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Abstract

We study unilateral valuation problems for American options within the framework
of a general nonlinear market by extending results from Bielecki et al. [9, 12] who
examined contracts of European style. A BSDE approach is used to establish more
explicit pricing, hedging and exercising results when solutions to reflected BSDEs
have additional desirable properties. We employ for this purpose results on solutions
to BSDEs and reflected BSDEs driven by RCLL martingales obtained by Nie and
Rutkowski [62, 63].
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1 Introduction

Contracts of American style are asymmetric between the two counterparties, com-
monly referred to as the issuer and the holder, not only due to the opposite directions
of contractual cash flows, but also due to the fact that only one party, the holder, has
the right to exercise an American contract before its expiration date. The arbitrage-free
pricing and rational exercising of American options within the framework of a linear
market model have been studied in numerous papers, to mention just a few: Bensous-
san [5], Bouchard and Nam [13], El Karoui et al. [30], Jaillet et al. [39], Karatzas [42],
Karatzas and Kou [43], Kallsen and Kühn [41], Mulinacci and Pratelli [56], Myneni [57]
and Szimayer [70]. The authors of these papers usually adopted the classical Black and
Scholes setup, though it was sometimes complemented by specific trading constraints.
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American options in nonlinear markets

The goal of this work is to re-examine and extend the findings from the recent paper by
Dumitrescu et al. [26] who applied the nonlinear pricing approach developed in El Karoui
and Quenez [32]. In contrast to [26] where a particular model with a single jump of the
underlying asset was studied, we place ourselves within the setup of a general nonlinear
arbitrage-free market with possibly discontinuous asset prices, as introduced in Bielecki
et al. [9, 12] and we examine unilateral acceptable prices for American contracts. We
obtain results regarding the pricing, hedging, break-even times and rational exercise
times using results on backward stochastic differential equations (BSDEs) from Nie
and Rutkowski [62, 63], but without explicitly specifying the dynamics of underlying
risky assets and funding accounts. We focus instead on unilateral nonlinear evaluations
generated by BSDEs associated with the issuer’s and holder’s wealth processes and thus
our results are model-free. Consequently, they can be applied to American options in a
wide spectrum of nonlinear (and, obviously, also linear) market models.

In the aftermath of the global financial crisis of 2007-2009, there was a rapidly
growing interest in financial models accounting for the counterparty credit risk, collater-
alization, differential funding costs and other trading adjustments; see, e.g., Bichuch
et al. [7, 8], Brigo and Pallavicini [14], Burgard and Kjaer [15], Capponi [16], Crépey
[18, 19], Crépey et al. [20], Pallavicini et al. [64], and Piterbarg [67]. Due to above-
mentioned intricacies of trading, the problem of risk mitigation through hedging of
a financial contract is no longer as straightforward as it was in the past. Therefore,
complex market models including risky assets, multiple funding accounts and dedicated
margin accounts for collateral either pledged or accepted need to be studied in the
nonlinear framework, where the nonlinearity arises due to the differential borrowing and
lending interest rates, idiosyncratic funding costs for risky assets via secured accounts
driven by the repo rates, netting of portfolio positions and asymmetric remuneration of
margin accounts, and possibly also an endogenous specification of collateral amount.
We give some explicit examples of nonlinear markets in Section 2, to wit, the model with
a partial netting presented in Subsection 2.3.1 and the model with idiosyncratic funding
costs and collateral described in Subsection 2.3.2. These examples are merely special
cases of a generic nonlinear market, which is formally introduced in Subsection 2.3.3
and studied throughout the present paper.

In fact, the case of a financial market with a nonlinear trading has attracted attention
of researchers since mid-1990s. First, Bergman [6] and Korn [50] investigated the range
of arbitrage-free prices for European options under different lending and borrowing
rates and, more recently, Mercurio [55] extended Bergman’s results by examining the
pricing of collateralized European options. In the context of counterparty credit risk,
Crépey [18, 19] and Crépey et al. [20] analyzed the pricing and hedging of the CVA
(Credit Valuation Adjustment) term of the price for European options under funding
constraints through nonlinear BSDEs and quasi-linear PDEs. A more systematic study
was undertaken by Bielecki and Rutkowski [12] (see also the follow-up work by Bielecki
et al. [9]) who introduced a generic nonlinear trading model for collateralized contracts
and attempted to develop a unified framework for the nonlinear approach to hedging
and pricing of over-the-counter (OTC) financial contracts in the spirit of the seminal
work by El Karoui and Quenez [32].

It is expected that, due to the nonlinearity of the market model, the issuer’s and
holder’s unilateral prices are likely to diverge. The inequalities satisfied by unilateral
prices and the range fair bilateral prices were studied in papers by Nie and Rutkowski [60,
61] for models with either an exogenous or endogenous collateralization, respectively.
More recently, Bichuch et al. [7, 8] (see also Lee et al. [52] and Lee and Zhou [53] for
related studies) explicitly addressed the issue of hedging the counterparty credit risk
and analyze the CVA for European claims in the Black-Scholes model complemented by
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American options in nonlinear markets

defaultable bonds issued by the counterparties and they also examined bounds for fair
bilateral prices. We stress that the above-mentioned papers are mainly concerned with
prices of contingent claims of a European style and thus it is natural to ask analogous
questions regarding American contingent claims in a nonlinear market model with
idiosyncratic funding costs, counterparty credit risk and other market frictions affecting
the trading mechanism.

In this paper, we will provide a thorough study of unilateral valuation problems for
American options within the framework of a general nonlinear market by extending
results from Bielecki et al. [9, 12] who examined European style contracts. We will
also use a BSDE approach to establish more explicit pricing, hedging and exercising
results. Let us point out that there are some interesting and challenging features of
arbitrage-free pricing of financial derivatives within the framework of a generic nonlinear
market and thus, in the first step, one needs to properly define the concepts of a fair
price and replication of an American contract in a nonlinear setup.

In particular, we carefully distinguish between different kinds of prices and hedging
costs, including the concepts of a fair price, superhedging cost, strict superhedging cost,
replication cost and, finally, a unilaterally acceptable price. It is interesting to examine
whether they coincide or certain additional assumptions about trading need be added to
ensure the consistency of pricing. In Subsections 2.2 and 3.1, we show that maximum
fair price, minimum superhedging costs, minimum strict superhedging cost, minimum
replication cost and acceptable price coincide in an abstract nonlinear market under
fairly mild assumptions about the dynamics of wealth processes of trading strategies.

To cover also the counterparty credit risk, we study in Section 4 the case of an
American contract with extraneous risks. In Example 4.5, we show how to apply
our results directly when a vulnerable contract pays a predetermined recovery at the
counterparty’s default. Example 4.6 demonstrates that our generic nonlinear model can
also be applied to general American contracts with extraneous risks when the recovery
payoff at time of default does not depend on the jump of the reference defaultable asset.
In particular, the model studied by Szimayer [70] can be seen as a very special case of
our generic market model with extraneous risks.

Notice also in this regard that Dumitrescu et al. [25, 26] also consider American and
game options with default risk but their study focuses on contracts subject to the third-
party credit risk, as opposed to the counterparty credit risk. In Remark 4.7, we mention
that another justification for the study of wealth processes driven by a general RCLL
martingale comes from the fact that, typically, several dependent defaults are present in
the market (see [11]). Finally, we note that in the case of a diffusion-type model (see,
e.g., Example 2.15), one may apply a PDE approach to identify the issuer’s and holder’s
acceptable prices through solutions to parabolic nonlinear PDEs with obstacle and thus
to extend the classical PDE approach to pricing of American options (see Remark 2.24).

Due to diverging funding costs and asymmetry of collateralization, a nonempty
interval of bilaterally profitable prices may arise when the ask price set by the issuer is
below the bid price computed by a potential buyer of an American option. Therefore,
the obvious feature that the two parties need to address their respective valuation and
hedging problems unilaterally and, typically, using two different proprietary models with
idiosyncratic funding costs, does not necessarily mean that it will be impossible to enter
into a bilaterally profitable trade. On the contrary, the ubiquity of the over-the-counter
market may support our view that the theory of unilateral pricing could provide a sound
theoretical foundation for the existence bilaterally beneficial trades in imperfect markets.
For more comments on this issue in the context of European contracts, the reader is
referred to Section 3.2 in [61] (see also Propositions 4.6 and 4.13 in [60] for a detailed
study of collateralized contracts).
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American options in nonlinear markets

In practice, it is conceivable to enter into a contract in which each party is exposed to
a potential future loss in adverse market circumstances, provided that its size and real-
world probability of occurrence are deemed to be bearable. Therefore, the concept of a
unilaterally acceptable price should not be seen as a stringent constraint, which cannot
be violated, but rather as a preliminary step to real-world pricing where mathematical
models are blended with expert opinions, trading experience and, last but not least,
trader’s speculative anticipations based on his constantly updated information about the
currently prevailing market sentiment and future economic perspectives.

The structure of the paper is as follows. In Sections 2 and 3, we re-examine and
extend a BSDE approach to the valuation of American options in nonlinear market
initiated by El Karoui and Quenez [32] and continued in a recent paper by Dumitrescu
et al. [26]. We first work in an abstract nonlinear setup, meaning that we only make
fairly general assumptions about the nonlinear dynamics of the wealth process of self-
financing strategies. The main postulate of that kind is the strict monotonicity property
of the wealth process (see Assumption 2.3). We examine general properties of unilateral
superhedging costs and acceptable prices for the two counterparties, the issuer and the
holder. In particular, we built upon papers by Bielecki et al. [9, 12] where the arbitrage-
free valuation of European contingent claims in nonlinear markets was examined. Since
the proofs of all results in Sections 2.2 and 3.1 are elementary, they are not provided here
and thus the interested reader is referred to Kim et al. [44] for detailed demonstrations
and further comments. Our main goal is to show that unilateral acceptable prices for
an American contract Ca, which are introduced in Definitions 2.11 and 3.9, can be
characterized in terms of solutions to reflected BSDEs driven by a multi-dimensional
(and possibly discontinuous) semimartingale S. We also study the break-even times for
the issuer and the rational exercise times for the holder, as given by Definitions 2.9
and 3.20, respectively. For the sake of generality, we do not focus on any particular
market model, but instead we study a generic nonlinear market under mild assumptions.
For related results on BSDEs and reflected BSDEs driven by multi-dimensional RCLL
martingales, the reader is referred to Nie and Rutkowski [62, 63]. In Section 4, we study
American contracts with extraneous risks and thus we also cover vulnerable American
options with the counterparty credit risk. It should be acknowledged that we do not
cover an important issue of a model risk and thus it is worth to mention that, to the
best of our knowledge, the existing literature in the very active field of robust finance is
still largely limited to the case of classical linear models, although some authors cover
special kinds of trading constraints such as, e.g., restrictions on short-selling of shares
and/or borrowing of cash (see, e.g., Aksamit et al. [1] or Bayraktar and Zhou [4]). Some
useful results on the nonlinear optimal stopping are collected in the appendix.

2 Issuer’s pricing and hedging problems

The goal of this section is to re-examine and extend a BSDE approach to the valu-
ation of American options in nonlinear market, which was initiated by El Karoui and
Quenez [32] for models driven by a Brownian motion and recently extended by Du-
mitrescu et al. [26] to a nonlinear model with a single jump. Our main goal is to show
that the issuer’s acceptable price for an American contract Ca is unique and can be
characterized in terms of solutions to reflected BSDEs driven by an n-dimensional, RCLL
martingale.

2.1 Setup and notation

We first describe the setup and notation used throughout the paper. Let (Ω,F ,F,P) be
a probability space where the filtration F satisfies the usual conditions of right-continuity
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and P-completeness, and the initial σ-field F0 is trivial. All processes introduced in what
follows are assumed to be F-adapted and we denote by T = T[0,T ] for the class of all
F-stopping times taking values in [0, T ]. By convention, the contractual cash flows are
given from the issuer’s perspective. Hence when a cash flow is positive, then the cash
amount is paid by the holder and received by the issuer and, if a cash flow is negative,
then the cash amount is transferred from the issuer to the holder. For instance, when
dealing with an American put option written on the stock S, we assume that the cash
flow to the issuer (resp. the holder) equals Xh

τ = −(K − Sτ )+ (resp. Xh
τ = (K − Sτ )+)

if the option is exercised at time τ ∈ T by the holder. This is formalized through the
following abstract definition where the superscript h in Xh is used to stress that only the
holder has the right to exercise the contract (this should be contrasted with the case of
game option studied in [45]) but no assumption about the sign of the payoff Xh is made.

Definition 2.1. An American contingent claim with expiration date T and the F-adapted,
RCLL payoff process Xh is a contract between the issuer and holder in which the latter
has the right to exercise the contract by selecting an F-stopping time τ ∈ T . Then, at
time τ , the issuer gets the amount Xh

τ or, equivalently, transfers to the holder the amount
of −Xh

τ where the F-adapted payoff process Xh
t , t ∈ [0, T ] is specified by the contract.

More generally, an American contract is defined as a triplet Ca = (A,Xh, T ) where
an F-adapted, RCLL process A, which is predetermined in the contract, represents the
cumulative cash flows from time 0 till the contract’s maturity date T . In the financial
interpretation, the process A represents all external cash flows of a given American
contract, which are either paid out from or added to the issuer’s wealth via the value
process of his portfolio of traded assets. By symmetry, an analogous interpretation
applies to the holder of an American contract and, obviously, any amount received (resp.
paid) by one of the parties is paid (resp. received) by the counterparty. We stress that
the price of the contract Ca, which is exchanged at its initiation (by convention, at time
0), is not included in the process A so that we set A0 = 0. This choice is motivated
by the fact that the contract’s price before the trade is yet unspecified and it needs to
be determined through negotiations between the counterparties. We will argue that
unilateral pricing is feasible but it is unlikely to yield a single value for the initial price
of an American contract in a nonlinear framework.

When examining the valuation of an American contract at any time t ∈ [0, T ], we
implicitly assume that it has not yet been exercised and thus the set of exercise times
available at time t to its current holder is the class T[t,T ] of all F-stopping times taking
values in [t, T ]. In principle, one could consider two alternative conventions regarding the
payoff upon exercise: either (a) the cash flow upon exercise at time t equals At−At−+Xh

t

or (b) if a contract is exercised at time t, then the cash flow At −At− is waived, so the
only cash flow occurring at time t is Xh

t . Unless explicitly stated otherwise, we work
under covenant (a) and we acknowledge that the choice of a particular settlement rule
may result in a different value for the price of an American contract Ca, in general. Of
course, this choice is immaterial when the process A is continuous or, simply, when it
vanishes, so that the contract reduces to a pair (Xh, T ).

An important original feature of the nonlinear arbitrage-free pricing is the concept of
the benchmark wealth V̄ (x) (also known as the legacy portfolio) with respect to which
arbitrage opportunities of a trader are quantified and assessed. As in [9, 12], as an easily
manageable candidate for the benchmark wealth we may propose the process

V̄t(x) := xB0,l
t 1{x≥0} + xB0,b

t 1{x<0}

where the risk-free lending (resp. borrowing) cash account B0,l (resp. B0,b) is used for
unsecured lending (resp. borrowing) of cash.
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Under that stylized convention for assessing bank’s profits and losses, the process
V̄ (x) represents the wealth of a trader who commits himself at time 0 to keep his initial
cash endowment x in either the lending (when x ≥ 0) or borrowing (when x < 0) cash
account and abstains from all other trading activities between time 0 and T . Notice that
the concept of the benchmark wealth is irrelevant for classical arbitrage-free pricing
in a linear market model even though it corresponds to the natural economic concept
of opportunity cost. In what follows, the real numbers xi and xh represent the initial
endowment of the issuer and holder, respectively, and the processes V̄ i(xi) and V̄ h(xh)

denote their respective benchmark wealths (or future values of legacy portfolios).
Although one could object that the idea of unilateral pricing based on the bank’s

legacy portfolio is hard to implement in practice, we stress that even if we postulate that
xi = xh = 0 and V̄ it (0) = V̄ ht (0) = 0 for all t ∈ [0, T ], the asymmetry in unilateral pricing
would still hold since it is a direct result of the nonlinear dynamics of wealth processes.

2.2 Issuer’s unilateral pricing

LetMi = (S,Bi,Ψi) be an issuer’s nonlinear market model, which is assumed to be
arbitrage-free with respect to European contracts, in the sense of Bielecki et al. [9, 12].
Here S (resp. Bi) denotes the collection of primary traded assets (resp. the collection of
issuer’s funding accounts) and Ψi stands for the class of all issuer’s admissible trading
strategies. We denote by Ψi(y,A) the set of all trading strategies from Ψi with an
initial wealth y ∈ R and an external cash flow stream A. For any trading strategy
ϕ ∈ Ψi(y,A), we write V i(y, ϕ,A) to denote the wealth process of ϕ. Obviously, the
equality V i0 (y, ϕ,D) = y holds for all pairs (y, ϕ) ∈ (R,Ψi(y,A)).

From now on, it is assumed throughout that the processes A,Xh, V̄ i(xi) and the
wealth process V i(y, ϕ,A) are F-adapted and RCLL. However, it is not hard to check
that our results still hold under the assumption that the processes V̄ i(xi)−Xh −A and
V i(y, ϕ,A) − A are F-adapted and RCLL. In addition, we will gradually impose more
conditions on the nonlinear dynamics of the wealth process. In Section 2.2, we work
under Assumption 2.3 of the strict forward monotonicity of the wealth and thus all results
in this section are model independent. For simple proofs of all results in this section, the
reader is referred to [44].

Let us consider the extended market modelMi,p(Ca) in which an American contract
Ca is traded at time 0 at some initial price p where p is an arbitrary real number. We first
give a preliminary analysis of unilateral pricing of an American contract by its issuer
who is endowed with the pre-trading initial wealth xi ∈ R and thus employs V̄ i(xi) as
the benchmark wealth. Since the process A is fixed throughout, to alleviate notation, we
will frequently write V i(xi + p, ϕ) instead of V i(xi + p, ϕ,A) when dealing with the issuer
when no confusion may arise. We first introduce conditions associated with the study of
the issuer’s pricing and hedging problems.

For brevity, we say that a triplet (p, ϕ, τ) ∈ R×Ψi(xi + p,A)× T satisfies:

(AO) ⇐⇒ V iτ (xi + p, ϕ) +Xh
τ ≥ V̄ iτ (xi) and P

(
V iτ (xi + p, ϕ) +Xh

τ > V̄ iτ (xi)
)
> 0,

(SH) ⇐⇒ V iτ (xi + p, ϕ) +Xh
τ ≥ V̄ iτ (xi),

(BE) ⇐⇒ V iτ (xi + p, ϕ) +Xh
τ = V̄ iτ (xi),

(NA) ⇐⇒ V iτ (xi + p, ϕ) +Xh
τ = V̄ iτ (xi) or P

(
V iτ (xi + p, ϕ) +Xh

τ < V̄ iτ (xi)
)
> 0,

where (AO) stands for arbitrage opportunity, (SH) for superhedging, (BE) for break-even
and (NA) for no-arbitrage. We write (p, ϕ, τ) ∈ (AO) if a triplet (p, ϕ, τ) satisfies condition
(AO); an analogous convention applies to other conditions. For instance, we say that a
pair (p, ϕ) ∈ R × Ψi(xi + p,A) is an issuer’s arbitrage opportunity inMi,p(Ca) and we
write (p, ϕ) ∈ (AO) if (p, ϕ, τ) ∈ (AO) for every τ ∈ T .
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2.2.1 Issuer’s fair prices

We first introduce the notion of an issuer’s fair price, by which we mean any level
of the initial price p at which an arbitrage opportunity for the issuer is excluded. By
convention, we henceforth set inf ∅ = ∞ and sup ∅ = −∞. A real number pf,i(xi, Ca) is
an issuer’s fair price for Ca if no issuer’s arbitrage opportunity (p, ϕ) exists inMi,p(Ca)

when p = pf,i(xi, Ca). The set of all issuer’s fair prices is given by

Hf,i(xi) :=
{
p ∈ R | ∀ϕ ∈ Ψi(xi + p,A)∃ τ ∈ T : (p, ϕ, τ) ∈ (NA)

}
and the upper bound for issuer’s fair prices equals pf,i(xi, Ca) := sup Hf,i(xi). Notice
that the superscript f stands here for fair and i for issuer. Similar notational conventions
will be applied to other instances of issuer’s prices and costs without special mentioning.

Definition 2.2. If the equality pf,i(xi, Ca) = max Hf,i(xi) holds, then pf,i(xi, Ca) is de-
noted as p̂f,i(xi, Ca) and called the issuer’s maximum fair price for Ca.

The following basic property of trading strategies is satisfied in a vast majority of
existing market models (see Lemma 2.23 for a fairly general result in this vein).

Assumption 2.3. The following strict forward monotonicity property holds: for all
x, p ∈ R, ϕ ∈ Ψi(x + p,A) and p′ > p (resp. p′ < p), there exists a trading strategy
ϕ′ ∈ Ψi(x + p′, A) such that V it (x + p′, ϕ′, A) > V it (x + p, ϕ,A) (resp. V it (x + p′, ϕ′, A) <

V it (x+ p, ϕ,A)) for every t ∈ [0, T ].

Lemma 2.4. If Assumption 2.3 holds and p ∈ Hf,i(xi), then p′ ∈ Hf,i(xi) for every p′ < p

and thus, ifHf,i(xi) 6= ∅, then eitherHf,i(xi) = (−∞, p̂f,i(xi, Ca)] for some p̂f,i(xi, Ca) ∈ R
or Hf,i(xi) = (−∞, pf,i(xi, Ca)) where pf,i(xi, Ca) ∈ R ∪ {∞}.

2.2.2 Issuer’s superhedging costs

The concepts of (strict) superhedging strategies and their respective costs for the issuer
and holder are fairly standard. As usual, for the issuer we impose conditions for every
τ ∈ T whereas for the holder it suffices to postulate that analogous conditions are
satisfied for at least one τ ∈ T (see Definitions 3.5 and 3.6).

If property (SH) is satisfied by a triplet (p, ϕ, τ), then we say that an issuer’s super-
hedging at time τ arises. From the optional section theorem, condition (SH) holds for a
pair (p, ϕ) ∈ R×Ψi(xi + p,A) and all τ ∈ T if and only if (p, ϕ) is such that the inequality
V it (xi + p, ϕ) +Xh

t ≥ V̄ it (xi) is valid for all t ∈ [0, T ]. This justifies the following definition.

Definition 2.5. We say that pair (p, ϕ) ∈ R×Ψi(xi + p,A) is an issuer’s superhedging
strategy inMi,p(Ca) and we write (p, ϕ) ∈ (SH) if the inequality V it (xi+p, ϕ)+Xh

t ≥ V̄ it (xi)

holds for all t ∈ [0, T ], that is,

P(V it (xi + p, ϕ) +Xh
t ≥ V̄ it (xi), ∀ t ∈ [0, T ]) = 1.

The lower bound for issuer’s superhedging costs for Ca is given by ps,i(xi, Ca) :=

inf Hs,i(xi) where

Hs,i(xi) :=
{
p ∈ R : ∃ϕ ∈ Ψi(xi + p,A) : (p, ϕ) ∈ (SH)

}
.

Definition 2.6. If the equality ps,i(xi, Ca) = min Hs,i(xi) holds, then ps,i(xi, Ca) is de-
noted as p̆s,i(xi, Ca) and called the issuer’s minimum superhedging cost for Ca.

We also examine issuer’s strict superhedging strategies and related costs. The lower
bound for issuer’s strict superhedging costs for Ca is given by pa,i(xi, Ca) := inf Ha,i(xi)
where

Ha,i(xi) :=
{
p ∈ R : ∃ϕ ∈ Ψi(xi + p,A) : (p, ϕ) ∈ (AO)

}
.
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Definition 2.7. If pa,i(xi, Ca) = min Ha,i(xi), then it is denoted as p̆a,i(xi, Ca) and called
the issuer’s minimum strict superhedging cost for Ca.

It is readily seen that Ha,i(xi) is the complement of Hf,i(xi) and thus, in view of
Lemma 2.4, the equality pa,i(xi, Ca) = pf,i(xi, Ca) holds under Assumption 2.3.

Assumption 2.3 entails the following lemma (for its proof, see [44]).

Lemma 2.8. If Assumption 2.3 is satisfied, then the equality ps,i(xi, Ca) = pa,i(xi, Ca)

holds and thus pf,i(xi, Ca) = ps,i(xi, Ca) = pa,i(xi, Ca).

2.2.3 Issuer’s acceptable price

Our next goal is to examine the following question: under which assumptions a suitably
defined replication cost of an American contract is at the same time the maximum fair
price and the minimum superhedging cost for the issuer? The answer to this question
and an analogous one for the holder (see Section 3.1.3) leads to the important concept
of a unilateral acceptable price. In the issuer’s case, we will also examine important
stopping times related to the break-even condition (BE).

Definition 2.9. If condition (BE) is satisfied by (p, ϕ, τ) ∈ R × Ψi(xi + p,A) × T , then
the stopping time τ ∈ T is called an issuer’s break-even time for the pair (p, ϕ) ∈
R×Ψi(xi + p,A).

Even when a pair (p, ϕ) is fixed, the uniqueness of an issuer’s break-even time τ is not
ensured, in general. Any issuer’s break-even time can be seen as a holder’s exercise time
but we will argue that an issuer’s break-even time is unlikely to be a rational exercise
time for the holder. In fact, it may not be advantageous for the holder to exercise at a
stopping time that causes the issuer to break even or prohibits the issuer’s arbitrage
opportunities. Firstly, usually the holder is not informed about the issuer’s trading
strategy. Secondly, the holder should be behaving in a rational way for his own payoff
and hedging abilities. A holder’s rational exercise time can be identified with a particular
instance of a holder’s break-even time, which is introduced in Definition 3.1, see Remark
3.23 for more details.

We work hereafter under Assumption 2.3 and thus, in view of Lemma 2.8, the
following equalities are valid

pf,i(xi, Ca) = ps,i(xi, Ca) = pa,i(xi, Ca).

The lower bound for issuer’s replication costs for Ca is given by pr,i(xi, Ca) := inf Hr,i(xi)
where

Hr,i(xi) :=
{
p ∈ R | ∃ (ϕ, τ) ∈ Ψi(xi + p,A)× T : (p, ϕ) ∈ (SH) & (p, ϕ, τ) ∈ (BE)

}
.

Definition 2.10. If the equality pr,i(xi, Ca) = min Hr,i(xi) holds, then pr,i(xi, Ca) is de-
noted as p̆r,i(xi, Ca) and called the issuer’s minimum replication cost for Ca.

Definition 2.10 focuses on a particular issuer’s superhedging strategy for which a
break-even time exists and we do not impose any restrictions on other issuer’s trading
strategies. Hence, in principle, it may happen that for p ∈ Hr,i(xi) there exists another
pair, say (p, ψ), which is an issuer’s strict superhedging strategy and this would mean that
p would fail to be an issuer’s fair price for Ca. To eliminate this potential shortcoming of
Definition 2.10 we impose, in addition, the no-arbitrage condition on all issuer’s trading
strategies associated with p. The lower bound for issuer’s fair replication costs for Ca is
given by pf,r,i(xi, Ca) := inf Hf,r,i(xi) where

Hf,r,i(xi) :=
{
p ∈ R | ∃ (ϕ, τ) ∈ Ψi(xi + p,A)× T : (p, ϕ) ∈ (SH) & (p, ϕ, τ) ∈ (BE);

∀ϕ′ ∈ Ψi(xi + p,A)∃ τ ′ ∈ T : (p, ϕ′, τ ′) ∈ (NA)
}
.
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Definition 2.11. If the equality pf,r,i(xi, Ca) = min Hf,r,i(xi) holds, then pf,r,i(xi, Ca) is
denoted as p̆f,r,i(xi, Ca) and it is called the issuer’s minimum fair replication cost for Ca.
If the set Hf,r,i(xi) has a unique element, then it is denoted as pi(xi, Ca) and called the
issuer’s acceptable price for Ca.

It is easy to check that the following inclusions and equality are valid

Hs,i(xi) ⊇ Hr,i(xi) ⊇ Hf,r,i(xi) = Hf,i(xi) ∩Hr,i(xi)

and thus we obtain

pf,i(xi, Ca) = ps,i(xi, Ca) ≤ pr,i(xi, Ca) ≤ pf,r,i(xi, Ca). (2.1)

The following main result of Section 2.2 summarizes the fundamental properties of
various issuer’s costs associated with the pricing and hedging of an American contract Ca.
It shows that the issuer’s acceptable price pi(xi, Ca), provided that it exists, satisfies all
desirable properties of a contract’s price from the issuer’s perspective. For the detailed
proof of Proposition 2.12, the interested reader is referred to Kim et al. [44].

Proposition 2.12. If Assumption 2.3 is satisfied and Hf,r,i(xi) 6= ∅, then it has a
unique element. Moreover, the issuer’s acceptable price pi(xi, Ca) is finite and sat-
isfies pi(xi, Ca) = p̂f,i(xi, Ca) = p̆r,i(xi, Ca) = p̆s,i(xi, Ca).

It is clear that in order to make use of Proposition 2.12, we need to show that the set
Hf,r,i(xi) is nonempty. This goal will be achieved in Section 2.4 using a BSDE approach
in a fairly general setup. Subsequently, in Section 2.5, we will study the properties of
the issuer’s break-even times.

2.3 Dynamics of the wealth process

Before examining a BSDE approach to the issuer’s valuation, we need first to describe
the main features of the mechanism of nonlinear trading. For concreteness, we introduce
explicit notation for cash accounts, risky assets, and funding accounts associated with
risky assets. However, our further developments are independent of the choice of any
particular model for primary traded assets and thus the approach to American contracts
developed in the present paper is capable of covering a broad spectrum of nonlinear
market models. To emphasize this universality, we will later postulate that the wealth
dynamics for the issuer’s and holder’s trading strategies are given by generic SDEs (2.7)
and (3.5), respectively, rather than any more specific equations.

Let (Ω,F ,F,P) be a filtered probability space satisfying the usual conditions of right-
continuity and completeness. The processes S1, S2, . . . , Sn model prices of arbitrary
traded securities, such as, stocks, stock options, interest rate swaps, currency options,
cross-currency swaps, CDSs, etc., and thus they are not assumed to be strictly positive.
Let Bl and Bb, denote the lending and borrowing unsecured cash accounts, respectively.
We postulate that: (a) for i = 1, 2, . . . , n, the process Si is an F-semimartingale and the
cumulative dividend stream Ai is a process of finite variation with Ai0 = 0, (b) Bl, Bb are
strictly positive, continuous processes of finite variation with Bl0 = Bb0 = 1.

Due to peculiarities in the wealth dynamics under nowadays ubiquitous market
frictions, one needs to study the wealth dynamics for self-financing strategies under
alternative assumptions about trading and netting. To illustrate the concept of nonlinear
trading through explicit examples, we will consider two instances; first, a model with
partial netting and, second, a model with idiosyncratic funding costs and collateralization.
In the first model, we will consider the contract without collateralization and, in the
second one, we will introduce a collateralized contract to show how the presence of the
margin account affects the dynamics of the wealth process.
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2.3.1 Market model with partial netting

In this subsection, we focus on a market model with partial netting, which was introduced
in Bielecki and Rutkowski [12]. Specifically, we assume that:
(a) short cash positions in risky assets S1, S2, . . . , Sn are aggregated and the proceeds
from short-selling are available for trading.
(b) long cash positions in risky assets Si are funded from their respective funding
accounts Bi,b, which can be interpreted as secured loans in the repo market. Here Bi,b

is a strictly positive, continuous process of finite variation with Bi,b0 = 1.
(c) all positive and negative cash flows from the external cash flow stream A of the
contract and a trading strategy ϕ, inclusive of the proceeds from short-selling of risky
assets, are reinvested in traded assets.

An issuer’s trading strategy is formally composed of his initial endowment x, a
process ϕ =

(
ξ1, . . . , ξn, ψl, ψb, ψ1,b, . . . , ψn,b,

)
and the cash flow A. The components

of ϕ represent positions in the risky assets Si, i = 1, 2, . . . , n, the unsecured lending
cash account Bl, the unsecured borrowing cash account Bb, the funding accounts
Bi,b, i = 1, 2, . . . , n for risky assets. Consistently with (a)–(c), we postulate that:
(i) ψlt ≥ 0, ψbt ≤ 0 and ψltψ

b
t = 0 for all t ∈ [0, T ],

(ii) ψi,bt = −(Bi,bt )−1(ξitS
i
t)

+ for every i = 1, 2, . . . , n and all t ∈ [0, T ].
The issuer’s initial endowment x is interpreted as either a positive or negative amount

of cash he owns before entering into a contract. Hence after he engages in a transaction
at time 0, his initial wealth becomes V0 := x + p0 where p0 is the initial price of the
contract, as seen by the issuer.

The next definition introduces a suitable version of the self-financing property for a
trading strategy in the model with partial netting.

Definition 2.13. An issuer’s trading strategy (x, ϕ,A) is self-financing whenever the
issuer’s wealth V (x, ϕ,A), which is given by

Vt(x, ϕ,A) =

n∑
i=1

ξitS
i
t +

n∑
i=1

ψi,bt Bi,bt + ψ0,l
t Blt + ψ0,b

t Bbt , (2.2)

satisfies, for every t ∈ [0, T ],

Vt(x, ϕ,A) = x+

n∑
i=1

∫
(0,t]

ξiu d(Siu +Aiu) +

n∑
i=1

∫ t

0

ψi,bu dBi,bu +

∫ t

0

ψlu dB
l
u +

∫ t

0

ψbu dB
b
u +At.

From ψi,bt = −(Bi,bt )−1(ξitS
i
t)

+, i = 1, 2, . . . , n and (2.2), we obtain

Vt(x, ϕ,A) = ψltB
l
t + ψbtB

b
t −

n∑
i=1

(ξitS
i
t)
−.

Since we postulated that ψlt ≥ 0, ψbt ≤ 0 and ψltψ
b
t = 0 for all t ∈ [0, T ], we also have that

ψlt = (Blt)
−1
(
Vt(x, ϕ,A) +

n∑
i=1

(ξitS
i
t)
−
)+

and

ψbt = −(Bbt )
−1
(
Vt(x, ϕ,A) +

n∑
i=1

(ξitS
i
t)
−
)−
.

Consequently, we obtain the following result showing that, for a given (x,A), the choice
of the process ξ uniquely determines the trading strategy (x, ϕ,A) and thus also the
unique value process V (x, ϕ,A).
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Lemma 2.14. The dynamics of a self-financing trading strategy (x, ϕ,A) are uniquely
determined by the initial endowment x and processes ξ and A through the following
equation

dVt(x, ϕ,A) =

n∑
i=1

ξit (dSit + dAit)−
n∑
i=1

(ξitS
i
t)

+(Bi,bt )−1 dBi,bt + dAt

+
(
Vt(x, ϕ,A) +

n∑
i=1

(ξitS
i
t)
−
)+

(Blt)
−1 dBlt (2.3)

−
(
Vt(x, ϕ,A) +

n∑
i=1

(ξitS
i
t)
−
)−

(Bbt )
−1 dBbt .

The following standard assumption will allow us to derive more explicit expressions
for the wealth dynamics and thus also to compute the generator for the associated BSDE.
We postulate that the processes Bl, Bb and Bi,b are continuous with Bl0 = Bb0 = Bi,b0 = 1

and such that

dBlt = rltB
l
t dt, dBbt = rbtB

b
t dt, dBi,bt = ri,bt Bi,bt dt,

for some F-adapted processes rl, rb and ri,b such that 0 ≤ rl ≤ rb and rl ≤ ri,b for every
i = 1, 2, . . . , n.

Let the discounted cumulative prices of risky assets be given by the following expres-
sion

S̃i,l,cld
t := (Blt)

−1Sit +

∫
(0,t]

(Blu)−1 dAiu.

The process S̃i,l,cld is aptly specified for the study the non-arbitrage property of market
for the issuer and holder with a non-negative initial endowment. Indeed, if there
exists a probability measure P̃l, which is equivalent to P on (Ω,FT ), and such that the
processes S̃i,l,cld, i = 1, 2, . . . , n are (P̃l,F)-local martingales, then no extended arbitrage
opportunity exists (see [12, 60] for details). To examine the existence of a probability
measure P̃l, we recall the following example of a diffusion-type model (see Remark 4.3
in [60]).

Example 2.15. We consider the classical case where the prices of risky assets are given
by the diffusion-type model. We may assume that each risky asset Si for i = 1, 2, . . . , n

has the ex-dividend price under the real-world probability P governed by

dSit = Sit

(
µit dt+

n∑
j=1

σijt dW
j
t

)
with Si0 > 0. Equivalently, the n-dimensional process S = (S1, S2, . . . , Sn)∗ satisfies

dSt = St(µt dt+ σt dWt)

where S = diag (S1, S2, . . . , Sn) (the diagonal matrix with the entries S1, S2, . . . , Sn)
and W = (W 1,W 2, . . . ,Wn)∗ is an n-dimensional Brownian motion. Furthermore,
µ = (µ1, . . . , µn)∗ is an Rn-valued, FW -adapted process, σ = [σij ] is an n-dimensional
square matrix of FW -adapted processes satisfying the ellipticity condition: there exists a
constant Λ > 0 such that

∑n
i,j=1 (σtσ

∗
t )ij aiaj ≥ Λ‖a‖2 = Λa∗a for all t ∈ [0, T ] and every

a ∈ Rn. For simplicity of presentation, we also assume that the processes µ, σ and κ are
bounded. We now set F = FW where FW is the natural filtration of W . Recall that the
Brownian motion W enjoys the predictable representation property with respect to F
and this property is shared by the process W̃ given by equality (2.4).
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Assuming that the dividend processes satisfy Ait =
∫ t

0
κiuS

i
u du for all i = 1, 2, . . . , n,

we obtain
dS̃i,l,cld

t = (Blt)
−1
(
dSit + dAit − rltSit dt

)
or, more explicitly,

dS̃i,l,cld
t = (Blt)

−1Sit

((
µit + κit − rlt

)
dt+

n∑
j=1

σijt dW
j
t

)
.

Hence, if we denote S̃l,cld := (S̃1,l,cld, S̃2,l,cld, . . . , S̃n,l,cld)∗ and

µ+ κ− rl :=
(
µ1 + κ1 − rl, µ2 + κ2 − rl, . . . , µn + κn − rl

)∗
,

then we may write

dS̃l,cld
t = (Blt)

−1St

((
µt + κt − rlt

)
dt+ σt dWt

)
.

Let us denote lt := σ−1
t (µt + κt − rlt) for all t ∈ [0, T ]. Since µ, σ, κ are assumed to be

bounded and σ to satisfy the ellipticity condition, we see that the process l is bounded as
well and thus we can define the probability measure P̃l on (Ω,FWT ) by setting

dP̃l

dP
= exp

(
−
∫ T

0

lt dWt −
1

2

∫ T

0

|lt|2 dt
)
.

Then the probability measure P̃l is equivalent to P on (Ω,FWT ) and, from Girsanov’s

theorem, the process W̃ l := (W̃ l,1, W̃ l,2, . . . , W̃ l,n)∗ where

dW̃ l
t := dWt + lt dt = dWt + σ−1

t (µt + κt − rlt) dt (2.4)

is an n-dimensional Brownian motion under P̃l. It is clear that under P̃l

dS̃l,cld
t = (Blt)

−1Stσt dW̃
l
t .

Hence the price processes S̃i,l,cld, i = 1, 2, . . . , n are continuous, square-integrable,
(P̃l,F)-martingales and the quadratic variation of S̃l,cld equals 〈S̃l,cld〉t =

∫ t
0
ml
u(ml

u)∗ du

where ml(ml)∗ = Sγγ∗S and where we write γ := (Bl)−1σ.

Remark 2.16. More generally, the process S̃l,cld can be assumed to be an RCLL martin-
gale, which corresponds to the study of an imperfect market model with credit risk. For
more details, see Example 4.5 where the price of a defaultable risky assets is assumed
to be driven by a Wiener process and a jump martingale associated with an extraneous
event, which may represent the default event of either the third party or the counterparty
in an American contract under study.

In view (2.3), we have the following result yielding the dynamics of the wealth process
in the market model with partial netting.

Lemma 2.17. The wealth Y := V (x, ϕ,A) satisfies

dYt =

n∑
i=1

Bltξ
i
t dS̃

i,l,cld
t + fl(t, Y

l
t , ξt) dt+ dAt

where fl : Ω× [0, T ]×R×Rn → R equals

fl(t, y, z) :=

n∑
i=1

rltz
iSit −

n∑
i=1

ri,bt (ziSit)
+ + rlt

(
y +

n∑
i=1

(ziSit)
−
)+

− rbt
(
y +

n∑
i=1

(ziSit)
−
)−
.

We can see that the nonlinearity of the wealth dynamics in the present model arises
due to the different borrowing and lending interest rates (that is, rb 6= rl) and the
postulated netting of positions in risky assets.
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2.3.2 Market model with idiosyncratic funding costs and collateralization

Let us now examine the case of a collateralized contract with the collateral process C
represents the margin account. It is convenient to decompose the process C as follows
Ct = Ct1{Ct≥0} + Ct1{Ct<0} = C+

t − C−t where by convention, C+
t := Ct1{Ct≥0} is the

cash collateral accepted at time t by the issuer whereas C−t := −Ct1{Ct<0} represents
the cash collateral pledged at time t by the issuer. The equality CT = 0 is imposed to
formally ensure that the collateral amount is returned in full to the pledging party at the
contract’s maturity date T . Since the contractual cash flows A are now supplemented by
the collateral process C, the contract is formally represented as (A,C,Xh, T ).

We work throughout under the standing assumption of full rehypothecation, which
means that the cash collateral can be used for trading by the receiving party without any
restrictions; this convention should be contrasted with the case of segregated collateral
(see, e.g. [12]). We denote by Bc the process specifying the interest paid/received on
the margin account. For simplicity, the issuer and holder are implicitly assumed to be
default-free before the maturity date T of a contract at hand. In the presence of a default
event, we would need to specify also the close-out payoff, as in Section 4.

In this subsection, we consider a market with idiosyncratic funding of risky assets.
Specifically, we henceforth postulate that: (a) all positive and negative cash flows from
(A,C) and a trading strategy ϕ are immediately reinvested in traded assets; (b) long
cash positions in risky assets Si are assumed to be funded from their respective funding
accounts Bi,b, which can be interpreted as secured loans in the repo market; (c) cash
amounts from short positions in risky assets Si are kept in segregated accounts and
remunerated at interest rates implied by respective remuneration accounts Bi,l.

We also assume that the processes Bl, Bb, Bi,l, Bi,b and Bc are strictly positive, con-
tinuous processes of finite variation with Bl0 = Bb0 = Bi,l0 = Bi,b0 = Bc0 = 1 such that

dBlt = rltB
l
t dt, dB

b
t = rbtB

b
t dt, dB

i,l
t = ri,lt B

i,l
t dt, dBi,bt = ri,bt Bi,bt dt, dBct = rctB

c
t dt

for some F-adapted and bounded processes rl, rb, ri,l, ri,b and rc satisfying 0 ≤ rlt ≤ rbt
and 0 ≤ ri,lt ≤ rl ≤ r

i,b
t for all t ∈ [0, T ].

In general, an issuer’s trading strategy (x, ϕ,A,C) is composed of his initial en-
dowment x, a process ϕ =

(
ξ1, . . . , ξn, ψ1,l, . . . , ψn,l, ψ1,b, . . . , ψn,b, ψl, ψb, η

)
and cash flow

(A,C). First, the components ξ1, ξ2, . . . , ξn specify the number of shares of risky assets
S1, S2, . . . , Sn and the processes ψi,l and ψi,b represent respective positions in the remu-
neration and funding accounts Bi,l and Bi,b for the ith risky assets. Second, ψl and ψb

are positions in the unsecured lending cash account Bl and the unsecured borrowing
cash account Bb, respectively. Finally, the process η is given in terms of the collateral
account Bc and the collateral process C through the equality η = −(Bc)−1C where the
minus sign means that the interest payments are made by the receiver of the collateral.
The portfolio’s value at time t is denoted as V pt (x, ϕ,A,C) and it equals

V pt (x, ϕ,A,C) =

n∑
i=1

ξitS
i
t +

n∑
i=1

ψi,lt B
i,l
t +

n∑
i=1

ψi,bt Bi,bt + ψltB
l
t + ψbtB

b
t . (2.5)

Consistently with the financial interpretation, we postulate that ψi,lt ≥ 0, ψi,bt ≤ 0, ψlt ≥ 0

and ψbt ≤ 0 for all t ∈ [0, T ]. Let Vt(x, ϕ,A,C) stand for the issuer’s wealth at time t.
Notice that it is not equal to the portfolio’s value since it accounts for the fact that
collateral amount is merely pledged, but not granted, to the receiver and thus it does
not constitute a legitimate part of his wealth. Under the standing assumption of full
rehypothecation, the equality Vt(x, ϕ,A,C) = V pt (x, ϕ,A,C) − Ct is known to hold for
every t ∈ [0, T ] (see [12]) and thus we have the following definition of a self-financing
strategy under idiosyncratic funding of risky assets.

EJP 26 (2021), paper 90.
Page 13/41

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP658
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


American options in nonlinear markets

Definition 2.18. A trading strategy (x, ϕ,A,C) where

ϕ = (ξ1, ξ2, . . . , ξn, ϕ1,l, ϕ2,l, . . . , ϕn,l, ϕ1,b, ϕ2,b, . . . , ϕn,b, ϕl, ϕb, η)

is self-financing if the portfolio’s value V p(x, ϕ,A,C), which is given by (2.5), satisfies
the following conditions, for every t ∈ [0, T ], ψlt ≥ 0, ψbt ≤ 0, ψltψ

b
t = 0,

ψi,lt = (Bi,lt )−1(ξitS
i
t)
−, ψi,bt = −(Bi,bt )−1(ξitS

i
t)

+,

and

V pt (x, ϕ,A,C) = x+

n∑
i=1

∫
(0,t]

ξiu d(Siu +Aiu) +

n∑
i=1

∫ t

0

ψi,lu dBi,lu +

n∑
i=1

∫ t

0

ψi,bu dBi,bu

+

∫ t

0

ψlu dB
l
u +

∫ t

0

ψbu dB
b
u +ACt

where we denote AC := A + C + FC and where the remuneration process FC for the
margin account equals FCt := −

∫ t
0
rcuCu du.

The following result is a straightforward consequence of Definition 2.18.

Lemma 2.19. For any self-financing trading strategy (x, ϕ,A,C), the portfolio’s value
process Y p,l := V p(x, ϕ,A,C) satisfies

dY p,lt =

n∑
i=1

Bltξ
i
t dS̃

i,l,cld
t +Gp,l(t, Y

p,l
t , ξt) dt+ dACt

where the mapping Gl : Ω× [0, T ]×R×Rn → R is given by

Gp,l(t, y, z) :=

n∑
i=1

rltz
iSit +

n∑
i=1

ri,lt (ziSit)
− −

n∑
i=1

ri,bt (ziSit)
+ +

(
rltB

l
ty

+ − rbtBlty−
)
.

Moreover, the wealth process Y l := V (x, ϕ,A,C) satisfies

dY p,lt =

n∑
i=1

Bltξ
i
t dS̃

i,l,cld
t +Gl(t, Y

p,l
t + Ct, ξt) dt+ dAt (2.6)

where Gl(t, y, z) := Gp,l(t, y, z)− rctCt.
Let us now consider the case of an endogenously determined collateral amount.

Specifically, we examine the case of issuer’s collateral, that is, a particular situation
where the collateral amount is computed in reference to the issuer’s wealth, but is
independent of the holder’s wealth. If V (x) is the issuer’s wealth process with an initial
endowment x, then we say that C is the issuer’s collateral (see [60]) if Ct = q(V̄t(x)− Vt)
for t ∈ [0, T ) where q : R → R is some uniformly Lipschitz continuous function such
that q(0) = 0. For example, by setting q(y) = (1 + α1)y+ − (1 + α2)y− for some constant
haircuts α1 > −1 and α2 > −1 we obtain the collateral process C specified as in [12]. In
particular, the case of a fully collateralized contract from the perspective of the issuer is
obtained by taking q(y) = y, that is, by setting α1 = α2 = 0.

Under the assumed convention of issuer’s collateral, we deduce from (2.6) that the
wealth process Y := V (x, ϕ,A,C) is governed by

dYt =

n∑
i=1

Bltξ
i
t dS̃

i,l,cld
t +G(t, Yt, ξt) dt+ dAt

where G(t, y, z) := Gp,l(t, y + q(−y + V̄t(x)), z) − rctq(−y + V̄t(x)). We thus see that the
nonlinearity of the market may come from the different borrowing and lending interest
rates when rb 6= rl, different funding costs for risky assets when ri,b 6= ri,l, but also from
the endogenous collateral when q is a nonlinear function.
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2.3.3 Generic market model

In the preceding subsections, we have shown that, due to additional trading constraints,
the level of an initial wealth y and the choice of an n-dimensional process ξ are sufficient
to uniquely determine the wealth process of an issuer’s self-financing strategy ϕ ∈
Ψi(y,A) and thus, for our further purposes, the pair (y, ϕ) is formally identified with
the pair (y, ξ). In addition, we need also to introduce some kind of admissibility of a
trading strategy and to postulate that the issuer’s market model Mi where the class
Ψi(A) = ∪y∈RΨi(y,A) of all issuer’s admissible trading strategies is arbitrage-free in a
suitable sense. We refer the reader to Bielecki et al. [9, 12] for general versions of the
self-financing property of a trading strategy (see, e.g., Definition 1 in [9] or Definition
4.5 in [12]) and to Nie and Rutkowski [58, 60, 61] for explicit examples of arbitrage-free
nonlinear markets with funding costs and collateralization.

Remark 2.20. Notice that we do not assume that the trading arrangements are identical
for the two parties and thus they use distinct market models Mi and Mh. Although
one may postulate that they can access the same set of risky assets S1, S2, . . . , Sn, it
is also reasonable to assume that the cash and funding accounts are different in their
respective markets, denoted asMi andMh. Similarly, it is natural to assume that both
parties can observe the processes S1, S2, . . . , Sn, Xh and A, but it would be far-stretched
to imagine that they are fully aware about trading conditions and hedging strategy of
the other party.

Several variants of the arbitrage-free property for nonlinear markets were first
examined by El Karoui and Quenez [32] and subsequently extended by Bielecki et
al. [9, 12]. Hence we do not elaborate on that important issue here and we simply
postulate that a market model Mi is regular (hence arbitrage-free), in the sense of
Definition 19 in Bielecki et al. [9]. Notice that the regularity of the issuer’s market model
holds if the associated BSDE for the wealth process enjoys the strict comparison property
and thus we will focus on the latter property in what follows. Analogous assumptions
are implicitly postulated to be satisfied by the holder’s market model without further
explicit mentioning.

In most financial models (in particular, in the two models outlined in preceding
subsections) it can be deduced that the wealth process satisfies the SDE

V it = y −
∫ t

0

hi(u, V iu, ξ
i
u) dQu +

∫ t

0

ξi∗u dS̃u +At

for some mapping hi : Ω×[0, T ]×R×Rn → R and some F-adapted, increasing, continuous,
and bounded process Q. Although in most cases one may take Qt = t for all t ∈ [0, T ],
in fact other choices may be more convenient in some circumstances. Let S̃ denote
the process of discounted cumulative prices of risky assets. Regarding the dynamics of
prices of risky assets, we assume that Sj = Sj0 +N j +Dj where Dj , j = 1, 2, . . . , n are
F-adapted, continuous processes of finite variation and N j , j = 1, 2, . . . , n are (P,F)-local
martingales, which are not necessarily continuous.

To ensure the arbitrage-free property of a nonlinear market, it is common to postulate
the existence of a probability measure P̃ equivalent to P on (Ω,FT ) (as, for instance, in
Example 2.15) such that the process S̃ is a (P̃,F)-local martingale (see [12, 60]) and then
the pricing and hedging can be studied on the probability space (Ω,FT , P̃). To alleviate
the notation, we henceforth assume, without loss of generality, that S̃ = M where M is a
(P,F)-local martingale defined on (Ω,FT ,P). If we assume that S̃ = M , then we can use
results from [62, 63] regarding the existence, uniqueness and comparison property of
solutions to BSDEs and reflected BSDEs in suitable spaces of stochastic processes.

To be more specific, we assume that there exists an Rn×n-valued, F-predictable
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process m and an F-adapted, continuous, nondecreasing process Q with Q0 = 0 such
that, for all t ∈ [0, T ], 〈M〉t =

∫ t
0
mum

∗
u dQu. Let us denote by S2 the space of all real-

valued, RCLL, F-adapted processes X with the norm ‖ · ‖S2 given by

‖X‖2S2 := EP

[
sup
t∈[0,T ]

X2
t

]
<∞

and H2(Q) is the space of equivalence classes of all real-valued, F-progressively measur-
able processes X with respect to the pseudo-norm ‖ · ‖H2(Q) given by

‖X‖2H2(Q) := EP

[ ∫ T

0

X2
t dQt

]
<∞.

We denote by L2(M) the space of all Rn-valued, F-predictable processes X with the
pseudo-norm ‖ · ‖L2(M) given by

‖X‖2L2(M) := EP

[ ∫ T

0

‖mtXt‖2 dQt
]
<∞.

As usual, L2(FT ) stands for the class of all real-valued, FT -measurable random variables
η such that ‖η‖2L2(FT ) = EP(η2) < ∞. Let A2 be the class of nondecreasing, RCLL,

F-predictable processes such that A0 = 0 and EP(A2
T ) < +∞.

Assumption 2.21. For every F-predictable process ξi such that the integral
∫ ·

0
ξi∗u dMu

is well defined, the wealth V i = V i(y, ϕ,A) of the issuer’s admissible trading strategy
(y, ϕ,A) ∈ Ψi(y,A) is F-adapted and it is a unique strong solution to the SDE

V it = y −
∫ t

0

gi(u, V
i
u, ξ

i
u) dQu +

∫ t

0

ξi∗u dMu +At. (2.7)

Remark 2.22. For each fixed ω, we can solve (2.7) as a deterministic differential equa-
tion whose well-posedness holds under some conditions, for instance, when g is uniformly
m-Lipschitz continuous and g(·, 0, ξiu) ∈ H2(Q). Moreover, if the process M is RCLL, then
the process V i −A is RCLL as well.

The following lemma addresses the important issue of the (strict) monotonicity of
the issuer’s and holder’s wealth processes, which are driven by SDEs (2.7) and (3.5),
respectively. Note that since the process z is assumed to be given in the statement of
Lemma 2.23, we may interpret the SDE (2.8) as a deterministic integral equation, which
is assumed to be satisfied for almost all ω ∈ Ω. For an elementary proof of Lemma 2.23,
we refer to [44].

Lemma 2.23. Assume that z is an Rn-valued, F-predictable stochastic process, M is
an Rn-valued F-martingale, the F-adapted process k = k1 − k2 is nondecreasing with
k0 = 0, and A is an RCLL, F-adapted process. Let gl : Ω× [0, T ]×R×Rn → R, l = 1, 2

be P ⊗ B(R)⊗ B(Rn)/B(R)-measurable. Assume that the SDE

vlt = yl −
∫ t

0

gl(u, v
l
u, zu) dQu + klt +

∫ t

0

z∗u dMu +At (2.8)

has a unique solution vl, for l = 1, 2. If g1(t, v2
t , zt) ≤ g2(t, v2

t , zt), d`⊗ dP-a.e. and y1 ≥ y2

(resp. y1 > y2), then v1
t ≥ v2

t (resp. v1
t > v2

t ) for all t ∈ [0, T ].

By applying Lemma 2.23 with y1 = x+ p < x+ p′ = y2, g1 = g2 = gi and z = ξi, it is
easy to check that Assumption 2.3 is met when the wealth process V i(y, ϕ,A) is a unique
solution to (2.7). Therefore, all results on the issuer’s valuation established in Section
2.2 are valid in the present framework.
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Remark 2.24. For the diffusion-type model from Example 2.15, one can develop a PDE
approach to issuer’s and holder’s acceptable prices for the model with partial netting
from Subsection 2.3.1 and the model with idiosyncratic funding costs and collateral
from Subsection 2.3.2. Indeed, with the help of nonlinear Feynman-Kac theorem as
in [29], one can link a solution to reflected BSDE to a parabolic PDE with obstacle.
Then, similarly as in [61], the acceptable price and the replicating strategy can be
obtained through a solution of a nonlinear PDE and thus the classical PDE approach to
American options can be extended to nonlinear markets. Another inspiration for the
study of a generic market model comes from the need to analyze American contracts
with extraneous risk (see Examples 4.5, 4.6 and Remark 4.7 in Section 4).

2.4 Issuer’s acceptable price via a reflected BSDE

In view of its financial interpretation, the nonlinear evaluation Egi,A associated with
the BSDE

Yt = ζs +

∫ s

t

gi(u, Yu, Zu) dQu −
∫ s

t

Z∗u dMu − (As −At) (2.9)

is denoted by E i and called the issuer’s evaluation. To keep the presentation concise,
we directly postulate here that the BSDE (2.9) has the desirable properties, such as:
the existence, uniqueness, and strict comparison property of solutions and we refer the
reader to [62, 63] for the proofs of respective results for BSDEs and reflected BSDEs
(RBSDEs) driven by a multidimensional RCLL martingale.

In particular, we introduce the following assumption, which is justified by Theorem
4.1 in [62] (see also [17, 24, 28, 31, 32, 68] for analogous results in various frameworks).
Notice that E it,s(ζs) = Ys where (Y,Z) is the unique solution to BSDE (2.9).

Assumption 2.25. For every (s, ζs) ∈ [0, T ] × L2(Fs), the BSDE (2.9) has a unique
solution (Y, Z) on [0, s] such that (Y,Z) ∈ H2(Q)×L2(M) and Y −A is RCLL, so that the
issuer’s evaluation E i is well defined.

If the inequality ζs ≥ ζ̂s implies that E it,s(ζs) ≥ E it,s(ζ̂s) for all t ∈ [0, s], then we say

that the comparison property of E i is valid. If, in addition, the equality E i0,s(ζs) = E i0,s(ζ̂s)
implies that E it,s(ζs) = E it,s(ζ̂s) for all t ∈ [0, s], then we say that the strict comparison
property of E i holds. Observe that the strict comparison property of E i holds, provided
that suitable assumptions are satisfied by a financial model of our interest (for a fairly
general result, see Theorem 6.1 in [62]).

Let us recall the following definition related to nonlinear evaluations (see, e.g., Peng
[65]).

Definition 2.26. We say that an F-optional process η is an E i-supermartingale (resp.
an E i-submartingale, an E i-martingale) on [0, T ] if ηs ≥ E is,t(ηt) (resp. ηs ≤ E is,t(ηt),
ηs = E is,t(ηt)) for 0 ≤ s ≤ t ≤ T .

We henceforth denote by X(xi) := V̄ i(xi) − Xh the issuer’s relative reward and
we assume that X(xi) is a square-integrable process belonging to H2(Q). Then, by
Assumption 2.25, the BSDE on [0, T ]

Yt = XT (xi) +

∫ T

t

gi(u, Yu, Zu) dQu −
∫ T

t

Z∗u dMu − (AT −At)

has a unique solution (Y,Z) = (Y x
i

, Zx
i

) ∈ H2(Q)×L2(M). Furthermore, we postulate
that the processX−A belongs to the space S2 and we work under the following postulate,
which is justified by Theorem 3.1 in [63] (see also [2, 3, 21, 33, 34, 36, 37, 46, 47, 48,
54, 59, 66, 69] for various results on reflected BSDEs).
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Assumption 2.27. For a fixed xi ∈ R, the RBSDE with the lower obstacleXt := Xt(x
i) =

V̄ it (xi)−Xh
t for all t ∈ [0, T ]{

dYt = −gi(t, Yt, Zt) dQt + Z∗t dMt + dAt − dKt,

YT = XT , Yt ≥ Xt,
∫ T

0
(Yt −Xt) dK

c
t = 0, ∆Kd

t = Kd
t 1{Yt−=Xt−},

(2.10)

has a unique solution (Y, Z,K) = (Y x
i

, Zx
i

,Kxi) such that (Y, Z,K) ∈ H2(Q)×L2(M)×A2

where Z is an F-predictable process and Y −A is an RCLL process.

The following definition hinges on the concept of the nonlinear optimal stopping
problem studied in Section 5. Although the issuer cannot exercise the contract, Definition
2.28 is essential in the analysis of his pricing and hedging problem.

Definition 2.28. We say that vi(xi, Ca) ∈ R is the value of the issuer’s optimal stopping
problem for Ca if

vi(xi, Ca) = sup
τ∈T
E i0,τ (Xτ (xi))

where Xt(x
i) = V̄ it (xi)−Xh

t for all t ∈ [0, T ].

The following assumption is justified by Theorem 5.3 from the appendix, which is
valid under suitable assumptions on the RBSDE (2.10).

Assumption 2.29. The value vi(xi, Ca) to the issuer’s optimal stopping problem exists
and satisfies vi(xi, Ca) = Y0.

We are ready to analyze the issuer’s minimum superhedging cost. Although the
issuer’s initial endowment xi and his benchmark wealth V̄ i(xi) are not considered in
Dumitrescu et al. [26], the proofs of Proposition 2.30 and Theorem 3.4 in [26] are based
on similar arguments and thus the proof of Proposition 2.30 is given here for the sake of
completeness.

Proposition 2.30. If Assumptions 2.3–2.29 are satisfied and E i has the comparison
property, then the issuer’s minimum superhedging cost is well defined and satisfies

p̆s,i(xi, Ca) = vi(xi, Ca)− xi = Y0 − xi

where (Y, Z,K) = (Y x
i

, Zx
i

,Kxi) is the unique solution to the RBSDE (2.10).

Proof. We first prove that ps,i(xi, Ca) ≤ Y0−xi. It suffices to show that for the initial value
p′ := Y0−xi, we can find an issuer’s superhedging strategy, that is, there exists a trading
strategy ϕ′ ∈ Ψi(xi + p′, A) such that V it (xi + p′, ϕ′) ≥ Xt(x

i) for all t ∈ [0, T ]. To this end,
we set (p′, ϕ′) = (Y0 − xi, Z) where (Y,Z,K) = (Y x

i

, Zx
i

,Kxi) is the unique solution to
the RBSDE (2.10). Then, on the one hand, the value process V i = V i(xi + p′, ϕ′) is a
unique solution to the following SDE where the initial value V i0 = Y0 and the process Z
are fixed

dV it = −gi(t, V it , Zt) dQt + Z∗t dMt + dAt. (2.11)

On the other hand, if (Y, Z,K) solves the RBSDE (2.10), then the process Ỹ = Y can also
be seen as a unique strong solution to the following SDE

dỸt = −gi(t, Ỹt, Zt) dQt + Z∗t dMt + dAt − dKt

where, once again, the initial value Ỹ0 = Y0 and the processes Z and K are given.
Therefore, from Lemma 2.23 with g1 = g2 = g we infer that V it ≥ Ỹt = Yt for all
t ∈ [0, T ]. Since Yt ≥ Xt(x

i) for all t ∈ [0, T ], we conclude that V it ≥ Xt(x
i) for all

t ∈ [0, T ]. Consequently, (xi + p′, ϕ′) = (Y0, Z) is an issuer’s superhedging strategy and
thus ps,i(xi, Ca) ≤ Y0 − xi.
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We will now show that ps,i(xi, Ca) ≥ Y0 − xi. Let us consider an arbitrary p ∈ R for
which there exists ϕ ∈ Ψi(xi + p,A) such that (p, ϕ) satisfy (SH). If we can show that
xi + p ≥ Y0, then the inequality ps,i(xi, Ca) ≥ Y0 − xi will hold by the definition of the
lower bound ps,i(xi, Ca). To this end, we observe that V iτ (xi + p, ϕ) ≥ Xτ (xi) for every
τ ∈ T since, by Definition 2.5, we have that V it (xi + p, ϕ) ≥ Xt(x

i) for all t ∈ [0, T ].
Consequently, by applying the mapping E i to both sides and using the comparison

property of E i, we obtain

xi + p = E i0,τ (V iτ (xi + p, ϕ)) ≥ E i0,τ (Xτ (xi)).

Since τ ∈ T is arbitrary, we conclude that xi + p ≥ supτ∈T E i0,τ (Xτ (xi)) = vi(xi, Ca) = Y0

where the second equality follows from Assumption 2.29. Hence ps,i(xi, Ca) ≥ Y0 − xi
and thus we conclude that the equality ps,i(xi, Ca) = Y0 − xi is valid.

Finally, from the first part of the proof, we know that for p′ = Y0 − xi there exists a
trading strategy ϕ′ = Z ∈ Ψi(xi+p′, A) such that V it (xi+p′, ϕ′) ≥ Xt(x

i) for all t ∈ [0, T ] so
that Y0−xi ∈ Hs,i(xi). Consequently, we have that ps,i(xi, Ca) = p̆s,i(xi, Ca) = Y0−xi.

Definition 2.31. A stopping time τ∗ ∈ T is called a solution to the issuer’s optimal
stopping problem if vi(xi, Ca) = v̂i(xi, Ca) where

v̂i(xi, Ca) := E i0,τ∗(Xτ∗(x
i)) = max

τ∈T
E i0,τ (Xτ (xi))

where Xt(x
i) = V̄ it (xi)−Xh

t for all t ∈ [0, T ].

For the first main result in this section, Theorem 2.34, we also need the following
assumption.

Assumption 2.32. The stopping time τ i := inf {t ∈ [0, T ] |Yt = Xt(x
i)} is a (not nec-

essarily unique) solution to the issuer’s optimal stopping problem so that v̂i(xi, Ca) =

E i0,τ i(Xτ i(x
i)).

Remark 2.33. It is possible to check that Assumption 2.32 is valid when the process
X −A is left-upper-semicontinuous along stopping times. Indeed, on the one hand, from
Remark 5.4, we know that under such assumption, the process K is continuous. On
the other hand, using the definition of τ i and recalling the right-continuity of Yτ i and
Xτ i(x

i), we deduce that Yτ i = Xτ i(x
i) and, by the minimality conditions in (2.10), we

have that K = 0 on [0, τ i). The continuity of K implies in turn that K = 0 on [0, τ i], so
that Y is an E i-martingale on [0, τ i], we get E i0,τ i(Yτ i) = Y0. In view of Assumption 2.29,

we have that Y0 = vi(xi, Ca) and thus the equalities E i0,τ i(Xτ i(x
i)) = vi(xi, Ca) = v̂i(xi, Ca)

hold, which means that τ i is a solution to the issuer’s optimal stopping problem.

Theorem 2.34. Let Assumptions 2.3–2.32 be satisfied and let (Y, Z,K) = (Y x
i

, Zx
i

,Kxi)

be the unique solution to the RBSDE (2.10). If E i has the strict comparison property,
then the following assertions are valid:
(i) the pair (Y0 − xi, Z) is an issuer’s replicating strategy for Ca and τ i is an issuer’s
break-even time for the pair (Y0 − xi, Z),
(ii) the issuer’s minimum superhedging and replication costs satisfy

p̆r,i(xi, Ca) = p̆s,i(xi, Ca) = Y0 − xi = E i0,τ i(Xτ i(x
i))− xi = v̂i(xi, Ca)− xi,

(iii) the issuer’s acceptable price pi(xi, Ca) is well defined and

pi(xi, Ca) = p̂f,i(xi, Ca) = p̆r,i(xi, Ca) = p̆s,i(xi, Ca). (2.12)

Proof. Consider the solution (Y,Z,K) = (Y x
i

, Zx
i

,Kxi) to the RBSDE (2.10). From (2.1)
and Proposition 2.30, we already know that

Y0 − xi = ps,i(xi, Ca) = p̌s,i(xi, Ca) ≤ pr,i(xi, Ca).
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Therefore, to establish the equality p̆r,i(xi, Ca) = p̆s,i(xi, Ca), it is enough to show
that the trading strategy (p′, ϕ′) = (Y0 − xi, Z), which is already known to be an issuer’s
superhedging strategy (see the proof of Proposition 2.30), is also an issuer’s replicating
strategy for Ca. We first note that the definition of τ i and the right-continuity of the
issuer’s relative rewardX(xi) and the solution Y to the BSDE yield the equalityXτ i(x

i) =

Yτ i . Consequently, we have that

Y0 = v̂i(xi, Ca) = E i0,τ i(Xτ i(x
i)) = E i0,τ i(Yτ i)

where the first two equalities follow from Assumptions 2.29 and 2.32, respectively. We
will now show that Kτ i = 0. Since (Y, Z,K) solves the RBSDE (2.10), we know that

Y0 = Yτ i +

∫ τ i

0

gi(u, Yu, Zu) dQu −
∫ τ i

0

Z∗u dMu −Aτ i +Kτ i .

Hence Y0 = E i0,τ i(Yτ i +Kτ i) so that E i0,τ i(Yτ i) = E i0,τ i(Yτ i +Kτ i). From the strict compar-

ison property of E i, we conclude that Kτ i = 0 and thus, for all t ∈ [0, τ i],

Yt = Y0 −
∫ t

0

gi(u, Yu, Zu) dQu +

∫ t

0

Z∗u dMu +At.

Finally, using the equality V i0 (Y0, Z) = Y0 and the postulated uniqueness of a solution to
the SDE (2.11), we obtain the equality V it (Y0, Z) = Yt on [0, τ i] and thus, in particular,
V iτ i(Y0, Z) = Yτ i = Xτ i(x

i). We have thus shown that τ i is an issuer’s break-even time for
the pair (Y0 − xi, Z) so that the pair (p′, ϕ′) = (Y0, Z) is an issuer’s replicating strategy
for Ca. Assertion (ii) now follows easily from Proposition 2.30.

For part (iii), it suffices to show that p̆r,i, where the variables (xi, Ca) are suppressed,
belongs toHf,i(xi) or, equivalently, that p̆r,i < p for every p ∈ Ha,i(xi) (recall thatHa,i(xi)
is the complement of Hf,i(xi)). To this end, we will argue by contradiction. Assume that
p̆r,i ∈ Ha,i(xi) so that there exists a strategy ϕ̆ ∈ Ψi(xi + p̆r,i, A) such that (p̆r,i, ϕ̆) satisfy
(AO). Then we have, for every τ ∈ T ,

P
(
V iτ (xi + p̆r,i, ϕ̆) ≥ Xτ (xi)

)
= 1 and P

(
V iτ (xi + p̆r,i, ϕ̆) > Xτ (xi)

)
> 0.

Let us now take τ = τ i. By applying the mapping E i to both sides, we obtain

xi + p̆r,i = E i0,τ i
(
V iτ i(x

i + p̆r,i, ϕ̆)
)
> E i0,τ i(Xτ i(x

i)) = xi + p̆r,i

where the last equality follows from part (ii). This is an obvious contradiction and
thus we have shown that p̆r,i is not in Ha,i(xi). Recall that either Ha,i(xi) = [pa,i,∞)

or Ha,i(xi) = (pa,i,∞) and we claim that in fact the latter case is true. Indeed, from
Assumption 2.25, Lemma 2.8 and part (ii), we have p̆r,i = p̆s,i = pa,i and, since p̆r,i is not
in Ha,i(xi), we have that Ha,i(xi) = (pa,i,∞). Obviously, p̆r,i < p for every p ∈ Ha,i(xi)
and thus p̆r,i belongs toHf,i(xi) meaning that the setHf,r,i(xi) is nonempty. All equalities
in (2.12) now follow from Proposition 2.12.

2.5 Issuer’s break-even times

Throughout this section, we postulate that the assumptions of Theorem 2.34 are
satisfied and the contract Ca is traded at time 0 at the issuer’s acceptable price pi =

pi(xi, Ca). From Definition 2.10 and the proof of Theorem 2.34, we know that there exists
a pair (ϕ′, τ i) ∈ Ψi(xi + pi, A) × T such that (pi, ϕ′) satisfy (SH) and (pi, ϕ′, τ i) satisfy
(BE), specifically, ϕ′ = Z and pi = Y0 − xi where (Y, Z,K) is the unique solution to the
reflected BSDE (2.10).
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Our next goal is to provide a detailed characterization of all issuer’s break-even
times (see Definition 2.9) associated with his replicating strategy (pi, ϕ′). Notice that an
issuer’s break-even time is a purely theoretical concept and it should not be confused
with the holder’s rational exercise time (see Definition 3.20).

To establish Theorem 2.37, which is the second main result, we will use the following
property of solutions to the issuer’s BSDE, whose validity is supported by Theorem 6.1
in Nie and Rutkowski [62].

Assumption 2.35. The following variant of the comparison property holds: if for l = 1, 2{
dY ls = −gi(s, Y ls , Zls) dQs + Zl∗s dMs + dAls,

Y lρ = ξl,

where ρ ∈ T , ξ1 ≥ ξ2 and the process A1 − A2 is nonincreasing, then Y 1
s ≥ Y 2

s for all
s ∈ [0, ρ].

Lemma 2.36. If (Y, Z,K) is a unique solution to the RBSDE (2.10) and Assumption 2.35
is valid, then the process Y is a strong E i-supermartingale on [0, T ], in the sense that
Yσ ≥ E iσ,ρ(Yρ) for every σ, ρ ∈ T such that σ ≤ ρ.

Proof. On the one hand, for any fixed t ∈ (0, T ] the process Ȳs := E is,t(Yt), s ∈ [0, t] solves
the BSDE {

dȲs = −gi(s, Ȳs, Z̄s) dQs + Z̄∗s dMs + dAs,

Ȳt = Yt.

On the other hand, if (Y,Z,K) solves the RBSDE (2.10), then, for any fixed [0, t], the pair
(Ỹ , Z̃) = (Y, Z) is a unique solution to the BSDE{

dỸs = −gi(s, Ỹs, Z̃s) dQs + Z̃∗s dMs + dAs − dKs,

Ỹt = Yt,

where K is a predetermined nondecreasing process. Therefore, in view of Assumption
2.35 with A1 = −K and A2 = 0, the inequality Ys ≥ E is,t(Yt) holds for all s ∈ [0, t] and
thus Y is an E i-supermartingale. Using similar arguments, one can show that for any
σ, ρ ∈ T such that σ ≤ ρ, the inequality Yσ ≥ E iσ,ρ(Yρ) holds.

The following result shows that, under mild assumptions, an issuer’s break-even
time can be identified with a solution to the issuer’s optimal stopping problem. We
stress once again that an issuer’s break-even time cannot be identified with the holder’s
rational exercise time introduced in Definition 3.8 in [26], and thus Theorem 2.37 does
not support Proposition 3.9 in [26]. We write pi = pi(xi, Ca).

Theorem 2.37. Let Assumptions 2.3–2.35 be satisfied and the strict comparison prop-
erty of E i hold. If (Y,Z,K) = (Y x

i

, Zx
i

,Kxi) is the unique solution to the RBSDE (2.10),
for the process ϕ′ = Z ∈ Ψi(xi + pi, A) and an arbitrary τ ′ ∈ T the following assertions
are equivalent:
(i) τ ′ is an issuer’s break-even time for the pair (pi, ϕ′) ∈ R×Ψi(xi + pi, A),
(ii) the triplet (pi, ϕ′, τ ′) satisfies (NA),
(iii) the equality V iτ ′(x

i + pi, ϕ′) = Xτ ′(x
i) holds,

(iv) Xτ ′(x
i) = Yτ ′ and Kτ ′ = 0 and thus Y is an E i-martingale on [0, τ ′],

(v) τ ′ is a solution to the issuer’s optimal stopping problem so that E i0,τ ′(Xτ ′(x
i)) =

v̂i(xi, Ca).
The stopping time τ i = inf {t ∈ [0, T ] |Yt = Xt(x

i)} is the earliest issuer’s break-even
time for (pi, ϕ′).
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Proof. Recall that if ϕ′ = Z, then the pair (pi, ϕ′) is an issuer’s superhedging strategy
for Ca (see the proof of Proposition 2.30). It is thus clear that assertions (i), (ii) and (iii)
are equivalent.
(iii)⇒ (iv). From the proof of Proposition 2.30, we know that V it (xi + pi, ϕ′) ≥ Yt ≥ Xt(x

i)

for all t ∈ [0, T ] and thus, in particular, the inequality V iτ (xi + pi, ϕ′) ≥ Yτ ≥ Xτ (xi) holds
for every τ ∈ T . Since we assumed that (iii) holds, we have V iτ ′(x

i + pi, ϕ′) = Xτ ′(x
i) and

thus V iτ ′(Y0, ϕ
′) = Yτ ′ = Xτ ′(x

i) (recall from Theorem 2.34 that pi = Y0 − xi).
It thus remains to show that Kτ ′ = 0. Since the process V i = V i(Y0, ϕ

′) satisfies the
SDE (2.11), it is an E i-martingale and thus we obtain the following equalities

E i0,τ ′(Yτ ′) = E i0,τ ′
(
V iτ ′(Y0, ϕ

′)
)

= Y0.

Using similar arguments as in the proof of Theorem 2.34, one can now show that Kτ ′ = 0.
(iv)⇒ (iii). By assumption, Yτ ′ = Xτ ′(x

i) and Kτ ′ = 0 and thus the RBSDE (2.10) reduces
to the following BSDE on [0, τ ′]{

dYt = −gi(t, Yt, Zt) dQt + Z∗t dMt + dAt,

Yτ ′ = Xτ ′(x
i).

The above BSDE can also be represented in the forward manner on the stochastic
interval [0, τ ′]

dYt = −gi(t, Yt, Zt) dQt + Z∗t dMt + dAt

where the initial value Y0 and the process Z are given. Similarly, the wealth process
V i := V i(xi + pi, ϕ′) = V i(Y0, Z) solves the following SDE, for t ∈ [0, T ],

dV it = −gi(t, V it , Zt) dQt + Z∗t dMt + dAt

with initial condition V i0 = Y0. From the uniqueness of a solution to the above SDE, we
deduce that V it = Yt for t ∈ [0, τ ′]. In particular, V iτ ′(x

i + pi, ϕ′) = Yτ ′ = Xτ ′(x
i), as was

required to show.
(iv)⇒ (v). The E i-martingale property of Y on [0, τ ′] gives E i0,τ ′(Yτ ′) = Y0. In view
of Assumption 2.29, we have that Y0 = vi(xi, Ca) and thus the equalities E i0,τ ′(Xτ ′) =

vi(xi, Ca) = v̂i(xi, Ca) hold, which means that τ ′ is a solution to the issuer’s optimal
stopping problem.
(v)⇒ (iv). From condition (v) and Assumption 2.29, we obtain the equality Y0 =

E i0,τ ′(Xτ ′(x
i)). If Yτ ′ ≥ Xτ ′ and Yτ ′ 6= Xτ ′(x

i), then the strict comparison property
of E i yields

Y0 = E i0,τ ′(Yτ ′) > E i0,τ ′(Xτ ′) = Y0,

which is a contradiction. This shows that Yτ ′ = Xτ ′(x
i). As in the proof of the Theorem

2.34, Y0 = E i0,τ ′(Xτ ′(x
i)) yields Kτ ′ = 0 and thus Y is an E i-martingale on [0, τ ′].

It remains to show that the last assertion is valid. In view of Assumption 2.32, τ i is a
solution to the issuer’s optimal stopping problem and thus, from part (v), τ i is an issuer’s
break-even time for (pi, ϕ′). In view of part (iv), for any break-even time for (pi, ϕ′), we
have that Xτ ′(x

i) = Yτ ′ . The definition of τ i now shows that it is the earliest issuer’s
break-even time for Ca.

3 Holder’s pricing, hedging and exercising

After examining the issuer’s problem, we now address the issues of pricing, hedging
and exercising of an American contract from the perspective of the holder. Although
some arguments used in this section are similar to those used when analyzing the issuer’s
problems, it is clear that essential modifications of definitions formulated for the issuer
are required since the holder has also the right to exercise an American style option
before its expiration date T .
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3.1 Holder’s unilateral pricing

We consider the holder’s market modelMh = (S,Bh,Ψh), which is assumed to be
arbitrage-free and may coincide with the issuer’s model Mi. We assume that he is
endowed with the pre-trading initial wealth xh ∈ R and his computations refer to the
benchmark wealth process V̄ h(xh). We use the shorthand notation V h(xh − p, ψ) :=

V h(xh − p, ψ,−A) when there is no danger of confusion. Let us consider the extended
market model Mh,p(Ca) in which an American contract Ca is traded by the holder at
time 0 at some initial price p where p is an arbitrary real number.

We first introduce the terminology used in the analysis of the holder’s pricing, hedging
and exercising problems. We say that (p, ψ, τ) ∈ R×Ψh(xh − p,−A)× T satisfy:

(AO′) ⇐⇒ V hτ (xh − p, ψ)−Xh
τ ≥ V̄ hτ (xh) and P

(
V hτ (xh − p, ψ)−Xh

τ > V̄ hτ (xh)
)
> 0,

(SH′) ⇐⇒ V hτ (xh − p, ψ)−Xh
τ ≥ V̄ hτ (xh),

(BE′) ⇐⇒ V hτ (xh − p, ψ)−Xh
τ = V̄ hτ (xh),

(NA′) ⇐⇒ V hτ (xh − p, ψ)−Xh
τ = V̄ hτ (xh) or P

(
V hτ (xh − p, ψ)−Xh

τ < V̄ hτ (xh)
)
> 0.

Similarly to the issuer’s case, property (AO′) (resp. (SH′)) is called the arbitrage opportu-
nity (resp. superhedging) condition for the holder. Condition (BE′) leads to the following
definition.

Definition 3.1. If the equality V hτ ′(x
h − p, ψ) −Xh

τ ′ = V̄ hτ ′(x
h) holds, then the stopping

time τ ′ ∈ T is called a holder’s break-even time for the pair (p, ψ) ∈ R×Ψh(xh − p,−A).

The concept of a holder’s arbitrage opportunity reflects the fact that the holder has
the right to exercise an American contract, that is, to conveniently choose a stopping
time τ at which the contract is settled and terminated. Specifically, a holder’s arbitrage
opportunity in Mh,p(Ca) is a triplet (p, ψ, τ) ∈ R×Ψh(xh−p,−A)×T satisfying condition
(AO′). The following assumption is a holder’s counterpart of Assumption 2.3.

Assumption 3.2. The following strict forward monotonicity property holds: for all
x, p ∈ R, ϕ ∈ Ψh(x − p,A) and p′ < p (resp. p′ > p), there exists a trading strategy
ϕ′ ∈ Ψh(x− p′, A) such that V ht (x− p′, ϕ′, A) > V ht (x− p, ϕ,A) (resp. V ht (x− p′, ϕ′, A) <

V ht (x− p, ϕ,A)) for every t ∈ [0, T ].

From now on, it is assumed throughout that the processes A,Xh, V̄ h and the wealth
process V h(y, ϕ,A) are F-adapted and RCLL although, in fact, it would be enough to
postulate that the processes V̄ h +Xh +A and V h(y, ϕ,A) +A are F-adapted and RCLL.

3.1.1 Holder’s fair prices

The concept of a holder’s fair price is different from the corresponding notion for the
issuer, not only quantitatively but also qualitatively, since only the holder has the right to
exercise the contract and thus our results obtained for the issuer cannot be applied to
the holder’s pricing problem. A real number pf,h(xh, Ca) is a holder’s fair price for Ca if
no holder’s arbitrage opportunity (p, ψ, τ) arises in the extended marketMh,p(Ca) when
p = pf,h(xh, Ca). Hence the set of all holder’s fair prices equals

Hf,h(xh) :=
{
p ∈ R | ∀ (ψ, τ) ∈ Ψh(xh − p,−A)× T : (p, ψ, τ) ∈ (NA′)

}
and the lower bound for the holder’s fair prices is given by

pf,h(xh, Ca) := inf
{
p ∈ R | p is a holder’s fair price for Ca

}
= inf Hf,h(xh). (3.1)

Definition 3.3. If the equality pf,h(xh, Ca) = min Hf,h(xh) holds, then pf,h(xh, Ca) is
denoted as p̆f,h(xh, Ca) and called the holder’s minimum fair price for Ca.
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Lemma 3.4. Let Assumption 3.2 be satisfied. If p ∈ Hf,h(xh), then for any p′ > p we have
that p′ ∈ Hf,h(xh) and thus, if Hf,h(xh) 6= ∅, then either Hf,h(xh) = [ pf,h(xh, Ca),∞) =

[ p̆f,h(xh, Ca),∞) or Hf,h(xh) = (pf,h(xh, Ca),∞).

3.1.2 Holder’s superhedging costs

As for the issuer, we also introduce the notion of a superhedging cost for the holder. The
upper bound for holder’s superhedging costs for Ca equals ps,h(xh, Ca) := sup Hs,h(xh)

where

Hs,h(xh) :=
{
p ∈ R | ∃ (ψ, τ) ∈ Ψh(xh − p,−A)× T : (p, ψ, τ) ∈ (SH′)

}
.

Definition 3.5. If the equality ps,h(xh, Ca) = max Hs,h(xh) holds, then ps,h(xh, Ca) is
denoted as p̂s,h(xh, Ca) and called the holder’s maximum superhedging cost for Ca.

The upper bound for holder’s strict superhedging costs for Ca is given by pa,h(xh, Ca)

:= sup Ha,h(xh) where

Ha,h(xh) :=
{
p ∈ R | ∃ (ψ, τ) ∈ Ψh(xh − p,−A)× T : (p, ψ, τ) ∈ (AO′)

}
.

Definition 3.6. If the equality pa,h(xh, Ca) = max Ha,h(xh) holds, then pa,h(xh, Ca) is
denoted as p̂a,h(xh, Ca) and called the holder’s maximum strict superhedging cost for Ca.

Since Ha,h(xh) is the complement of Hf,h(xh), we deduce from Lemma 3.4 that the
equality pa,h(xh, Ca) = pf,h(xh, Ca) is satisfied if Assumption 3.2 holds for Ψh and −A.
Moreover, we have that either

Ha,h(xh) = (−∞, pa,c(xh, Ca)) and Hf,h(xh) = [ p̆f,h(xh, Ca),∞) (3.2)

or
Ha,h(xh) = (−∞, p̂a,c(xh, Ca) ] and Hf,h(xh) = (pf,h(xh, Ca),∞). (3.3)

Lemma 3.7. If Assumption 3.2 is valid, then the equality ps,h(xh, Ca) = pa,h(xh, Ca) holds
and thus pf,h(xh, Ca) = ps,h(xh, Ca) = pa,h(xh, Ca).

3.1.3 Holder’s acceptable price

The next step is to examine costs of the holder’s replication. The upper bound for
holder’s replication costs for Ca is given by pr,h(xh, Ca) := sup Hr,h(xh) where

Hr,h(xh) :=
{
p ∈ R | ∃ (ψ, τ) ∈ Ψh(xh − p,−A)× T : (p, ψ, τ) ∈ (BE′)

}
.

Definition 3.8. If the equality pr,h(xh, Ca) = max Hr,h(xh) holds, then pr,h(xh, Ca) is
denoted as p̂r,h(xh, Ca) and called the holder’s maximum replication cost for Ca.

To establish the existence of the holder’s acceptable price, as given by Definition 3.9
below, we employ the idea of the holder’s fair replication costs. The upper bound for
holder’s fair replication costs for Ca is given by pf,r,h(xh, Ca) := sup Hf,r,h(xh) where

Hf,r,h(xh) :=
{
p ∈ R | ∃ (ψ, τ) ∈ Ψh(xh − p,−A)× T : (p, ψ, τ) ∈ (BE′) &

∀ (ψ′, τ ′) ∈ Ψh(xh − p,−A)× T : (p, ψ′, τ ′) ∈ (NA′)
}
.

Definition 3.9. If the equality pf,r,h(xh, Ca) = max Hf,r,h(xh) holds, then pf,r,h(xh, Ca) is
denoted as p̂f,r,h(xh, Ca) and called the holder’s maximum fair replication cost for Ca. If
the set Hf,r,h(xh) has a unique element, then it is denoted as ph(xh, Ca) and called the
holder’s acceptable price.
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It is elementary to check that Hs,h(xh) ⊇ Hr,h(xh) ⊇ Hf,r,h(xh) = Hr,h(xh) ∩Hf,h(xh)

and thus, in view of Lemma 3.7, we have

pf,h(xh, Ca) = ps,h(xh, Ca) ≥ pr,h(xh, Ca) ≥ pf,r,h(xh, Ca). (3.4)

The following result corresponds to Proposition 2.12 for the issuer.

Proposition 3.10. If Assumption 3.2 is satisfied and Hf,r,h(xh) 6= ∅, then it has a
unique element. Moreover, the holder’s acceptable price ph(xh, Ca) is finite and satisfies
ph(xh, Ca) = p̆f,h(xh, Ca) = p̂r,h(xh, Ca) = p̂s,h(xh, Ca).

3.2 Holder’s acceptable price via a reflected BSDE

We maintain the setup described in Section 2.3 and we focus on holder’s wealth
process and related BSDE. The following Assumptions 3.11–3.13 are natural holder’s
counterparts of the issuer’s Assumptions 2.21–2.27. Let Ψh(y,−A) be the class of all
holder’s admissible trading strategies with the initial wealth y.

Assumption 3.11. For every F-predictable process ξh such that the integral
∫ ·

0
ξh∗u dMu

is well defined, the wealth V h = V h(y, ψ,−A) of the holder’s admissible trading strategy
(y, ψ) ∈ Ψh(y,−A) is a unique F-adapted solution to the SDE

V ht = y −
∫ t

0

gh(u, V hu , ξ
h
u) dQu +

∫ t

0

ξh∗u dMu −At. (3.5)

In view of Lemma 2.23, it is clear that Assumption 3.2 is met when the holder’s wealth
V h(y, ψ,−A) is given by a unique solution to the SDE (3.5). The nonlinear evaluation
Egh,−A, which is defined through solutions to the BSDE

yt = ζs +

∫ s

t

gh(u, yu, zu) dQu −
∫ s

t

z∗u dMu +As −At, (3.6)

is henceforth denoted by Eh and called the holder’s evaluation.

Assumption 3.12. For every (s, ζs) ∈ [0, T ] × L2(Fs), the BSDE (3.6) has a unique
solution (y, z) on [0, s] such that (y, z) ∈ H2(Q)×L2(M) and y +A is an RCLL process so
that the holder’s evaluation Eh is well defined.

We assume that the holder’s relative reward, which is given by xt(xh) := V̄ ht (xh) +Xh
t

for all t ∈ [0, T ], belongs to H2(Q).

Assumption 3.13. The RBSDE with the upper obstacle xt(xh) = V̄ ht (xh) + Xh
t for all

t ∈ [0, T ]{
dyt = −gh(t, yt, zt) dQt + z∗t dMt − dAt + dkt,

yT = xT , yt ≤ xt,
∫ T

0
(xt − yt) dkct = 0, ∆kdt = ∆kdt 1{yt−=xt−},

(3.7)

has the unique solution (y, z, k) = (yx
h

, zx
h

, kx
h

) in the space H2(Q)×L2(M)×A2 where
z is an F-predictable process and y +A is an RCLL process.

The following definition corresponds to Definition 2.28 for the issuer.

Definition 3.14. We say that vh(xh, Ca) ∈ R is the value of the holder’s optimal stopping
problem for Ca if

vh(xh, Ca) = inf
τ∈T
Eh0,τ (xτ (xh))

where xt(xh) = V̄ ht (xh) +Xh
t for all t ∈ [0, T ].

Assumption 3.15. The value vh(xh, Ca) to the holder’s optimal stopping problem exists
and satisfies vh(xh, Ca) = y0.
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Proposition 3.16. If Assumptions 3.2–3.15 are satisfied and the comparison property
of Eh holds, then

ps,h(xh, Ca) ≤ xh − vh(xh, Ca) = xh − y0 (3.8)

where (y, z, k) = (yx
h

, zx
h

, kx
h

) is the unique solution to the RBSDE (3.7).

Proof. We will show that ps,h(xh, Ca) ≤ xh − y0. By the definition of the supremum, it is
enough to show that xh − y0 ≥ p for all p ∈ Hs,h(xh). From the definition of Hs,h(xh), we
know that for any p ∈ Hs,h(xh), there exists a pair (ψ, τ) ∈ Ψh(xh − p,−A)× T such that
V hτ (xh − p, ψ) ≥ xτ . The comparison property of Eh gives

xh − p = Eh0,τ
(
V hτ (xh − p, ψ)

)
≥ Eh0,τ (xτ (xh))

and thus

xh − p ≥ inf
τ∈T
Eh0,τ

(
V hτ (xh − p, ψ)

)
≥ inf
τ∈T
Eh0,τ (xτ (xh)) = vh(xh, Ca) = y0

where the last equality follows from Assumption 3.15. We have thus shown that
ps,h(xh, Ca) ≤ xh − y0 = xh − vh(xh, Ca).

Definition 3.17. A stopping time τ∗ ∈ T is called a solution to the holder’s optimal
stopping problem if vh(xh, Ca) = v̆h(xh, Ca) where

v̆h(xh, Ca) := Eh0,τ∗(xτ∗(xh)) = min
τ∈T
Eh0,τ (xτ (xh)). (3.9)

Recall that xt(xh) = V̄ ht (xh) +Xh
t for all t ∈ [0, T ].

In the next result, we work under the following postulate, which is known to hold
under mild assumptions (see the appendix).

Assumption 3.18. The stopping time τh := inf {t ∈ [0, T ] | yt = xt(x
h)} is a solution to

the holder’s optimal stopping problem.

The following theorem deals with a solution to the holder’s pricing problem for an
American contract Ca. One of our goals is to show that the set Hf,r,h(xh) is nonempty
and thus, in view of Proposition 3.10, the holder’s acceptable price is well defined.

Theorem 3.19. Let Assumption 3.2–3.18 be satisfied and let (y, z, k) = (yx
h

, zx
h

, kx
h

) be
a unique solution to the RBSDE (3.7). If Eh has the strict comparison property, then:
(i) (xh − y0, z, τ

h) is a holder’s replicating strategy for Ca,
(ii) the holder’s maximum replication cost is well defined and satisfies

p̂r,h(xh, Ca) = p̂s,h(xh, Ca) = xh − y0 = xh − v̆h(xh, Ca) = xh − Eh0,τh(xτh(xh)),

(iii) the holder’s acceptable price ph(xh, Ca) is well defined and

ph(xh, Ca) = p̆f,h(xh, Ca) = p̂r,h(xh, Ca) = p̂s,h(xh, Ca).

Proof. We already know that xh − y0 ≥ ps,h(xh, Ca) ≥ pr,h(xh, Ca) (see (3.4) and (3.8)).
Hence to establish (i) and (ii), it suffices to show that if (y, z, k) is the unique solution to
the RBSDE (3.7), then (p′, ψ′, τ ′) = (xh − y0, z, τ

h) is a holder’s replicating strategy. The
wealth process V h = V h(xh − p′, ψ′) satisfies the SDE

dV ht = −gh(t, V ht , zt) dQt + z∗t dMt − dAt (3.10)

where the initial value V h0 = y0 and the process z are given. The definition of τh and the
right-continuity of the processes y and x(xh) ensure that xτh(xh) = yτh so that

y0 = v̆h(xh, Ca) = Eh0,τh(xτh(xh)) = Eh0,τh(yτh)
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where the second equality is a consequence of Assumption 3.18, and thus we see that
y0 = Eh0,τh(yτh). Therefore, using the strict comparison property of Eh and simple
arguments analogous to those used in the derivation of the equality Kτ i = 0 in the proof
of Theorem 2.34, we obtain the equality kτh = 0. Since kt = 0 on [0, τh], the RBSDE (3.7)
can be interpreted on [0, τh] as the SDE

dyt = −gh(t, yt, zt) dQt + z∗t dMt − dAt

where the initial value y0 = V h0 and the process z are given. From the uniqueness of a
solution to the SDE (3.10), it follows that V h = y on [0, τh]. Hence V hτh = yτh = xτh(xh)

and thus the triplet (p′, ψ′, τ ′) = (xh − y0, z, τ
h) is indeed a holder’s replicating strategy.

For part (iii), we will first show that p̂r,h(xh, Ca) ∈ Hf,h(xh). In view of (3.2) and (3.3),
it is enough to prove that p̂r,h(xh, Ca) > p for every p ∈ Ha,h(xh). To this end, we argue
by contradiction. Let us write p̂ = p̂r,h(xh, Ca). Assume that p̂ ∈ Ha,h(xh) so that there
exists (ϕ̂, τ̂) ∈ Ψh(xh − p̂,−A)× T such that (p̂, ϕ̂, τ̂) satisfies (AO′), that is,

P
(
V hτ̂ (xh − p̂, ϕ̂) ≥ xτ̂ (xh)

)
= 1 and P

(
V hτ̂ (xh − p̂, ϕ̂) > xτ̂ (xh)

)
> 0.

By applying the mapping Eh, we obtain

xh−p̂ = Eh0,τ̂
(
V hτ̂ (xh−p̂r,h, ϕ̂)

)
> Eh0,τ̂ (xτ̂ (xh)) ≥ inf

τ∈T
Eh0,τ (xτ (xh)) = Eh0,τh(xτh(xh)) = xh−p̂

where the last equality comes from part (ii). This is a clear contradiction and thus
we see that p̂r,h(xh, Ca) /∈ Ha,h(xh). In general, either Ha,h(xh) = (−∞, pa,h(xh, Ca)] or
Ha,h(xh) = (−∞, pa,h(xh, Ca)) and we argue that the latter situation occurs. Indeed,
from Lemma 3.7, Proposition 3.16 and part (ii), we obtain p̂r,h(xh, Ca) = p̂s,h(xh, Ca) =

pa,h(xh, Ca) and thus, since p̂r,h(xh, Ca) is not in Ha,h(xh), we conclude that Ha,h(xh) =

(−∞, pa,h(xh, Ca)). It is also clear that p̂r,h(xh, Ca) > p for every p ∈ Ha,h(xh) and thus
p̂r,h(xh, Ca) belongs to Hf,h(xh) so that Hf,r,h(xh) 6= ∅. We complete the proof by making
use of Proposition 3.10.

3.3 Holder’s rational exercise times

A salient feature of an American contract is a holder’s rational exercise time, which
in our framework is defined as follows.

Definition 3.20. We say that τ ∈ T is a rational exercise time for the holder of Ca if the
contract is traded at the holder’s maximum superhedging cost p̂s,h = p̂s,h(xh, Ca) at time
0 and there exists a strategy ψ ∈ Ψh(xh − p̂s,h,−A) such that V hτ (xh − p̂s,h, ψ) ≥ xτ (xh).

In fact, we will use Definition 3.20 within the setup where the equality p̂r,h(xh, Ca) =

p̂s,h(xh, Ca) holds. If, in addition, the strict comparison property for the BSDE with the
driver g is satisfied, then the inequality V hτ (xh − p̂r,h, ψ) ≥ xτ (xh) can be replaced by
the equality V hτ (xh − p̂r,h, ψ) = xτ (xh) so that a rational exercise time is also a holder’s
break-even time (see Remark 3.23).

Note that in Theorem 3.22 we work under the assertions of Theorem 3.19. We
thus already know that the equality p̂r,h(xh, Ca) = p̂s,h(xh, Ca) holds and thus a stopping
time τ ∈ T is a holder’s rational exercise time if the contract is traded at the holder’s
maximum replication cost p̂r,h = p̂r,h(xh, Ca) at time 0 and there exists a strategy
ψ ∈ Ψh(xh − p̂r,h,−A) such that V hτ (xh − p̂r,h, ψ) = xτ (xh). We thus deal with a natural
extension of the classical concept of a rational exercise time for the holder of an American
option when the underlying market model is linear. Notice that in any complete linear
market, but not in a general nonlinear market, any holder’s rational exercise time is also
an issuer’s break-even time (in particular, the equality τh = τ i is satisfied).
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Our next goal is to characterise all holder’s rational exercise times and describe the
earliest and the latest rational exercise times. Results of this kind are well known from
the existing literature on the classical optimal stopping problem based on the expected
value (see, for instance, Kobylanski and Quenez [49]). Similarly to Assumption 2.35, we
now introduce the following assumption for the holder.

Assumption 3.21. The following comparison property holds: if for l = 1, 2{
dyls = −gh(s, yls, z

l
s) dQs + zl∗s dMs + dAls,

ylτ = ξl,

where τ ∈ T , ξ1 ≥ ξ2 and the process A1 − A2 is nonincreasing, then y1
s ≥ y2

s for all
s ∈ [0, τ ].

Recall that an F-optional process η is said to be an Eh-submartingale (resp. an
Eh-martingale) on [0, T ] if ηs ≤ Ehs,t(ηt) (resp. ηs = Ehs,t(ηt)) for all 0 ≤ s ≤ t ≤ T .

Theorem 3.22. Let Assumptions 3.2–3.21 be satisfied. We suppose that Eh has the strict
comparison property. In particular, let (y, z, k) = (yx

h

, zx
h

, kx
h

) be the unique solution to
the RBSDE (3.7). Then a stopping time τ ′ ∈ T is a holder’s rational exercise time if and
only if the following conditions are met:
(i) y is an Eh-martingale on [0, τ ′], that is, kτ ′ = 0,
(ii) the equality yτ ′ = xτ ′(x

h) holds.
The earliest holder’s rational exercise time equals τh := inf {t ∈ [0, T ] | yt = xt(x

h)}. If, in
addition, k is continuous, then τ̄h := inf {t ∈ [0, T ] | kt > 0} is the latest holder’s rational
exercise time.

Proof. Let τ ′ ∈ T be any stopping time such that conditions (i) and (ii) are met. Since
yτ ′ = xτ ′(x

h) and kτ ′ = 0, we see that the triplet (y, z, k) solves the following BSDE on
[0, τ ′] {

dyt = −gh(t, yt, zt) dQt + z∗t dMt − dAt,

yτ ′ = xτ ′(x
h),

which can also be written in the forward manner, for all t ∈ [0, τ ′],

dyt = −gh(t, yt, zt) dQt + z∗t dMt − dAt

where initial condition y0 and the process z are given. Now we take ψ = z and we
recall from Theorem 3.19 that p̂r,h(xh, Ca) = xh − y0. Hence the wealth process V h =

V h(xh − p̂r,h(xh, Ca), ψ) satisfies the following SDE for all t ∈ [0, T ]

dV ht = −gh(t, V ht , zt) dQt + z∗t dMt − dAt

with initial condition V h0 = y0. From the uniqueness of a solution to the above SDE, we
infer that V ht = yt ≤ xt(x

h) for every t ∈ [0, τ ′]. In particular, V hτ ′ = yτ ′ = xτ ′(x
h) and

thus τ ′ is a rational exercise time for the holder of Ca.
Let us now assume that τ ′ is a rational exercise time for the holder of Ca. From

Definition 3.20, it follows that for p = p̂r,h(xh, Ca) = xh − y0 there exists a strategy
ψ ∈ Ψh(xh − p,−A) such that V hτ ′(x

h − p, ψ) ≥ xτ ′(x
h). The comparison property of Eh

yields
y0 = xh − p = Eh0,τ ′

(
V hτ ′(x

h − p, ψ)
)
≥ Eh0,τ ′(xτ ′(xh)) ≥ Eh0,τ ′(yτ ′) (3.11)

where the last inequality is valid since xτ ′(xh) ≥ yτ ′ . For any fixed t ∈ (0, T ], the process
ȳs := Ehs,t(yt) solves the following BSDE on [0, t]{

dȳs = −gh(s, ȳs, z̄s) dQs + z̄∗s dMs − dAs,

ȳt = yt.
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If (y, z, k) is a solution to the RBSDE (3.7), then y satisfies the following BSDE on [0, t]{
dys = −gh(s, ys, zs) dQs + z∗s dMs − dAs + dks,

yt = yt.

Using Assumption 3.21, we get ys ≤ ȳs = Ehs,t(yt) for all s ∈ [0, t] and thus y is an Eh-
submartingale. In fact, by slightly modifying the above proof, one can show that for any
ρ ∈ T we have Ehσ,ρ(yρ) ≥ yσ for all σ ≤ ρ so that y is a strong Eh-submartingale on [0, ρ].
We claim that from (3.11) and the assumed strict comparison property of Eh, we may
deduce that, for every 0 ≤ s ≤ τ ′,

Ehs,τ ′(yτ ′) = ys. (3.12)

Suppose, on the contrary, that this is not true. Then the strict comparison property of
Eh would yield

Eh0,τ ′(yτ ′) = Eh0,s(Ehs,τ ′(yτ ′)) > Eh0,s(ys) ≥ y0,

which would clearly contradict (3.11). We now claim that for 0 ≤ s ≤ t ≤ τ ′, we have
that Ehs,t(yt) = ys. To show this, we observe that (3.12) yields Eht,τ ′(yτ ′) = yt and thus

Ehs,t(yt) = Ehs,t(Eht,τ ′(yτ ′)) = Ehs,τ ′(yτ ′) = ys

where the last equality also comes from (3.12). We thus see that y is an Eh-martingale
on [0, τ ′] and thus kτ ′ = 0. In particular, we have Eh0,τ ′(yτ ′) = y0 and thus, using (3.11),
we obtain

y0 = Eh0,τ ′(xτ ′(xh)) = Eh0,τ ′(yτ ′) = Eh0,τ ′
(
V hτ ′(x

h − p, ψ)
)
. (3.13)

By combining this equality with the inequality yτ ′ ≤ xτ ′(xh) and the strict comparison
property of Eh, we conclude that yτ ′ = xτ ′(x

h). We have thus shown that if τ ′ is a rational
exercise time, then conditions (i)–(ii) are valid.

Let us show that τh is a rational exercise time. From the definition of τh and the
right-continuity of y and x(xh), we infer that yτh = xτh(xh). Equality kτh = 0 has been
already established in the proof of Theorem 3.19. Hence τh satisfies conditions (i)–(ii)
and thus it is one of the holder’s rational exercise times and it is the earliest one, since
yt < xt for all t ∈ [0, τh).

It remains to prove that τ̄h is the latest rational exercise time under an additional
assumption that the process k is continuous so that k = kc. We need to show that
yτ̄h = xτ̄h(xh). For an arbitrary ε > 0, there exists δ ∈ [0, ε] such that kτ̄h+δ > 0. Since∫ T

0

(xt(x
h)− yt) dkt = 0,

from the right-continuity of processes x(xh) and y and the inequality x(xh) ≥ y, we
obtain the equality yτ̄h = xτ̄h(xh). Since, obviously, kt = 0 for t ∈ [0, τ̄h), we also have
kτ̄h = 0. This shows that τ̄h is one of the holder’s rational exercise times. Moreover, it is
the latest one since, if τ ′ ∈ T is such that P(τ ′ > τ̄h) > 0, then P(kτ ′ > 0) > 0 and thus
the equality kτ ′ = 0 cannot hold. Observe that if the continuity of k is not postulated,
then it may happen that kτ̄h 6= 0 in which case τ̄h fails to be a rational exercise time (for
instance, such properties are always true if k = kd).

Remark 3.23. From the proof of Theorem 3.22 (see, in particular, equation (3.13)), one
can see that the inequality V hτ ′(x

h − p, ψ) ≥ xτ ′(xh) and the strict comparison property
of Eh imply that when the equality p̂r,h(xh, Ca) = p̂s,h(xh, Ca) holds, then for any rational
exercise time given by Definition 3.20 we have that V hτ (xh − p̂r,h(xh, Ca), ψ) = xτ (xh),
meaning that a rational exercise time is also a holder’s break-even time. It is also obvious
that a holder’s break-even time is a rational exercise time.
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Thus when the equality p̂r,h(xh, Ca) = p̂s,h(xh, Ca) is satisfied, then the inequality
V hτ (xh − p̂r,h(xh, Ca), ψ) ≥ xτ (xh) in Definition 3.20 can be replaced by the equality
V hτ (xh − p̂r,h(xh, Ca), ψ) = xτ (xh). Note that this is fully consistent with the definition of
a holder’s rational exercise time in a complete, linear market model.

Before concluding this section, let us make some comments on differences between
the present work and the related paper by Dumitrescu et al. [26]. Notice that the concept
of the issuer’s break-even time introduced in Definition 2.9 differs from the notion of
the buyer’s rational exercise time introduced in Definition 3.8 in [26] since the latter
is directly defined as an F-stopping time τ̂ such that E i0,τ̂ (ξτ̂ ) = sup τ∈T E i0,τ (ξτ ) where
ξ is the exercise payoff to the holder. Then the buyer’s rational exercise time can be
characterized using directly the optimality criterion for the nonlinear optimal stopping
problem (see Proposition 3.9 in [26]). Definition 3.8 in [26] hinges on the argument that
if the buyer purchases the option at the seller’s superhedging price, then his rational
exercise time can be identified in the classical way by comparing the exercise payoff
with the continuation value of the option.

4 American options with extraneous risks

Our final goal is to examine the case of contracts of American style that are subject
to extraneous risks. As an example of an extraneous risk, one may consider a vulnerable
American option with a possibility of issuer’s default, under the assumption that the
time when default event occurs cannot be chosen by the issuer. Similarly as in the
paper by Szimayer [70], we adopt the reduced-form approach to credit risk modeling
where the default event is triggered by certain unforeseen circumstances. Recall that a
random time ϑ when the issuer’s default occurs is modelled in [70] using the concept
of stochastic intensity with respect to a reference filtration and it is postulated that the
hypothesis (H) is valid. In the reduced-form approach to modelling of extraneous risks,
it is convenient to introduce two filtrations, hereafter denoted by F and G, respectively,
where F is a subfiltration of G. In a typical default risk model, the filtration G is defined
as the progressive enlargement of F with observations of a random time ϑ. Hence the
default time ϑ is given as a G-stopping time, which is usually assumed to be totally
inaccessible with respect to G, but which is not an F-stopping time. In addition, we will
postulate that the filtration F and G satisfy the hypothesis (H), which is also known as
the immersion property between F and G (see, for instance, [11, 12]).

We now denote by T F and T G the classes of all F-stopping times and all G-stopping
times taking values in [0, T ], respectively. Let T e ⊆ T G stand for the class of all possible
random times of occurrence of some extraneous event, which is supposed to forcibly
terminate a contract of American style and affect its closeout payoff. Similarly, we denote
by T h ⊆ T F the set of all possible exercise times that can be chosen by the holder to
stop and settle the contract. Unless we deal with a contract of a Bermudan style, it is
natural to assume that T h = T F, that is, to postulate that the holder’s decision when to
exercise the contract is unrestricted although, as usual, it should rely on the information
conveyed by the filtration F. Obviously, the specification of the class T e will depend on
the financial interpretation of an extraneous event.

Let Xi, Xh and Xb stand for the F-predictable, RCLL processes representing the
payoffs to the issuer up to time ϑ ∧ τ ∧ T where T is the contract’s notional maturity. A
role played by each of these processes can be recognized from Definition 4.1. Notice
that although the payoff given by (4.1) is similar to the payoff of a game option, due to
the fact that ϑ is not chosen by the issuer, the contract given by Definition 4.1 cannot be
directly addressed by applying results from papers on game contracts, although we will
employ a formal connection to a game contract in Section 4.2.
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Definition 4.1. An American contract with extraneous risks, which is denoted as Cv, is
given by:
(i) the class T h ⊆ T F of possible exercise times τ by the holder,
(ii) the class T e ⊆ T G of random times ϑ when an extraneous event may occur,
(iii) the F-optional process A with A0 = 0 of external cash flows stopped strictly before
ϑ ∧ τ ,
(iv) the terminal payoff to the issuer occurs at time ϑ∧ τ ∧T and equals, for every ϑ ∈ T e
and τ ∈ T h,

I(Xi, Xh, Xb, ϑ, τ) := Xi
ϑ1{ϑ<τ} +Xh

τ 1{τ<ϑ} +Xb
ϑ1{τ=ϑ}. (4.1)

Remark 4.2. American and game options with credit risk were also studied in recent
papers by Dumitrescu et al. [25, 26]. It should be stressed, however, that their default
risk model concentrates on the third-party credit risk, which is formally represented
by a sudden decline to zero of the price process of a reference defaultable risky asset
whereas Szimayer [70] and the present work focus on the counterparty credit risk, that
is, a possible failure of a party in an option contract to fulfil his obligations.

We will now describe more explicitly the class T e by focusing first on the case when
T e is a singleton. Suppose that we are given a process Γ, which is defined on a filtered
probability space (Ω,F ,F,P) and satisfies, for every t ∈ R+

Γt =

∫ t

0

γu du

for some strictly positive, F-progressively measurable process γ, which is called the
F-intensity. To provide an explicit construction of a random time ϑ with the F-intensity
γ, we postulate that the underlying probability space (Ω,F ,F,P) is sufficiently rich to
support a random variable ξ, which is uniformly distributed on the interval [0, 1] and
independent of F∞ under P. Then we define the random time ϑ : Ω→ R+ by setting

ϑ := inf {t ∈ R+ : e−Γt ≤ ξ} = inf {t ∈ R+ : Γt ≥ ζ} (4.2)

where the random variable ζ = − ln ξ has a unit exponential law under P. Then we have,
for any two dates 0 ≤ t ≤ u,

P(ϑ ≤ t | F∞) = P(ϑ ≤ t | Fu) = P(ϑ ≤ t | Ft) = 1− e−Γt .

It is worth noting that ϑ is a G-totally inaccessible stopping time with the G-compensator
Γt∧τ meaning that the process M̃t := 1{ϑ≤t} − Γt∧τ is a G-martingale.

Remark 4.3. More generally, one may assume that the F-intensity process is not unique
but belongs to some set of intensity processes so that the above construction generates
a whole class T e of random times. It is not necessary to assume that a random variable ξ
is identical for all random times from T e. It is easy to check that the immersion property
between F and G still holds when G is defined as the progressive enlargement of F
through observations of all random times from the class T e. Then one may assume, for
instance, that the contract is stopped at a random time equal to min{ϑ : ϑ ∈ T e}. This
could cover the case of two defaultable counterparties but also the case of reference
credit risk.

To cover models with several sources of extraneous risks, we make the following
generic assumption regarding the class T e and its impact on an American contract.

Assumption 4.4. The class T e is the set of random times ϑ, which is given by (4.2) with
a strictly positive F-intensity process γ, and such that the contract is stopped at ϑ ∧ τ
when it is exercised at τ ∈ T F by its holder.
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For brevity, we will sometimes write I(ϑ, τ) instead of I(Xi, Xh, Xb, ϑ, τ). We hence-
forth postulate that Xb = Xi since when an extraneous event occurs and a contract
is terminated, the concurrent holder’s decision to exercise a contract does not affect
the recovery payoff. In fact, according to our assumptions regarding ϑ, we have that
P(ϑ = τ) = 0 for every F-stopping time τ and thus the process Xb is immaterial anyway.
We thus see that the payoff to the issuer at time τ ∧ ϑ ∧ T can be represented as follows

I(ϑ, τ) = Xi
ϑ1{ϑ≤τ} +Xh

τ 1{τ<ϑ} = Xi
ϑ1{ϑ<τ} +Xh

τ 1{τ<ϑ}

and, obviously, the payoff to the holder equals −I(ϑ, τ). For the sake of generality, we
do not postulate that −Xh ≥ −Xi, although this property is expected to hold for a
vulnerable American call (or put) option as a result of the natural assumption that the
issuer’s recovery rate takes values in the interval [0, 1]. For instance, in the case of a
vulnerable American call option we have Xh

t = −(St − K)+ and Xi
t = δtX

h
t for some

F-adapted, RCLL recovery rate δ. Hence the issuer’s payoff equals

I(ϑ, τ) = −δϑ(Sϑ −K)+1{ϑ<τ} − (Sτ −K)+1{τ<ϑ}.

Example 4.5. In the above example, the recovery process is given as a function of
the price process of a certain default-free asset. Let us observe that the case where
a defaultable asset Sn+1 pays a predetermined recovery as default is covered by the
following setup (see [10]). To this end, we consider a financial market with a defaultable
asset Sn+1 satisfying

dSn+1
t = Sn+1

t−

(
µn+1
t dt+

n∑
j=1

σn+1,j
t dW j

t + κ̃t dM̃t

)
with Sn+1

0 > 0. The case of a constant recovery payoff δ ≥ 0 corresponds to κ̃t =

δ(Sn+1
t− )−1 − 1 so that

dSn+1
t = Sn+1

t−

(
µn+1
t dt+

n∑
j=1

σn+1,j
t dW j

t + (δ(Sn+1
t− )−1 − 1) dM̃t

)
.

Alternatively, if the recovery payoff is proportional to the pre-default value Sn+1
ϑ− , we

have κ̃t = δ − 1 and thus Sn+1 satisfies

dSn+1
t = Sn+1

t−

(
µn+1
t dt+

n∑
j=1

σn+1,j
t dW j

t + (δ − 1) dM̃t

)
.

Finally, in the special case where κ̃ = −1 (i.e., δ = 0), we deal with the zero recovery
scheme.

As in Example 2.15, by using the martingale approach of the defaultable asset Sn+1

(see [11]) as well as the general Girsanov’s theorem (see Theorem 3.4.1 of [11]), we can
also find an probability measure P̃l which is equivalent to P on (Ω,GT ) such that the
processes S̃i,l,cld, i = 1, 2, . . . , n are continuous, square-integrable, (P̃l,G)-martingales
and S̃n+1,l,cld is an RCLL, (P̃l,G)-martingale. Then, according to [12, 60], there will be
no extended arbitrage opportunity in our general nonlinear market model (in particular,
models from Subsections 2.3.1 and 2.3.2). Hence results obtained in Sections 2 and 3
can be applied directly to the pricing and hedging of American options in this kind of a
nonlinear market model with default.

Example 4.6. Formally, the recovery payoff Xi
ϑ at time of default is specified by a

predetermined recovery process Xi, which is independent of the jump of the defaultable
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asset (see, e.g., [70]). Note that the model and some results from Szimayer [70] are
special cases of our model and results. In particular, we show in Section 4.1 that
the issuer’s pricing and hedging problem formally reduces to the case of a standard
American contract with the issuer’s reward process equal to the minimum of Xi and Xh.

Therefore, for that kind of an American option with extraneous risks, we can use
the theory of reflected BSDEs driven by an RCLL martingale (see equation (2.10)) to
obtain issuer’s acceptable price, which thus also corresponds to the value of the issuer’s
nonlinear optimal stopping problem. For example, if the model with partial netting from
Section 2.3.1 is assumed, the reflected BSDE (2.10) has the form dYt =

∑n
i=1B

l
tξ
i
t dS̃

i,l,cld
t + fl(t, Y

l
t , ξt) dt+ dAt − dKt,

YT = XT , Yt ≥ Xt,
∫ T

0
(Yt −Xt) dK

c
t = 0, ∆Kd

t = Kd
t 1{Yt−=Xt−},

where

fl(t, y, z) :=

n∑
i=1

rltz
iSit −

n∑
i=1

ri,bt (ziSit)
+ + rlt

(
y +

n∑
i=1

(ziSit)
−
)+

− rbt
(
y +

n∑
i=1

(ziSit)
−
)−
.

Clearly, similar results can be obtained for the model with idiosyncratic funding costs
and collateral from Section 2.3.2 and, in the special case where the model is linear, one
can obtain Theorem 2 of [70]. It should be noted that in [70] the author considered the
pricing and hedging problem of the American options with extraneous risks from the
perspective of issuer only and, as expected, the holder’s pricing and hedging problem is
quite different. We will see in Section 4.2 that it is associated with a game contract with
reward processes Xi and Xh and the holder’s acceptable price is given by a solution to a
doubly reflected BSDE driven by an RCLL martingale (see, e.g., [63]), which also means
that it coincides with the upper value of the related nonlinear Dynkin game, which was
studied in Kim et al. [45].

Remark 4.7. We mention that in our generic model (see Assumption 2.21 in Subsection
2.3.3), the issuer’s wealth V i satisfies the following SDE

V it = y −
∫ t

0

gi(u, V
i
u, ξ

i
u) dQu +

∫ t

0

ξi∗u dMu +At

where M is a general RCLL martingale which can have several jumps. This allows us
to apply the results of the present paper to study the pricing and hedging American
contracts in the market model with dependent defaults (see Chapter 5 in [11]). By
combining this feature of the market with Examples 2.15, 4.5 and 4.6, we argue that
it is necessary to study market models where the wealth dynamic is driven by RCLL
martingales. This gives us another motive to study a generic market model.

4.1 Issuer’s pricing and hedging

We first analyze the issuer’s pricing and hedging problem for an American contract
with extraneous risks. Our goal is to show that it can be reduced to the case of a standard
American contract with the issuer’s reward process equal to the minimum of Xi and
Xh. Indeed, since the issuer has neither the ability to exercise the option nor to control
the timing of an extraneous event, he needs to hedge not only against the event of early
exercise of the option by its holder, but also protect himself from an extraneous event,
which is triggered by a dummy player (or nature).

This observation leads to the following definition of an issuer’s superhedging strategy
for Cv. Notice that the class T e is henceforth specified as in Remark 4.3 but in the proofs
of Propositions 4.9 and 4.11, it suffices to assume that T e is nonempty and focus on a
random time from Assumption 4.4.
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Definition 4.8. A pair (p, ϕ) ∈ R×Ψi(xi + p,A) is an issuer’s superhedging strategy for
Cv if, for every ϑ ∈ T e and τ ∈ T h,

V iϑ∧τ (xi + p, ϕ) + I(ϑ, τ) ≥ V̄ iϑ∧τ (xi). (4.3)

We denote Ît := min (Xi
t , X

h
t ) and

X̂t(x
i) := V̄ it (xi)− Ît = V̄ it (xi)−min (Xi

t , X
h
t ) = V̄ it (xi) + max (−Xi

t ,−Xh
t ).

We henceforth assume that T h = T F. Moreover, we assume that the perfect hedging
of extraneous risks is impossible. To this end, we postulate that the price processes
of traded assets, and thus also the wealth process of an issuer’s trading strategy, are
F-adapted.

Proposition 4.9. A pair (p, ϕ) ∈ R×Ψi(xi + p,A) is an issuer’s superhedging strategy
for Cv if and only if V it (xi + p, ϕ) ≥ X̂t(x

i) for all t ∈ [0, T ], that is, P(V it (xi + p, ϕ) ≥
X̂t(x

i), ∀ t ∈ [0, T ]) = 1.

Proof. Since I(ϑ, τ) ≥ Îϑ∧τ , it is clear that if the inequality V it (xi + p, ϕ) ≥ X̂t(x
i) holds

for all t ∈ [0, T ], then (p, ϕ) satisfies (4.3). Conversely, let us assume that a pair (p, ϕ)

satisfies Definition 4.8. Since V i(xi + p, ϕ) and X̂(xi) are F-optional processes, it suffices
to show that V iτ (xi + p, ϕ) ≥ X̂τ (xi) for every τ ∈ T F. Assume, on the contrary, that there
exists τ ∈ T F such that P(A) > 0 where A := {V iτ (xi + p, ϕ) < X̂τ (xi)}. Let us denote
C1 := {Xh

τ ≤ Xi
τ} and C2 := {Xh

τ > Xi
τ}. Then either P(A1) > 0 or P(A2) > 0 where we

denote

A1 := A ∩ C1 = {V iτ (xi + p, ϕ) +Xh
τ < V̄ iτ (xi)}

and

A2 := A ∩ C2 = {V iτ (xi + p, ϕ) +Xi
τ < V̄ iτ (xi)}.

Our goal is to show that if P(A) > 0, then there exists an F-stopping time τ̂ such that

P
(
V iϑ∧τ̂ (xi + p, ϕ) + I(ϑ, τ̂) < V̄ iϑ∧τ̂ (xi)

)
> 0, (4.4)

which contradicts (4.3). We first assume that P(A1) > 0. In that case, we observe that
P(A1∩{τ < ϑ}) > 0 since A1 ∈ Fτ ⊂ F∞ and ζ is independent of F∞. It is thus sufficient
to observe that I(ϑ, τ) = Xh

τ on the event {τ < ϑ} so that (4.4) is valid with τ̂ = τ .
Let us now assume that P(A2) > 0. Although I(ϑ, τ) = Xi

ϑ on the event {τ ≥ ϑ}, it
is not sufficient to show that P(A2 ∩ {τ ≥ ϑ}) > 0 since manifestly P(A2 ∩ {τ = ϑ}) ≤
P(τ = ϑ) = 0. However, since the processes V i(xi + p, ϕ), Xi and V̄ i(xi) are RCLL, there
exists an F-stopping time τ̂ such that τ̂ > τ on A2 and P(Â2) > 0 where

Â2 =
{
V it (xi + p, ϕ) +Xi

t < V̄ it (xi), ∀ t ∈ [τ, τ̂ ]
}
.

Similar arguments as in the first step show that P(Â2 ∩ {τ < ϑ < τ̂}) > 0, which in turn
implies that (4.4) holds with τ̂ . We conclude that P(A) = 0 for every F-stopping time τ
and thus the proof is completed.

Proposition 4.9 shows that the issuer’s pricing and hedging problem for an American
contract with extraneous risks reduces to the case of a standard American contract
Ca = (A, Î, T ) where Î = min (Xh, Xi). Hence all results from Section 2 can be applied,
provided that suitable modifications of assumptions introduced in Section 2 are valid
when the process Î is substituted for Xh so that the issuer’s relative reward X(xi) =

V̄ i(xi)−Xh is replaced by the process X̂(xi) := V̄ i(xi)− Î.
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In particular, we say that (vi(xi, Cv), τ∗,i) ∈ R×T F is a solution to the issuer’s optimal
stopping problem for Cv if vi(xi, Cv) = E i0,τ (X̂τ∗,i(x

i)) where

vi(xi, Cv) = max
τ∈T

E i0,τ (X̂τ (xi)) = max
τ∈T

E i0,τ
(
V̄ iτ (xi) + max (−Xi

τ ,−Xh
τ )
)

and the issuer’s acceptable price for Cv satisfies pi(xi, Cv) = vi(xi, Cv)− xi.

4.2 Holder’s pricing, hedging and exercising

The holder makes decisions about his hedging and exercising policies but, of course,
the timing of an extraneous event is beyond his control. Hence we adopt the following
definition of a holder’s superhedging for an American contract with extraneous risks in
which, as in the issuer’s case, we assume that T h = T F.

Definition 4.10. A triplet (p, ψ, τ) ∈ R×Ψh(xh − p,−A)× T F is called a holder’s super-
hedging strategy for Cv if the inequality V hϑ∧τ (xh − p, ψ)− I(ϑ, τ) ≥ V̄ hϑ∧τ (xh) is satisfied
for every ϑ ∈ T e.

It is clear that Definition 4.10 differs from the standard holder’s superhedging
problem for an American contract, which was examined in Section 3.1.2. Although
a random time ϑ is not chosen by the issuer, the contract described in Definition 4.1
may be intuitively interpreted as an abstract game option between the holder and a
dummy player who has no objective and thus his only role is to choose the timing of an
extraneous event. More formally, since an extraneous event comes as a surprise to the
holder, his superhedging problem can be solved by studying an associated game contract
in which a random time ϑ is replaced by the family of all F-stopping times associated
with the dummy player. This conjecture is formally justified by the following result.

Proposition 4.11. A triplet (p, ψ, τ) ∈ R×Ψh(xh−p,−A)×T F is a holder’s superhedging
strategy for Cv if and only if the inequality V hσ∧τ (xh − p, ψ)− I(σ, τ) ≥ V̄ hσ∧τ (xh) holds for
every σ ∈ T F such that P(σ = τ) = 0.

Proof. We first assume that (p, ψ, τ) satisfies Definition 4.10 and we prove by contra-
diction the ‘only if’ part using similar arguments as in the proof of Proposition 4.9.
Suppose that there exists σ ∈ T F such that P(σ = τ) = 0 and P(A) > 0 where
A := {V hσ∧τ (xh − p, ψ) − I(σ, τ) < V̄ hσ∧τ (xh)}. Let us denote D1 := {τ < σ} and
D2 := {σ < τ}. Then either P(A1) > 0 or P(A2) > 0 where we denote

A1 := A ∩D1 = {V hτ (xh − p, ψ)−Xh
τ < V̄ hτ (xh)}

and
A2 := A ∩D2 = {V hσ (xh − p, ψ)−Xi

σ < V̄ hσ (xh)}.
Our goal is to show that if P(A) > 0, then

P
(
V hϑ∧τ (xh − p, ψ)− I(ϑ, τ) < V̄ hϑ∧τ (xh)

)
> 0, (4.5)

which would contradict Definition 4.10. We first assume that P(A1) > 0 and we observe
that P(A1 ∩ {τ < ϑ}) > 0 since A1 ∈ Fτ ⊂ F∞ and ζ is independent of F∞. Furthermore,
I(ϑ, τ) = Xh

τ on the event {τ < ϑ} and thus (4.5) is valid.
Let us now assume that P(A2) > 0. Since V h(xh − p, ψ), Xh and V̄ h(xh) are RCLL

processes, there exists an F-stopping time σ̂ such that σ < σ̂ ≤ τ on A2 and P(Â2) > 0

where
Â2 =

{
V ht (xh − p, ψ) +Xh

t < V̄ ht (xh), ∀ t ∈ [σ, σ̂]
}
.

Consequently, P(Â2 ∩ {σ < ϑ < σ̂}) > 0 and thus (4.5) holds since I(ϑ, τ) = Xi
ϑ on the

event {ϑ < τ}. We conclude that if P(A) > 0, then (4.5) is valid, which completes the
proof of the first implication.
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To establish the converse implication, let us assume that (p, ψ, τ) is such that the
inequality V hσ∧τ (xh − p, ψ)− I(σ, τ) ≥ V̄ hσ∧τ (xh) holds for every σ ∈ T F such that P(σ =

τ) = 0. Then

P
(
V ht∧τ (xh − p, ψ)− I(t, τ) ≥ V̄ ht∧τ (xh), ∀ t ∈ R+, t 6= τ(ω)

)
= 1.

Since P(ϑ = τ) = 0, it is now easy to see that the triplet (p, ψ, τ) fulfils Definition 4.10.

Proposition 4.11 gives a formal link between the holder’s superhedging problem and
an associated game option in which the respective reward processes are Xi and Xh and
where, by design, the two parties cannot stop the contract simultaneously. Although
the latter condition is not imposed in existing papers on game options, we observe that
the so-called rational stopping times are known to satisfy that condition under mild
assumptions on relative reward processes, even when exercising decisions by either of
the two parties are a priori unrestricted.

Remark 4.12. For more details on the pricing, hedging and exercising of game contracts
in a nonlinear market, we refer to Dumitrescu et al. [25] and Kim et al. [45] who study,
in particular, the unilateral pricing of game contracts through a doubly reflected BSDE.
Let us only observe that Definition 3.14 of the holder’s optimal stopping problem needs
to be adjusted. We denote Jh(σ, τ, xh) = V̄ hσ∧τ (xh) + I(σ, τ) and we say that a triplet
(vh(xh, Cv), σ∗,h, τ∗,h) ∈ R × T F × T F is a solution to the holder’s optimal replication
problem for the contract Cv if vh(xh, Cv) = Eh0 (Jh(σ∗,h, τ∗,h, xh)) where the F-stopping
times σ∗,h and τ∗,h are such that

Eh0 (Jh(σ∗,h, τ∗,h, xh)) = min
τ∈T

max
σ∈T

Eh0 (Jh(σ, τ, xh)) = min
τ∈T

max
σ∈T

Eh0
(
V̄ hσ∧τ (xh) + I(σ, τ)

)
.

Finally, the holder’s acceptable price for Cv is given by ph(xh, Cv) = xh − vh(xh, Cv).
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[22] Cvitanić, J. and Karatzas, I.: Backward stochastic differential equations with reflection and
Dynkin games. Ann. Probab. 24(4), (1996), 2024–2056. MR-1415239

[23] Dellacherie, C., and Meyer, P. A.: Probabilities and Potential. B. Theory of Martingales. North-
Holland Publishing Co., Amsterdam, 1982. xvii+463 pp. ISBN: 0-444-86526-8. MR-0745449

[24] Dumitrescu, R., Grigorova, M., Quenez, M. C., Sulem, A.: BSDEs with default jump. In
Computation and Combinatorics in Dynamics, Stochastics and Control, Abel Symposia,
Vol. 13, E. Celledoni, G. Di Nunno, K. Ebrahimi-Fard, and H. Munthe-Kaas (Eds). Springer,
Cham, 2018, pp. 233–263. MR-3967386

[25] Dumitrescu, R., Quenez, M. C., Sulem, A.: Game options in an imperfect market with default.
SIAM J. Financial Math. 8(1), (2017), 532–559. MR-3679314

[26] Dumitrescu, R., Quenez, M. C., Sulem, A.: American options in an imperfect complete market
with default. ESAIM Proc. Surveys 64, (2018), 93–110. MR-3883982

[27] El Karoui, N.: Les aspects probabilistes du contrôle stochastique. In Lecture Notes in Math.
876, Ecole d’Eté de Probabilités de Saint-Flour IX, 1979, P.-L. Hennequin (Ed.). Springer,
Berlin- New York, 1981, pp. 73–238. MR-0637471

[28] El Karoui, N. and Huang, S. J.: A general result of existence and uniqueness of backward
stochastic differential equations. In Backward Stochastic Differential Equations, Pitman
Research Notes in Mathematics Series 364, N. El Karoui and L. Mazliak (Eds.). Addison
Wesley Longman Ltd, Harlow, Essex, 1997, pp. 27–36. MR-1752673

[29] El Karoui, N., Kapoudjian, C., Pardoux, E., Peng, S., Quenez, M. C.: Reflected solutions
of backward SDE’s, and related obstacle problems for PDE’s. Ann. Probab. 25(2), (1997),
702–737. MR-1434123

[30] El Karoui, N., Pardoux, E., Quenez, M. C.: Reflected backward SDEs and American options.
In Numerical Methods in Finance, L. C. G. Rogers and D. Talay (Eds.). Cambridge University
Press, Cambridge, 1997, pp. 215–231. MR-1470516

[31] El Karoui, N., Peng, S., Quenez, M. C.: Backward stochastic differential equations in finance.
Math. Finance 7(1), (1997), 1–71. MR-1434407

EJP 26 (2021), paper 90.
Page 37/41

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=3372104
https://mathscinet.ams.org/mathscinet-getitem?mr=2585143
https://mathscinet.ams.org/mathscinet-getitem?mr=3942984
https://mathscinet.ams.org/mathscinet-getitem?mr=3087758
https://mathscinet.ams.org/mathscinet-getitem?mr=2742510
https://mathscinet.ams.org/mathscinet-getitem?mr=3312194
https://mathscinet.ams.org/mathscinet-getitem?mr=3312195
https://mathscinet.ams.org/mathscinet-getitem?mr=3222744
https://mathscinet.ams.org/mathscinet-getitem?mr=2462558
https://mathscinet.ams.org/mathscinet-getitem?mr=1415239
https://mathscinet.ams.org/mathscinet-getitem?mr=0745449
https://mathscinet.ams.org/mathscinet-getitem?mr=3967386
https://mathscinet.ams.org/mathscinet-getitem?mr=3679314
https://mathscinet.ams.org/mathscinet-getitem?mr=3883982
https://mathscinet.ams.org/mathscinet-getitem?mr=0637471
https://mathscinet.ams.org/mathscinet-getitem?mr=1752673
https://mathscinet.ams.org/mathscinet-getitem?mr=1434123
https://mathscinet.ams.org/mathscinet-getitem?mr=1470516
https://mathscinet.ams.org/mathscinet-getitem?mr=1434407
https://doi.org/10.1214/21-EJP658
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


American options in nonlinear markets

[32] El Karoui, N. and Quenez, M. C.: Non-linear pricing theory and backward stochastic differ-
ential equations. In Lecture Notes in Math. 1656, W. J. Runggaldier (Ed.). Springer, Berlin,
1997, pp. 191–246. MR-1478202

[33] Essaky, E. H.: Reflected backward stochastic differential equation with jumps and RCLL
obstacle. Bull. Sci. Math. 132(8), (2008), 690–710. MR-2474488

[34] Grigorova, M., Imkeller, P., Offen, E., Ouknine, Y., Quenez, M. C.: Reflected BSDEs when
the obstacle is not right-continuous and optimal stopping. Ann. Appl. Probab. 27(5), (2017),
3153–3188. MR-3719955

[35] Grigorova, M., Imkeller, P., Ouknine, Y., Quenez, M. C.: Optimal stopping with f -expectations:
the irregular case. Stoch. Process. Appl. 130(3), (2020), 1258–1288. MR-4058273

[36] Hamadène, S.: Reflected BSDE’s with discontinuous barrier and application. Stoch. Stoch.
Rep. 74(3-4), (2002), 571–596. MR-1943580

[37] Hamadène, S. and Ouknine, Y.: Reflected backward SDEs with general jumps. Theory Probab.
Appl. 60(2), (2016), 263–280. MR-3568776

[38] He S., Wang, J., Yan, J.: Semimartingale Theory and Stochastic Calculus. Science Press and
CRS Press, Beijing and Boca Raton, FL, 1992. xiv+546 pp. ISBN: 7-03-003066-4. MR-1219534

[39] Jaillet, P., Lamberton, D., Lapeyre, B.: Variational inequalities and the pricing of American
options. Acta Appl. Math. 21(3), (1990), 263–289. MR-1096582

[40] Jeanblanc, M. and Le Cam, Y.: Immersion property and credit risk modelling. In Optimality
and Risk – Modern Trends in Math. Finance: The Kabanov Festschrift, F. Delbaen, M. Rasonyi,
and C. Stricker (Eds.). Springer, Berlin, 2009, pp. 99–131. MR-2648600

[41] Kallsen, J. and Kühn, C.: Pricing derivatives of American and game type in incomplete
markets. Finance Stoch. 8(2), (2004), 261–284. MR-2048831

[42] Karatzas, I.: On the pricing of American options. Appl. Math. Optim. 17(1), (1988), 37–60.
MR-0908938

[43] Karatzas, I. and Kou, S.: Hedging American contingent claims with constrained portfolios.
Finance Stoch. 2(3), (1998), 215–258. MR-1809521

[44] Kim, E., Nie, T., Rutkowski, M.: Arbitrage-free pricing of American options in nonlinear
markets. Working paper, 2018 (arXiv:1804.10753v2).

[45] Kim, E., Nie, T., Rutkowski, M.: Valuation and hedging of game options in nonlinear models.
Working paper, 2018 (arXiv:1807.05448v1).

[46] Klimsiak, T.: Reflected BSDEs with monotone generator. Electron. J. Probab. 17, (2012), no.
107, 25 pp. MR-3015691

[47] Klimsiak, T.: Reflected BSDEs on filtered probability spaces. Stoch. Process. Appl. 125(11),
(2015), 4204–4241. MR-3385601
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5 Appendix: Nonlinear optimal stopping problem

For relationships between reflected BSDEs and nonlinear optimal stopping problems,
the reader may consult, e.g., Cvitanić and Karatzas [22], El Karoui et al. [29], Grigorova
et al. [34, 35], and Quenez and Sulem [69] who studied nonlinear optimal stopping
problems under various regularity conditions imposed on the reward process ξ.

Let us recall the terminology related to nonlinear evaluations generated by solutions
to BSDEs (see Peng [65]). We consider the following BSDE on [0, s]

Yt = ξs +

∫ s

t

g(u, Yu, Zu) dQu −
∫ s

t

Z∗u dMu − (As −At), (5.1)

and, for every 0 ≤ t ≤ s ≤ T and ξs ∈ L2(Fs), we define Eg,At,s (ξs) := Yt where (Y, Z)

is a unique solution to (5.1). Then the system of operators Eg,At,s : L2(Fs) → L2(Ft) is
called the Eg,A-evaluation. It is clear that deterministic dates t ≤ s appearing in (5.1)
can be replaced by F-stopping times τ ≤ σ from T and thus the Eg,A-evaluation can
be extended to all stopping times with values in [0, T ] yielding the system of operators
Eg,Aτ,σ : L2(Fσ)→ L2(Fτ ) for all τ, σ ∈ T . The following definitions are standard.
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Definition 5.1. The comparison property of Eg,A holds if, for every stopping time τ ∈ T
and any random variables ξ1

τ , ξ
2
τ ∈ L2(Fτ ), the following property is valid: if ξ1

τ ≥ ξ2
τ , then

Eg,A0,τ (ξ1
τ ) ≥ Eg,A0,τ (ξ2

τ ). The strict comparison property of Eg,A holds if, for every τ ∈ T and

arbitrary ξ1
τ , ξ

2
τ ∈ L2(Fτ ), if ξ1

τ ≥ ξ2
τ and ξ1

τ 6= ξ2
τ , then Eg,A0,τ (ξ1

τ ) > Eg,A0,τ (ξ2
τ ).

Definition 5.2. The value of the Eg,A-max stopping problem with reward ξ is given by

v0(ξ) = sup
τ∈T
Eg,A0,τ (ξτ ) (5.2)

and an F-stopping time τ∗ ∈ T is a maximizer if

v0(ξ) = Eg,A0,τ∗(ξτ∗) = max
τ∈T

Eg,A0,τ (ξτ ).

For a fixed horizon date T > 0, we introduce the following BSDE on [0, T ] with data
(g, η, A) {

dYt = −g(t, Yt, Zt) dQt + Z∗t dMt + dAt,

YT = η,
(5.3)

where A is a given real-valued, F-adapted process or, more explicitly, for every t ∈ [0, T ],

Yt = η +

∫ T

t

g(t, Yu, Zu) dQu −
∫ T

t

Z∗u dMu − (AT −At)

where, as usual, the equality is assumed to hold P-a.s.. We also consider the reflected
BSDE on [0, T ] with data (g, η, A, ξ)

dYt = −g(t, Yt, Zt) dQt + Z∗t dMt + dAt − dKt,

YT = η, Yt ≥ ξt,∫ T
0

(Yt − ξt) dKc
t = 0, ∆Kd

τ = ∆Kd
τ1{Yτ−=ξτ−}, ∀ τ ∈ Tp,

(5.4)

where Tp is the class of all F-predictable stopping times taking values in [0, T ] and K is
a nondecreasing, RCLL, F-predictable process such that K0 = 0. The continuous and
discontinuous components of sample paths of the process K are denoted by Kc and Kd,
respectively.

The following result is a counterpart of Theorem 3.3 in Quenez and Sulem [69] where
the case of an RCLL reward ξ was examined and the nonlinear evaluation Eg (i.e., Eg,A
with A = 0) was assumed to be generated by a BSDE driven by a Brownian motion
and Poisson random measure. Suppose that, for every F-stopping time τ , the triplets
(g, Yτ , A−K) and (g, ξτ , A) satisfy the assumptions of Theorem 6.1 in [62].

Theorem 5.3. Let ξ − A ∈ S2 and let (Y,Z,K) be the unique solution to the reflected
BSDE (5.4) such that Y −A is an RCLL process. Then the following assertions are valid:
(i) Y0 is the value of the Eg,A-max stopping problem with the reward ξ, that is, Y0 = v0(ξ),
(ii) an F-stopping time τ̂ is a maximizer in (5.2) if and only if Yt = X̂t on [0, τ̂ ] where
(X̂, Ẑ) is a solution to the BSDE (5.3) with Xτ̂ = ξτ̂ ,
(iii) the F-stopping time τ∗ := inf {t ∈ [0, T ] |Yt = ξt} is a maximizer in (5.2) provided
that the equality Kτ∗ = 0 holds.

Proof. Although the present setup differs from that examined in [69], most of the
arguments needed for the proof of Theorem 5.3 are identical to those used to establish
Theorem 3.3, Lemma 3.4 and Proposition 3.5 in [69]. Therefore, we omit the details and
we present the main steps only.

(i) The inequality Y0 ≥ v0(ξ) is an immediate consequence of (5.2), the definition of the
nonlinear evaluation Eg,A and the comparison theorem. Specifically, for every τ ∈ T ,
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it suffices to apply part (a) of Theorem 6.1 in [62] to the BSDE (5.3) on [0, τ ] with the
terminal condition ξτ and the processes A1 := A−K and A2 := A.

The converse inequality requires a bit more work. We first note that Lemma 3.4 in
[69] is still valid in our setup and thus if we set, for any τε := inf {t ∈ [0, T ] |Yt ≤ ξt + ε}
for any fixed ε > 0 then, by noticing the right-continuity of Y − A and ξ − A, we have
that Yτε ≤ ξτε + ε and Yt = Eg,At,τε(Yτε) for 0 ≤ t ≤ τε. The comparison property now yields

Y0 = Eg,A0,τε(Yτε) ≤ E
g,A
0,τε(ξτε + ε)

and, in view of the stability result for the BSDE (5.3) (see Remark 3.1 in [62]), there
exists a positive constant C such that∣∣Eg,A0,τε(ξτε + ε)− Eg,A0,τε(ξτε)

∣∣ ≤ Cε.
Consequently, Y0 ≤ Eg,A0,τε(ξτε)+Cε, meaning that τε is a (Cε)-optimal time for the optimal
stopping problem (5.2). Since ε was arbitrary, it is now easy to conclude that Y0 ≤ v0(ξ),
which ends the proof of the equality Y0 = v0(ξ).
(ii) The second assertion can be restated as follows: an F-stopping time τ̂ ∈ T is such
that Y0 = Eg,A0,τ̂ (ξτ̂ ) if and only if Yt = Eg,At,τ̂ (ξτ̂ ) on [0, τ̂ ]. Of course, it suffices to show that

the equality Y0 = Eg,A0,τ̂ (ξτ̂ ) implies that Yt = Eg,At,τ̂ (ξτ̂ ) on [0, τ̂ ]. To this end, it suffices to
apply the strict comparison property established in part (b) of Theorem 6.1 in [62] to the
BSDE (5.3) on [0, τ̂ ] with Yτ̂ ≥ ξτ̂ and A1 = A2 = A.

(iii) It suffices to notice that, under the assumptions of part (iii), we immediately obtain
the equality Y0 = Eg,A0,τ∗(ξτ∗) and thus, in view of part (i) in the theorem, we also have that

v0(ξ) = Eg,A0,τ∗(ξτ∗), which means that the stopping time τ∗, which is given by the equality
τ∗ := inf {t ∈ [0, T ] |Yt = ξt}, is indeed a maximizer for the stopping problem (5.2).

Remark 5.4. Using Theorem 10 in Chapter VII of [23] (see also Theorem 2.6 in [69] or
Proposition B.10 in [49] for a general case), it can be shown that the increasing process
K in the solution (Y, Z,K) to the reflected BSDE (5.4) is continuous (and thus Kτ∗ = 0)
if the process ξ −A is left-upper-semicontinuous along stopping times.

A result analogous to Theorem 5.3 can be established for the Eg,A-min stopping
problem, that is, the stopping problem corresponding to the holder’s valuation of an
American contract. We now say that v0(ξ) is the value of the Eg,A-min stopping problem
with cost ξ if

v0(ξ) = inf
τ∈T
Eg,A0,τ (ξτ )

and an F-stopping time τ∗ ∈ T is a minimizer if

v0(ξ) = Eg,A0,τ∗
(ξτ∗) = min

τ∈T
Eg,A0,τ (ξτ ).

As in the proof of Theorem 5.3, one may show that the value and minimizer for the
Eg,A-min stopping problem are associated with a solution (y, z, k) to the reflected BSDE
on [0, T ] with the upper obstacle ξ

dyt = −g(t, yt, zt) dQt + z∗t dMt + dAt + dkt,

yT = ξT , yt ≤ ξt,∫ T
0

(ξt − yt) dkct = 0, ∆kdτ = ∆kdτ1{yτ−=ξτ−}, ∀ τ ∈ Tp,

where k is a nondecreasing, RCLL, F-predictable process with k0 = 0. Then the process
k is continuous if the process A− ξ is left-upper-semicontinuous along stopping times.
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