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Abstract

We consider a square random matrix of size N of the form P (Y,A) where P is a
noncommutative polynomial, A is a tuple of deterministic matrices converging in
∗-distribution, when N goes to infinity, towards a tuple a in some C∗-probability space
and Y is a tuple of independent matrices with i.i.d. centered entries with variance 1/N .
We investigate the eigenvalues of P (Y,A) outside the spectrum of P (c, a) where c is a
circular system which is free from a. We provide a sufficient condition to guarantee
that these eigenvalues coincide asymptotically with those of P (0, A).
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1 Introduction

1.1 Previous results

Ginibre (1965) introduced the basic non-Hermitian ensemble of random matrix
theory. A so-called Ginibre matrix is a N ×N matrix comprised of independent complex
Gaussian entries. More generally, an i.i.d. random matrix is a N × N random matrix
XN = (Xij)16i,j6N whose entries are independent identically distributed complex-valued
random variables with mean 0 and variance 1.

For any N ×N matrix B, denote by λ1(B), . . . , λN (B) the eigenvalues of B and by µB
the empirical spectral measure of B:

µB :=
1

N

N∑
i=1

δλi(B).
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Outlier eigenvalues for non-Hermitian polynomials

The following theorem is the culmination of the work of many authors [2, 3, 19, 20, 25,
28, 35, 37].

Theorem 1.1. Let XN be an i.i.d. random matrix. Then the empirical spectral measure
of XN√

N
converges almost surely to the circular measure µc where dµc = 1

π1I|z|61dz.

One can prove that when the fourth moment is finite, almost surely for large N , there
are no significant outliers to the circular law.

Theorem 1.2. (Theorem 1.1 in [12] and Theorem 1.4 in [38]) Let XN be an i.i.d. ran-

dom matrix. Then the spectral radius ρ(XN√
N

) = sup16j6N

∣∣∣λj (XN√N )∣∣∣ converges to 1 in

probability as N goes to infinity. If moreover the entries have finite fourth moment
E(|X11|4) < +∞, then the spectral radius converges to 1 almost surely as N goes to
infinity.

An addititive low rank perturbation AN can create outliers outside the unit disk.
Actually, when AN has bounded rank and bounded operator norm and the entries of the
i.i.d. matrix have finite fourth moment, Tao proved that outliers outside the unit disk are
stable in the sense that outliers of N−1/2XN +AN and AN coincide asymptotically.

Theorem 1.3. ([38]) Let XN be an i.i.d. random matrix whose entries have finite fourth
moment. Let AN be a deterministic matrix with rank O(1) and operator norm O(1). Let
ε > 0, and suppose that for all sufficiently large N , there are:

• no eigenvalues of AN in {z ∈ C : 1 + ε < |z| < 1 + 3ε},
• j = O(1) eigenvalues λ1(AN ), . . . , λj(AN ) in {z ∈ C : |z| > 1 + 3ε}.

Then, a.s, for sufficiently large N , there are precisely j eigenvalues of XN√
N

+ AN in

{z ∈ C : |z| > 1 + 2ε} and after labeling these eigenvalues properly, as N goes to infinity,
for each 1 6 i 6 j,

λi(
XN√
N

+AN ) = λi(AN ) + o(1).

Two different ways of generalization of this result were subsequently considered.
Firstly, [10] investigated the same problem but dealing with full rank additive pertur-

bations. The main terminology related to free probability theory which is used in the
following is defined in Section 3 below. Consider the deformed model:

SN = AN +
XN√
N
, (1.1)

where AN is an N ×N deterministic matrix with operator norm O(1) and such that AN ,
as a noncommutative variable from the set of N × N matrices with complex entries
endowed with the normalized trace (MN (C), trN ), converges in ∗-moments to some
noncommutative random variable a in some C∗-probability space (A, ϕ). According to
Dozier and Silverstein [17], for any z ∈ C, almost surely the empirical spectral measure
of (SN − zIN )(SN − zIN )

∗ converges weakly to a nonrandom distribution µz which is the
distribution of (c+ a− z)(c+ a− z)∗ where c is a circular operator which is ∗-free from a

in (A, ϕ).

Remark 1.4. Note that for any operator K in some C∗-probability space (B, τ), K is
invertible if and only if KK∗ and K∗K are invertible. If τ is tracial, the distribution µKK∗

of KK∗ coincides with the distribution of K∗K. Therefore, if τ is faithful and tracial, we
have that 0 /∈ supp(µKK∗) if and only if K is invertible.

Therefore, since we can assume that ϕ is faithful and tracial, spect(c + a) = {z ∈
C : 0 ∈ supp(µz)}, where spect denotes the spectrum. Actually, we will present some
results of [10] only in terms of the spectrum of c + a so that we do not need the
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Outlier eigenvalues for non-Hermitian polynomials

assumption (A3) in [10] on the limiting empirical spectral measure of SN . The authors in
[10] gave a sufficient condition to guarantee that outliers of the deformed model (1.1)
outside the spectrum of c+ a are stable. For this purpose, they introduced the notion
of well-conditioned matrix which is related to the phenomenon of lack of outlier and
of well-conditioned decomposition of AN which lead to the statement of a sufficient
condition for the stability of the outliers. We will denote by s1(B) > · · · > sN (B) the
singular values of any N ×N matrix B. For any set K ⊂ C and any ε > 0, B(K, ε) stands
for the set {z ∈ C : d(z,K) 6 ε}, d denoting the Euclidean distance.

Definition 1.5. Let Γ ⊂ C \ spect(c+ a) be a compact set. AN is well-conditioned in Γ if
for any z ∈ Γ, there exists ηz > 0 such that for all N large enough, sN (AN − zIN ) > ηz.

Theorem 1.6. ([10]) Assume that AN is well-conditioned in Γ. Then, a.s. for all N large
enough, SN has no eigenvalue in Γ.

Corollary 1.7. ([10]) If for any z ∈ C \ spect(c+ a), there exists ηz > 0 such that for all
N large enough, sN (AN − zIN ) > ηz, then, for any ε > 0, a.s. for all N large enough, all
eigenvalues of SN are in B(spect(c+ a), ε).

Let us introduce now the notion of well-conditioned decomposition of AN which
allowed [10] to exhibit a sufficient condition for stability of outliers.

Definition 1.8. Let Γ ⊂ C\spect(c+ a) be a compact set. AN admits a well-conditioned
decomposition if: AN = A′N +A′′N where

• There exists M > 0 such that for all N , ‖A′N‖+ ‖A′′N‖ 6M , where ‖ · ‖ denotes the
operator norm.

• For any z ∈ Γ, there exists ηz > 0 such that for all N large enough, sN (A′N − zIN ) >

ηz (i.e A′N is well-conditioned in Γ) and A′′N has a fixed rank r.

Theorem 1.9. ([10]) Let Γ ⊂ C\spect(c+ a) be a compact set with continuous boundary.
Assume that AN admits a well-conditioned decomposition: AN = A′N +A′′N . If for some
ε > 0 and all N large enough,

min
z∈∂Γ

∣∣∣∣det(AN − z)
det(A′N − z)

∣∣∣∣ > ε, (1.2)

then a.s. for all N large enough, the numbers of eigenvalues of AN and SN in Γ are
equal.

On the other hand, in [16], the authors investigate the outliers of several types of
bounded rank perturbations of the product of m independent random matrices XN,i,
i = 1, . . . ,m with i.i.d. entries. More precisely, they study the eigenvalues outside the
unit disk, of the following three deformed models where AN and the AN,j ’s denote N×N
deterministic matrices with rank O(1) and norm O(1):

1.
∏m
k=1

(
XN,k√
N

+AN,k

)
;

2. the product, in some fixed order, of the m + s terms XN,k√
N
, k = 1, . . . ,m, (IN +

AN,j), j = 1, . . . , s;

3.
∏m
k=1

XN,k√
N

+AN .

Set YN =
(
XN,k√
N
, k = 1, . . . ,m

)
and denote by AN the tuple of perturbations, that is

AN = (AN,k, k = 1, . . . ,m) in case 1., AN = (AN,j , j = 1, . . . , s) in case 2. and AN = AN
in case 3.. In all cases 1.,2.,3., the model is some particular polynomial in YN and AN, let
us say Pi(YN,AN), i = 1, 2, 3. It turns out that, according to [16], for each i = 1, 2, 3, the
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eigenvalues of Pi(YN,AN) and Pi(0,AN) outside the unit disk coincide asymptotically.
Note that the unit disk is equal to the spectrum of each Pi(c, 0), i = 1, 2, 3, where c is a
free m-circular system.

1.2 Assumptions and results

To begin with, we introduce some notations.

• Mp(C) is the set of p × p matrices with complex entries, Msa
p (C) the subset of

self-adjoint elements ofMp(C) and Ip the identity matrix.

• Trp denotes the trace and trp = 1
p Trp the normalized trace onMp(C).

• ‖ · ‖ denotes the operator norm onMp(C).

• idp denotes the identity operator fromMp(C) toMp(C).

In this paper we generalize the previous results from [10] to non-Hermitian poly-
nomials in several independent i.i.d. matrices and deterministic matrices. Note that
our results include in particular the previous results from [16]. Here are the matricial
models we deal with. Let t and u be fixed nonzero natural numbers independent from N .

(A1) (A
(1)
N , . . . , A

(t)
N ) is a t−tuple of N ×N deterministic matrices such that

1. for any i = 1, . . . , t,
sup
N
‖A(i)

N ‖ <∞, (1.3)

2. the t-tuple (A
(1)
N , . . . , A

(t)
N ) converges in ∗-distribution to a t-tuple

a = (a(1), . . . , a(t)) in some C∗-probability space (A, ϕ) where ϕ is faithful and
tracial.

(X1) We consider u independent N ×N random matrices X(v)
N = [X

(v)
ij ]Ni,j=1, v = 1, . . . , u,

where, for each v, [X
(v)
ij ]i>1,j>1 is an infinite array of random variables such that

{
√

2<(X
(v)
ij ),

√
2=(X

(v)
ij ), i > 1, j > 1} are independent identically distributed cen-

tred random variables with variance 1 and finite fourth moment.

Let P be a polynomial in t+ u noncommutative indeterminates where P , t and u are
fixed, independent of N , and define

MN = P

(
X

(1)
N√
N
, . . . ,

X
(u)
N√
N
,A

(1)
N , . . . , A

(t)
N

)
.

Note that we do not need any assumption on the convergence of the empirical
spectral measure of MN . Let c = (c(1), . . . , c(u)) be a free noncommutative circular
system in (A, ϕ) which is free from a = (a(1), . . . , a(t)). According to the second assertion
of Proposition 5.2 below, for any z ∈ C, almost surely, the empirical spectral measure
of (MN − zIN )(MN − zIN )∗ converges weakly to µz where µz is the distribution of
[P (c, a)− z1] [P (c, a)− z1]

∗
. Since we can assume that ϕ is faithful and tracial, we have

by Remark 1.4 that
spect(P (c, a)) = {z ∈ C : 0 ∈ supp(µz)}. (1.4)

Define
M

(0)
N = P (0N , . . . , 0N , A

(1)
N , . . . , A

(t)
N ),

where 0N denotes the N × N null matrix. Throughout the whole paper, we will call
outlier any eigenvalue of MN or M (0)

N outside C\spect(P (c, a)). We are now interested in
describing the individual eigenvalues of MN outside B(spect(P (c, a)), ε) for some ε > 0.
In the lineage of [10], our main result gives a sufficient condition to guarantee that
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outliers are stable in the sense that outliers of MN and M
(0)
N coincide asymptotically.

To state this formally: consider an arbitrary open set G which is relatively compact
in C \ spect(P (c, a)) (that is, the closure G ⊂ C \ spect(P (c, a)) is compact). Then one

expects that an outlier of MN occurs in G if and only if an outlier of M (0)
N occurs in

G. For technical reasons, namely the need to be able to apply Rouché’s Theorem, we
assume that G is sufficiently “nice”: specifically, we require that Γ := G is a compact set
in C \ spect(P (c, a)), that the closure of any connected component of G is a connected
component of Γ, that the fundamental group of each component of G equals the funda-
mental group of its closure, and that the topological boundary of Γ is a finite union of
rectifiable curves (in particular, G has finitely many connected components). Let us see
what kinds of situations these conditions are intended to exclude:

• Say spect(P (c, a)) = {z ∈ C : |z| ≤ 1, |z − n−1| ≥ 4−n, n ≥ 3}, a unit disk with
countably many small disks removed from it. Then the set G =

⋃∞
n=3{z ∈ C : |z −

n−1| < 8−n} is included in C \ spect(P (c, a)), but its closure is not. Γ = G is
not compact in C \ spect(P (c, a)), and ∂Γ is a countable, but not finite, union of
rectifiable curves;

• Say spect(P (c, a)) = {z ∈ C : |z − 100| ≤ 1}. The set G = {z ∈ C : − 1 < <z <
1,−1 < =z < 1, |z ± 1| > 1} has two connected components (above and below zero),
while Γ = G is connected;

• For the same spect(P (c, a)), the set G = {z ∈ C : |z| < 1, |z − 1/2| > 1/2} is simply
connected, but Γ isn’t.

While this is a long list of restrictions, they hardly constitute a reduction in generality.
To begin with, a statement regarding outliers of MN and M (0)

N coinciding asymptotically
means that the outlier of one eventually ends up in a neighborhood of the outlier of the
other, so it is natural to choose an open G. Second, if an open set G fails to satisfy any of
the conditions we require, then there is an arbitrarily small perturbation of G (in the
Hausdorff topology, say) which satisfies all of them, with the possible exception of the
requirement of rectifiability for ∂Γ, which is the only somewhat restrictive requirement.
And finally, from the perspective of an agent who knows the positions of the outliers of
one of MN , M (0)

N and wishes to identify the outliers of the other, it is effectively enough to
consider the case when G is a finite union of open disks with mutually disjoint closures.

Theorem 1.10. Assume that hypotheses (A1), (X1) hold. Let G be an open relatively
compact subset of C\spect(P (c, a)), and let Γ = G. We assume that (i) ∂Γ is a finite union
of rectifiable curves; (ii) the closure of any connected component of G is a connected
component of Γ; and (iii) the fundamental group of each connected component of G
coincides with the fundamental group of its closure. Assume moreover that

(A2) for k = 1, . . . , t, A(k)
N = (A

(k)
N )

′
+ (A

(k)
N )

′′
,

where (A
(k)
N )

′′
has a bounded rank rk(N) = O(1) and

(
(A

(1)
N )

′
, . . . , (A

(t)
N )

′
)

satisfies

• (A′2) for any z in Γ, there exists ηz > 0 such that for all N large enough, there is no
singular value of

P (0N , . . . , 0N , (A
(1)
N )′, . . . , (A

(t)
N )′)− zIN

in [0, ηz].

• for any k = 1, . . . , t,

sup
N
‖(A(k)

N )
′
‖ < +∞. (1.5)
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If for some ε > 0, for all large N ,

min
z∈∂Γ

∣∣∣∣∣ det(zIN − P (0N , . . . , 0N , A
(1)
N , . . . , A

(t)
N )

det(zIN − P (0N , . . . , 0N , (A
(1)
N )′ , . . . , (A

(t)
N )′)

∣∣∣∣∣ > ε (1.6)

then almost surely for all large N , the numbers of eigenvalues of M (0)
N = P (0N , . . . , 0N ,

A
(1)
N , . . . , A

(t)
N ) and MN = P

(
X

(1)
N√
N
, . . . ,

X
(u)
N√
N
, A

(1)
N , . . . , A

(t)
N

)
in Γ are equal.

The next statement is an easy consequence of Theorem 1.10.

Corollary 1.11. Assume that (X1) holds and that, for k = 1, . . . , t, A(k)
N are deterministic

matrices with rank O(1) and operator norm O(1). Let ε > 0, and suppose that for all

sufficiently large N , there are no eigenvalues of M (0)
N = P (0, . . . , 0, A

(1)
N , . . . , A

(t)
N ) in

{z ∈ C, ε < d(z, spect(P (c, 0))) < 4ε}, and there are j eigenvalues λ1(M
(0)
N ), . . . , λj(M

(0)
N )

for some j = O(1) in the region {z ∈ C, d(z, spect(P (c, 0))) > 3ε}. Then, almost surely, for

all large N , there are precisely j eigenvalues of MN = P

(
X

(1)
N√
N
, . . . ,

X
(u)
N√
N
, A

(1)
N , . . . , A

(t)
N

)
in {z ∈ C, d(z, spect(P (c, 0))) > 2ε} and after labeling these eigenvalues properly, for
each 1 6 i 6 j,

λi(MN ) = λi(M
(0)
N ) + o(1).

Remark 1.12. It is sufficient to prove Theorem 1.10 and Corollary 1.11 for a noncommu-
tative polynomial P with no constant term, that is, such that P (0, . . . , 0) = 0; the general
result follows easily by translation.

We will first prove Theorem 1.10 in the case when all ranks rk(N), 1 6 k 6 t, are
equal to zero.

Theorem 1.13. Suppose that assumptions of Theorem 1.10 hold with, for any k =

1, . . . , t, (A
(k)
N )′′ = 0, A(k)

N = (A
(k)
N )′ and Γ ⊂ C\spect(P (c, a)) a compact set. Then, a.s. for

all N large enough, MN has no eigenvalue in Γ.
In particular, if assumptions of Theorem 1.10 hold with, for any k = 1, . . . , t, (A

(k)
N )′′ =

0, A(k)
N = (A

(k)
N )′ and Γ = C\spect(P (c, a)) then for any ε > 0, a.s. for all N large enough,

all eigenvalues of MN are in B(spect(P (c, a)), ε).

While Theorem 1.10 requires supplementary hypotheses on the compact Γ, those
hypotheses are clearly not necessary in Theorem 1.13.

To prove Theorems 1.13 and 1.10, we make use of a linearization procedure which
brings the study of the polynomial back to that of the sum of matrices in a higher dimen-
sional space. Then, this allows us to follow the approach of [10]. But for this purpose,
we need to establish substantial operator-valued free probability results.

In Section 2, we present our theoretical results and corresponding simulations for
four examples of random polynomial matrix models. Section 3.2 provides required
definitions and preliminary results on operator-valued free probability theory. Section
4 describes the fundamental linearization trick as introduced in [1, Proposition 3]. In
Sections 5 and 6, we establish Theorems 1.13 and 1.10 respectively.

2 Related results and examples

Recall that we do not need any assumption on the convergence of the empirical

spectral measure of MN . However, the convergence in ∗-distribution of

(
X

(1)
N√
N
, . . . ,

X
(u)
N√
N
,

A
(1)
N , . . . , A

(t)
N

)
to (c, a) = (c(1), . . . , c(u), a(1), . . . , a(t)) (see Proposition 5.2) implies the
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convergence in ∗-distribution of

MN = P

(
X

(1)
N√
N
, . . . ,

X
(u)
N√
N
,A

(1)
N , . . . , A

(t)
N

)

to P (c, a). In this situation, a good candidate to be the limit of the empirical spectral
distribution of MN is the Brown measure µP (c,a) of P (c, a) (see [14]). Unfortunately,
the convergence of the empirical spectral distribution of MN to µP (c,a) is still an open
problem for an arbitrary polynomial.

In the following three examples, we will consider the particular situation where we
can decompose

MN = α
X

(1)
N√
N

+Q

(
X

(2)
N√
N
, . . . ,

X
(u)
N√
N
,A

(1)
N , . . . , A

(t)
N

)
,

with α > 0, X(1)
N a Ginibre matrix and Q an arbitrary polynomial. Indeed, in this case,

a beautiful result of Śniady [33] ensures that the empirical spectral distribution of
MN converges to µP (c,a). Thus, the description of the limiting spectrum of MN inside
supp(µP (c,a)) is a question of computing explicitly µP (c,a) (a quite hard problem, which can
be handled numerically by [7]). On the other hand, Theorem 1.10 explains the behaviour
of the spectrum of MN outside spect(P (c, a)). Thus, we have a complete description of
the limiting spectrum of MN , except potentially in the set spect(P (c, a)) \ supp(µP (c,a))

which is not necessarily empty (even if it is empty in the majority of the examples known,
see [13]).

For an arbitrary polynomial, we only know that any limit point of the empirical
spectral distribution of MN is a balayée of the measure µP (c,a) (see [13, Corollary 2.2]),
which implies that the support of any such limit point is contained in supp(µP (c,a)), and
in particular is contained in spect(P (c, a)).

2.1 Example 1

We consider the matrix

MN = P1

(
X

(1)
N√
N
,
X

(2)
N√
N
,
X

(3)
N√
N
,AN

)

=
3

2

X
(1)
N√
N

+
1

6

(
X

(2)
N√
N

)2

AN+
1

6

X
(2)
N√
N

X
(3)
N√
N
AN

X
(3)
N√
N

+A2
N

X
(3)
N√
N

+AN +
1

8
A2
N ,

where X(1)
N , X

(2)
N , X

(3)
N are i.i.d. Gaussian matrices and

AN =


2

2i

0
. . .

0

 .

The matrix MN converges in ∗-distribution to 3
2c, where c is a circular variable, and

the empirical spectral measure of MN converges to the Brown measure of c, which is
the uniform law on the centered disk of radius 3/2 by [13]. This disk is also the spectrum
of 3

2c. Our theorem says that, outside this disk, the outliers of MN are close to the
eigenvalues 2.5 and 2i− 0.5 of P1(0N , 0N , 0N , AN ) = AN + 1

8A
2
N (see Figure 1).

EJP 26 (2021), paper 100.
Page 7/37

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP666
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Outlier eigenvalues for non-Hermitian polynomials

Figure 1: In black, the eigenvalues of P1

(
X

(1)
N√
N
,
X

(2)
N√
N
,
X

(3)
N√
N
, AN

)
for N = 1000, and in red,

the outliers 2.5 and 2i− 0.5 of P1(0N , 0N , 0N , AN ).

2.2 Example 2

We consider the matrix

MN = P2

(
X

(1)
N√
N
,
X

(2)
N√
N
,
X

(3)
N√
N
,A

(1)
N , A

(2)
N

)

=
1

2

X
(1)
N√
N

+
1

6
A

(1)
N

X
(2)
N√
N

(
A

(2)
N +A

(1)
N +

X
(3)
N√
N

)
X

(2)
N√
N

+A
(2)
N

X
(3)
N√
N
A

(1)
N

+A
(1)
N +

1

2
A

(2)
N ,

where X(1)
N , X

(2)
N , X

(3)
N are i.i.d. Gaussian matrices,

A
(1)
N =


2

−2.5

0
. . .

0


and A(2)

N is a realization of a G.U.E. matrix.

The matrix MN converges in ∗-distribution to the elliptic variable 1
2 (c+ s), where c

is a circular variable and s a semicircular variable free from c. The empirical spectral
measure of MN converges to the Brown measure of 1

2 (c+ s), which is the uniform law on
the interior of the ellipse { 3

2
√

2
cos(θ) + i 1

2
√

2
sin(θ) : 0 6 θ < 2π} by [13]. The interior of

this ellipse is also the spectrum of 1
2 (c+ s). Our theorem says that, outside this ellipse,

the outliers of MN are closed to the outliers of P2(0N , 0N , 0N , A
(1)
N , A

(2)
N ) = A

(1)
N + 1

2A
(2)
N

(see Figure 2). Moreover, the outliers of A(1)
N + 1

2A
(2)
N are those of an additive perturbation

of a G.U.E. matrix, and converges to 2.125 and −2.6 by [29].
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Figure 2: In black, the eigenvalues of P2

(
X

(1)
N√
N
,
X

(2)
N√
N
,
X

(3)
N√
N
, A

(1)
N , A

(2)
N

)
for N = 1000, and

in red, the limiting outliers 2.125 and −2.6 of P1(0, 0, 0, A
(1)
N , A

(2)
N ).

2.3 Example 3

We consider the matrix

MN = P3

(
X

(1)
N√
N
,
X

(2)
N√
N
,
X

(3)
N√
N
,A

(1)
N , A

(2)
N

)

=
X

(1)
N√
N

+A
(1)
N +A

(2)
N +A

(1)
N

X
(2)
N√
N
A

(2)
N

X
(2)
N√
N

+
X

(3)
N√
N
A

(2)
N

X
(2)
N√
N
,

where X(1)
N , X

(2)
N , X

(3)
N are i.i.d. Gaussian matrices,

A
(1)
N =



1
. . .

1

−1
. . .

−1


is a matrix whose empirical spectral distribution converges to 1

2 (δ1 + δ−1) and

A
(2)
N =


1.5

−2 + 2i

0
. . .

0


The matrix MN converges in ∗-distribution to the random variable c + a, where c

is a circular variable and a is a self-adjoint random variable, free from c, and whose
distribution is 1

2 (δ1 +δ−1). The empirical spectral measure of MN converges to the Brown
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Figure 3: In black, the eigenvalues of P3

(
X

(1)
N√
N
,
X

(2)
N√
N
,
X

(3)
N√
N
, A

(1)
N , A

(2)
N

)
for N = 1000, and

in red, the outliers 2.5 and −1 + 2i of P3(0N , 0N , 0N , A
(1)
N , A

(2)
N ).

measure of c+ a, which is absolutely continuous and whose support is the region inside
the lemniscate-like curve in the complex plane with the equation {z ∈ C : |z2 + 1|2 =

|z|2 + 1} by [13]. This region is also the spectrum of c + a. Our theorem says that,
outside this region, the outliers of MN are closed to the outliers 2.5 and −1 + 2i of
P3(0N , 0N , 0N , A

(1)
N , A

(2)
N ) = A

(1)
N +AN (2) (see Figure 3).

2.4 Example 4

We consider the matrix

MN = P4

(
X

(1)
N√
N
,
X

(2)
N√
N
,
X

(3)
N√
N
,AN

)

=
1

5

(
X

(1)
N√
N

+ 3IN

)(
X

(2)
N√
N

+AN + 2IN

)(
X

(3)
N√
N

+ 2IN

)
− 2IN ,

where X(1)
N , X

(2)
N , X

(3)
N are i.i.d. Gaussian matrices and

AN =


2i

−2i

0
. . .

0

 .

The matrix MN converges in ∗-distribution to the random variable (c1 + 3)(c2 +

2)(c3 + 2)/5 − 2, where c1, c2, c3 are free circular variables. It is expected (but not
proved) that the empirical spectral measure of MN converges to the Brown measure
of (c1 + 3) (c2 + 2) (c3 + 2) /5 − 2. The spectrum of (c1 + 3) (c2 + 2) (c3 + 2) /5 − 2 is in-
cluded in the set (B(0, 1) + 3) (B(0, 1) + 2) (B(0, 1) + 2) /5 − 2. Our theorem says that,
outside this set, the outliers of MN are closed to the outliers −2 + 2.4i and −2− 2.4i of
P4(0N , 0N , 0N , AN ) = 6

5AN − 2IN (see Figure 4).
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Figure 4: In black, the eigenvalues of P4

(
X

(1)
N√
N
,
X

(2)
N√
N
,
X

(3)
N√
N
, AN

)
for N = 1000, and in red,

the outliers −2 + 2.4i and −2− 2.4i of P4(0N , 0N , 0N , AN ).

3 Free probability theory

3.1 Scalar-valued free probability theory

For the reader’s convenience, we recall the following basic definitions from free
probability theory. For a thorough introduction to free probability theory, we refer to
[43].

• A C∗-probability space is a pair (A, ϕ) consisting of a unital C∗-algebra A and a
state ϕ on A (i.e. a linear map ϕ : A → C such that ϕ(1A) = 1 and ϕ(aa∗) > 0 for
all a ∈ A). ϕ is a trace if it satisfies ϕ(ab) = ϕ(ba) for every (a, b) ∈ A2. A trace
is said to be faithful if ϕ(aa∗) > 0 whenever a 6= 0. An element of A is called a
noncommutative random variable.

• The ∗-noncommutative distribution of a family a = (a1, . . . , ak) of noncommutative
random variables in a C∗-probability space (A, ϕ) is defined as the linear functional
µa : P 7→ ϕ(P (a, a∗)) defined on the set of polynomials in 2k noncommutative
indeterminates, where (a, a∗) denotes the 2k-tuple (a1, . . . , ak, a

∗
1, . . . , a

∗
k). For any

self-adjoint element a1 in A, there exists a probability measure νa1 on R such that,
for every polynomial P, we have

µa1(P ) =

∫
P (t)dνa1(t).

Then, we identify µa1 and νa1 . If ϕ is faithful then the support of νa1 is the spectrum
of a1 and thus ‖a1‖ = sup{|z|, z ∈ supp(νa1)}.

• A family of elements (ai)i∈I in a C∗-probability space (A, ϕ) is free if for all k ∈ N
and all polynomials p1, . . . , pk in two noncommutative indeterminates, one has

ϕ(p1(ai1 , a
∗
i1) · · · pk(aik , a

∗
ik

)) = 0 (3.1)

whenever i1 6= i2, i2 6= i3, . . . , in−1 6= ik and ϕ(pl(ail , a
∗
il

)) = 0 for l = 1, . . . , k.

• A noncommutative random variable x in a C∗-probability space (A, ϕ) is a standard
semicircular variable if x = x∗ and for any k ∈ N,

ϕ(xk) =

∫
tkdµsc(t)
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where dµsc(t) = 1
2π

√
4− t21I[−2;2](t)dt is the semicircular standard distribution.

• Let k be a nonnull integer number. Denote by P the set of polynomials in 2k

noncommutative indeterminates. A sequence of families of variables (an)n>1 =

(a1(n), . . . , ak(n))n>1 in C∗-probability spaces (An, ϕn) converges, when n goes to
infinity, in distribution if the map P ∈ P 7→ ϕn(P (an, a

∗
n)) converges pointwise.

3.2 Operator-valued free probability theory

3.2.1 Basic definitions

Operator-valued distributions and the operator-valued version of free probability were
introduced by Voiculescu in [39] with the main purpose of studying freeness with
amalgamation. Thus, an operator-valued noncommutative probability space is a triple
(M,E,B), where M is a unital algebra over C, B ⊆M is a unital subalgebra containing
the unit of M , and E : M → B is a unit-preserving conditional expectation, that is, a
linear B-bimodule map such that E[1] = 1.

The subalgebras (Mi)i∈I of M containing B are free with amalgamation over B (or
free with amalgamation with respect to the conditional expectation E), if whenever we
have m > 2 and x1, . . . , xm ∈ M such that E[xj ] = 0 for j = 1, . . . ,m, xj ∈ Mi(j) with
i(j) ∈ I and i(1) 6= i(2), i(2) 6= i(3), . . ., i(m− 1) 6= i(m), then

E[x1 · · ·xm] = 0.

Elements in M are called free with amalgamation over B if the algebras generated by B
and the elements are also so.

We will only need the more restrictive context in which M is a finite von Neumann
algebra which is a factor, B is a finite-dimensional von Neumann subalgebra of M (and
hence isomorphic to an algebra of matrices), and E is the unique trace-preserving
conditional expectation from M to B. The B-valued distribution of an element X ∈M
w.r.t. E is defined to be the family of multilinear maps called the moments of µX :

µX = {Bn−1 3 (b1, b2, . . . , bn−1) 7→ E[Xb1Xb2 · · ·Xbn−1X] ∈ B : n ≥ 0},

with the convention that the first moment (corresponding to n = 1) is the element
E[X] ∈ B, and the zeroth moment (corresponding to n = 0) is the unit 1 of B (or M ).
The distribution of X is encoded conveniently by a noncommutative analytic transform
defined for certain elements b ∈ B, which we agree to call the noncommutative Cauchy
transform:

GX(b) = E
[
(X − b)−1

]
.

(To be more precise, it is the noncommutative extension GX⊗1n(b) = (E ⊗ IdMn(B))[
(X ⊗ 1n − b)−1

]
, for elements b ∈ Mn(B), which completely encodes µX – see [42];

since we do not need this extension, we shall not discuss it any further, but refer the
reader to [42, 40, 41, 30] for details.) A natural domain for GX is the upper half-plane
of B, H+(B) = {b ∈ B : =b > 0}, where =b = b−b∗

2i is the imaginary part of b. It follows
quite easily that GX(H+(B)) ⊆ H+(B) – see [41].

We warn here the reader that we have changed conventions in our paper compared
to [40, 41, 42], namely we have chosen GX(b) = E

[
(X − b)−1

]
instead of E

[
(b−X)−1

]
,

so that GX preserves H+(B).
Among many other results proved in [39], one can find a central limit theorem for

random variables which are free with amalgamation. The central limit distribution is
called an operator-valued semicircular, by analogy with the free central limit for the
usual, scalar-valued random variables, which is Wigner’s semicircular distribution. It has
been shown in [39] that an operator-valued semicircular distribution is entirely described
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by its operator-valued free cumulants: only the first and second cumulants of an operator-
valued semicircular distribution may be nonzero (see also [34, 42]). For our purposes,
we use the equivalent description of an operator-valued semicircular distribution via its
noncommutative Cauchy transform, as in [23]: S is a B-valued semicircular if and only if

GS(b) = (m1 − b− η(GS(b)))
−1
, b ∈ H+(B),

for some m1 = m∗1 ∈ B and completely positive map η : B → B. In that case, m1 = E[S]

and η(b) = E[SbS]− E[S]bE[S] is the operator-valued variance. The above equation is
obviously a generalization of the quadratic equation determining Wigner’s semicircular
distribution: σ2GS(z)2 + (z −m1)GS(z) + 1 = 0. Here m1 is the – classical – first moment
of S, and σ2 its classical variance, which, as a linear completely positive map, is the
multiplication with a positive constant. Unless otherwise specified, we shall from now
on assume our semicirculars to be centered, i.e. m1 = 0.

Example 3.1. A rich source of examples of operator-valued semicirculars comes in the
case of finite dimensional B from scalar-valued semicirculars: assume that si,j , 1 ≤ i ≤
j ≤ n are scalar-valued centered semicircular random variables of variance one. We do
not assume them to be free. Then the matrix

α1s1,1 γ1,2s1,2 γ1,3s1,3 · · · γ1,n−1s1,n−1 γ1,ns1,n

γ1,2s1,2 α2s2,2 γ2,3s2,3 · · · γ2,n−1s2,n−1 γ2,ns2,n

γ1,3s1,3 γ2,3s2,3 α3s3,3 · · · γ3,n−1s3,n−1 γ3,ns3,n

...
...

...
. . .

...
...

γ1,n−1s1,n−1 γ2,n−1s2,n−1 γ3,n−1s3,n−1 · · · αn−1sn−1,n−1 γn−1,nsn−1,n

γ1,ns1,n γ2,ns2,n γ3,ns3,n · · · γn−1,nsn−1,n αnsn,n


,

where α1, . . . , αn ∈ [0,+∞) and γi,j ∈ C, 1 ≤ i < j ≤ n, is anMn(C)-valued semicircular.
Note that we do allow our scalars to be zero. This is a particular case of a result from
[31], and its proof can be found in great detail in [26].

An important fact about semicircular elements, both scalar- and operator-valued, is
that the sum of two free semicircular elements is again a semicircular element (this
follows from the fact that a semicircular is defined by having all its cumulants beyond
the first two equal to zero – see [39]). In particular, if {s(1)

1,1, s
(1)
1,2, s

(1)
2,2, s

(2)
1,1, s

(2)
1,2, s

(2)
2,2} are

centered all semicirculars of variance one, and in addition we assume them to be free

from each other, then

[
s

(1)
1,1 s

(1)
1,2

s
(1)
1,2 s

(1)
2,2

]
and

[
s

(2)
1,1 is

(2)
1,2

−is(2)
1,2 s

(2)
2,2

]
areM2(C)-valued semicirculars

which are free over M2(C), so their sum

[
s

(1)
1,1 + s

(2)
1,1 s

(1)
1,2 + is

(2)
1,2

s
(1)
1,2 − is

(2)
1,2 s

(1)
2,2 + s

(2)
2,2

]
is also an M2(C)-

valued semicircular, despite its off-diagonal elements not being anymore distributed
according to the Wigner semicircular law. This is hardly surprising: the two matrices we
have added are the limits of the real and imaginary parts of a G.U.E. (Gaussian Unitary
Ensemble). The upper right corner of a G.U.E. is known to be a C.U.E. (Circular Unitary
Ensemble), and its eigenvalues converge to the uniform law on a disk. On the other hand,
direct analytic computations show that the sum s

(1)
1,2 ± is

(2)
1,2, with s(1)

1,2 and s(2)
1,2 free from

each other, has precisely the same law. Thus, the following definition, due to Voiculescu,
is natural.

Definition 3.2. An element c in a ∗-noncommutative probability space (A, ϕ) is called a
circular random variable if (c+ c∗)/

√
2 and (c− c∗)/

√
2i, respectively, are free from each

other and identically distributed according to standard Wigner’s semicircular law.
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3.2.2 Preliminary results

We first establish preliminary results in free probability theory that we will need in the
following sections.

Lemma 3.3. Let {m(j)
p , p = 1, . . . , 4, j = 1, . . . , t} be noncommutative random variables in

some noncommutative probability space (A, ϕ). Let s(1)
i , s(2)

i , i = 1, . . . , u be semicircular

variables and ci, i = 1, . . . , u be circular variables such that s(1)
1 , . . . , s

(1)
u , s

(2)
1 , . . . , s

(2)
u ,

c1, . . . , cu, {m(j)
p , p = 1, . . . , 4, j = 1, . . . , t} are free in (A, ϕ). Define for i = 1, . . . , u,

si =
1√
2

(
s

(1)
i ci

c∗i s
(2)
i

)
,

and for j = 1, . . . , t,

mj =

(
m

(j)
1 m

(j)
2

m
(j)
3 m

(j)
4

)
.

Then, in the scalar-valued probability space (M2(A), tr2⊗ϕ), the random variables
s1, . . . , su, {mj, j = 1, . . . , t} are free and for i = 1, . . . , u, each si is a semicircular variable.

Proof. Let us prove that s1, . . . , su is free fromM2(B), where B is the ∗-algebra generated

by {m(j)
p , p = 1, . . . , 4, j = 1, . . . , t}. We already now (see [26, Chapter 9]) that s1, . . . , su

are semicircular variables overM2(C) which are free fromM2(B), with respect to id2⊗ϕ.

Moreover, the covariance mapping of s1, . . . , su is the function (η
M2(C)
i,j : M2(C) →

M2(C))16i,j6u, which can be computed as follows: for all m =

(
m1 m2

m3 m4

)
∈ M2(C),

we have

η
M2(C)
i,j (m) = (id2⊗ϕ)(simsj)

=
1

2

(
ϕ(s

(1)
i m1s

(1)
j ) + ϕ(s

(1)
i m2c

∗
j ) + ϕ(cim3s

(1)
j ) + ϕ(cim4c

∗
j ) ?

? ?

)

=
δij
2

(
m1 +m4 0

0 m1 +m4

)
= δij tr2(m)I2.

Using [27, Theorem 3.5], the freeness of s1, . . . , su from M2(B) over M2(C) gives us
the free cumulants of s1, . . . , su over M2(B). More concretely, we get that s1, . . . , su
are semicircular variables overM2(B), with a covariance mapping (η

M2(B)
i,j :M2(B)→

M2(B))16i,j6u given by ηM2(B)
i,j = η

M2(C)
i,j ◦ (id2 ⊗ ϕ).

Because of the previous computation, we know that ηM2(C)
i,j = tr2 ◦ηM2(C)

i,j ◦ tr2, which

means that ηM2(B)
i,j = (tr2⊗ϕ) ◦ ηM2(B)

i,j ◦ (tr2⊗ϕ). As a consequence, using again [27,
Theorem 3.5], s1, . . . , su are semicircular variables over C free from M2(B) with respect
to (tr2⊗ϕ), and the covariance mapping ηCi,j is given by the restriction of the covariance

mapping ηM2(C) to C: for all m ∈ C

ηCi,j(m) = δijm,

which means that s1, . . . , su are free standard semicircular variables.

Our next lemma is an operator-valued extension of [13, Lemma 5.1].
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Lemma 3.4. Let y be a noncommutative random variable inMm(A) and c(1), . . . , c(u) be
free circular variables in A, free from the entries of y. Then, in the non-commutative
probability space (Mm(A), trm⊗ϕ), |

∑u
j=1 ζj ⊗ c(j) + y|2 has the same distribution as

|
∑u
j=1 ζj ⊗ sj + (Im ⊗ ε) · y|2 for any scalar matrices ζ1, . . . ζu ∈ Mm(C), where ε is a

selfadjoint {−1,+1}-Bernoulli variable in A, independent from the entries of y, and
s1, . . . , su are free semicircular variables in A, free from ε and the entries of y.

In the lemma above, we consider the symmetric version εy of y, thanks to a non-
commutative random variable ε which is tensor-independent from the entries of y,
in the sense that ε commutes with the entries of y and ϕ(p1(ε)p2(yi,j , y

∗
i,j : i, j)) =

ϕ(p1(ε))ϕ(p2(yi,j , y
∗
i,j : i, j)) for all polynomials p1, p2.

Proof. Let n > 0. We compute the n-th moment of |
∑u
j=1 ζj ⊗ c(j) + y|2 with respect

to idm ⊗ ϕ, and compare it to the n-th moment of |
∑u
j=1 ζj ⊗ sj + εy|2 with respect to

idm ⊗ ϕ.

Let us set a0 = y and aj = ζj ⊗ c(j). We compute

(idm ⊗ ϕ)(|
u∑
j=1

ζj ⊗ c(j) + y|2n)

=
∑

06i1,...,i2n6u

(idm ⊗ ϕ)(ai1a
∗
i2ai3a

∗
i4 . . . ai2n−1

a∗i2n).

Similarly,

(idm ⊗ ϕ)(|
u∑
j=1

ζj ⊗ sj + (Im ⊗ ε) · y|2n)

=
∑

06i1,...,i2n6u

(idm ⊗ ϕ)(bi1b
∗
i2bi3b

∗
i4 . . . bi2n−1b

∗
i2n).

where b0 = (Im ⊗ ε) · y and bj = ζj ⊗ sj . In order to conclude, it suffices to prove that, for
all 0 6 i1, . . . , i2n 6 u,

(idm ⊗ ϕ)(ai1a
∗
i2ai3a

∗
i4 . . . ai2n−1

a∗i2n) = (idm ⊗ ϕ)(bi1b
∗
i2bi3b

∗
i4 . . . bi2n−1

b∗i2n).

Let us fix 0 6 i1, . . . , i2n 6 u. Note that a0 is free over Mm(C) from aj with respect
to idm ⊗ ϕ (see [26, Chapter 9]). Let us fix S = {j : ij 6= 0} ⊂ {1, . . . , 2n} and use the
moment cumulant formula (see [34, page 36]):

(idm ⊗ ϕ)(ai1a
∗
i2ai3a

∗
i4 . . . ai2n−1

a∗i2n)

=
∑

π∈NC(S)

(ĉ ∪ ϕ̂)(π ∪ πc)(ai1 ⊗ a∗i2 . . . ai2n−1
⊗ a∗i2n)

where πc is the largest partition of Sc such that π ∪ πc is noncrossing and ĉ and ϕ̂ are the
Mm(C)-valued cumulant function and theMm(C)-valued moment function associated to
the conditional expectation idm ⊗ ϕ. We use here the notation of [34, Notation 2.1.4]
which defines (ĉ ∪ ϕ̂)(π ∪ πc) as someMm(C)-valued multiplicative function that acts on
the blocks of π like ĉ and on the blocks of πc like ϕ̂.

Recall that the cumulants of ζj ⊗ c(j) are vanishing if π is not a pairing and if π is
not alternating (which means that π links two indices with the same parity). Now, let
us remark that if π is a pairing which is alternating, then πc is even (each blocs of πc is
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even). Thus,

(idm ⊗ ϕ)(ai1a
∗
i2ai3a

∗
i4 . . . ai2n−1a

∗
i2n)

=
∑

π∈NC(S)
π pairing and alternating

(ĉ ∪ ϕ̂)(π ∪ πc)(ai1 ⊗ a∗i2 . . . ai2n−1 ⊗ a∗i2n)

=
∑

π∈NC(S)
π pairing and alternating

πc even

(ĉ ∪ ϕ̂)(π ∪ πc)(ai1 ⊗ a∗i2 . . . ai2n−1 ⊗ a∗i2n).

Similarly, the cumulants of ζj ⊗ s(j) are vanishing if π is not a pairing and that the
moment of b0 is vanishing if πc is odd. Moreover, if π is a pairing and πc is even, then π
is alternating. As a consequence,

(idm ⊗ ϕ)(bi1b
∗
i2bi3b

∗
i4 . . . bi2n−1

b∗i2n)

=
∑

π∈NC(S)

(ĉ ∪ ϕ̂)(π ∪ πc)(bi1 ⊗ b∗i2 . . . bi2n−1
⊗ b∗i2n)

=
∑

π∈NC(S)
π pairing
πc even

(ĉ ∪ ϕ̂)(π ∪ πc)(bi1 ⊗ b∗i2 . . . bi2n−1
⊗ b∗i2n)

=
∑

π∈NC(S)
π pairing and alternating

πc even

(ĉ ∪ ϕ̂)(π ∪ πc)(bi1 ⊗ b∗i2 . . . bi2n−1
⊗ b∗i2n).

In order to conclude, it suffices to remark that εy and y have the same even Mm(C)-
valued moments and ζj ⊗ c(j) and ζj ⊗ s(j) have the same alternating Mm(C)-valued
cumulants.

It follows from [4] that the support inMsa
m(C) of the addition of a semicircular s of

variance η and a selfadjoint noncommutative random variable y ∈ (Mm(A), idm ⊗ ϕ)

which is free with amalgamation over Mm(C) with s, is given via its complement in
terms of y and the functions

H(w) = w − η(Gy(w)) and ω(b) = b+ η(Gy(ω(b)), (3.2)

where Gx(b) = (idm ⊗ ϕ)
[
(x− b)−1

]
. Specifically,

Proposition 3.5. If w ∈Msa
m(C) is such that y − w is invertible and spect(η ◦G′y(w)) ⊂

D \ {1}, then s+ y−H(w) is invertible. Conversely, if b ∈Msa
m(C) is such that s+ y− b is

invertible, then y − ω(b) is invertible.

It follows quite easily that spect(η ◦G′y(ω(b))) ⊂ D. Generally, all conditions on the
derivatives of ω and H follow from the two functional equations above.

Proof. Assume that y − w is invertible and spect(η ◦ G′y(w)) ⊂ D \ {1}. Since w = w∗,
the derivative G′y(w) is completely positive, so η ◦ G′y(w) is completely positive. This
means according to [18, Theorem 2.5] that the spectral radius r of η ◦G′y(w) is reached
at a positive element ξ ∈ Mm(C), so that necessarily r ≥ 0. Since 1 6∈ σ(η ◦ G′y(w)) by
hypothesis, it follows that r < 1, and thus

spect(η ◦G′y(w)) ⊆ rD ( D.

This forces the derivative of H(w), H ′(w) = idm − η ◦G′y(w), to be invertible as a linear
operator from Mm(C) to itself. By the inverse function theorem, H has an analytic

EJP 26 (2021), paper 100.
Page 16/37

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP666
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Outlier eigenvalues for non-Hermitian polynomials

inverse on a small enough neighborhood of H(w) onto a neighborhood of w. Since H
preserves the selfadjoints near w, so must the inverse. On the other hand, the map
v 7→ H(w) + η(Gy(v)) sends the upper half-plane into itself and has w as a fixed point.
Since its derivative has all its eigenvalues included strictly in D (recall that the spectral
radius r < 1), it follows that w is actually an attracting fixed point for this map. Since for
any b in the upper half-plane, ω(b) is given as the attracting fixed point of v 7→ b+η(Gy(v)),
it follows that ω coincides with the local inverse of H on the upper half-plane, so the
local inverse of H is the unique analytic continuation of ω to a neighborhood of H(w).
This proves that ω extends analytically to a neighborhood of H(w) and the extension
maps selfadjoints from this neighborhood to Msa

m(C). In particular, ω(H(v)) = v and
Gs+y(H(v)) = Gy(ω(H(v))) = Gy(v) are selfadjoint for all v = v∗ in a small enough
neighborhood of w, showing that s+ y −H(w) is invertible.

Conversely, say b = b∗ and s + y − b is invertible. Then Gs+y is analytic on a
neighborhood of b and maps selfadjoints from this neighborhood into Msa

m(C). Since
ω(b) = b+ η(Gs+y(b)), the same holds for ω. Since, by [4, Proposition 4.1], spect(ω′(v)) ⊂
{<z > 1/2} for any v in the upper half-plane, the analyticity of ω around b = b∗ im-
plies spect(ω′(b)) ⊂ {<z ≥ 1/2}. Thus, ω is invertible wrt composition around b

by the inverse function theorem. As argued above, H is its inverse, and extends
analytically to a small enough neighborhood of ω(b), with selfadjoint values on the
selfadjoints. Composing with H to the left in Voiculescu’s subordination relation
Gs+y(v) = Gy(ω(v)) yields Gy+s(H(w)) = Gy(w), guaranteeing that Gy is analytic on a
neighborhood of ω(b), with selfadjoint values on the selfadjoints, and so y − ω(b) must
be invertible.

Remark 3.6. The proof of the previous proposition, based on [18, Theorem 2.5], makes
the condition spect(η ◦G′y(0)) ⊆ D \ {1} equivalent to the existence of an r ∈ [0, 1) such

that spect(η ◦G′y(0)) ⊆ rD.

The following lemma is a particular case of the above proposition.

Lemma 3.7. Consider the operator-valued C∗-algebraic noncommutative probability
space (Mm(A), idm⊗ϕ,Mm(C)) and a pair of selfadjoint random variables s, y ∈Mm(A)

which are free over Mm(C) with respect to idm ⊗ ϕ. Assume that s is a centered
semicircular of variance η : Mm(C) → Mm(C) and that each entry of y ∈ Mm(A) is
a noncommutative symmetric random variable in (A, ϕ). We define Gx(b) = (idm ⊗
ϕ)
[
(x− b)−1

]
. Then s+ y is invertible if and only if 0 6∈ spect(y) and spect(η ◦G′y(0)) is

included in D \ {1}.

Proof. Note that our hypotheses that all entries of the selfadjoint y are symmetric and
that s is centered imply automatically that H(iMm(C)+) ⊆ iMsa

m(C) and ω(iMm(C)+) ∪
Gy(iMm(C)+) ∪Gy+s(iMm(C)+) ⊆ iMm(C)+. (We have denoted byMm(C)+ the set of
positive definite matrices inMm(C).)

Assume that y is invertible and spect(η ◦ G′y(0)) ⊆ D \ {1}. In particular, Gy is
analytic on a neighborhood of zero inMm(C). Proposition 3.5 implies that s+ y −H(0)

is invertible. Since H(iMm(C)+) ⊆ iMm(C)+, it follows from the formula of H that
H(0) = 0. Thus, s+ y is invertible.

Conversely, assume that s + y is invertible, so that Gs+y extends analytically to a
small neighborhood of zero in such a way that it maps selfadjoints to selfadjoints. Since
ω(b) = b + η(Gs+y(b)), it follows that ω does the same. According to Proposition 3.5,
y − ω(0) is invertible. Since ω(iMm(C)+) ⊆ iMm(C)+, we again have that ω(0) = 0, so
that y is invertible.
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4 Linearization trick

A powerful tool to deal with noncommutative polynomials in random matrices or in
operators is the so-called “linearization trick.” Its origins can be found in the theory of au-
tomata and formal languages (see, for instance, [32]), where it was used to conveniently
represent certain categories of formal power series. In the context of operator algebras
and random matrices, this procedure goes back to Haagerup and Thorbjørnsen [21, 22]
(see [26]). We use the version from [1, Proposition 3], which has several advantages for
our purposes, to be described below.

We denote by C〈X1, . . . , Xk〉 the complex ∗-algebra of polynomials in k noncommuting
indeterminates X1, . . . , Xk. The adjoint operation is given by the anti-linear extension of
(Xi1Xi2 · · ·Xil)

∗ = X∗il · · ·X
∗
i2
X∗i1 , (i1, . . . , il) ∈ {1, . . . , k}l, l ∈ N \ {0}. We will sometimes

assume that some, or all, of the indeterminates are selfadjoint, i.e. X∗j = Xj . Unless we
make this assumption explicitly, the adjoints X∗1 , . . . , X

∗
k are assumed to be algebraically

free from each other and from X1, . . . , Xk.
Given a polynomial P ∈ C〈X1, . . . , Xk〉, we call linearization of P any LP ∈Mm(C)⊗

C〈X1, . . . , Xk〉 such that

LP :=

(
0 u∗

v Q

)
∈Mm(C)⊗ C〈X1, . . . , Xk〉

where

1. m ∈ N,

2. Q ∈ Mm−1(C) ⊗ C〈X1, . . . , Xk〉 is invertible in the complex algebra Mm−1(C) ⊗
C〈X1, . . . , Xk〉,

3. u∗ is a row vector and v is a column vector, both of length m− 1, with entries in
C〈X1, . . . , Xk〉,

4. the polynomial entries in Q, u and v all have degree 6 1, and

5. P = −u∗Q−1v.

We refer to Anderson’s paper [1] for the – constructive – proof of the existence of
a linearization LP as described above for any given polynomial P ∈ C〈X1, . . . , Xk〉. It
turns out that if P is selfadjoint, then LP can be chosen to be self-adjoint.The well-known
result about Schur complements yields then the following invertibility equivalence.

Lemma 4.1. [26, Chapter 10, Corollary 3] Let P ∈ C〈X1, . . . , Xk〉 and let LP ∈Mm(C〈X1,

. . . , Xk〉) be a linearization of P with the properties outlined above. Let e11 be the m×m
matrix whose single nonzero entry equals one and occurs in the row 1 and column 1. Let
y = (y1, . . . , yk) be a k-tuple of operators in a unital C∗-algebra A. Then, for any z ∈ C,
ze11 ⊗ 1A − LP (y) is invertible if and only if z1A − P (y) is invertible and we have

(ze11 ⊗ 1A − LP (y))
−1

=

(
(z1A − P (y))

−1
?

? ?

)
. (4.1)

Lemma 4.2. Let P ∈ C〈X1, . . . , Xk〉 and let LP ∈Mm(C〈X1, . . . , Xk〉) be a linearization
of P with the properties outlined above. There exist two polynomials T1 and T2 in k

commutative indeterminates, with nonnegative coefficients, depending only on LP , such
that, for any k-tuple y = (y1, . . . , yk) of operators in a unital C∗-algebra A, for any z ∈ C
such that z1A − P (y) is invertible,∥∥(ze11 ⊗ 1A−LP (y))−1

∥∥ 6 T1(‖y1‖, . . . , ‖yk‖)×
∥∥(z1A − P (y))−1

∥∥
+T2 (‖y1‖, . . . , ‖yk‖) . (4.2)
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Proof. The proof is similar to the proof of [5, Lemma 4.4]. The linearization of P can be
written as

LP =

[
0 u∗

v Q

]
∈Mm(C〈X1, . . . , Xk〉)

Now, a matrix calculation in which we suppress the variable y shows that
(ze11 ⊗ 1A − LP )−1

=

[
1A 0

−Q−1v I(m−1) ⊗ 1A

] [
(z − P )−1 0

0 −Q−1

] [
1A −u∗Q−1

0 I(m−1) ⊗ 1A

]
.

Since v, u∗, and Q−1 are polynomials in y1, . . . , yk, the result readily follows.

In Section 5.3, we will provide an explicit construction of a linearization that is best
adapted to our purposes. In this construction, it is clear that we can always find a
linearization such that, for any k-tuple y of matrices,

detQ(y) = ±1. (4.3)

5 No outlier; proof of Theorem 1.13

By Bai-Yin’s theorem (see [3, Theorem 5.8]), there exists C > 0 such that, almost
surely for all large N , ‖MN‖ 6 C, so that the first assertion of Theorem 1.13 readily
yields the second one, by choosing

Γ = {z ∈ C, d(z, spect(P (c, a))) ≥ ε, |z| ≤ C}.

Remember that, by (1.4), spect(P (c, a)) = {z ∈ C : 0 ∈ supp(µz)}, where µz is the
distribution of (P (c, a)−z)(P (c, a)−z)∗. The first assertion of Theorem 1.13 is equivalent
to the following.

Proposition 5.1. Let Γ be a compact set of {z ∈ C : 0 /∈ supp(µz)}; assume that for any
z in Γ, there exists ηz > 0 such that for all N large enough,

sN

(
P (0N , . . . , 0N , A

(1)
N , . . . , A

(t)
N )− zIN

)
> ηz.

Then, for any z in Γ, there exists γz > 0, such that almost surely, for all large N ,
sN (MN − zIN ) > γz. Consequently, there exists γΓ > 0 such that almost surely, for all
large N , infz∈Γ sN (MN − zIN ) > γΓ.

5.1 Ideas of the proof

The proof of Proposition 5.1 is based on the two following key results.

Proposition 5.2. Assume that (X1) holds. Let K be a polynomial in u+t noncommutative
variables. Define

KN = K

(
X

(1)
N√
N
, . . . ,

X
(u)
N√
N
,A

(1)
N , . . . , A

(t)
N

)
.

• Assume that (1.3) holds. Let {a(j)
N , j = 1, . . . , t} be a set of noncommutative random

variables in (A, ϕ) which is free from a free circular system c = (c(1), . . . , c(u))

in (A, ϕ) and such that the ∗-distribution of (A
(j)
N , j = 1, . . . , t) in the noncom-

mutative probability space
(
MN (C), 1

N TrN
)

coincides with the ∗-distribution of

aN = (a
(j)
N , j = 1, . . . , t) in (A, ϕ) . Let τN be the the distribution of

K(c, aN ) [K(c, aN )]
∗
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with respect to ϕ. If the interval [x, y], x < y, is such that there exists δ > 0 such
that for all large N , (x− δ, y + δ) ⊂ R \ supp(τN), then, we have

P [for all large N, spect(KNK
∗
N ) ⊂ R \ [x, y]] = 1.

• Assume that (A1) holds. Then, almost surely, the sequence of u + t-tuples(
X

(1)
N√
N
, . . . ,

X
(u)
N√
N
, A

(1)
N , . . . , A

(t)
N

)
N>1

converges in ∗-distribution towards (c, a) where

c = (c1, . . . , cu) is a free circular system which is free with a = (a(1), . . . , a(t)) in
(A, ϕ).

Proposition 5.3. Consider a polynomial P (Y1, Y2), where Y1 is a tuple of noncommuting
nonselfadjoint indeterminates, Y2 is a tuple of selfadjoint indeterminates, and no selfad-
jointness is assumed for P . We evaluate P in (c, a) and (c, aN ), where c is a tuple of free
circulars, which is ∗-free from the tuples a and aN . We assume that aN → a in moments
and that there exists a number τ > 0 such that supN ‖aN‖ 6 τ .

1. We fix z0 ∈ C such that |P (c, a)− z0|2 ≥ δz0 > 0 for a fixed δz0 .

2. We assume that there exists Nδz0 ∈ N such that if N ≥ Nδz0 , then |P (0, aN )− z0|2 ≥
δz0 .

Then, there exists εz0 > 0 for which there exists an Nεz0 ∈ N such that if N ≥ Nεz0 , then
|P (c, aN )− z0|2 ≥ εz0 .

Remark 5.4. Of course Proposition 5.3 still holds if the tuples aN are nonselfadjoint, by
considering instead the selfadjoint tuples (=(aN ),<(aN )).

Let us explain how to deduce Theorem 1.10 from Proposition 5.2 and Proposition 5.3.
Define µN,z as the distribution of[

P (c(1), . . . , c(u), a
(1)
N , . . . , a

(t)
N )− z1

]
×
[
P (c(1), . . . , c(u), a

(1)
N , . . . , a

(t)
N )− z1

]∗
where {c(1), (c(1))∗}, . . . , {c(u), (c(u))∗}, {a(1)

N , . . . , a
(t)
N } are free sets of noncommutative

random variables and the ∗-distribution of (a
(1)
N , . . . , a

(t)
N ) in (A, ϕ) coincide with the

∗-distribution of (A
(1)
N , . . . , A

(t)
N ) in (MN (C), trN ). µN,z is the so-called deterministic

equivalent measure of the empirical spectral measure of (MN − zIN )(MN − zIN )∗.The
following is a straightforward consequence of Proposition 5.3.

Corollary 5.5. Let z ∈ C be such that 0 /∈ supp(µz). Assume that there exists ηz > 0

such that for all N large enough, there is no singular value of

P (0N , . . . , 0N , A
(1)
N , . . . , A

(t)
N )− zIN

in [0, ηz]. Then, there exists εz > 0, such that, for all large N ,

[0, εz] ⊂ R \ supp(µN,z).

Then, we can deduce from Corollary 5.5 and Proposition 5.2 that there exists some
γz > 0 such that almost surely for all large N , there is no singular value of MN − zIN in
[0, γz].By a compactness argument and the fact that z 7→ sN (MN − zIN ) is 1-Lipschitz,
it readily follows that for any compact Γ ⊂ {z : 0 /∈ supp(µz)}, there exists some γΓ > 0

such that almost surely for all large N ,

inf
z∈γ

sN (MN − zIN ) > γΓ, (5.1)

leading to Proposition 5.1.
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5.2 Proof of Proposition 5.2

Note that (
KNK

∗
N 0

0 K∗NKN

)
=

(
0 KN

K∗N 0

)2

,

so that the spectrum of KNK
∗
N coincides with the spectrum of

(
0 KN

K∗N 0

)2

. Now

(
0 K

K∗ 0

)
=

p∑
i=1

(
0 bimi

b̄im
∗
i 0

)

=

p∑
i=1

bi

(
0 mi

m∗i 0

)(
0 0

0 1

)
+ b̄i

(
0 0

0 1

)(
0 mi

m∗i 0

)
(5.2)

where the mi’s are monomials and the bi’s are complex numbers. Define Q1 =

(
IN 0

0 0

)
,

Q2 =

(
0 0

0 IN

)
and R =

(
0 IN
0 0

)
, S =

(
0 IN
IN 0

)
. Note that

(
0

X
(i)
N√
N

0 0

)
=
√

2Q1
W(i)

√
2N

Q2

where the W(i)’s, i = 1, . . . , u, are 2N × 2N independent so called Wigner matrices
satisfying assumptions of [6]. Now, note that as noticed by [7] for any monomial x1 · · ·xk,(

0 x1 · · ·xk
(x1 · · ·xk)∗ 0

)
= Πk−1

(
0 xk
x∗k 0

)
Π∗k−1 (5.3)

where

Πk−1 =

(
0 x1

IN 0

)
S

(
0 x2

IN 0

)
S · · ·S

(
0 xk−1

IN 0

)
S.

Indeed, this can be proved by induction noting that(
0 x1

IN 0

)
S

(
0 x2

x∗2 0

)
S

(
0 IN
x∗1 0

)
=

(
0 x1x2

x∗2x
∗
1 0

)
.

Note also that

S

(
0 IN
x∗1 0

)
S =

(
0 x∗1
IN 0

)
. (5.4)

Set for j=1,. . . , t, A(j)
N =

(
0 A

(j)
N

0 0

)
.

From (5.2), (5.3), (5.4), it readily follows that there exists a polynomial K̂ such that(
0 KN

K∗N 0

)
is equal to

K̂

(
Q1, Q2, R,R

∗,A
(j)
N , (A

(j)
N )∗, j = 1, . . . , t,

W(i)

√
2N

, i = 1, . . . , u

)
.

Now, define for j = 1, . . . , t, a(j)
N =

(
0 a

(j)
N

0 0

)
, q1 =

(
1A 0

0 0

)
, q2 =

(
0 0

0 1A

)
and r =(

0 1A
0 0

)
. Let s(1)

i , s(2)
i ,i = 1, . . . , u be semicircular variables such that {s(1)

1 }, . . . {s
(1)
u },
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{s(2)
1 }, . . . {s

(2)
u }, {c1, c∗1}, . . . , {cu, c∗u}, {a

(j)
N , j = 1, . . . , t} are free. Define for i = 1, . . . , u,

si =
1√
2

(
s

(1)
i c(i)

(c(i))∗ s
(1)
i

)
.

Similarly,(
0 K(c1, . . . , cu, a

(1)
N , . . . , a

(t)
N )[

K(c1, . . . , cu, a
(1)
N , . . . , a

(t)
N )
]∗

0

)

= K̂
(
q1, q2, r, r

∗,a
(j)
N , (a

(j)
N )∗, j = 1, . . . , t, si, i = 1, . . . , u

)
.

It readily follows that, the spectrum of KNK
∗
N coincides with the spectrum of K̂

(
Q1, Q2,

R,R∗,A
(j)
N , (A

(j)
N )∗, j = 1, . . . , t, W

(i)
√

2N
, i = 1, . . . , u

)2

and the spectrum of K(c1, . . . ,

cu, a
(1)
N , . . . , a

(t)
N )
[
K(c1, . . . , cu, a

(1)
N , . . . , a

(t)
N )
]∗

coincides with the spectrum of K̂
(
q1, q2, r,

r∗,a
(j)
N , (a

(j)
N )∗, j = 1, . . . , t, si, i = 1, . . . , u

)2

.

Now, it is straightforward to see that the ∗-distribution of (q1, q2, r,a
(j)
N , j = 1, . . . , t)

in (M2(A), tr2⊗ϕ) coincides with the ∗-distribution of (Q1, Q2, R, A
(j)
N , j = 1, . . . , t) in

(M2N (C), tr2N ). Moreover, by Lemma 3.3, it turns out that the si’s are free semicircular

variables which are free with (q1, q2, r,a
(j)
N , j = 1, . . . , t) in (M2(A), tr2⊗ϕ). Therefore,

the first assertion of Proposition 5.2 follows by applying [6, Theorem 1.1.]. The second
assertion of Proposition 5.2 can be proven by the same previous arguments. Indeed,
there exists a polynomial K̃ such that

1
N TrK

(
X

(1)
N√
N
, . . . ,

X
(u)
N√
N
, A

(1)
N , . . . , A

(t)
N

)

=
1

N
Tr

{(
0 KN

K∗N 0

)
R∗
}

= 2
1

2N
Tr K̃

(
Q1, Q2, R,R

∗,A
(j)
N , (A

(j)
N )∗, j = 1, . . . , t,

W(i)

√
2N

, i = 1, . . . , u

)
Thus, using [6, Proposition 2.2. and Remark 4], we obtain that

1
N TrK

(
X

(1)
N√
N
, . . . ,

X
(u)
N√
N
, A

(1)
N , . . . , A

(t)
N

)

→
N→+∞

2 tr2⊗ϕ
[
K̃
(
q1, q2, r, r

∗,a(j), (a(j))∗, j = 1, . . . , t, si, i = 1, . . . , u
)]

where, for j = 1, . . . , t, a(j) =

(
0 a(j)

0 0

)
. Now,

2 tr2⊗ϕ
[
K̃
(
q1, q2, r, r

∗,a(j), (a(j))∗, j = 1, . . . , t, si, i = 1, . . . , u
)]

= 2 tr2⊗ϕ
{(

0 K(c, a)

K(c, a)∗ 0

)
r∗
}

= ϕ (K(c, a)) .

The second assertion of Proposition 5.2 follows.

EJP 26 (2021), paper 100.
Page 22/37

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP666
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Outlier eigenvalues for non-Hermitian polynomials

5.3 Proof of Proposition 5.3

We prove this using linearization and hermitization. Our linearization of a nonselfad-
joint polynomial will naturally not be selfadjoint, so the results from [5] do not apply
directly to it, but some of the methods will. Before we analyze this linearization, let
us lay down the steps that we shall take in order to prove the above result. Let L be
our linearization of P (Y1, Y2) − z0; in this section we use a slight modification of the
linearization introduced in [1] — see below.

1. We have |P (c, aN )−z0|2 ≥ εz0 ⇐⇒
[

0 P (c, aN )−z0

(P (c, aN )−z0)∗ 0

]2

≥ εz0 .

2. There exists ι = ι(εz0 , P, τ) > 0 such that∣∣∣∣[ 0 P (c, aN )−z0

(P (c, aN )−z0)∗ 0

]∣∣∣∣ ≥ εz0 ⇐⇒ ∣∣∣∣[ 0 L(c, aN )

L(c, aN )∗ 0

]∣∣∣∣ ≥ ι.
3. We write [

0 L(c, aN )

L(c, aN )∗ 0

]
=

[
0 L(0, aN )

L(0, aN )∗ 0

]
+ C,

where C is a selfadjoint matrix containing only circular variables and their adjoints.

It will be clear that

[
0 L(c, aN )

L(c, aN )∗ 0

]
contains at most one nonzero element

per row/column, except possibly for the first row/column.

4. We use Lemma 3.4 to conclude that the lhs of the previous item is invertible if and
only if [

0 (Im ⊗ ε)L(0, aN )

(Im ⊗ ε)L(0, aN )∗ 0

]
+ S

is, where S is obtained from C by replacing each circular entry with a semicircular
from the same algebra (and hence free from aN ), and ε is a {−1, 1}-Bernoulli
distributed random variable which is independent from aN and free from S. As
noted in Example 3.1, since C = C∗, S is indeed a matrix-valued semicircular
random variable.

5. We apply Lemma 3.7 to the above item in order to determine under what conditions
the sum in question has a spectrum uniformly bounded away from zero.

6. Finally, we use the convergence in moments of aN to a in order to conclude that
the conditions obtained in the previous item are satisfied by[

0 (Im ⊗ ε)L(0, aN )

(Im ⊗ ε)L(0, aN )∗ 0

]
+ S.

Part (1) is trivial:[
0 P (c, aN )− z0

(P (c, aN )− z0)∗ 0

]2

=

[
|P (c, aN )− z0|2 0

0 |(P (c, aN )− z0)∗|2
]
.

Since our variables live in a II1-factor, the two nonzero entries of the right hand side
have the same spectrum.

Part (2) requires a careful analysis of the linearization we use. The construction
from [1] proceeds by induction on the number of monomials in the given polynomial. If
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P = Xi1Xi2Xi3 · · ·Xi`−1
Xi` , where ` ≥ 2 and i1, . . . , i` ∈ {1, . . . , k}, we set n = ` and

L = −


0 0 · · · 0 Xi1

0 0 · · · Xi2 −1
...

...
...

...
...

0 Xi`−1
· · · 0 0

Xi` −1 · · · 0 0

 .

However, unlike in [1, 5], we choose here L to be

L = −



0 0 · · · 0 0 1

0 0 · · · 0 Xi1 −1

0 0 · · · Xi2 −1 0
...

...
...

...
...

...
0 Xi` · · · 0 0 0

1 −1 · · · 0 0 0


.

That is, we apply the procedure from [1], but to P = 1Xi1Xi2Xi3 · · ·Xi`−1
Xi`1. If ` = 1,

we simply complete X to 1X1. Even if we have a multiple of 1, we choose here to proceed
the same way. The lower right (` + 1)× (` + 1) corner of this matrix has an inverse of
degree ` in the algebra M`+1(C〈X1, . . . , Xk〉). (The constant term in this inverse is a
selfadjoint matrix and its spectrum is contained in {−1, 1}.) The first row contains only
zeros and ones, and the first column is the transpose of the first row. Suppose now that
p = P1 + P2, where P1, P2 ∈ C〈X1, . . . , Xk〉, and that linear polynomials

Lj =

[
0 u∗j
uj Qj

]
∈Mnj (C〈X1, . . . , Xk〉), j = 1, 2,

linearize P1 and P2. Then we set n = n1 + n2 − 1 and observe that the matrix

L =

 0 u∗1 u∗2
u1 Q1 0

u2 0 Q2

 =

[
0 u∗

u Q

]
∈Mn1+n2−1(C〈X1, . . . Xk〉).

is a linearization of P1 + P2. L is built so that
[
(ze1,1 − L)−1

]
1,1

= (z − P )−1, z − P

is invertible if and only if (ze1,1 − L) is invertible, and each row/column of the matrix
L, except possibly for the first, contains at most one nonzero indeterminate (i.e. non-
scalar). By applying the linearization process to 1Xi1Xi2Xi3 · · ·Xi`−1

Xi`1 instead of
Xi1Xi2Xi3 · · ·Xi`−1

Xi` , we have insured that there is at most one nonzero indeterminate
in each row/column. An important side benefit is that with this modification, we may
assume that, with the notations from item 5 of Section 4,

v = u, and all entries of this vector are either 0 or 1.

While this linearization is far from being minimal, and should not be used for practical
computations, it turns out to simplify to some extent the notations and arguments of our
proofs.

In our arguments below we use several times the following equivalences regarding
inequalities involving operators and their norms: let A be a bounded linear operator on
a Hilbert space and let 1 denote the identity operator on the same Hilbert space. Then
‖A‖2 = ‖A∗‖2 = ‖A∗A‖ = ‖AA∗‖ = ‖|A|‖2 and

‖A‖2 6M ⇐⇒ A∗A 6M · 1 ⇐⇒ AA∗ 6M · 1.
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In particular, if A = A∗, then −‖A‖ · 1 6 A 6 ‖A‖ · 1. If A > 0 (that is, A = A∗ and the
spectrum of A is included in (0,+∞)), then A ≥ 1

‖A−1‖ · 1. All these relations follow from
functional calculus in C∗-algebras and the definition of positivity for operators (as the
reader has by now noticed, we use the same symbol to denote inequalities between real
numbers and inequalities between operators). In the future, we will sometimes suppress
the identity in our notations and write, for instance, A 6 ‖A‖ instead of A 6 ‖A‖ · 1.

The concrete expression of the inverse of ze1,1−L in terms of L =

[
0 u∗

u Q

]
is provided

by the Schur complement formula as

(ze1,1 − L)−1 =

[
(z − u∗Q−1u)−1 −(z − u∗Q−1u)−1u∗Q−1

−Q−1u(z − u∗Q−1u)−1 Q−1 +Q−1u(z − u∗Q−1u)−1u∗Q−1

]
.

It follows easily from this formula that z − P is invertible if and only if ze1,1 − L is
invertible. It was established in [5, Lemma 4.1] that Q, and hence Q−1, is of the form
T (1 + N) for some permutation scalar matrix T and nilpotent matrix N , which may
contain non-scalar entries. Let us establish a version of [5, Lemma 4.3] suitable for our
purposes.

Lemma 5.6. Assume that P ∈ C〈Y1, Y2〉 is an arbitrary polynomial in the non-selfadjoint
indeterminates Y1 and selfadjoint indeterminates Y2. Let L be a linearization of P
constructed as above. Given tuples of noncommutative random variables c and a, for all
δ > 0 such that |P (c, a)|2 > δ, there exists e > 0 such that |L(c, a)|2 > e, and the number e

only depends on δ > 0, P, and the supremum of the norms of c, a. Conversely, for all e > 0

such that |L(c, a)|2 > e, there exists q > 0 such that |P (c, a)|2 > q > 0 and q depends only
on e, P, and the supremum of the norms of c, a.

Proof. With the decomposition L=

[
0 u∗

u Q

]
, we have |L|2 =

[
u∗u u∗Q∗

Qu uu∗+QQ∗

]
. Recall

that |P |2 = u∗Q−1uu∗(Q−1)∗u. Now consider these expressions evaluated in the tuples
of operators mentioned in the statement of the lemma. In order to save space, we will
nevertheless suppress them from the notation. We assume that |P |2 > δ. Strangely
enough, it will be more convenient to estimate an upper bound for |L|−2 rather than a
lower bound for |L|2. The entries of |L|−2 expressed in terms of the above decomposition
are

(|L|−2)1,1 =
(
u∗u− u∗Q∗(uu∗ +QQ∗)−1Qu

)−1
,

(|L|−2)1,2 = −
(
u∗u− u∗Q∗(uu∗ +QQ∗)−1Qu

)−1
u∗Q∗(uu∗ +QQ∗)−1,

(|L|−2)2,1 = −(uu∗ +QQ∗)−1Qu
(
u∗u− u∗Q∗(uu∗ +QQ∗)−1Qu

)−1
,

(|L|−2)2,2 = (uu∗+QQ∗)−1Qu
(
u∗u−u∗Q∗(uu∗+QQ∗)−1Qu

)−1
u∗Q∗(uu∗+QQ∗)−1

+ (uu∗ +QQ∗)−1.

We only need to estimate the norms of the above elements in terms of δ, P , and the
norms of the variables in which we have evaluated the above. It is clear that

(|L|−2)1,1 =
(
u∗Q−1u(1 + u∗(Q∗)−1Q−1u)−1u∗(Q∗)−1u

)−1

=
(
P (1 + u∗(Q∗)−1Q−1u)−1P ∗

)−1

6
(
P (‖1 + u∗(Q∗)−1Q−1u‖)−1P ∗

)−1

= (1 + ‖u∗(Q∗)−1Q−1u‖)|P |−2.

Similarly, (uu∗ + QQ∗)−1 6 (QQ∗)−1 6 ‖Q−1‖2. We obtain this way the following ma-
jorizations for each of the entries, which will allow us to estimate e (these majorizations
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are not optimal, but close to):

‖(|L|−2)1,1‖ ≤ (1 + ‖u∗(Q∗)−1Q−1u‖)‖|P |−2‖,
‖(|L|−2)1,2‖ ≤ (1 + ‖u∗(Q∗)−1Q−1u‖)‖|P |−2‖‖u∗‖‖Q∗‖‖Q−1‖2,
‖(|L|−2)2,1‖ ≤ ‖Q−1‖2‖Q‖‖u‖(1 + ‖u∗(Q∗)−1Q−1u‖)‖|P |−2‖,
‖(|L|−2)2,2‖ ≤ ‖Q−1‖4‖Q‖2‖u‖2(1 + ‖u∗(Q∗)−1Q−1u‖)‖|P |−2‖+ ‖Q−1‖2.

We shall not be much more explicit than this, but let us nevertheless comment on why the
above satisfies the corresponding conclusion of our lemma. As noted before, u is a vector
of zeros and ones. It follows immediately from the construction of L that the number of
ones is dominated by the number of monomials of P , quantity clearly depending only
on P . Recall that Q is of the form T (1 + N), with T a permutation matrix, and N a
nilpotent matrix. The norm of T is necessarily one. The nilpotent matrix corresponding
to Q is simply a block upper diagonal matrix (i.e. a matrix which has on its diagonal
a succession of blocks, each block being itself an upper diagonal matrix) with entries
which are operators from the tuples a and c in which we evaluate P (and L). Its norm is
trivially bounded by the supremum of all the norms of the operators involved times the
supremum of all the scalar coefficients. Since ‖Q−1‖ = ‖T−1(1+N)−1‖ ≤ 1+

∑m
j=1 ‖N‖j ,

where m is the size of the linearization, we obtain an estimate for ‖Q−1‖ from above by
(m+ 1)(1 + ‖Q‖)m. Finally, ‖|P |−2‖ ≤ δ−1. This guarantees that ‖|L|−2‖ is bounded from
above, so that |L|2 is bounded from below, by a number e depending on δ, P , and the
norms of the entries of P .

Conversely, assume that |L|2 > e for a given strictly positive constant e. As before,
this is equivalent to ‖|L|−2‖ < 1

e , which allows for the estimate of the (1, 1) entry of |L|−2

by
∥∥∥(P (1 + u∗(Q∗)−1Q−1u)−1P ∗

)−1
∥∥∥ < 1

e , so that

(
P (1 + u∗(Q∗)−1Q−1u)−1P ∗

)−1
<

1

e
,

as inequality of operators. This tells us that P (1 + u∗(Q∗)−1Q−1u)−1P ∗ > e, so that

PP ∗ >
e

‖(1 + u∗(Q∗)−1Q−1u)−1‖
> e.

This concludes the proof.

Part (3) is a simple formal step.
Step (4) becomes a direct consequence of Lemma 3.4.
Now, in step (5), we finally involve our variables c, a, aN directly. We have as-

sumed that |P (c, a) − z0|2 > δz0 > 0, so that, according to steps (1) and (2), we have∣∣∣∣[ 0 L(c, a)

L(c, a)∗ 0

]∣∣∣∣ > ι for a ι > 0 depending, according to step (2), only on P , δz0 , and

the norms of c, a. According to step (4), it follows that[
0 (Im ⊗ ε)L(0, a)

(Im ⊗ ε)L(0, a)∗ 0

]
+ S

is invertible; moreover, the norm of the inverse is bounded in terms of P , δz0 , and the
norms of c, a. According to Lemma 3.7 and Remark 3.6, denoting

Y =

[
0 (Im ⊗ ε)L(0, a)

(Im ⊗ ε)L(0, a)∗ 0

]
,

the condition of invertibility of S + Y is equivalent to the invertibility of Y together with
the existence of an r ∈ (0, 1) such that spect(η ◦G′Y(0)) ⊂ (1− r)D. We naturally denote
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YN =

[
0 (Im ⊗ ε)L(0, aN )

(Im ⊗ ε)L(0, aN )∗ 0

]
. We have assumed that |P (0, aN )−z0|2 > δz0

for all (sufficiently large) N ∈ N, so that |YN |2 > ζ for a ζ that only depends on P, δz0 ,
and the supremum of the norms of aN , which is assumed to be bounded. Thus, |YN |2 is
uniformly bounded from below as N →∞. In order to insure the invertibility of S + YN ,
we also need that spect(η ◦G′YN (0)) ⊂ D \ {1}, for all N sufficiently large. The existence
of G′YN (0) is guaranteed by the hypothesis of invertibility of YN . Since

G′YN (0)(c) = (idm ⊗ ϕ)
[
Y−1
N cY−1

N

]
,

and

Y−1
N =

[
0 (Im ⊗ ε)(L(0, aN )∗)−1

(Im ⊗ ε)L(0, aN )−1 0

]
,

we only need to remember that all entries of L(0, aN )−1 are products of polynomials
in aN and (P (0, aN ) − z0)−1 in order to conclude that the convergence in moments of
aN to a implies the convergence in norm of G′YN (0) to G′Y(0) (recall that, according to
hypothesis 2. in the statement of our proposition, |P (0, aN )− z0|2 > δz0 > 0 uniformly).
Thus, for N sufficiently large, all eigenvalues of η ◦G′YN (0) are included in (1− r

2 )D. This
guarantees the invertibility of all S + YN for N sufficiently large.

To prove item (6) and conclude our proof, we only need to show that for N sufficiently
large, |S + YN |2 > ι

2 . There is a simple abstract shortcut for this: as Proposition 3.5
shows, the endpoint of the support of the (scalar) distribution of S + YN is given by that
smallest xN ∈ (0,+∞) for which 1 ∈ spect(η ◦ G′YN (xN )) (as usual in this context, by
GYN (xN ) we mean GYN (xN · I2m)). On the one hand, GYN is guaranteed to be analytic
on [0, δz0 ]. On the other, since YN → Y in distribution, we have GYN → GY uniformly on
[0, δz0 − ε] for any fixed ε > 0. In particular, G′YN (x) → G′Y(x) for any x in this interval.
Thus, xN is bounded away from zero uniformly in N as N →∞. A second application of
the convergence of GYN allows us to conclude.

6 Stable outliers; proof of Theorem 1.10

Making use of a linearization procedure, the proof closely follows the approach of
[10]. The most significant novelty is Proposition 6.1 which substantially generalizes
Theorem 1.3. A. in [15] (see also Proposition 2.1 in [10]) and whose proof relies on
operator-valued free probability results established in Section 3.2.2. Nevertheless, we
provide all arguments for the reader’s convenience.

Let

LP = γ ⊗ 1 +

u∑
j=1

ζj ⊗ yj +

t∑
k=1

βk ⊗ yu+k,

be a linearization of P (y1, . . . , yu+t) with coefficients inMm(C) such that, for any u+ t-
tuple y of matrices, |detQ(y)| = 1 (see (4.3)).
Let G be a relatively compact set in C \ spect(P (c, a)) satisfying the hypotheses of
Theorem 1.10, and Γ = G. Note that

min
z∈∂Γ

∣∣∣∣∣ det(zIN − P (0N , . . . , 0N , A
(1)
N , . . . , A

(t)
N ))

det(zIN − P (0N , . . . , 0N , (A
(1)
N )′ , . . . , (A

(t)
N )′)

∣∣∣∣∣ > ε

is equivalent to

min
z∈∂Γ

∣∣∣∣∣ det(zIN − P (0N , . . . , 0N , A
(1)
N , . . . , A

(t)
N ))

det(zIN − P (0N , . . . , 0N , (A
(1)
N )′ , . . . , (A

(t)
N )′)

(6.1)

×
det(Q(0N , . . . , 0N , A

(1)
N , . . . , A

(t)
N ))

detQ(0N , . . . , 0N , (A
(1)
N )′ , . . . , (A

(t)
N )′)

∣∣∣∣∣ > ε,
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since |detQ(y)| is constant. Now, following the proof of Lemma 4.3 in [5], one can see
that this is also equivalent to

min
z∈∂Γ

∣∣∣∣∣ det(ze11 ⊗ IN − γ ⊗ IN −
∑t
k=1 βk ⊗A

(k)
N )

det(ze11 ⊗ IN − γ ⊗ IN −
∑t
k=1 βk ⊗ (A

(k)
N )′)

∣∣∣∣∣ > ε. (6.2)

According to Lemma 4.1, the eigenvalues of MN are the zeroes of z 7→ det(ze11 ⊗ IN −
γ ⊗ IN −

∑u
j=1 ζj ⊗

X
(j)
N√
N
−
∑t
k=1 βk ⊗ (A

(k)
N )). By Assumption (A′2), Proposition 5.1 and

Lemma 4.1, almost surely for all large N , for any z ∈ Γ, we can define

RN (z) = (ze11 ⊗ IN − γ ⊗ IN −
u∑
j=1

ζj ⊗
X

(j)
N√
N
−

t∑
k=1

βk ⊗ (A
(k)
N )

′
)−1,

R′N (z) = (ze11 ⊗ IN − γ ⊗ IN −
t∑

k=1

βk ⊗ (A
(k)
N )

′
)−1.

Since each (A
(k)
N )

′′
has a bounded rank rk(N) = O(1), there exist matrices PN ∈MmN,p,

QN ∈Mp,mN , where p is fixed, such that

t∑
k=1

βk ⊗ (A
(k)
N )

′′
= PNQN . (6.3)

Recall the Weinstein–Aronszajn identity: if P,Q> ∈Md1,d2(C),

det(Id1 + PQ) = det(Id2 +QP ),

where Q> denotes the transpose of Q. Using this identity, it is clear that, almost surely
for all large N , the eigenvalues of MN in Γ are precisely the zeros of the random analytic
function z 7→ det(Ip −QNRN (z)PN ) in that set.

Similarly, for any z in Γ,

det(Ip −QNR′N (z)PN ) =
det(ze11 ⊗ IN − γ ⊗ IN −

∑t
k=1 βk ⊗A

(k)
N )

det(ze11 ⊗ IN − γ ⊗ IN −
∑t
k=1 βk ⊗ (A

(k)
N )′)

. (6.4)

Thus, the zeroes of z 7→ det(Ip−QNR′N (z)PN ) in Γ are the zeroes of z 7→ det(ze11⊗ IN −
γ ⊗ IN −

∑
k βk ⊗A

(k)
N ) in Γ, that is, the eigenvalues in Γ of

M
(0)
N = P (0N , . . . , 0N , A

(1)
N , . . . , A

(t)
N ).

The rest of the proof is devoted to establish that det(Ip − QNRN (z)PN ) − det(Ip −
QNR

′
N (z)PN ) converges uniformly in Γ to zero.

Step 1: Iterated resolvent identities.

Set

YN =

u∑
j=1

ζj ⊗
X

(j)
N√
N
.

Using repeatedly the resolvent identity,

RN (z) = R′N (z) +R′N (z)YNRN (z),
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we find that, for any integer number K > 2,

QNRN (z)PN −QNR′N (z)PN

=

K−1∑
k=1

QN (R′N (z)YN )
k
R′N (z)PN +QN (R′N (z)YN )

K
RN (z)PN . (6.5)

The following two steps will be of basic use to prove the uniform convergence in Γ of the
right hand side of (6.5) towards zero.

Step 2: Study of the spectral radius of R′N (z)YN .
The aim of this second step is to prove Lemma 6.5 which establishes an upper bound
strictly smaller than 1 of the spectral norm of R′N (z)YN . The proof of Lemma 6.5 is based
on Proposition 5.1 and the characterization, provided by Lemma 3.7, of the invertibility
of the sum of a centeredMm(C)-valued semi-circular s and some selfadjoint y ∈Mm(A)

with non-commutative symetric entries such that s and y are free overMm(C). Recall
that µz is the distribution of[

P (c(1), . . . , c(u), a(1), . . . , a(t))− z1A
] [
P (c(1), . . . , c(u), a(1), . . . , a(t))− z1A

]∗
.

Define νz as the distribution of[
P (0A, . . . , 0A, a

(1), . . . , a(t))− z1A
] [
P (0A, . . . , 0A, a

(1), . . . , a(t))− z1A
]∗
,

and
S0 = {z ∈ C, 0 ∈ supp(νz)} .

Proposition 6.1. Let

LP = γ ⊗ 1 +

u∑
j=1

ζj ⊗ yj +

t∑
k=1

βk ⊗ yu+k,

be a linearization of P (y1, . . . , yu+t) with coefficients inMm(C). Set

yz =

t∑
k=1

βk ⊗ a(k) + (γ − ze11)⊗ 1A.

Let ε be some selfadjoint {−1,+1}-Bernoulli variable in A independent from the entries
of yz. Let s1, . . . , su be free semicircular variables in A free from ε and the entries of yz.
Define

Yz =

(
0 (Im ⊗ ε)yz

(Im ⊗ ε)y∗z 0

)
and S =

(
0

∑u
j=1 ζj ⊗ sj∑u

j=1 ζ
∗
j ⊗ sj 0

)
.

If z /∈ S0, let ∆1(z) be the operator

M2m(C)→M2m(C)

b 7→ id2m ⊗ ϕ
(
S([id2m ⊗ ϕ((Yz)−1(b⊗ 1)(Yz)−1)]⊗ 1)S

)
.

We have 0 /∈ supp(µz) iff z /∈ S0 and spect(∆1(z)) ⊆ D \ {1}.

Proof. According to Remark 1.4, we have that 0 /∈ supp(µz) if and only if P (c(1), . . . , c(u),

a(1), . . . , a(t)) − z1 is invertible. According to Lemma 4.1, it follows that 0 /∈ supp(µz)

if and only if
∑u
j=1 ζj ⊗ c(j) + yz is invertible. Now,

∑u
j=1 ζj ⊗ c(j) + yz is invertible if
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and only if both
[∑u

j=1 ζj ⊗ c(j) + yz

] [∑u
j=1 ζj ⊗ c(j) + yz

]∗
and

[∑u
j=1 ζj ⊗ c(j) + yz

]∗
×[∑u

j=1 ζj ⊗ c(j) + yz

]
are invertible, and then, by Lemma 3.4, since trm⊗ϕ is faithful,

if and only if
[∑u

j=1 ζj⊗sj + (Im ⊗ ε)yz
][∑u

j=1 ζj⊗sj + (Im ⊗ ε)yz
]∗

and
[∑u

j=1 ζj ⊗ sj +∑M
N(Im ⊗ ε)yz

]∗ [∑u
j=1 ζj ⊗ sj + (Im ⊗ ε)yz

]
are invertible, that is if and only if S + Yz is

invertible. Thus, Proposition 6.1 follows from Example 3.1 and Lemma 3.7.

Define for any w, z in C, µw,z as the distribution of[
P (wc(1), . . . , wc(u), a(1), . . . , a(t))− zI

][
P (wc(1), . . . , wc(u), a(1), . . . , a(t))− zI

]∗
.

Lemma 6.2. 0 /∈ supp(µw,z) if and only if z /∈ S0 and spect(|w|2∆1(z)) ⊆ D \ {1}, where
S0 and ∆1(z) are defined in Proposition 6.1.

Proof. Note that (c(1), . . . , c(u)) and (exp(i argw)c(1), . . . , exp(i argw)c(u)) have the same
∗-distribution so that µw,z is the distribution of[

P (|w|c(1), . . . , |w|c(u), a(1), . . . , a(t))− zI
]

×
[
P (|w|c(1), . . . , |w|c(u), a(1), . . . , a(t))− zI

]∗
.

Then the result follows from Proposition 6.1.

Lemma 6.3. Let Γ be a compact subset in {z ∈ C : 0 /∈ supp(µz)}. Then there exists
ρ > 1 such that for any w ∈ C such that |w| 6 ρ and any z ∈ Γ, we have 0 /∈ supp(µw,z).

Proof. Let z be in Γ. According to Proposition 6.1, z /∈ S0 and spect(∆1(z)) ⊆ D \ {1}.
According to [18, Theorem 2.5], if r(z) is the spectral radius of the positive linear map
∆1(z), then there exists a nonzero positive element ξ inM2m(C) such that ∆1(z)(ξ) =

r(z)ξ. Thus, we can deduce that r(z) < 1. Now, since {z ∈ C : 0 /∈ supp(µz)} ⊂ C \ S0,
using Remark 1.4 and Lemma 4.1, it is easy to see that (z 7→ r(z)) is continuous on
{z ∈ C : 0 /∈ supp(µz)}. Thus, there exists 0 < γ < 1 such that for any z ∈ Γ, we have
0 6 r(z) < 1− γ. It readily follows that if |w| 6 1√

1−γ then |w|2r(z) < 1 and according to

Lemma 6.2, 0 /∈ supp(µw,z).

Lemma 6.4. Let Γ be a compact subset in {z ∈ C, 0 /∈ supp(µz)}. Assume that (A′2)

holds. Then there exists ρ > 1 and η > 0 such that a.s. for all large N , for any w ∈ C
such that |w| 6 ρ and any z ∈ Γ, there is no singular value of

P

(
w
X

(1)
N√
N
, . . . , w

X
(u)
N√
N
, (A

(1)
N )′, . . . , (A

(t)
N )′

)
− zIN

in [0, η].

Proof. Let Γ̃ = {(w, z) ∈ C2, |w| 6 ρ, z ∈ Γ} where ρ is defined in Lemma 6.3. According
to Lemma 6.3, ∀(w, z) ∈ Γ̃, 0 /∈ supp(µw,z). Therefore, using (A′2), according to Propo-
sition 5.1, there exists γ(w, z) such that a.s. for all large N , there is no singular value
of

P

(
w
X

(1)
N√
N
, . . . , w

X
(u)
N√
N
, (A

(1)
N )′, . . . , (A

(t)
N )′

)
− zIN

in [0, γ(w, z)]. The conclusion follows by a compactness argument (using Bai-Yin’s theo-
rem and (1.5)).
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Lemma 6.5. Let Γ be a compact subset in {z ∈ C : 0 /∈ supp(µz)}. Assume that (A′2) and
(1.5) hold. There exists 0 < ε0 < 1 such that almost surely for all large N , we have,

sup
z∈Γ

ρ (R′N (z)YN ) 6 1− ε0,

where ρ(M) denotes the spectral radius of a matrix M .

Proof. Now, assume that λ 6= 0 is an eigenvalue of R′N (z)YN . Then there exists v ∈
CNm, v 6= 0 such that (ze11 ⊗ IN − γ ⊗ IN −

∑t
k=1 βk ⊗ (A

(k)
N )

′
)−1YNv = λv and thus

(ze11 ⊗ IN − γ ⊗ IN −
∑t
k=1 βk ⊗ (A

(k)
N )

′ −
∑u
j=1 ζj ⊗ λ−1X

(j)
N√
N

)v = 0. This means that z is
an eigenvalue of

P

(
λ−1X

(1)
N√
N
, . . . , λ−1X

(u)
N√
N
, (A

(1)
N )′, . . . , (A

(t)
N )′

)
,

or equivalently that 0 is a singular value of

P

(
λ−1X

(1)
N√
N
, . . . , λ−1X

(u)
N√
N
, (A

(1)
N )′, . . . , (A

(t)
N )′

)
− zIN .

By Lemma 6.4, we can deduce that almost surely for all large N , the nonnull eigen-
values of R′N (z)YN must satisfy 1/|λ| > ρ. The result follows.

Step 3: Study of the moments of R′N (z)YN .

Proposition 6.6. Let Γ be a compact subset in {z ∈ C, 0 /∈ supp(µz)}. Assume that (A′2)

and (1.5) hold. There exists 0 < ε0 < 1 and C > 0 such that almost surely for all large N ,
for any k > 1,

sup
z∈Γ

∥∥∥(R′N (z)YN )
k
∥∥∥ 6 C(1− ε0)k.

Proof. For z ∈ Γ, we set TN (z) = R′N (z)YN . Let ε0 be as defined by Lemma 6.5 and ρ be
as defined in Lemma 6.4. Choose 0 < ε < min(ε0, 1− 1

ρ ). Therefore, according to Lemma
6.5 and using Dunford-Riesz calculus, we have almost surely for all large N , for any z in
Γ,

∀k > 0 , (TN (z))k =
1

2iπ

∫
|w|=1−ε

wk(w − TN (z))−1dw,

and therefore

∀k > 0 , ‖(TN (z))k‖ 6 sup
|w|=1−ε

‖(w − TN (z))−1‖(1− ε)k+1
. (6.6)

Now, note that, for any w such that |w| = 1− ε, we have 1
|w| < ρ and

(w − TN (z)) =

wR′N (z)

ze11 ⊗ IN − γ ⊗ IN −
u∑
j=1

ζj ⊗ w−1X
(j)
N√
N
−

t∑
k=1

βk ⊗ (A
(k)
N )

′

 ,

so that
(w − TN (z))−1 =(

ze11 ⊗ IN − LP (w−1X
(1)
N√
N
,. . . , w−1X

(u)
N√
N
, (A

(1)
N )

′
, . . . , (A

(t)
N )

′
)

)−1
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× 1

w

(
ze11 ⊗ IN − γ ⊗ IN −

t∑
k=1

βk ⊗ (A
(k)
N )

′

)
. (6.7)

Lemma 6.4 readily implies that almost surely for all large N ,∥∥∥∥∥∥
(
zIN − P (w−1X

(1)
N√
N
, . . . , w−1X

(u)
N√
N
, (A

(1)
N )

′
, . . . , (A

(t)
N )

′
)

)−1
∥∥∥∥∥∥ 6 1/η, (6.8)

where η is defined in Lemma 6.4.It readily follows from (6.7), Lemma 4.2, (6.8), (1.5)
and Bai-Yin’s theorem that there exists C > 0 such that we have almost surely for all
large N , for any z in Γ,

sup
|w|=1−ε

‖(w − TN (z))−1‖ 6 C. (6.9)

Proposition 6.6 follows from (6.6) and (6.9).

Step 4: Conclusion.
We will use the following proposition from [10] to establish Lemma 6.8 below.

Proposition 6.7 ([10]). Let n > 1 be an integer and Q ∈ C〈X1, · · · , Xn〉 such that
the total exponent of Xn in each monomial of Q is nonzero. We consider a sequence
(B

(1)
N , · · · , B(n−1)

N ) ∈ MN (C)n−1 of matrices with operator norm uniformly bounded in
N and uN , vN in CN with unit norm. Then if XN is a N × N matrix with i.i.d. entries
centered with variance 1 and finite fourth moment a.s.

u∗NQ

(
B

(1)
N , · · · , B(n−1)

N ,
XN√
N

)
vN → 0.

Lemma 6.8. Assume (X1), (1.3) and (A2). For any z in Γ ⊂ C \ spect(P (c, a)), almost
surely, the series

∑
k>1QN (R′N (z)YN )

k
R′N (z)PN converges in norm to zero when N

goes to infinity, where PN and QN are defined by (6.3). Here we assume that Γ satisfies
the hypotheses of Theorem 1.10.

Proof. The singular value decomposition of
∑
k βk ⊗ (A

(k)
N )

′′
gives that for any i, j ∈

{1, . . . , p},
(QN (R′N (z)YN )

k
R′N (z)PN )ij = siv

∗
i (R′N (z)YN )

k
R′N (z)uj ,

where uj and vj are unit vectors in CNm and si is a singular value of
∑t
k=1 βk ⊗ (A

(k)
N )

′′
.

According to (1.3) and (1.5), the si’s are uniformly bounded. Using (A′2), (1.5) and (4.2),
almost surely for any z in Γ, there exists η̃z > 0 such that for all large N ,

‖R′N (z)‖ 6 1

η̃z
. (6.10)

Using (6.10) and Bai-Yin’s theorem, we deduce from Proposition 6.7 that v∗i (R′N (z)YN )k×
R′N (z)uj converges almost surely to zero. The result follows by applying the dominated
convergence theorem thanks to Proposition 6.6.

We are going to prove that, assuming (X1), (1.3) and (A2), we have for any z in Γ,
almost surely, as N →∞,

‖QNRN (z)PN −QNR′N (z)PN‖ → 0. (6.11)

Let C ′ > 0 such that

‖PN‖ ‖QN‖ 6 C ′. (6.12)
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According to Proposition 5.1 and (4.2), for any z ∈ Γ, there exists γ̃z > 0 such that almost
surely for all large N

‖RN (z)‖ 6 1

γ̃z
. (6.13)

Then using also Proposition 6.6 and (6.10), for any k > 1, we have∥∥∥QN (R′N (z)YN )
k
R′N (z)PN

∥∥∥ 6
CC ′

η̃z
(1− ε0)k,

∥∥∥QN (R′N (z)YN )
k
RN (z)PN

∥∥∥ 6
CC ′

γ̃z
(1− ε0)k.

Let η > 0. Choose K > 1 such that CC′

γ̃z
(1− ε0)K < η/2 and

∑
k>K

CC′

η̃z
(1− ε0)k < η/2.

Thus, using (6.5), we have that, for any η > 0,∥∥∥∥∥∥QNRN (z)PN −QNR′N (z)PN −
∑
k>1

QN (R′N (z)YN )
k
R′N (z)PN

∥∥∥∥∥∥ < η

and then, letting η going to zero, that we have

QNRN (z)PN −QNR′N (z)PN =
∑
k>1

QN (R′N (z)YN )
k
R′N (z)PN . (6.14)

Applying Lemma 6.8, we obtain (6.11).

Proposition 6.9. Let Γ be a compact subset of C \ spect(P (c, a)) which satisfies the
hypotheses of Theorem 1.10. Assume (X1), (1.3) and (A2). Then, almost surely, det(Ip −
QNRN (z)PN )− det(Ip −QNR′N (z)PN ) converges to zero uniformly on Γ, when N goes
to infinity.

Proof. It sufficient to check that for any δ > 0, a.s., for all large N ,

sup
z∈Γ
‖QNRN (z)PN −QNR′N (z)PN‖ 6 3δ. (6.15)

We set ζz = η̃z ∧ γ̃z and rz = (ζz/2)∧ (δ(ζ2
z/2C

′)) where η̃z, γ̃z and C ′ are defined in (6.10),
(6.13) and (6.12). Using the resolvent identity, (6.10) and (6.13), if (z, w) ∈ Γ2 are such
that |z − w| 6 rz, then

‖QNRN (z)PN −QNRN (w)PN‖ 6
2C ′

ζ2
z

|z − w| 6 δ,

‖QNR′N (z)PN −QNR′N (w)PN‖ 6
2C ′

ζ2
z

|z − w| 6 δ.

Since Γ ⊂ ∪z∈ΓB(z, rz) and Γ compact, there is a finite covering and the proposition
follows from (6.11).

Theorem 1.10 follows from Proposition 6.9 by Rouché’s Theorem, using (6.4) and
(6.2).

7 Proof of Corollary 1.11

Using Remark 1.12, assume that P has no constant term. Note that, by Proposition
6.1 and (1.4), this implies that 0 belongs to the spectrum of P (c, 0). There exists C > 0

large enough such that spect(P (c, 0)) ⊂ {z : |z| 6 C} and, by Bai-Yin’s theorem (see

[3, Theorem 5.8]) and the fact that for k = 1, . . . , t, A(k)
N are deterministic matrices
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with norm O(1), such that, almost surely for all large N , ‖MN‖ 6 C, ‖M (0)
N ‖ 6 C.

Denote Cι = {z ∈ C : d(z, spect(P (c, 0))) 6 ι}. This is a compact set for any ι ≥
0. Given δ > 0, the set {z ∈ C : d(z, Cι) < δ} =

⋃
v∈Cι{z : |z − v| < δ} includes the

compact Cι, so that {{z : |z − v| < δ}}v∈Cι is an open cover. Extract a finite subcover
{{z : |z − vj | < δ}}nj=1. Denote Kι

δ =
⋃n
j=1{z : |z − vj | < δ}. It is obvious that ∂Kι

δ is a
finite union of rectifiable curves for any δ > 0, ι ≥ 0. Assume that δ > 0 is sufficiently
small so that C0 ⊂ C2ε ⊂ K2ε

δ ⊂ C5ε/2. By increasing if necessary the value of δ by an
arbitrarily small positive amount, we may assume that C0 ⊂ C2ε ⊂ K2ε

δ ⊂ C3ε and in
addition (C \Kε

δ) ∩ {z ∈ C : |z| < R} satisfies the hypotheses imposed in Theorem 1.10
for any R > 0 sufficiently large. Choose K > C + 4ε and consider the set

G = {z ∈ C \K2ε
δ , |z| < K}, Γ = G.

This set satisfies the hypotheses of Theorem 1.10. Since 0 belongs to the spectrum of
P (c, 0), any z in Γ satisfies |z| > 2ε. Now, sN (P (0, 0)− zIN ) = |z|, so that (A′2) is satisfied

with for any k = 1, . . . , t, (A
(k)
N )′ = 0. If |z| = K then for any l = 1, . . . N ,

|z − λl(M (0)
N )| > ε.

Moreover, since for all sufficiently large N , there are no eigenvalues of M (0)
N = P (0, . . . , 0,

A
(1)
N , . . . , A

(t)
N ) in {z ∈ C, ε < d(z, spect(P (c, 0))) < 4ε}, we can deduce that, if z ∈ ∂K2ε

δ ,

we also have that, for all sufficiently large N , for any l = 1, . . . , N , |z − λl(M (0)
N )| > ε.

Since for k = 1, . . . , t, A(k)
N are deterministic matrices with rank O(1), M (0)

N has rank
r(N) = O(1). Let m0(N) the multiplicity of 0 as a root of the characteristic polynomial of

M
(0)
N . Note that N −m0(N) 6 r(N) 6 r for some r > 0. Thus,

min
z∈∂Γ

∣∣∣∣∣ det(zIN − P (0N , . . . , 0N , A
(1)
N , . . . , A

(t)
N )

det(zIN − P (0N , . . . , 0N , (A
(1)
N )′ , . . . , (A

(t)
N )′)

∣∣∣∣∣
= min

z∈∂Γ

∏N−m0(N)
l=1 |z − λl(M (0)

N )|
|z|N−m0(N)

>
( ε
K

)N−m0(N)

>
( ε
K

)r
.

Thus (1.6) is satisfied and we can deduce from Theorem 1.10 that a.s, for all large N ,

there are precisely j eigenvalues of MN = P

(
X

(1)
N√
N
, . . . ,

X
(u)
N√
N
, A

(1)
N , . . . , A

(t)
N

)
in Γ ⊆ {z ∈

C, d(z, spect(P (c, 0))) > 2ε}.

Denote by {λ1(M
(0)
N ), . . . , λj(M

(0)
N )} the set of eigenvalues that belong to the set {z ∈

C, d(z, spect(P (c, 0))) > 2ε}. By passing if necessary to a subsequence, we may assume

that for any l = 1, . . . , j, λl(M
(0)
N ) converges to λl ∈ {z ∈ C, d(z, spect(P (c, 0))) > 2ε}. Let

0 < δ < ε such that 2δ < minλl 6=λl′ |λl − λl′ | and for l = 1, . . . , j, let Γl = B(λl; δ) ⊂ {z ∈
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C, |z| 6 K, d(z, spect(P (c, 0))) > 2ε}.

min
z∈∂Γl

∣∣∣∣∣ det(zIN − P (0N , . . . , 0N , A
(1)
N , . . . , A

(t)
N )

det(zIN − P (0N , . . . , 0N , (A
(1)
N )′ , . . . , (A

(t)
N )′)

∣∣∣∣∣
= min

z∈∂Γl

∏N−m0(N)
i=1 |z − λi(M (0)

N )|
|z|N−m0(N)

>

(
δ

K

)N−m0(N)

>

(
δ

K

)r
.

Then, we may apply Theorem 1.10 to each of the Γl. Since δ can be arbitrarily small, the
conclusion follows.
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