβdk, (1 + ε)2dβdk]

∣∣∣∣ |ξs| = k

)
≤ k−2/3

Proof. Pick a site x at time s with ξs(x) = 1. When this holds the coalescing random
walk starting at x at time s lands on a site in state 1 at time t/εn − nb. Let r = kα where
α is small and follow the CRW path backwards in time for r units of time. If we let
h(s, x) be the probability the CRW starting at time s lands on 1 at time t/εn − nb, then
an elementary conditional probability shows that the probability our conditioned CRW
particle at x at time s is at y at time s− r is

p̄s,r(x, y) = pr(x, y)
h(r, y)

h(s, x)

This result is often known as Doob’s h-transform. Since the lineage will wrap around the
torus in the remaining ≥ nb/2 units of time, the ratio is close to 1 and can be ignored.

For each neighbor y of an x with ξt(x) = 1, let Vx,y = 1 if it does not coalesce with x
by time r and 0 otherwise. For any α > 0, if k is large and the density of 1’s is u which is
small then ∣∣∣∣P (Vx,y = 1)

2dβdk
− 1

∣∣∣∣ < η/2.

Here we are using the hydrodynamic limit Lemma 3.6 to conclude that the distribution
of the process is close to νu at time r.

Let Wx =
∑
y∼x Vx,y, µ(x) =

∑
y∼xEVx,y, and

Sk =

?∑
x

W̄x where Wx − µ(x)

where Σ?x is short for
∑
x:ξ0t (x)=1. Arguments in Section 3.5 imply that if |x− x′| > s then

the correlation between Wx and Wx′ is small enough to be ignored so

E(S2
k) =

?∑
x

?∑
y

E[W̄xW̄y] ≤ 36k · Cr3

since |W̄x| ≤ 6 and for a given x there are at most Cr3 values of y with |x− y| ≤ r. If we
use Chebyshev’s inequality

P (|Sk| ≥ εk) ≤ 36k · Cs3

k2
≤ Ck−1+3δ

If α < 1/10 this gives the desired result.

4.4 Extinction time

The results about the boundary of the voter model can now be applied to the Green’s
function calculation to get the result

Lemma 4.5. Consider the voter model started with configuration |ξ0| = x and let T0,z be
the first time the configuration hits 0 or z. If x = nb(0) and z = nc with c > b(0) then

Ex[T0,z] ≤ Cnb(0)

Proof. We can divide the sum in (4.4) into the pieces where Lemma 4.3 can be applied.
That is, define x′ = np < x so that p < 3b(0)/5 and 2p/3 + c < b(0). Then,

Ex[T0,z] ≤ Ex′ [T0,z] + Ex[Tx′,z].
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The first term is less than a constant times nb(0) by Lemma 4.3. To bound the second
hitting time, we use (4.6) and Lemma 4.4 to conclude that the expected amount of time
when |∂ξs|/|ξs| is not within ε of 2dβd is

≤
x∑
y=1

2y

y1/3
y−2/3 +

z∑
y=x+1

2x

y1/3
y−2/3 ≤

x∑
y=1

2y

y1/3
+

z∑
y=x+1

2x

y1/3
≤ Cnb

which finally completes the proof.

Theorem 1.4 now immediately follows: apply Lemma 4.1 to get that Un(α log n) <

n−(1−b(0)) with high probability. Next, use Section 3.2 so that with high probability we
can assume the q-voter model only experiences voter branching events for the remainder
of the time. Lemma 4.5 then proves that with high probability the unscaled voter model
started with nb(0) occupied sites will hit 0 or nc in an additional time of Cnb(0). The
probability that the process hits 0 first is simply (nc − nb(0))/nc → 1. Since b(0) > 2/3,
this additional time is o(1) for the time-scaled process Un(t). Thus,

P (Un(α log n) = 0)→ 1 as n→∞.

5 Computing the perturbation

In this section, Theorem 1.2 is proved. Recall Theorem 1.1 state that the limiting
ODE for the model with a k-sized neighborhood is

du

dt
=

k−1∑
m=1

rki (ρ0m(u)− ρ1m(u)),

where ρim(u) is the probability under the voter model equilibrium νu that the origin is in
state i and a exactly m of the neighbors are in state 1 − i. In this section, we analyze
these quantities. Before stating the proof for a general k, we first show an explicit proof
for a neighborhood of size 3 to give a flavor of how the individual terms are computed,
while introducing some necessary notations in an organic manner.

5.1 k=3

To compute ρ0i we have to compute the coalescence fate of 0, e1, e2, e3. There are 7
possibilities

one 0 ; 3 1: 2 2 ; 1 3; 0
two 0; 2, 1 1: 1, 1
three 0; 1,1,1

The first number in each string gives the number of neighbors that coalesce with
0. The others give the size of the limiting coalescing clusters formed by the remaining
neighbors. The word at the beginning of the row is the number of numbers after the
semi-colon. We can ignore 3; 0 because in that case all the neighbors have the same state
as 0.

Let ρ0i be the probability that in the voter equilibrium νu the origin is 0 while exactly
i of the neighbors are 1. Factoring out the probability the origin is we have ρ0i =

(1− u)qi(u).To compute the qi(u) we use the following table.

• The coefficients of u come from the “one” terms.

• The coefficients of u2 and u(1− u) come from the “two” terms. There is no (1− u)k

since all the neighbors would be 0. p(1; 1, 1) appears three times since only 0,0 is
impossible. p(0; 2, 1) only appears twice since 0,0 and 1,1 are impossible.
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• The coefficients of u2(1−u) and u(1−u)2 come from the “three” terms. There is no
u3 or (1− u)3 since all neighbors would be 0 or 1. For this reason p0;1,1,1 appears
23 − 2 = 6 times

The meaning of the first column will become clear when the reader reaches (5.2)

∆i(u) term q1(u) q2(u)

0 u p2;1 p1;2
−1 u2 p1;1,1
1 u(1− u) p0;2,1 + 2p1;1,1 p0;2,1
1 u(1− u)2 3p0;1,1,1
0 u2(1− u) 3p0;1,1,1

(5.1)

so reading down the columns we have

q1(u) = p2,1u+ [2p1,1,1 + p0,2,1]u(1− u) + 3p0,1,1,1u(1− u)2

q2(u) = p1,2u+ p1,1,1u
2 + p0,2,1u(1− u) + 3p0,1,1,1u

2(1− u)

Let ρ1i be the probability that in the voter equilibrium νu the origin is 1 while exactly
i of the neighbors are 0. From the previous calculation we see that ρ1i = uqi(1− u) so we
have

〈h0,1 − h1,0〉u =

2∑
i=1

ri(ρ
0
i − ρ1i )

The quantity in parentheses is ∆i(u) ≡ (1 − u)qi(u) − uqi(1 − u). Taking difference we
have (the first column indicates the term in qi(u))

u u(1− u)− (1− u)u = 0

u2 u2(1− u)− (1− u)u2 = u(1− u)(2u− 1)

u(1− u) u(1− u)2 − u2(1− u) = u(1− u)(1− 2u) (5.2)

u(1− u)2 u(1− u)3 − u3(1− u) = u(1− u)[(1− u)2 − u2] = u(1− u)(1− 2u)

u2(1− u) u2(1− u)2 − (1− u)2u2 = 0

so consulting (5.1) we have

∆1(u) = [2p1,1,1 + p0,2,1 + 3p0,1,1,1]u(1− u)(1− 2u)

∆2(u) = [−p1,1,1 + p0,2,1]u(1− u)(1− 2u)

and the reaction term is

φ(u)

u(1− u)(1− 2u)
= r1[2p1,1,1 + p0,2,1 + 3p0,1,1,1]

+ r2[−p1,1,1 + p0,2,1]

If 2r31 > r32 so the right-hand side is positive. Using (1.1) we see that in the q-voter model
with q < 1

2r31 = 2/3 log(3) > 2/3 log(3/2) = r32

so the reaction term is c3u(1− u)(1− 2u) with c3 > 0. When q > 1 the reaction term is
−c3u(1− u)(1− 2u).
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5.2 General k

In this case we have to compute the coalescence fate of 0 with k neighbors. Again
ρ0i = (1− u)qi(u), where the functions qi(u), i ≤ k − 1 defined as before are polynomials
with terms of the type ua(1 − u)b. First let us look at the difference ∆a,b(u) of these
terms, where ∆a,b(u) = ρ0i − ρ1i = ua(1 − u)b+1 − ub+1(1 − u)a. Note that ∆a,b(u) = 0 if
a = b+ 1.

In the case a ≤ b we have

∆a,b(u) = ua(1− u)b+1 − ub+1(1− u)a

= ua(1− u)a[(1− u)b−a+1 − ub−a+1]

= ua(1− u)a(1− 2u)

b−a∑
j=0

uj(1− u)b−a−j

 .
To see the last step write 1 − 2u = (1 − u) − u and the telescope the sum. In the case
a > b+ 1

∆a,b(u) = ua(1− u)b+1 − ub+1(1− u)a

= ub+1(1− u)b+1[ua−b−1 − (1− u)a−b−1]

= −ub+1(1− u)b+1(1− 2u)

a−b−2∑
j=0

uj(1− u)a−b−2−j


Since

∑n
j=0 u

j(1 − u)n−j > 0 on [0, 1] we have that 0, 1 and 1/2 are the only roots of
∆a,b(u). Also note that ∆a,b(u) = −∆b+1,a−1(u). We claim

φ(u)

u(1− u)(1− 2u)
= f(u),

where f(u) is a positive polynomial in u with no real roots. To prove this, given a
coalescence fate s0; s1, s2, s3, · · · , sj where

∑
j sj = k we look at number of ways to

obtain a clusters with opinion 1 (which gives the coefficients of the terms ua(1 − u)b,
a > b+ 1) and compare it with the number of ways to obtain b+ 1 clusters with opinion 1

(which gives the coefficients of the terms ub+1(1− u)a−1).

First, suppose b = 0 and a ≥ 2. Let s0 be the number of neighbors that have coalesced
with 0, and s1, s2, · · · , sa be the sizes of the limiting coalescing clusters formed by the rest
of the neighbors, where we assume that the sizes are arranged in an increasing order, i.e.,
s1 ≤ s2 ≤ · · · ≤ sa. The coefficient of ∆a,0(u) in φ(u) is given by rs1+···+saps0;s1,··· ,sa(Since
all the clusters have opinion 1, there is only one way to choose). Similarly the coefficient
of ∆1,a−1(u) in φ(u) is given by (rs1 + · · ·+rsa)ps0;s1,··· ,sa (Since exactly one of the clusters
has opinion 1, there are a different choices, the coefficient of each of the clusters needs
to be added individually).

Since si’s are increasing in i, so

log(k/sa) ≤ log(k/sj) ∀j ∈ {1, 2, · · · , a− 1}.
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So by the definition rki = i
k log(k/i), and using the inequality above we have

rs1+···+sa =
s1 + · · ·+ sa

k
log(k/(s1 + · · ·+ sa))

≤ s1 + · · ·+ sa
k

log(k/sa)

=
s1
k

log(k/sa) +
s2
k

log(k/sa) + · · ·+ sa
k

log(k/sa)

≤ s1
k

log(k/s1) +
s2
k

log(k/s2) + · · ·+ sa
k

log(k/sa)

= rs1 + rs2 + · · ·+ rsa .

Since ∆a,0(u) = −∆1,a−1(u), if we only look at terms of the type ∆1,a−1(u)ps0;s1,··· ,sa
(which is non-negative) in φ(u), we get a non-negative polynomial in u with no roots
other than 0, 1 and 1/2.

Now suppose b 6= 0 and a ≥ b + 2. As explained in the previous case, let s0 be the
number of neighbors that coalesce with 0, and s1, s2, · · · , sa+b be the sizes of the limiting
coalescing clusters formed by the rest of the neighbors, where we assume that the sizes
are arranged in an increasing order, i.e., s1 ≤ s2 ≤ · · · ≤ sa+b. There are

(
a+b
a

)
ways of

choosing a clusters out of the a+b clusters. Denote the total size of each of these clusters
by xi, where 1 ≤ i ≤

(
a+b
a

)
, where wlog we assume that the sizes are arranged in an

ascending order. The coefficient of ∆a,b(u) in φ(u) is given by ps0;s1,s2,··· ,sa+b
∑(a+ba )
i=1 rxi .

Given 1 ≤ i ≤ a+ b, the number of clusters in which cluster si has opinion 1 is given by(
a+b−1
a−1

)
. Hence the total size of all the clusters, where a of them have opinion 1, is given

by
(a+ba )∑
i=1

xi =

(
a+ b− 1

a− 1

)
(s1 + s2 + · · ·+ sa+b) .

Using a similar argument there are
(
a+b
b+1

)
ways of choosing b+ 1 clusters out of the

a+ b clusters. Denote the total size of each of these clusters by yi, where 1 ≤ i ≤
(
a+b
b+1

)
,

where wlog we assume that the sizes are arranged in an ascending order. The coefficient

of ∆b+1,a−1(u) in φ(u) is given by ps0;s1,s2,··· ,sa+b
∑(a+bb+1)
i=1 ryi . Given 1 ≤ i ≤ a + b, the

number of clusters in which cluster si has opinion 1 is given by
(
a+b−1
b

)
=
(
a+b−1
a−1

)
. Hence

the total size of all the clusters, where b+ 1 of them have opinion 1, is given by

(a+bb+1)∑
i=1

yi =

(
a+ b− 1

a− 1

)
(s1 + s2 + · · ·+ sa+b) .

For ease of notation, let us denote
(
a+b
a

)
by n and

(
a+b
b+1

)
by m. Then m > n since(

a+ b

b+ 1

)
−
(
a+ b

a

)
=

(
a+ b

a

)(
a

b+ 1
− 1

)
=

(
a+ b

a

)(
a− b− 1

b+ 1

)
> 0.

Since
∑n
i=1 xi =

∑m
i=1 yi, and the xis as well as the yi s are arranged in ascending

order, we have xi > yi +m− n, for 1 ≤ i ≤ n.

x1 log x1 + x2 log x2 + · · ·+ xn log xn − y1 log y1 − y2 log y2 − · · · − ym log ym

>x1 log x1 + x2 log x2 + · · ·+ xn log xn − y1 log y1 − y2 log y2 − · · · − ym log xn

=x1 log x1 + x2 log x2 + · · ·+ xn log xn − y1 log y1 − y2 log y2 − · · · − yj−1 log yj−1 − c log yj ,
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where yn + yn+1 + · · ·+ yj − c = xn. Now we have
∑n−1
i=1 xi = c+

∑j−1
i=1 yi. Repeating the

same process as explained above n− 1 times, we have

n∑
i=1

xi log xi >

m∑
i=1

yi log yi.

Now using the definition of rkm

n∑
i=1

rkxi =

n∑
i=1

xi
k

log(k/xi) =

n∑
i=1

xi
k

[log(k)− log(xi)]

=

m∑
i=1

yi
k

log(k)−
n∑
i=1

xi
k

log(xi) <

m∑
i=1

yi
k

log(k)−
m∑
i=1

yi
k

log(yi)

=

m∑
i=1

yi
k

log(k/yi) =

m∑
i=1

rkyi .

Now using the above inequality along with the fact that ∆a,b = −∆b+1,a−1, if we only look
at terms of the type ∆b+1,a−1(u)ps0;s1,··· ,sa+b (which is non-negative) in φ(u), we get a
non-negative polynomial in u with no roots other than 0, 1 and 1/2. This proves Theorem
1.2 for q < 1.

Corollary 5.1. Fix q > 1. For a q-voter model with k-neighbors, the reaction function
defined in (1.3) simplifies to

φ(u) = −cku(1− u)(1− 2u)fk(u), (5.3)

where ck > 0 and fk(u) is a strictly positive polynomial in u.

Proof. Recalling the perturbation from (1.1) and (1.2), note that the perturbation when
q > 1 has the same value as the perturbation when q < 1 but with the opposite sign. This
along with the above work proves the corollary.
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