
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 26 (2021), article no. 99, 1–18.
ISSN: 1083-6489 https://doi.org/10.1214/21-EJP665

Invariant embeddings of unimodular random planar
graphs*

Itai Benjamini† and Ádám Timár‡

Abstract

Consider an ergodic unimodular random one-ended planar graph G of finite expected
degree. We prove that it has an isometry-invariant locally finite embedding in the
Euclidean plane if and only if it is invariantly amenable. By “locally finite” we mean
that any bounded open set intersects finitely many embedded edges. In particular,
there exist invariant embeddings in the Euclidean plane for the Uniform Infinite
Planar Triangulation and for the critical Augmented Galton-Watson Tree conditioned
to survive. Roughly speaking, a unimodular embedding of G is one that is jointly
unimodular with G when viewed as a decoration. We show that G has a unimodular
embedding in the hyperbolic plane if it is invariantly nonamenable, and it has a
unimodular embedding in the Euclidean plane if and only if it is invariantly amenable.
Similar claims hold for representations by tilings instead of embeddings.
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1 Introduction

1.1 Main results

Homogeneous (say, vertex-transitive) tilings of the Euclidean and hyperbolic planes
are well-understood classical objects. Here we study random planar tilings that are
“homogeneous” in some sense: they have an isometry-invariant law or satisfy a certain
stationarity property, called unimodularity (see the definitions below). We are asking the
question: when does a random infinite graph that is known to be almost surely planar
have such a “homogeneous” embedding into the Euclidean or hyperbolic plane without
accumulation points (i.e., a locally finite embedding)?
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Invariant embeddings of unimodular random planar graphs

After formalizing the above question, one finds right away that a necessary condition
is that the random graph with a properly chosen root is unimodular itself, so from now on,
we are only interested in this family of random rooted graphs. Unimodularity, embedding
and representation by a tiling will be defined later in the introduction. We say that the
random rooted graph (G, o) has finite expected degree if the expected degree of o is
finite.

Theorem 1.1. An ergodic unimodular random one-ended planar graph G of finite ex-
pected degree has an isometry-invariant locally finite embedding into the Euclidean
plane if and only if G is invariantly amenable. The same condition is necessary and
sufficient to represent G by an isometry-invariant locally finite tiling.

One source of interest in invariant random embeddings of unimodular random graphs
is examples such as the Uniform Infinite Planar Triangulation (UIPT). Theorem 1.1
applies for the UIPT, as stated in Corollary 4.3.

When G has an embedding into the Euclidean or hyperbolic plane, the relative location
of the embedded vertices and edges by this embedding from the viewpoint of each vertex
can be used to decorate the vertices. If the decorated graph is still unimodular, we call
the embedding unimodular. The more precise definition is given in the next subsection.

Theorem 1.2. An ergodic unimodular random one-ended planar graph G of finite ex-
pected degree has a unimodular locally finite embedding

• into the Euclidean plane if and only if G is invariantly amenable,

• into the hyperbolic plane if G is invariantly nonamenable.

One can construct the embedding so that every edge is mapped into a broken line
segment (piece-wise geodesic curve). We mention that here and in the next theorem, the
“only if” part is missing from the second claim because of examples such as Example 1.6.
With some extra condition this could be ruled out and have a full characterization in the
theorems; see the discussion after the example.

Theorem 1.3. An ergodic unimodular random one-ended planar graph G of finite ex-
pected degree can be represented by a unimodular locally finite tiling

• in the Euclidean plane if and only if G is invariantly amenable,

• in the hyperbolic plane if G is invariantly nonamenable.

The tilings guaranteed by the theorem are such that the expected area of the tile
containing the origin is finite. Similarly to embeddings, we say that a tiling is locally
finite if every bounded open subset of the plane intersects finitely many tiles. We will
give precise definitions later in this section. We mention that the tiles in the above
theorem can be required to be bounded polygons.

Theorems 1.2 and 1.3 provide essentially complete dichotomic descriptions for the
one-ended case. The cases not covered are those of G with 2 or infinitely many ends, in
which situation a graph may or may not have any invariant embedding into one of the
Euclidean or the hyperbolic plane (Remark 1.5). We do not treat 2 or infinitely many
ends here, to avoid technical distractions from our main point.

In the case of invariantly amenable graphs, we will first construct an invariant
embedding into the Euclidean plane, starting from a suitable invariant point process
as the vertex set. This invariant embedded graph automatically defines a unimodular
embedding. On the other hand, for invariantly nonamenable graphs, a unimodular
embedding into the hyperbolic plane will be constructed directly, via circle packings.
(This circle packing embedding would not work in the Euclidean case, because Euclidean
scalings provide an extra non-compact degree of freedom, making it unclear how to
achieve unimodularity.) The intuitive claim that such a unimodular embedding is the
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Invariant embeddings of unimodular random planar graphs

“Palm version” of an invariant embedding does not seem to have been established in
the hyperbolic setup; a similar statement in the Euclidean case is in the focus of [18].
This is the reason for the asymmetry in the Euclidean and hyperbolic cases of the above
theorems. A new preprint by the second author and László Tóth [38] settles the question
of invariant embedding of nonamenable graphs into the hyperbolic plane, together with
the cases of 2 and infinitely many ended graphs, left open by the present paper.

1.2 Definitions

Our focus is on Euclidean and hyperbolic spaces, hence the definitions will be phrased
in this setting. One could ask questions in greater generality, for example by taking Lie
groups as underlying spaces.

Without loss of generality from now on we assume that G is a simple graph, that is, it
has no loop-edges or parallel edges. We also assume that all the degrees are finite in G.

We will define two types of invariance property that a random graph embedded in
some space may have: one is from the viewpoint of a root in the graph (unimodular
embedding), and the other is with respect to the isometries of the enveloping space
(isometry-invariant embedding). Before going into the formal definitions, let us show
two examples that emphasize the difference between the two notions. Consider a
(deterministic) embedding of Z as a biinfinite straight line in R2 subdivided by vertices
such that two adjacent vertices have distance 1. If we fix an arbitrary vertex of this
embedded graph, the scenery seen around this vertex remains the same (trivially) if
we randomly reroot it to a neighbor. However, if we view the embedded graph from a
point of the underlying space there is no similar invariance: applying an isomorphism
that does not fix the embedded path will change what we see. So in this example the
distribution (which is an atomic measure here) is invariant fromt he viewpoint of the
embedded graph, but not from the viewpoint of the enveloping space. On the other hand,
consider Z2, and for every vertex (i, j) ∈ Z2, as k = 2, 3, . . ., add a new vertex (i+ 2−1 −
2−k, j + 2−1 − 2−k) and a new straight-line-edge between (i+ 2−1 − 2−k, j + 2−1 − 2−k)

and (i+ 2−1 − 2−k+1, j + 2−1 − 2−k+1). After taking a random isometry of R2 uniformly
from those mapping 0 to some element of [0, 1)2, and applying it to our embedded graph,
we get an isometry-invariant embedded graph. However, it is not possible to assign a
root to this graph in a way that will make it unimodular (“rerooting-invariant”), because
the graph itself is not unimodular, having isolated ends. Let us highlight that in this last
example the vertex set has infinite intensity, which possibility we will rule out and only
allow finite intensity embeddings in the definition. Nevertheless, the example may shed
some light on the difference between the two close notions of invariance in our scope.

Next we give a precise definition of unimodularity. First we are using random walks,
as this seems to be more natural to describe when unimodular random embeddings are
considered. Let G∗ be the collection of all locally finite connected rooted graphs up to
rooted isomorphism, and let G∗∗ be the collection of all locally finite connected graphs
with a distinguished ordered pair of vertices up to isomorphism preserving this ordered
pair. We often refer to an element of G∗ as a rooted graph (G, o), without explicitly saying
that we mean the equivalence class that it represents in G∗. Let (G, o) be a random rooted
graph and suppose that o has finite expected degree. Reweight the distribution of (G, o)

by the Radon-Nikodym derivative deg(o)/E(deg(o)). We will refer to such a reweighting
by saying that we bias by the degree of the root. Denote the new random graph by (G′, o′).
Let X0 = o′ and let X1 be a uniformly chosen neighbor of X0. We say that G = (G, o) is
unimodular if (G′, X0, X1) has the same distribution as (G′, X1, X0). See [1] or [6] for the
proof that this is equivalent to the original definition of unimodularity for graphs in [1],
which we recall in the next paragraph. One may consider some decoration or marking
on rooted graphs, and extend the above definition in the obvious way. Whenever there
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is a decoration, given as a function f on V (G) or as a subgraph U ≤ G, we denote this
decorated rooted graph by (G, o; f), (G, o;U). In case of several decorations, we can list
them all after the semicolon.

The original definition of unimodularity, equivalent to the previous one, is the fol-
lowing. Consider an arbitrary Borel function f : G∗∗ → R+

0 . Then it has to satisfy the
following equation∫ ∑

y∈V (G)

f(G, x, y)dµ((G, x)) =

∫ ∑
y∈V (G)

f(G, y, x)dµ((G, x)). (1.1)

Here we do not distinguish between (G, x) as a rooted graph and as a representative
of its equivalence class in G∗∗. This is standard in the literature and will not cause
ambiguity. Equation (1.1) is usually referred to as the “Mass Transport Principle” (MTP).
This equivalent definition of unimodularity naturally extends to decorated rooted graphs,
one just has to consider Borel functions f from the suitable space.

Let M be some homogeneous metric space with some point 0 fixed; for our purpose
we can just assume that it is a Euclidean or hyperbolic space. Let Isom(M) be the group
of isometries of M . For a graph G, an embedding ι of G into a Euclidean or hyperbolic
space M is a map from V (G) ∪ E(G) that maps injectively every point in V (G) to a point
of M , and every edge {x, y} to (the image of) a simple curve in M between ι(x) and
ι(y), in a way that two such images can intersect only in endpoints that they share. The
embeddings that we consider are locally finite (i.e., every compact set is intersected
by finitely many embedded edges or vertices), hence M \ ι(V (G) ∪E(G)) is open. The
connected components of M \ ι(V (G) ∪ E(G)) are called faces.

Let (G, o) be some unimodular random graph. For almost every G, let ιG = ι be some
embedding of G into M . We can encode the embedding by a labelling of the vertices
coming from a suitable mark space that tells us what the embedding is for every ball
up to orientation-preserving isometries of M . (See [5] for more detailed examples of
such labellings.) From this labelling, one can reconstruct ι up to Isom(M). We say that
ι is a unimodular embedding of G to M , if the labelling is a unimodular decoration of
G. We emphasize again that a ι and any ι′ = γ ◦ ι (γ ∈ Isom(M)) give rise to the same
unimodular embedding.

A unimodular random graph (G, o) is invariantly amenable (or just amenable) if
for every ε > 0 there is a random subset U ⊂ V (G) such that (G, o;U) is unimodular,
every component of G \ U is finite, and P(o ∈ U) < ε. (In [1] this property is called
hyperfiniteness, and is shown to be equivalent to their definition of invariant amenability
in Theorem 8.5 whenever G has finite expected degree – an assumption that we will
always make.) If this property fails to hold, then G is invariantly nonamenable (or just
nonamenable). In the rest of this paper we will drop “invariantly” and simply call
unimodular random graphs amenable or nonamenable, but the reader should keep in
mind that these terms are different from the ones used for a deterministic graph. For
the relationship of this notion of amenability to almost sure amenability or anchored
amenability, see the discussion in [1] after the definition, and Theorem 8.5 therein for
some equivalents.

Consider a random graph D drawn in M in a measurable way, with a distribution
that is invariant under Isom(M). Call such a D invariant. The set V ⊂ M of drawn
vertices of D forms an invariant point process in M . Say that the intensity of D is the
expected number of points of V in a ball with unit volume. (This expectation does not
depend on the location of the unit box, because of invariance.) Suppose that D has finite
intensity, and consider the Palm version D∗ of D. By this we mean D conditioned on
0 ∈ V. By standard theory of point processes and the assumption on finite intensity, this
definition makes sense and D∗ is a random graph drawn in M with a vertex in 0. Now let
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(G, o) be a unimodular random graph. By an invariant embedding (or isometry-invariant
embedding) of G into M we mean a random graph D drawn in M of isometry-invariant
ditribution that has finite intensity, and with the property that (D∗, 0) viewed only as an
element of G∗ has the same distribution as (G, o). (The fact that (D∗, 0) is unimodular has
been well-known, see Example 9.5 in [1].)

Remark 1.4. The term “unimodular embedding” was first used in [3], and the definition
there is equivalent to ours. Similar notions existed earlier in the point process literature.
A unimodular embedding tells the location of all embedded edges and vertices from the
viewpoint of the root vertex. Specifically, the embedded vertices can be thought of as a
point process with a point in the origin, and up to equivalence by isometries fixing the
origin. The notion of point-stationarity, introduced by Thorisson [32] for processes with
a point at the origin, requires an invariance under rerooting, similarly to the random
walk definition for unimodularity. In fact, the definition of point-stationarity for point
processes applies to embedded graphs right away, and the existence of a unimodular
embedding is equivalent to the existence of a point-stationary graph whose underlying
graph has the same distribution as the given graph. Our observation (from [1]) that the
Palm version of an isometry-invariant embedding is unimodular has been essentially
known since Mecke [28], whose intrinsic characterization shows that the Palm version
of a (translation-)invariant point process is always point-stationary.

We will denote the Euclidean plane by R2, and the hyperbolic plane by H2. Note
that an invariant embedding of a unimodular graph automatically has finite intensity,
since it was required for the definition to make sense. We are interested in embeddings
where in addition, no bounded open set is intersected by infinitely many embedded
edges, that is, locally finite embeddings. The notion of local finiteness is invariant under
isometries, so one can define it for unimodular embeddings as well. By a tiling we mean
a collection of pairwise disjoint connected polygons (“tiles”) such that the union of their
closures is M . We will be interested in tilings where every compact subset of M is
intersected by only finitely many types. A tiling defines a graph where the tiles are the
vertices and two of them are adjacent if they share some nontrivial line segment on
their boundary. The definition of invariant tilings that represent (G, o) is similar to that
of invariant embeddings. Namely, suppose that a random tiling is isometry-invariant
and the tile of the origin has finite area almost surely. Take a uniform random point in
every tile and consider the Palm version of this point process together with the tiles on
it. If the rooted graph defined by this tiling (rooted at the tile of the origin) has the same
distribution as (G, o) then we say that the invariant tiling represents (G, o).

Remark 1.5. It is well-known that an infinite unimodular random graph can have only 1,
2 or infinitely many ends, [1]. As mentioned earlier, Theorems 1.2 and 1.3 do not cover
the case of 2 ends and infinitely many ends. If a unimodular random planar graph G has
infinitely many ends almost surely, then it is nonamenable. There are examples where a
unimodular embedding into H2 is possible, and examples when it is not (and similarly
for invariant embeddings and for tilings). For the latter, let G be the free product of the
edge graph of a transitive hyperbolic tiling and a single edge, and G be supported in this
single transitive graph. It is easy to check that any planar embedding of this graph is
such that the embedded vertices have infinitely many accumulation points. Hence there
is no locally finite invariant embedding or unimodular embedding for this graph. On
the other hand, the 3-regular tree T3 does have an invariant embedding into H2, which
simply gives rise to a unimodular embedding. To see such an invariant embedding, take
the Ford horocyclic tiling (see, e.g., Figure 3.3 in [27]), let F be a fundamental domain
that contains the origin, and choose a random isometry that maps the origin to a point of
F according to Haar measure. Consider the centers of the interstices (bounded pieces
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in the complement of the disks) and the straight lines between neighboring ones (which
will all have the same length), and apply the random isometry to this embedded graph of
T3.

The next example shows that “zero intensity” is possible in case of unimodular
embeddings.

Example 1.6. Consider G to be Z almost surely, and let M be the hyperbolic plane.
Take an infinite geodesic γ in M , fix a point 0 ∈ γ, and let g be an isometry of M that
preserves γ and maps 0 to some g(0) 6= 0. Consider the embedded graph with vertex set
{gi(0), i ∈ Z} and embedded edges being the pieces of γ between pairs gi(0) and gi+1(0).
One can check that this way we defined a unimodular embedding of Z into M . However,
it is not possible to embed Z (or any amenable graph) into M in an isometry-invariant
way.

One could define intensity for unimodular embeddings. We will not need this, but it
could be defined as the reciprocal of the unique number r that ensures that the stable
allocation on the embedded vertices with cell-volume-limit r is a full allocation (with
r =∞ standing for zero intensity); see [21] for the definition. Forbiding zero intensity,
one could rule out pathologies as Example 1.6. Then Theorems 1.2 and 1.3 would become
full characterizations (by a suitable modification of the proofs in Section 5 for the added
“only if” parts).

A cyclic permutation of n elements is a permutation that consists of a single cycle
of length n. A combinatorial embedding of a planar graph G is a collection of cyclic
permutations πv of the edges incident to v over v ∈ V (G), and such that there is an
embedding of G in the plane where the clockwise order of the edges on every vertex v
is πv for every v ∈ V (G). A combinatorial embedding is unimodular if the decoration
{πv} is a unimodular decoration. The notion of unimodular combinatorial embeddings
(and maps) was implicitly introduced in Example 9.6 of [1]. Note that this definition
does not use any underlying metric on the plane, as it defines an embedding only up to
homeomorphisms. For a given edge e, choose an orientation of e with e− being the tail
and e+ the head. Consider the edge πe−(e) oriented such that e− is its head. Repeat this
procedure for this new oriented edge, and iterate until we arrive back to (e−, e+). Call
the resulting sequence of edges a face of the combinatorial embedding. One can check
that the faces of actual embeddings coincide with the bounded domains surrounded
by the respective faces of the corresponding combinatorial embedding. In [36] it is
shown that being unimodular and planar guarantees the existence of a unimodular
combinatorial embedding in general, see Theorem 2.1.

Remark 1.7. The existence of a unimodular combinatorial embedding does not automat-
ically provide us with a unimodular embedding into R2 or H2, but the other direction
is obvious. To summarize: an isometry-invariant embedding defines a unimodular em-
bedding (as verified in the proof of Theorem 1.2), and a unimodular embedding trivially
defines a unimodular combinatorial embedding. None of the other directions holds a
priori.

For a given graph G, a circle packing representation of G is a collection of circles in
the plane such that the circles are in bijection with V (G) and two circles are tangent if
and only if the corresponding vertices are adjacent in G. The nerve of a circle packing
is the graph that it represents. For a given circle packing P in R2, consider the union
of all the disks in P and their boundaries and its further union with all the bounded
connected pieces (interstices) bounded by finitely many circles in P . Call the resulting
set the carrier of P .

Theorem 1.8. (He-Schramm, [16], [17], Schramm, [31]) Let G be a one-ended infinite
planar triangulated graph. Then G either has a circle packing representation whose
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carrier is the plane or it has a circle packing representation whose carrier is the unit
disk, but not both.

• In the former case (when G is parabolic), the representation in the plane is unique
up to isometries and dilations.

• In the latter case (when G is hyperbolic), the representation in the unit disk is
unique up to Möbius transformations and reflections fixing the disk.

In the first case they called the graph CP parabolic, while in the second case they
called it CP hyperbolic. They found several characterizing properties for this duality,
such as the recurrence/transience of simple random walk. Earlier, Schramm [31] proved
the uniqueness of these circle packings up to some transformations. See also [29].

1.3 Connections to past research

Our topic is at the meeting point of isometry-invariant point processes and unimodular
random graphs. The former has been a widely studied subject for many decades (see, e.g.,
the monographs [32], [25]), mostly in the setup of stationary (translation-invariant) point
processes in Euclidean spaces. A key problem in the present work is to represent certain
graphs on the configuration points of a point process, in a covariant and measurable way.
Questions of this flavor have been extensively studied for particular classes of graphs in
the past, such as one-ended trees, biinfinite paths ([12], [20], [34]) or perfect matchings
(see, e.g., [22], [19]). Note however, that while in these settings only graphs on the
vertex set have to be defined, in our context we also need to embed the edges into the
underlying space.

Unimodular random graphs were first defined in [1], but similar ideas existed earlier
(see references in [1]). They have attracted a lot of attention because of their connection
to approximability by finite graphs (see [30] for the importance of such approximability
in group theory), because of closely related notions in other areas (such as graphings
in measurable group theory, see, e.g., [26]), and for being a natural generalization of
group-invariant percolation. One can think of the notion of unimodular random graphs
as a generalization of “percolation on a transitive graph with a unimodular group of
automorphism, viewed from a fixed vertex”, which makes it analogous to the Palm
version of a point process. The direct connection is that invariant point processes as
well as unimodular random graphs satisfy the Mass Transport Principle. That the Palm
version of a random graph invariantly drawn in the plane is always unimodular as a
planar graph was already proved by Aldous and Lyons [1] (see also our Remark 1.4), and
our main results can be regarded as the converse to this claim.

A study of unimodular random planar graphs was initiated by Angel, Hutchcroft,
Nachmias and Ray in [2] for the class of triangulations, and they showed that for a
locally finite ergodic unimodular triangulated planar simple graph, being CP parabolic
is equivalent to invariant amenability. In [3], unimodular planar graphs were further
studied, without the assumption of being triangulated, but with the assumption that
the unimodular graph comes together with a unimodular combinatorial embedding, in
which case this joint object is called a unimodular planar map. Several criteria were
identified as equivalents to invariant amenability. Theorems 1.2 and 1.3 can be thought
of as further examples of the dichotomy.

As an example, consider the Uniform Infinite Planar Triangulation (UIPT), first defined
by Angel and Schramm in [4]. The UIPT is a random graph that is unimodular (because
it arises as the local limit of finite graphs) and planar (because all these finite graphs
are planar), and moreover, the graph comes together with a unimodular combinatorial
embedding (inherited from the finite graphs). Nevertheless, a combinatorial embedding
defines an actual embedding into the plane only up to homeomorphisms. Now, if we are
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given not only the topology but also some homogeneous metric on the plane (and the
the only homogeneous simply connected Riemannian manifolds of infinite volume, up to
scaling, are the Euclidean and the hyperbolic planes, see Theorem 3.8.2 in [33]), then it
is natural to require the unimodular embedding to exist not just up to homeomorphisms
but up to isometries. This latter, a unimodular embedding up to isometries, is what we
defined simply as a unimodular embedding. If a unimodular embedding exists, one can
further ask whether an isometry-invariant embedding exists with this given unimodular
embedding. This last question takes us back to the theory of point processes, where
analogous questions were addressed: is a unimodular point process of positive intensity
(that is, a point process satisfying a MTP, with a point in the origin, whose Voronoi cell
has finite expected volume) always the Palm version of a isometry/translation-invariant
point process? This question was settled by Heveling and Last [18] in the positive (who
use the term point-shift stationary for what we called here a unimodular point process)
for translation invariant processes.

Here we are interested in planar graphs, but it is reasonable to ask what happens
in higher dimensions. In [35] it is shown (in the dual language of tilings) that every
one-ended amenable unimodular transitive graph has an isometry-invariant embedding
into Rd when d ≥ 3. The proof generalizes from transitive to random unimodular graphs.

2 Unimodular planar triangulation of unimodular planar graphs

The following theorem was proved in [36].

Theorem 2.1. ([36]) Let (G, o) be a unimodular random planar graph of finite expected
degree. Then (G, o) has a unimodular combinatorial embedding into the plane.

Recall that having a unimodular combinatorial embedding is a weaker requirement
than having a unimodular or an invariant embedding, see Remark 1.7.

Theorem 2.2. Let (G, o) be a unimodular planar graph of finite expected degree. Then
there is a unimodular decorated graph (G+, o+, S) where S is a connected subgraph of G+

and such that (S, o+) conditioned on o+ ∈ S has the same distribution as (G, o). and G+ is
a planar triangulation of finite expected degree. If G is simple then G+ is also simple. If G
has one end then G+ has one end.

Proof. By Theorem 2.1, G has a unimodular combinatorial embedding into the plane. Fix
such an embedding. The collection of faces is also jointly unimodular with G.

Let F be an unbounded face. By exploring the vertices of F along the boundary, a
function from Z to the boundary is obtained which is not necessarily injective. Fix such
a function, choose ξ ∈ {0, 1} uniformly at random, and for every pair {2k + ξ, 2k + ξ + 1}
(k ∈ Z), add a new vertex vk to the graph, and connect it to 2k+ξ, 2k+ξ−1 and 2k+ξ+1.
Finally, add an edge between vk and vk+1 for every k ∈ Z. Now, in the resulting new
graph we have a new infinite face, whose boundary is the biinfinite path induced by
. . . , v−1, v0, v1, . . .. Repeat the previous procedure for this biinfinite path, and so on, ad
infinitum.

For every bounded face F do the following. If F has n edges on its boundary, then
add a new cycle C of length [(n+ 1)/2] inside this face. Add edges that connect these
new vertices to the boundary vertices of F so that planarity is not violated, in such a way
that we connect every vertex of C to the vertices of two consecutive edges of F , except
maybe one vertex of C which is connected to one edge of F . Then for every vertex x of
F and two consecutive edges of F containing x, there are at most two new edges added
to x between these two consecutive edges. Hence the degree of x is at most trippled by
the end of this procedure. Repeat this step for the new face, surrounded by C, as long
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as |C| ≥ 6. Otherwise just add a new vertex and connect it to every vertex of C. In each
step, if there is more than one option, choose one of the options randomly and uniformly.

When doing this for every F , in the limit we get a triangulation G+. All the operations
preserved planarity, hence G+ is planar. One can define a function τ : V (G+) → V (G)

(possibly using extra randomness) such that E|τ−1(o)| < ∞. Therefore, by similar
arguments to Example 9.8 of [1] (see Subsection 1.4 in [8] for more details), G+ is
unimodular with the random root o+ chosen as follows: we first bias (G, o) by weights
proportional to |τ−1(o)|, and then o+ can be sampled by choosing a uniform element of
τ−1(o).

From the same argument in [8] it follows that the expected degree of o+ is bounded
by max{3D, 7}, where D is an upper bound on the expected degree of the root in (G, o).
Here we are using the fact that the vertices in V (G) have received at most twice as many
new edges as their degree in G (at most two new edges between each pair of consecutive
edges on a face), and every new vertex has at most 7 incident edges.

Before proceeding, let us state some consequences of Theorem 2.1 related to percola-
tion, as the methods of [7] become available for the planar graph that have a unimodular
combinatorial embedding. This corollary was unnoticed in [36], the source of Theorem
2.1, so we present it here. Call a planar graph G edge-maximal, if for any x, y ∈ V (G),
such that {x, y} 6∈ E(G) and x 6= y, G ∪ {{x, y}} is nonplanar. Edge maximality means
that any planar embedding of G is triangulated.

Corollary 2.3. Let G be an ergodic nonamenable unimodular random planar graph with
finite expected degree and one end, and consider Bernoulli(p) bond or site percolation.
Then there exist pc and pu > pc such that there is no infinite component whenever
p ∈ [0, pc], there are infinitely many infinite components for p ∈ (pc, pu), and there is a
unique infinite component for p ∈ [pu, 1]. If G is edge-maximal and we percolate on the
vertices, then pc < 1/2.

Proof. The claim that there is no infinite component in pc is known to be true for any
nonamenable graph, see Theorem 8.11 in [1]. That pc < pu and there is uniqueness in pu
are proved for graphs where a unimodular planar combinatorial embedding is given in
Theorem 8.12 in [1] (based on [7]); combined with Theorem 2.1 (a result from [36]) they
show the claims here. Finally, for the claim about pc < 1/2, the proof of Theorem 6.2 in
[7] extends, once we have a unimodular combinatorial embedding as in Theorem 2.1.

A bound pc < 1/2 is proved in [15] for general graphs with a minimum degree
requirement.

3 Invariant circle packing representations of nonamenable
graphs

The next theorem is a simple consequence of results by He and Schramm.

Theorem 3.1. Suppose that G = (G, o) is a one-ended nonamenable ergodic unimodular
random planar simple graph with finite expected degree. Then G can be represented by
a unimodular circle packing in the hyperbolic plane. Consequently, G has a unimodular
embedding into the hyperbolic plane H, and G can be represented by an invariant tiling.

Proof of Theorem 3.1. We may assume that G is triangulated. Otherwise apply first
the proof for the triangulated supergraph G+ in Theorem 2.2, and then only keep the
circles that represent vertices in V (G). We know from Theorem 1.8 that G has a unique
representation in the hyperbolic plane up to hyperbolic isometries. From the proof
by He and Schramm it follows, as explained in detail in Subsection 3.4.1 of [2], that
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the hyperbolic radius of the circle representing vertex v is a measurable function of
(G, v) ∈ G∗. Hence the circle packing (G as a graph marked with the unique circle packing,
where the marks are telling the embedding of the vertices together with an extra label
representing the radius) is unimodular.

One can turn the circle packing into a tiling of the same adjacency structure by
properly subdividing every component of the complement of the disks into finite pieces
and attaching them to suitably chosen neighboring disks. We omit the details.

4 Invariant embeddings of amenable unimodular planar graphs

In this section we will prove the amenable part of Theorem 1.1. We will later use this
invariant embedding to constuct a unimodular embedding and prove the amenable parts
of Theorems 1.2 and 1.3. One may wonder if a unimodular embedding could be found
directly, following the lines of the proof for the hyperbolic case, but a key part which
does not go through is the following. The uniqueness in the He-Schramm Theorem 1.8 is
up to isometries in the nonamenable (hyperbolic) case, and hence it could be used in the
construction of the unimodular embedding, which is also defined only up to isometries.
Now, in the amenable case, the uniqueness in Theorem 1.8 is only up to isometries and
dilations, which makes the above method fail.

Question 4.1. Can every amenable unimodular planar graph be represented by an
invariant circle packing in R2?

At the time of submission of this manuscript, Ali Khezeli found a negative answer
to the question, [23]. His counterexample satisfies the stronger property that it has
no unimodular circle packing representation. The case of UIPT is still open. See also
Question 4.6.

Let G be a unimodular random graph. Let G1,G2, . . . be a (random) sequence of
subgraphs of V (G) such that the collection (G,G1,G2, . . .) is unimodular. Say that such a
partition sequence is a unimodular finite exhaustion, if for every i Gi is a subgraph of
Gi+1, every component of Gi is finite, and if ∪Gi = G.

The definition of amenability for locally finite unimodular random graphs is equivalent
to the existence of a unimodular finite exhaustion (see Theorem 8.5 in [1] and references
therein). To see this, let Uk be the random subsets corresponding to ε = 2−k in the
definition of amenability in Section 1, and let Gn consist of the connected components of
G \ {e ∈ E(G), e ∩ ∪∞k=nUk 6= ∅}.
Theorem 4.2. Suppose that (G, o) is a one-ended amenable unimodular planar random
graph of finite expected degree. Then G has an invariant locally finite embedding into R2

such that the image of every edge is a broken line segment.

Some well studied planar unimodular amenable graphs are the uniform infinite planar
triangulation (UIPT) ([4]) and the augmented critical Galton-Watson tree conditioned to
survive (AGW) (see, e.g., [27]).

Corollary 4.3. The AGW and the UIPT can be invariantly embedded in the Euclidean
space.

We will need a special case of Theorem 5.1 from [35], illustrated on Figure 1.

Theorem 4.4. ([35]) Consider an ergodic one-ended unimodular random tree (T, o) of
uniformly bounded degrees. Then there is an invariant locally finite tiling in R2 that
represents T .

Our original proof of Theorem 4.2 is what we present first. An anonymous referee
suggested an alternative proof based on conformal uniformization. We present the main
ideas as a 2nd proof. While the second proof also uses parts of the first one, it is more
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Figure 1: Representing a tree by a tiling; image taken from [35].

elegant. On the other hand, the first proof seems to be more suitable for quantitative
bounds on edge lengths.

Proof of Theorem 4.2, 1st proof. In the following constructions it will often happen that
we need to choose some collection of pairwise inner-disjoint curves (broken line seg-
ments) connecting some given collection of pairs of points, within some specified bounded
domain. We will want to do it so that for a given isometry-invariant and measurable
random collection of pairwise disjoint domains in R2 the resulting collection of line
segments over all domains is also invariant and measurable. Let us describe a method
to do so. For each of the specified bounded domains do the following. Fix a random
origin in the domain and two uniformly chosen axes for R2. Then make the choice for
the broken line segments so that the pairwise inner-disjointness is satisfied, and every
breaking point of every segment has dyadic coordinates of the form h2−k, where h ∈ Z
and k ∈ Z+ is minimal such that the choice of all broken line segments with the above
constraints is possible. If there is more than one such choice with this minimal k, then
choose one of them uniformly at random. So whenever we are making such choices
of families of curves, embedded edges etc. in the future, this is how we understand it,
without further mention.

Fix some unimodular combinatorial embedding Σ = {σv : v ∈ V (G)} of G (as given by
Theorem 2.1), where σv is the permutation on the edges incident to v ∈ V (G). Suppose
that an embedding of some subgraph H of G is given, together with an embedding of
all the half-edges from E(G) \ E(H). (By an embedding of a half-edge we simply mean
the drawing of a broken line segment starting from the vertex, together with a label
that tells the other endpoint of the corresponding edge.) We say that this embedding
of the edges and half-edges is consistent with Σ, if the permutation determined by the
embedded (half-)edges around v in the positive direction is σv.

We will prove a stronger claim than the theorem, namely, that there exists an invariant
embedding into R2 that is consistent with Σ.

We may assume that G has uniformly bounded degree, as we explain next. We will
introduce a new graph G′, that we will obtain from G by replacing vertices by paths,
with two such path adjacent if and only if the original vertices were, and in a way that
all degrees in G′ will be at most 3. The construction will give rise to a combinatorial
embedding Σ′ of G′. Then we will show that an invariant embedding of G′ consistent with
Σ′ can be used to define one for G that is consistent with Σ. The simple construction
is summarized on Figure 2. So define G′ as follows. For every vertex v ∈ V (G) let
n(v, 1), . . . , n(v, k) be the listing of its neighbors given in the order by σv, with the
starting neighbor n(v, 1) chosen at random, where k = k(v) is the degree of v. The
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vertex set V (G′) will be the union of v(1), . . . , v(k) over all the v. Now define edges of G′

as the collection of all pairs {v(i), v(i + 1)} (as v ∈ V (G), i = 1, . . . , k(v) − 1), and pairs
{v(i), w(j)} (as v, w ∈ V (G), n(v, i) = w and n(w, j) = v). By first biasing (G, o) by the
degree of the root and then replacing its vertices v by the v(i) (choosing the new root
uniformly from the vertices replacing the original one) with edges as in G′, we obtain a
rooted graph (G′, o′), which is unimodular (as shown in Example 9.8 of [1] or Subsection
1.4 in [8]). Finally define the unimodular combinatorial embedding Σ′ of (G′, o′): let σ′v(i)
be the cyclic permutation

(
v(i − 1), w(j), v(i + 1)

)
on the neighbors of v(i) whenever

1 < i < k(v), and (trivially)
(
v(2), w(1)

)
for i = 1 and

(
v(k − 1), w(k)

)
for i = k. Suppose

we find an invariant embedding consistent with Σ′ for the bounded-degree graph G′; let
φ(x) be the location of a vertex x by this embedding, and let L(v(i), w(j)) = L(w(j), v(i))

be the drawn edge between v(i) and w(j) when v, w ∈ V (G) and {v(i), w(j)} ∈ E(G′).
(Everything that we are doing in the rest of the paragraph is covariant, hence we can
fix a representative in the Palm version of the embedded graph and hence refer to
actual embedded points.) For every v ∈ V (G) pick an ιv ∈ {1, . . . , k(v)} at random. The
embedded subtree induced by v(1), . . . , v(k) can be used to define broken line segments
L(v(i), v(ιv)) between φ(v(i)) and φ(v(ιv)), for all i 6= ιv, such that all these broken line
segments over the various v ∈ V (G) are pairwise inner-disjoint, and also inner-disjoint
from all the L(v(i), w(j)), {v(i), w(j)} ∈ E(G′), v 6= w. To avoid unnecessary formalism
we leave the further details to the interested reader; we only mention that an ε-close
contour walk around the embedded subtree of edges incident to v(1), . . . , v(k) can give
us guidance about where to draw the edges so that the above constraints are satisfied.
Define L(v(ιv), v(ιv)) = ∅. Now, to draw an edge {v, w} ∈ E(G), consider the union of
L(v(i), v(ιv)), L(w(j), w(ιw)) and L(v(i), w(j)), where n(v, i) = w and n(w, j) = v. We end
up with an embedding of G from the embedding of G′ as desired; see Figure 2. So from
now on we will assume that G has bounded degrees.

Figure 2: The scheme of getting an embedding of G from the embedding of its bounded
degree version G′. Dots of the same color stand for the v(1), . . . , v(k(v)), the solid dot
indicates v(ιv).

Now choose a one-ended unimodular spanning tree T of G and apply Theorem 4.4 to
get a tiling representation of it. If τ(v) is the tile representing v ∈ V (T ), then we choose
a random point ι(v) of τ(v) to be the embedded image of v.

For an x ∈ T let Tx be the finite subtree of T induced by the union of all finite
components of T \ {x} and {x}. Say that the depth of Tx is k if the largest distance from
x within Tx is k, and define

Lk := {x ∈ V (T ) : Tx has depth k}.
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If x, y ∈ Lk, x 6= y, then Tx and Ty are disjoint. Let Gi be the graph on vertex set V (G)

and edge set

E(Gi) :=
{
{x, y} ∈ E(G) : x, y ∈ Tv for some v ∈ Li

}
.

Then Gi is a unimodular finite exhaustion of G. Finally, define γ(v) = τ(v) whenever
v ∈ L0, and let γ(v) be the ball of radius dist(v, ∂τ(v))/2 around v when v 6∈ L0. Let Γ(v)

be the interior of the closure of ∪u∈Tvτ(u).

The component Kv of every v ∈ Li in Gi is such that G \Kv is connected. Since the
vertex set of each such component is that of some Tv with v ∈ Li, the element of highest
depth in the component is v, whose depth is i. Furthermore, Γ(v) is simply connected,
and ι(u) ∈ Γ(v) for every u ∈ V (Kv) = V (Tv). We will embed the edges of Kv in Γ(v),
and the above facts guarantee that no two points of ι(V (G \Kv)) are separated in R2

by these embedded edges. Furthermore, for all edges not in Kv but incident to Kv, we
will define an embedded half-edge, connecting the endpoint to ∂Γ(v). The procedure is
illustrated on Figure 3.

We will proceed in steps, embedding Gn in step n, and also embedding the half-edges
coming from G \Gn. This will be done in a way that

1. the embedding of Gn is an extension of that of Gn−1. In particular, for every
e ∈ Gn \Gn−1 the embedded image of e contains its embedded half-edges from the
previous step, and for every edge of Gn−1 the embedding in step n is the same as
in step n− 1.

2. All edges {v, w} with w ∈ Kv, v ∈ Ln, are embedded in the interior of the closure
of τ(v) ∪ Γ(w);

3. similarly, if an edge in E(Kv) \Gn−1 has its endpoints in the distinct subtrees Tw
and Tw′ of Tv, with w and w′ adjacent to v ∈ Ln, then the edge is embedded into
the interior of the closure of τ(v) ∪ Γ(w) ∪ Γ(w′).

4. All half-edges starting from a vertex in Kv, v ∈ Ln, reach ∂Γ(v).

As a preparatory step (step 0), consider G0, the empty graph on V (G). For every
v ∈ V (G), pick some embedding of the half-edges starting from ι(v) ∈ γ(v) to randomly
chosen points of the boundary of γ(v), in a way that the embedding of the half-edges
is consistent with Σ. The embedding defined for step 0 trivially satisfies (1)-(4). It
is consistent with Σ by definition, and any extension will also be consistent with Σ.
We proceed to step n recursively. For every component Kv of Gn (v ∈ Ln) do the
following. Let Kv1 , . . . ,Kvk be the components of Gn−1 induced by V (Kv) (vi ∈ ∪n−1j=0Lj).
Then Γ(v) contains the embedded points of V (K), moreover, the Γ(vi) are pairwise
disjoint open subsets of Γ(v) containing the embedded Kvi respectively. Contract every
Kvi in G to a single point, and also contract G \ Kv (which is a connected graph) to
a single point x∞. The resulting finite graph K ′ inherits a combinatorial embedding
from Σ. Consider an arbitrary embedding of K ′ to the 2-sphere that represents this
combinatorial embedding. Remove an infinitesimally small neigborhood of the embedded
nodes, to get a 2-sphere with holes in it and pairwise disjoint arcs connecting some
of these holes. It is easy to check that there is a homeomorhism from this surface
to τ(v), which maps the boundary of the hole belonging to x∞ to ∂Γ(v) ⊂ ∂τ(v), and
maps the boundary of the hole corresponding to the contracted Kvi to ∂Γ(vi) ⊂ ∂τ(v).
Furthermore, this homeomorphism can be chosen so that the images of the drawn
segments are continuations of the respective drawn half-edges in the Γ(vi). We have just
shown that there exists an embedding of the component Kv of Gn into Γ(v) that satisfies
(1)-(4); now choose the broken line segments for one such embedding randomly in a way
as described at the beginning of this proof.
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Figure 3: A subtree Tv of T is taken (as the tree of Figure 1, with vertices recolored),
together with the other edges of G induced by it, producing the component Kv of Gn.
Blue vertices are in L0, red ones in L1, yellow is for L2, green for L3. The embedding of
edges is shown over several steps. Shaded areas indicate the τ(w), w ∈ Li, where edges
are drawn in step i. They are not used in any later step.

Since every step is an extension of the previous one, we obtain an embedding of G in
the limit, as desired. Local finiteness is guaranteed by the fact that every τ(u) (u ∈ V (G))
is intersected by finitely many embedded edges.
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Proof of Theorem 4.2, sketch of 2nd proof. Up until Figure 2, we proceed as in the 1st
proof, that is, we choose a one-ended spanning tree T of G and choose some unimodular
combinatorial embedding of G. Also consider an invariant spanning biinfinite path P of
Z2, e.g. the UST Peano path. The complement of the path in R2 consists of two simply
connected domains. Pick one of them at random and consider a conformal map from this
domain to the upper half plane such that its extension to the closure maps the origin to
the origin. This map is unique up to scaling; fix one of them and call it φ. The points of
P are mapped to points of the real line, and their images inherit the ordering coming
from the path. Using the fixed combinatorial embedding of G (and hence of T ), there
is a well-defined contour walk around T ; starting this walk to the left and to the right
from the root we can define a surjective map from φ(V (P )) to V (T ), with 0 mapped to
the root. If v ∈ V (T ) is a leaf, that is, if it only has one preimage by this map, call this
preimage ψ(v); otherwise v has a leftmost and rightmost preimage, and we take the top
of the circular half-circle on these two points to be ψ(v). We can draw all the edges of T
between the respective ψ(v) as geodesic segments in the (Poincaré) halfplane, and no
crossing will happen by construction. Then φ−1 defines an embedding of T into R2 that
is unimodular, and applying a random isometry of R2 that maps 0 to some point of the
unit square makes everything isometry-invariant.

The embedding of T is consistent with the given combinatorial embedding, hence
it can be extended to an embedding of G (which is not necessarily invariant yet). Now,
the complement of the embedded tree is itself conformally a halfplane. One can draw
in the additional edges of G as the conformal geodesics between the relevant points on
the boundary of the tree, to end up with an invariant embedding of G. To have broken
line segments represent the embedded edges, one can replace the curves by suitable
approximations.

Theorem 4.5. Every amenable unimodular random planar graph (G, o) can be repre-
sented in R2 as the neighborhood graph of an invariant random tiling.

In [35] it is proved that every amenable unimodular transitive graph can be repre-
sented by an invariant tiling of Rd for d ≥ 3, and the proof extends from transitive to
random right away.

Proof. Consider the embedding of G into R2 as in Theorem 4.2 and let P be the point
process that the embedded vertices define. To each face F and point v ∈ ∂F , v ∈ P, we
will assign a piece of the face incident to v, in such a way that two such pieces share
a 1-dimensional boundary iff the corresponding vertices are adjacent. For the case of
bounded faces one can apply a modified “barycentric subdivision”, see Figure 4: for
each pair v and w of adjacent vertices that are consecutive along F , consider the broken
line segment representing the edge between them, and consider its midpoint, that is,
the point that halves the length of the broken line. Choose some point uniformly in F ,
and connect it to all these midpoints by some broken line. If F is infinite, we will apply a
trick similar to the one in [24]. For every pair v and w of adjacent vertices such that ι(v)

and ι(w) are consecutive along F , let h(v, w) = h(w, v) be the midpoint of the broken line
segment between them. Choose a conformal map f between F and the upper half plane
H of C that maps infinity to infinity. By the standard extension of f−1 to the boundary
∂H, we can define a set of f -images in R for every h(v, w) ∈ ∂F . (This set consists of
one or two points, depending on whether the broken line between v and w has F on
only one side or on both.) Let a ∈ R be one such image, and consider the vertical line
La = {a + bi : b ∈ R+} in H. Consider f−1(La) for all the a. One can check that they
subdivide F into pieces as we wanted. It is also clear that the construction does not
depend on the choice of f (which is unique up to conformal automorphisms of the upper
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half plane of the form x 7→ ax+ b, a, b ∈ R, a 6= 0), and that it is invariant. See [24] for a
detailed argument.

Figure 4: Splitting up a face to subtiles. Broken line segments are represented by
straight segments for simplicity.

It remains to prove that the tile of the origin has finite area almost surely. This is
known for any invariant point process in R2 (whose intensity is automatically positive)
and partition as in our setup, see, e.g., (9.15) in [10].

We expect that with some extra work one could also get a tiling where every tile
has area 1. One would have to ensure that the embedded vertices in Theorem 4.2 form
a point process where the number of points in large boxes is relatively close to the
expectation, and then build up the tiling stepwise and directly, eventually assigning unit
tiles to all vertices. We have not worked out the details.

What seems to be harder to control, is the diameter of the tiles.

Question 4.6. What can we say about the distribution of the diameter of a tile in a
construction as Theorem 4.5? How fast can it decay?

Various invariance principles follow from [14] if one is able to construct an initial
embedding for the given graph that satisfies a certain finite energy condition. The
embeddings are assumed to be translation invariant modulo scaling. Whether our
method can be useful in this setting is to be investigated in the future.

5 Proofs of the main theorems

Proof of Theorem 1.1. The existence of such representations if G is amenable is proved
in Theorems 4.2 and 4.5.

For the “only if” part, suppose first that a nonamenable G had an isometry-invariant
embedding as in Theorem 1.2 intoR2. Then one could use the invariant random partitions
of R2 to 2n times 2n squares to define a unimodular finite exhaustion of G. Thus G has to
be amenable, a contradiction.

Proof of Theorem 1.2. For the nonamenable case the unimodular embedding into H2 is
given in Theorem 3.1. That there is no such an embedding into R2 is proved the same
way as in the proof of Theorem 1.1.

If G is amenable, an isometry-invariant embedding into R2 exists. With the same
arguments as in Example 9.5 of Aldous and Lyons in [1], the Palm version of this random
embedded graph (as a graph with the decoration given by the embedding and rooted in
the origin) is unimodular.
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Proof of Theorem 1.3. The “if” parts of the claims follow from Theorem 4.5 and 3.1.
(Although Theorem 3.1 is for simple graphs, the tiling obtained from a circle-packing
can be extended when there are parallel edges or loops.)

For the “only if” part, note that an invariant tiling gives rise to an invariant embedding
(choose a uniform random point in each tile and suitably connect it to its neighbors).
Hence the claim is reduced to that in Theorem 1.2.
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