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Abstract

This paper aims to provide some tools coming from functional inequalities to deal with
quasi-stationarity for absorbed Markov processes. First, it is shown how a Poincaré
inequality related to a suitable Doob transform entails exponential convergence of
conditioned distributions to a quasi-stationary distribution in total variation and in
1-Wasserstein distance. A special attention is paid to multi-dimensional diffusion
processes, for which the aforementioned Poincaré inequality is implied by an easier-
to-check Bakry-Émery condition depending on the right eigenvector for the sub-
Markovian generator, which is not always known. Under additional assumptions on
the potential, it is possible to bypass this lack of knowledge showing that exponential
quasi-ergodicity is entailed by the classical Bakry-Émery condition.
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Notation

For a general metric space (F, d):

• M1(F ): Set of the probability measures defined on F .

• Pp(F ): Set of the probability measures defined on F such that∫
F

d(x0, x)pµ(dx) < +∞,

where x0 ∈ F is arbitrary.

• B(F ): Set of the measurable bounded functions defined on F .

• B1(F ): Set of the measurable bounded functions defined on F such that ||f ||∞ ≤ 1.
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Convergence to quasi-stationarity

• L2(µ): Set of the functions such that
∫
F
|f |2dµ < +∞, endowed with the norm

‖ · ‖L2(µ) : f 7→

√∫
F

|f |2dµ.

• For any µ ∈M1(F ) and f ∈ B(F ),

µ(f) :=

∫
F

f(x)µ(dx).

• For two probability measures µ and ν, the notation µ� ν means that there exists a
density function f such that

µ(·) =

∫
·
f(x)ν(dx),

and this density function will be denoted by dµ
dν .

• For any positive measure µ and any measurable function f such that µ(f) < +∞,
denote f ◦ µ the probability measure defined by

f ◦ µ(dx) :=
f(x)µ(dx)

µ(f)
. (0.1)

1 Introduction

Consider a time-homogeneous Markov process (Xt)t≥0 defined on a metric state
space (E∪{∂}, d), where the element ∂ 6∈ E is a cemetery point for the process X, which
means that

Xt = ∂, ∀t ≥ τ∂ ,

where τ∂ := inf{t ≥ 0 : Xt = ∂} is the hitting time of ∂. We associate to the process
(Xt)t≥0 a family of probability measures (Px)x∈E such that, for any x ∈ E, Px(X0 =

x) = 1. For any µ ∈M1(E ∪ {∂}), denote Pµ :=
∫
E
Pxµ(dx). Then, under Pµ, the law of

X0 is µ. Finally, the expectations Ex and Eµ are respectively associated to Px and Pµ.
Moreover, assume that, for any x ∈ E,

Px[τ∂ < +∞] = 1, and Px[τ∂ > t] > 0, ∀t ≥ 0.

A natural notion to study considering absorbed Markov processes is the notion of
quasi-stationarity, dealing with the weak convergence of the probability measures

Pµ(Xt ∈ ·|τ∂ > t)

when t goes to infinity. It is well-known that, if such a convergence holds for a given
initial law µ, then the limiting probability measure α satisfies

Pα(Xt ∈ ·|τ∂ > t) = α, ∀t ≥ 0.

Such a probability measure is called a quasi-stationary distribution and can be under-
stood as an invariant measure for the semi-flow (φt)t≥0 defined by

φt : M1(E) → M1(E)

µ 7→ Pµ(Xt ∈ ·|τ∂ > t),
∀t ≥ 0.

For a general overview on this theory, we refer the reader to [15, 27, 35], where it is
shown that, defining the sub-Markovian semi-group (Pt)t≥0 as

Ptf(x) := Ex(f(Xt)1τ∂>t), ∀t ≥ 0, ∀f ∈ B(E),∀x ∈ E, (1.1)
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Convergence to quasi-stationarity

α ∈M1(E) is a quasi-stationary distribution if and only if there exists λ0 > 0 such that

αPt := Pα(Xt ∈ ·, τ∂ > t) = e−λ0tα, ∀t ≥ 0.

In other words, quasi-stationary distributions are left eigenvectors for the operators Pt,
associated to the eigenvalues e−λ0t. Hence, quasi-stationarity can be dealt with through
spectral methods, and existence and uniqueness of quasi-stationary distributions has
been shown by this way for several processes, such as discrete-time Markov chains
[16, 32], birth-death processes [8, 21, 34] and diffusion processes [7, 22, 24, 26, 33].

More recently, other methods were developed in order to study quasi-stationarity.
These methods aim to obtain exponential convergence towards quasi-stationary distribu-
tions for some processes and are based on well-known probabilistic tools coming from
the framework without absorption, such as Doeblin’s condition or Lyapunov functions
(see [28] for an overview on these tools). In particular, in [9], necessary and sufficient
conditions for the uniform-in-law exponential convergence in total variation are provided,
where we recall that the total variation distance of two probability measures µ, ν is
defined by

‖µ− ν‖TV := sup
f∈B1(E)

|µ(f)− ν(f)|.

Since, other papers showed exponential convergences in total variation under weaker
assumptions, allowing convergences in total variation holding non-uniformly in the
initial measure. In particular, we refer the reader to [10, 36] for the study of absorbed
Markov processes, and [4, 12, 19] for the study of general renormalized Feynman-Kac
semi-groups.

For non-absorbed Markov processes, the rate of convergence towards invariant mea-
sures can also be studied through functional inequalities, such as Poincaré inequalities.
A probability measure π is said to satisfy a Poincaré inequality if there exists a constant
C > 0 such that, for any f ∈ D(E),

Varπ(f) ≤ −C
∫
E

fLfdπ, (1.2)

where Varπ(f) :=
∫
E

(f − π(f))2dπ, L is a generator which cancels π, and D(E) is the set
of the measurable functions such that

E(f, f) := −
∫
E

fLfdπ

is well-defined. We refer the reader to [3, 31] to go further about Poincaré inequalities.
The inequality (1.2) is actually equivalent to the exponential decay of the χ2-divergence

between the semi-group µetL and π, the χ2-divergence being defined as follows:

χ2(µ|ν) :=


√∫

E

(
dµ
dν − 1

)2

dν if µ� ν

+∞ otherwise.

In particular, this implies an exponential decay of the total variation distance between
µetL and π when the quantity χ2(µ|π) is finite.

In the literature, some papers dealing with the use of Poincaré inequalities for
quasi-stationarity have been already written, in particular for Markov processes living
on discrete state spaces ([13, 17, 18]). However, the proofs provided by these papers
strongly rely on the discrete aspect of the state space, and are therefore hardly applicable
for processes living on continuous state space, such as diffusions processes. Our aim
will be therefore to show how to use such inequalities to get exponential convergence
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Convergence to quasi-stationarity

towards quasi-stationarity for such processes. In particular, the convergence in total
variation will be studied, as well as the convergence in 1-Wasserstein distance, which is
defined as

W1(µ, ν) := inf
(X,Y )∈Π(µ,ν)

E[d(X,Y )], ∀µ, ν ∈ P1(E),

where Π(µ, ν) is the set of all the couplings (X,Y ) such that the law of X (respectively
Y ) is µ (respectively ν). We refer to Theorem 2.1 in Section 2 for the general statement
and Corollary 2.6 for the convergence in 1-Wasserstein distance.

In the third and last section, we will be more particularly interested in quasi-
stationarity for diffusion processes (Xt)t≥0 living on a domain D ⊂ Rd, absorbed at
the boundary ∂D, and satisfying on D the stochastic differential equation

dXt =
√

2dBt −∇V (Xt)dt, Xt ∈ D, (1.3)

where (Bt)t≥0 is a d-dimensional Brownian motion and V is a C2-function on Rd. In the
non-absorbed framework, it is well-known that the reversible probability measure

γ(dx) := Z−1e−V (x)dx

(Z is the renormalization constant) satisfies a Poincaré inequality when the condition

Hess V ≥ κId (1.4)

is satisfied for a given κ > 0. This last result is a consequence from the one shown
by Bakry and Émery in [2] and the condition (1.4) is usually called the Bakry-Émery
condition or curvature-dimension condition. In particular, under (1.4), the diffusion
process (Xt)t≥0 converges towards γ in total variation and in 1-Wasserstein distance.
Our goal is therefore to recover this property of convergence in the quasi-stationary
framework through a condition similar to (1.4). More precisely, the following result is
obtained in Section 3:

Theorem 1.1. • Assume that there exists η positive on D, vanishing on ∂D such that
γ(η2) < +∞ and there exists λ0 > 0 such that

∆η(x)−∇V (x) · ∇f(x) = −λ0η(x), ∀x ∈ D,

• and assume that there exists κ > 0 such that

Hess[V − 2 log(η)] ≥ κId.

Then there exists C > 0 such that, for any µ ∈M1(D) and t ≥ 0,

‖Pµ[Xt ∈ ·|τ∂ > t]− η ◦ γ‖TV ≤ Cχ2(η ◦ µ|η2 ◦ γ)e−κt, (1.5)

where we recall that the notation f ◦ µ is defined previously in (0.1) in Notation.
Moreover, if

∫
D

(1 + |x|)2e−V (x)dx < +∞, the inequality (1.5) holds in 1-Wasserstein
distance for t large enough.

A more specific study will focus on multi-dimensional diffusion processes living on
D = (0,+∞)d and absorbed when one component is 0. In this particular case, and
assuming moreover that V can be expressed as

V (x1, . . . , xd) =

d∑
i=1

Vi(xi), ∀ (x1, . . . , xd) ∈ D,

where, for all i, Vi are C2-functions, one has the following result:
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Convergence to quasi-stationarity

Theorem 1.2. If
Hess V ≥ κId,

then there exists a quasi-stationary distribution α = α1 ⊗ · · · ⊗ αd ∈M1(D) and Cd > 0

(depending on the dimension d) such that, for any µ ∈M1(D) and t large enough,

W1(Pµ[Xt ∈ ·|τ∂ > t], α) ≤ Cdχ2(η ◦ µ|η ◦ α)e−κt,

where η := dα
dγ . If moreover µ = µ1 ⊗ · · · ⊗ µd, there exists a constant C > 0, which does

not depend on d, such that, for t large enough,

W1(Pµ[Xt ∈ ·|τ∂ > t], α) ≤ C

[
d∑
i=1

χ2(ηi ◦ µi|ηi ◦ αi)

]
e−κt,

where ηi := dαi
dγi

.

This theorem is further referenced as Theorem 6 in Subsection 3.3.3. A particular
attention will be paid on processes coming down from infinity, for which it will be shown
that the rate of convergence κ provided by the Bakry-Émery condition (1.4) can actually
be bettered (see Theorems 3.6 and 3.11).

2 Exponential convergence to quasi-stationarity through
a Poincaré inequality

2.1 Main result

Let (Xt)t≥0 be a Markov process absorbed at a cemetery point ∂, and let (Pt)t≥0 be
the sub-Markovian semi-group defined in (1.1). Denote by

D(L) :=

{
f : lim

t→0

Ptf(x)− f(x)

t
exists for any x

}
, (2.1)

and define the generator L as

Lf(x) := lim
t→0

Ptf(x)− f(x)

t
, ∀x ∈ E,∀f ∈ D(L). (2.2)

Now, let us state the following theorem:

Theorem 2.1. Assume that

(P1) there exists a quasi-stationary distribution α ∈M1(E) satisfying

αPt = e−λ0tα, ∀t ≥ 0,

with λ0 > 0, and an eigenfunction η positive on E such that α(η) = 1 and

Ptη(x) = e−λ0tη(x), ∀x ∈ E,∀t ≥ 0;

(P2) there exists CP ∈ (0,+∞) such that

Varη◦α(f) ≤ −CP
[∫

E

f(λ0fη + L(fη))dα

]
, (2.3)

for any measurable function f such that λ0

∫
E
f2d(η ◦ α) +

∫
E
fL(fη)dα is well-

defined;

(P3) and there exists a function ψ : E → [1,+∞) such that

α(ψ) < +∞, and α(ψ2/η) < +∞.
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Then, for any µ ∈M1(E), there exists tµ such that, for any t ≥ tµ,

sup
|f |≤ψ

|Eµ[f(Xt)|τ∂ > t]− α(f)| ≤ Cψχ2(η ◦ µ|η ◦ α)e
− t
CP , (2.4)

where
Cψ = (a+ bα(ψ))α(ψ2/η)1/2,

with some positive constants a, b.

Before proving this theorem, let us do some important remarks:

Remark 2.2. (P1) is satisfied under the Lyapunov conditions (E) and (F) presented
in [10], or under the conditional Doeblin’s conditions (A) in [9]. In particular, the
results presented further in Subsection 3.3, dealing with quasi-stationarity for processes
following stochastic differential equations like

dXt =
√

2dBt −∇V (Xt)dt,

rely a lot on these assumptions, allowing to state easy-to-check criteria only based
on the potential V (such as (3.6) in Remark 3.2). For other criteria related to other
types of processes (such as diffusion processes with multiplicative noise, birth-and-death
processes, Markov chains,...), we refer the reader to [10].

It is possible to state even less restrictive assumptions than [10, Assumptions (F)], also
based on Lyapunov functions, entailing the existence of a quasi-stationary distribution
(see for example [14, Theorem 4.2.] or [6, Theorem 7]), but without ensuring the
existence of an eigenfunction η. To obtain such an eigenfunction, it is quite usual to
use Krein-Rutman’s theorem, once the compacity of the operators (Pt)t≥0 or related
operators is known. Finally, note that the existence of α and η does not ensure in
general that α(η) < +∞. For example, the one-dimensional Brownian motion with drift
Xt = Bt − rt (r > 0) absorbed at 0 admits α(dx) = r2xe−rxdx and η(x) = xerx, so that
α(η) = +∞.

Remark 2.3. It is also important to note that the Poincaré constant CP fundamentally
depends on the survival state space E. We refer the reader to the subsection 3.2, in
particular the example of a Brownian motion living in the hypercube CN : (−N,N)d ⊂ Rd,
for which the Poincaré constant increases as N2 when N increases.

Remark 2.4. For several processes, it is quite usual to have χ2(η ◦ µ|η ◦ α) = +∞ when
the initial law is a Dirac measure δx. In the most of the cases (see for instance the two
examples provided in Subsection 3.2), considering a state x ∈ E, there exists a time
t0 > 0 such that

χ2(η ◦ φt0(δx)|η ◦ α) < +∞.

Hence, using the property of semi-flow of (φt)t≥0 (i.e. φt+s = φt ◦ φs for all s, t ≥ 0), the
previous theorem implies that there exists tφt0 (δx) such that, for any t ≥ t0 + tφt0 (δx),

sup
|f |≤ψ

|Ex[f(Xt)|τ∂ > t]− α(f)| = sup
|f |≤ψ

∣∣∣Eφt0 (δx)[f(Xt−t0)|τ∂ > t− t0]− α(f)
∣∣∣

≤ Cψχ2(η ◦ φt0(δx)|η ◦ α)e
− (t−t0)

CP .

In other terms, the set of all the measures such that there exists t0 ≥ 0 such that
χ2(η◦φt0(µ)|η◦α) < +∞ is included in the domain of attraction of α, denoted byD(α), that
is the set of the initial measures such that the weak convergence Pµ[Xt ∈ ·|τ∂ > t] −→

t→∞
α

holds. We refer the reader to Subsection 2.2 for a deepening on the study of domain of
attraction.
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Remark 2.5. Because of the condition ψ ≥ 1, the distance sup|f |≤ψ |Eµ[f(Xt)|τ∂ > t]−
α(f)| is actually stronger than the total variation distance. In particular, Theorem 2.1
implies that there exists C > 0 such that, for any µ ∈M1(E) and t ≥ 0,

‖Pµ[Xt ∈ ·|τ∂ > t]− α‖TV ≤ Cχ2(η ◦ µ|η ◦ α)e
− t
CP .

Hence, this theorem allows to obtain a result analogous to the ones obtained by Cham-
pagnat and Villemonais in [9, 10]. However, contrary to their results, the upper bound
could be small if the initial measure is close enough to the quasi-stationary distribution α
(it is even equal to 0 for µ = α). Moreover, Theorem 2.1 allows to obtain a convergence
in 1-Wasserstein distance, as stated by the following corollary:

Corollary 2.6. If the assumptions (P3) holds for

ψ : x 7→ 1 + d(x, x0)

for a given x0 ∈ E, then, for any µ ∈M1(E), there exists tµ such that, for any t ≥ tµ,

W1(Pµ[Xt ∈ ·|τ∂ > t], α) ≤ Cψχ2(η ◦ µ|η ◦ α)e
− t
CP .

Proof. By the dual formula for the 1-Wasserstein distance (for example see [37]), for any
probability measures µ and ν in P1(E), one has

W1(µ, ν) = sup
f 1−Lip

|µ(f)− ν(f)| = sup
f∈C
|µ(f)− ν(f)|, (2.5)

where

C := {f 1− Lip : f(x0) = 1}.

Thus, any function f belonging to C satisfies

|f(x)| ≤ 1 + d(x, x0) = ψ(x), ∀x ∈ E.

Hence, by Theorem 2.1, there exists tµ such that, for any t ≥ tµ,

W1(Pµ[Xt ∈ ·|τ∂ > t], α) ≤ sup
|f |≤ψ

|Eµ[f(Xt)|τ∂ > t]− α(f)|

≤ Cψχ2(η ◦ µ|η ◦ α)e
− t
CP .

Now, let us tackle the proof of Theorem 2.1:

Proof of Theorem 2.1. First, remark that if χ2(η ◦ µ|η ◦ α) = +∞, the inequality (2.4) is
trivially satisfied. So, from now on, we will only consider initial measure such that

χ2(η ◦ µ|η ◦ α) < +∞.

The proof is divided into two steps.

First step: When α(ψ2/η)χ2
2(η ◦ µ|η ◦ α) < 0.91.

Let µ ∈M1(E) satisfying α(ψ2/η)χ2
2(η ◦ µ|η ◦ α) < 0.9. Denote by (P̃t)t≥0 the Markovian

semi-group defined by

P̃tf(x) := eλ0t
Pt[fη](x)

η(x)
,

1The choice of the value 0.9 is totally arbitrary, any value smaller than 1 is suitable for the proof.
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where we recall that λ0 and η are such that, for any x ∈ E and t ≥ 0,

Ptη(x) = e−λ0tη(x).

Then, since α is a quasi-stationary distribution for (Xt)t≥0, the probability measure
β(dx) := η(x)α(dx) is an invariant measure for (P̃t)t≥0. Moreover, denoting by L̃ the
generator of (P̃t)t≥0, then, for any measurable f such that fη ∈ D(L) and for any x ∈ E,

L̃f(x) = λ0f(x) +
L(fη)(x)

η(x)
.

This equality comes from the equality L̃f(x) := dP̃tf(x)
dt

∣∣
t=0

.
Then, the Poincaré inequality (2.3) can be written as follows:

Varβ(f) ≤ −CP
∫
E

f L̃fdβ.

In other words, the inequality (2.3) is the Poincaré inequality for the Markovian semi-
group (P̃t)t≥0. Then it is well-known that it is equivalent to: for any probability measure
ν on E and t ≥ 0,

χ2
2(νP̃t|β) ≤ e−

2t
CP χ2

2(ν|β). (2.6)

Now, let us define, for any f ∈ B(E), t ≥ 0 and x ∈ E,

Qt[f ](x) := P̃t[f/η](x) =
eλ0t

η(x)
Pt[f ](x).

Since α(ψ2/η) <∞ by the third assumption, one has, for any measurable function such
that |f | ≤ ψ,

||f/η||L2(β) ≤ α(ψ2/η) <∞.

In particular, for any measurable function f such that |f | ≤ ψ, t ≥ 0 and ν ∈M1(E)

|νQtf − α(f)|2 =
[
νP̃t[f/η]− β[f/η]

]2
≤ α(ψ2/η)e

− 2t
CP χ2

2(µ|β),

where the following equality is used: ∀ν1, ν2 ∈M1(E),

χ2
2(ν1|ν2) = sup

‖f‖
L2(ν2)≤1

|ν1(f)− ν2(f)|2 .

As a result, for any t ≥ 0 and any ν ∈M1(E),

sup
|f |≤ψ

|νQt[f ]− α(f)| ≤ [α(ψ2/η)χ2
2(ν|β)]1/2e

− t
CP .

Now note that, for any t ≥ 0 and any measurable function f ,

Eµ[f(Xt)|τ∂ > t] =

∫
E
Pt[f ](x)µ(dx)∫

E
Pt[1E ](x)µ(dx)

=

∫
E
eλ0t

η(x)Pt[f ](x)η(x)µ(dx)∫
E
eλ0t

η(x)Pt[1E ](x)η(x)µ(dx)

=

∫
E
Qt[f ](x)η(x)µ(dx)∫

E
Qt[1E ](x)η(x)µ(dx)

=
(η ◦ µ)Qt[f ]

(η ◦ µ)Qt[1E ]
, (2.7)
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As a result, since α(ψ2/η)χ2
2(η ◦ µ|β) < 0.9, for any t ≥ 0,

α(f)− [α(ψ2/η)χ2
2(η ◦ µ|β)]1/2e

− t
CP

1 + [α(ψ2/η)χ2
2(η ◦ µ|β)]1/2e

− t
CP

≤ Eµ(f(Xt)|τ∂ > t)

≤ α(f) + [α(ψ2/η)χ2
2(η ◦ µ|β)]1/2e

− t
CP

1− [α(ψ2/η)χ2
2(η ◦ µ|β)]1/2e

− t
CP

. (2.8)

For any t ≥ 0,

α(f) + [α(ψ2/η)χ2
2(η ◦ µ|β)]1/2e

− t
CP

1− [α(ψ2/η)χ2
2(η ◦ µ|β)]1/2e

− t
CP

=
(
α(f) + [α(ψ2/η)χ2

2(η ◦ µ|β)]1/2e
− t
CP

)[
1 +

[α(ψ2/η)χ2
2(η ◦ µ|β)]1/2e

− t
CP

1− [α(ψ2/η)χ2
2(η ◦ µ|β)]1/2e

− t
CP

]

≤ α(f) + [α(ψ2/η)χ2
2(η ◦ µ|β)]1/2e

− t
CP + (α(ψ) + 1)

[α(ψ2/η)χ2
2(η ◦ µ|β)]1/2e

− t
CP

1− [α(ψ2/η)χ2
2(η ◦ µ|β)]1/2e

− t
CP

≤ α(f) +

(
1 +

α(ψ) + 1

1− [α(ψ2/η)χ2
2(η ◦ µ|β)]1/2

)
[α(ψ2/η)χ2

2(η ◦ µ|β)]1/2e
− t
CP .

In a same way, one can prove that, for any t ≥ 0,

α(f)− (2 + α(ψ))[α(ψ2/η)χ2
2(η ◦ µ|β)]1/2e

− t
CP ≤ α(f)− [α(ψ2/η)χ2

2(η ◦ µ|β)]1/2e
− t
CP

1 + [α(ψ2/η)χ2
2(η ◦ µ|β)]1/2e

− t
CP

.

As a result, using (2.8), for any t ≥ 0,

sup
|f |≤ψ

|Eµ(f(Xt)|τ∂ > t)− α(f)|

≤
[(

1 +
α(ψ) + 1

1− [α(ψ2/η)χ2
2(η ◦ µ|β)]1/2

)
∨ (2 + α(ψ))

]
[α(ψ2/η)χ2

2(η ◦ µ|β)]1/2e
− t
CP

≤ (a+ bα(ψ))(α(ψ2/η)χ2
2(η ◦ µ|β))1/2e

− t
CP ,

setting

a := 1 +
1

1−
√

0.9
, and b :=

1

1−
√

0.9
.

Second step: Conclusion.

Now let µ ∈M1(E) such that χ2(η ◦ µ|β) < +∞. Recalling the notation

φt(µ) := Pµ[Xt ∈ ·|τ∂ > t],

one has the following lemma, whose the proof is postponed after the end of this proof.

Lemma 2.7. For any t ≥ 0 and µ ∈M1(E),

η ◦ φt(µ) = (η ◦ µ)P̃t

Then, using Lemma 2.7 and the inequality (2.6), one has for any t ≥ 0,

χ2
2(η ◦ φt(µ)|β) = χ2

2((η ◦ µ)P̃t|β) ≤ e−
2t
CP χ2

2(η ◦ µ|β).

In particular, there exists tµ ≥ 0 such that, for any t ≥ tµ,

α(ψ2/η)χ2
2(η ◦ φt(µ)|β) < 0.9.
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Hence, applying what we obtained at the first step, one has, for any t ≥ tµ,

sup
|f |≤ψ

|Eµ[f(Xt)|τ∂ > t]− α(f)| ≤ (a+ bα(ψ))[α(ψ2/η)χ2
2(η ◦ φtµ(µ)|β)]1/2e

− t−tµCP

≤ (a+ bα(ψ))[α(ψ2/η)χ2
2(η ◦ µ|β)]1/2e

− t
CP ,

which concludes the proof.

Now, let us prove Lemma 2.7.

Proof of Lemma 2.7. For any t ≥ 0, µ ∈M1(E) and for any measurable function f ,

η ◦ φt(µ)(f) =
φt(µ)(fη)

φt(µ)(η)

=
µPt[fη]

µPt[η]

=
eλ0tµPt[fη]

µ(η)

=
1

µ(η)

∫
E

P̃t[f ](x)η(x)µ(dx)

= (η ◦ µ)P̃t[f ],

where the equality Pt[η](x) = e−λ0tη(x), for any t ≥ 0 and x ∈ E, was used.

Remark 2.8. By the tensorization property of Poincaré inequalities (see [3, Proposition
4.3.1]), the Poincaré constant CP does not depend on the dimension when the state
space is a tensorial space. As a result, contrary to the technics using Lyapunov functions
or minorization properties, the previous theorem provides in such cases a rate of
convergence which does not explode in high dimension (as soon as the state space E is
the product space of one-dimensional spaces Ei).

Remark 2.9. In the same manner, subgeometrical convergences to quasi-stationarity
can be proved replacing the conditions (P2) and (LS2) by weaker functional inequalities,
such as Nash inequalities or weak Poincaré inequalities (see [23, 30]). This method does
not allow however to cover all the processes having this property of subgeometrical
convergence (see for example [29] where the Doob transform is not ergodic).

Remark 2.10. As stated in Corollary 2.6, the previous method using the Doob transform
P̃t allows to get convergence in 1-Wasserstein distance through a Poincaré inequality. A
natural question is therefore if one can use the logarithmic Sobolev inequality∫

E

f2 log

(
f2

‖f‖L2(β)

)
dβ ≤ −CLS

∫
E

f L̃fdβ (with CLS > 0)

to deal with the convergence in p-Wasserstein distance, which is defined by

Wp(µ, ν) := inf
(X,Y )∈Π(µ,ν)

E[d(X,Y )p]1/p, ∀µ, ν ∈ Pp(E).

By the same methodology and using that, for any µ, ν ∈M1(E),

H(µ|ν) = sup
f∈B(E)

{µ(f)− log(ν(ef ))},

where H(µ|ν) :=
∫
E

log
(
dµ
dν

)
dν (when µ� ν) is the entropy, one obtains the one-sided

estimate
Eµ[f(Xt)|τ∂ > t] ≤ log(β(ef/η)) + CH(η ◦ µ|β)e

− t
CLS .

This estimate is unfortunately not sharp enough, since log(β(ef/η)) ≥ α(f), and the
convergence inWp for general p still remains an open question.
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2.2 On the domain of attraction of α

This subsection follows Remark 2.4. In this remark, it was pointed that a consequence
of Theorem 2.1 is the following inclusion:

{µ ∈M1(E) : ∃t0 ≥ 0, χ2(η ◦ φt0(µ)|β) < +∞} ⊂ D(α),

where D(α) is the domain of attraction of α, that is the set of initial measures such that
the convergence of Pµ[Xt ∈ ·|τ∂ > t] to α holds.

The aim of this subsection is to go a bit further on this point. Let us first state and
prove the following proposition, which gives an expression of χ2(η ◦ µ|η ◦ α) revealing
the density function dµ

dα :

Proposition 2.11. For any µ ∈M1(E) such that dµ
dα exists,

χ2
2(η ◦ µ|η ◦ α) =

1

µ(η)2

∫
E

dµ

dα
(y)× η(y)µ(dy)− 1.

In particular, χ2(η ◦ µ|η ◦ α) < +∞ if and only if µ(η) > 0 and
∫
E
dµ
dαηdµ < +∞.

Proof. First of all, recalling that

η ◦ µ(dx) =
η(x)µ(dx)

µ(η)
, η ◦ α(dx) = η(x)α(dx), (2.9)

dµ
dα exists if and only if d(η◦µ)

d(η◦α) exists. Then, by definition of χ2,

χ2
2(η ◦ µ|η ◦ α) =

∫
E

(
d(η ◦ µ)

d(η ◦ α)
− 1

)2

d(η ◦ α) =

∫
E

(
d(η ◦ µ)

d(η ◦ α)

)2

d(η ◦ α)− 1.

Using again (2.9),∫
E

(
d(η ◦ µ)

d(η ◦ α)

)2

d(η ◦ α) =

∫
E

d(η ◦ µ)

d(η ◦ α)
d(η ◦ µ) =

1

µ(η)2

∫
E

dµ

dα
(y)× η(y)µ(dy).

Thus,

χ2
2(η ◦ µ|η ◦ α) =

1

µ(η)2

∫
E

dµ

dα
(y)× η(y)µ(dy)− 1,

which concludes the proof.

Proposition 2.11 entails the following corollary:

Corollary 2.12. Let µ ∈ M1(E) such that µ(η) > 0. If there exists t0 ≥ 0 such that
dφt0 (µ)

dα exists and ∫
E

dφt0(µ)

dα
ηdφt0(µ) < +∞,

then χ2(η ◦ φt0(µ)|η ◦ α) < +∞.

Proof. In order to use Proposition 2.11, we have just to ensure that

φt0(µ)(η) > 0.

However, one has

φt0(µ)(η) =
µPt0η

µPt01E
=

e−λ0t0µ(η)

Pµ[τ∂ > t0]
> 0,

which concludes the proof.
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As a consequence, Corollary 2.12 entails, for a process satisfying (P1)− (P3), that if

µ(η) > 0 and there exists t0 ≥ 0 such that
∫
E

dφt0 (µ)

dα ηdφt0(µ) < +∞, then Pµ[Xt ∈ ·|τ∂ > t]

converges to α exponentially fast at rate 1/CP . This property will be then used in
Subsection 3.2 to show, in both examples presented in this subsection, that there is an
exponential decay at rate 1/CP when the initial measure is a Dirac measure, even if such
a measure does not admit any density function with respect to α.

Also, Proposition 2.11 entails another interesting corollary, when η is known to be
upper-bounded:

Corollary 2.13. Let µ ∈ M1(E). If η is upper-bounded, µ(η) > 0 and χ2(µ|α) < +∞,
then

χ2(η ◦ µ|η ◦ µ) < +∞.

Proof. If η is upper-bounded, for any µ ∈M1(E) absolutely continuous with respect to
α, ∫

E

dµ

dα
ηdµ ≤ ‖η‖∞

(
1 + χ2

2(µ|α)
)
.

3 Bakry-Émery condition and quasi-stationarity: application to
diffusion processes

In a practical way, Theorem 2.1 is hardly useable because the expressions of the
quasi-stationary distribution α and the eigenfunction η are scarcely explicitly known, so
the conditions (P2)-(P3) cannot be checked. In this section, diffusion processes will be
only dealt with and easy-to-check assumptions will be given.

In all what follows, the space Rd will be endowed with the L1-distance

d(x, y) :=

d∑
i=1

|xi − yi| (3.1)

for any x = (xi)i=1,...,d and y = (yi)i=1,...,d. In particular, this distance will be implicitly
used for the definition ofW1.

Let D ⊂ Rd be an open subset of Rd and ∂D its boundary. Let (Xt)t≥0 be the absorbed
diffusion process following

dXt =
√

2dBt −∇V (Xt)dt, Xt ∈ D, (3.2)

with a d-dimensional Brownian motion (Bt)t≥0 and V ∈ C2(Rd), and absorbed when
t ≥ τ∂ , where

τ∂ := inf{t ≥ 0 : Xt ∈ ∂D}.

In order to keep the same notation as the ones in Section 2, let (Pt)t≥0 the sub-Markovian
semi-group defined in (1.1), L the sub-Markovian generator defined in (2.2) and D(L)

the associated domain of definition defined in (2.1). In particular, any function f ∈ C2(D)

with compact support in D belongs to D(L), and for such a function and x ∈ D,

Lf(x) = ∆f(x)−∇V (x) · ∇f(x).

Denote by
γ(dx) := e−V (x)dx.

γ is therefore one reversible measure for L. Note that γ is not necessarily defined as a
probability measure. In all what follows, it will be assumed that

γ(D) < +∞.
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3.1 Proof of Theorem 1.1

In this subsection, we will prove Theorem 1.1 stated earlier in the introduction, that
we recall below:

Theorem 3.1. Let (Xt)t≥0 following (3.2) and such that γ(D) < +∞.

(BE1) Assume that there exists a nonnegative function η ∈ D(L) defined on D ∪ ∂D,
positive on D and vanishing on ∂D, such that γ(η2) < +∞ and there exists λ0 > 0

such that
∆η −∇V · ∇η = −λ0η.

(BE2) Assume moreover that there exists κ > 0 such that

Hess[V − 2 log(η)] ≥ κId. (3.3)

Then γ(η) < +∞, the probability measure α := η ◦ γ is a quasi-stationary distribution for
(Xt)t≥0 and

(i) there exists a constant C > 0 such that, for any µ ∈M1(D) and t ≥ 0,

‖Pµ(Xt ∈ ·|τ∂ > t)− α‖TV ≤ C
√
γ(D)γ(η2)

γ(η)
χ2(η ◦ µ|η ◦ α)e−κt, (3.4)

(ii) If moreover there exists x0 ∈ D such that∫
D

(1 + d(x, x0))2e−V (x)dx < +∞,

then for any µ ∈M1(D), there exists tµ such that for any t ≥ tµ,

W1(Pµ[Xt ∈ ·|τ∂ > t], α) ≤ C(γ, η)χ2(η ◦ µ|η ◦ α)e−κt, (3.5)

where

C(γ, η) :=

[
a+ b

∫
D

(1 + d(x, x0))η(x)γ(dx)

γ(η)

] √γ(η2)
∫
D

(1 + d(x, x0))2γ(dx)

γ(η)
.

Remark 3.2. Following Remark 1, it is possible to state general assumptions on the
potential V to entail (BE1). For example, when D = (0,+∞)d, the condition

lim
|x|→∞

∇V (x) = +∞ (3.6)

entails Assumption (F) in [10] (see this paper for the proof), so entails (P1) and (BE1).

Proof. First of all, remark that the property γ(η) < +∞ comes from the Cauchy-Schwarz
inequality and the fact that γ(η2) ∨ γ(D) < +∞ by assumptions.

To prove that α := η ◦ γ is a quasi-stationary distribution for X, the proof of [15,
Theorem 1.1] will be adapted to general Kolmogorov diffusion processes. Denote by

L := ∆−∇V · ∇.

By Itô’s formula, for any f twice continuously differentiable with compact support in D,

eλ0tf(Xt∧τ∂ ) = f(X0) +

∫ t∧τ∂

0

(Lf(Xs∧τ∂ ) + λ0f(Xs∧τ∂ ))ds+Mt,

EJP 26 (2021), paper 83.
Page 13/30

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP644
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Convergence to quasi-stationarity

whereM is a martingale. Hence, for any x ∈ D and t ≥ 0,

eλ0tEx[f(Xt∧τ∂ )] = f(x) + Ex

(∫ t∧τ∂

0

(Lf(Xs∧τ∂ ) + λ0f(Xs∧τ∂ ))ds

)
. (3.7)

Since L is symmetric with respect to γ (i.e.
∫
Rd
gLhdγ =

∫
Rd
Lghdγ, ∀g, h ∈ L2(γ)), by

Fubini’s theorem, for any s ≥ 0,

Eη◦γ [Lf(Xs∧τ∂ ) + λ0f(Xs∧τ∂ )] = 0.

Hence, integrating (3.7) over η ◦ γ and using Fubini’s theorem,

eλ0tEη◦γ [f(Xt∧τ∂ )] = η ◦ γ(f).

As a result, it is shown that, for any f twice continuously differentiable with compact
support in D,

(η ◦ γ)Ptf = e−λ0tη ◦ γ(f).

Since η vanishes at the boundary of D, the probability measure α = η ◦ γ is a quasi-
stationary distribution, associated to λ0. Moreover, remark that the measure γ(dx) =

e−V (x)dx is a reversible measure for the semi-group (Pt)t≥0, which means that, for any
f, g ∈ B(D), ∫

D

(Ptf)gdγ =

∫
D

f(Ptg)dγ, ∀t ≥ 0.

Then, for any t ≥ 0 and f ∈ B(D),∫
D

(Ptη)fdγ =

∫
D

η(Ptf)dγ = γ(η)αPtf = e−λ0tγ(η)α(f) = e−λ0t

∫
D

ηfdγ.

Thus, η is also an eigenfunction for (Pt)t≥0, associated to λ0. Now, consider again the
Doob transform (P̃t)t≥0 defined by

P̃tf(x) := eλ0t
Pt[η × f ](x)

η(x)
, ∀x ∈ D,∀f ∈ B(D).

Then the generator of the semi-group (P̃t)t≥0, denoted by L̃, endowed with its domain
D(L̃), is

L̃f(x) = ∆f(x)−∇ [V − 2 log(η)] (x) · ∇f(x), ∀x ∈ D,∀f ∈ D(L̃).

The condition (3.3) is therefore the Bakry-Émery condtion for the generator L̃. This
implies therefore (see for example [3, Proposition 4.8.1]) that the invariant measure
β := η ◦ α = η2 ◦ γ for the semi-group (P̃t)t≥0 satisfies a Poincaré inequality with CP = 1

κ ,
that is

Varβ(f) ≤ − 1

κ

∫
D

f L̃fdβ,

which is (P2).
In order to deal with the total variation distance, it is enough to take ψ = 1. For such

a choice of ψ, one has

η ◦ γ
(

ψ2

η/α(η)

)
= η ◦ γ(η)× η ◦ γ(1/η) =

γ(D)γ(η2)

γ(η)2
<∞.

Hence the condition (P3) of the Theorem 2.1 is satisfied for ψ = 1. So, by Theorem 2.1,
one has

‖Pµ(Xt ∈ ·|τ∂ > t)− η ◦ γ‖TV = sup
|f |≤1

|Eµ[f(Xt)|τ∂ > t]− η ◦ γ(f)|

≤ C
√
γ(D)γ(η2)

γ(η)
χ2(η ◦ µ|η2 ◦ γ)e−κt.

The point (ii) of Theorem 3.1 is a straightforward consequence of Corollary 2.6.
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Remark 3.3. Exponential decays like (3.4) and (3.5) hold also under weaker assumptions
than (3.3), such as the two followings:

• There exists c > 0 and R ≥ 0 such that for |x| > R,

x · ∇[V − 2 log(η)](x) ≥ c|x|. (3.8)

• There exists a ∈ (0, 1), c > 0 and R ≥ 0 such that for |x| > R,

a|∇[V − 2 log(η)](x)|2 −∆[V − 2 log(η)](x) > c.

These two conditions actually appear in [1, Corollary 1.6] and imply (P2). In particular,
the first condition is satisfied when V − 2 log(η) is convex. It will be shown later that, for
diffusion processes on (0,+∞)d, the convexity of V implies the one of V − 2 log(η) for a
particular eigenfunction η (which is not unique a priori), so (3.8) is satisfied.

3.2 Two examples

In this subsection, two examples whose the eigenfunctions η can be explicitly com-
puted are studied through Theorem 3.1: a scaled Brownian motion living in a hypercube,
and an Ornstein-Uhlenbeck process living on (0,+∞)d. In particular, several spectral
properties will be claimed throughout this subsection. We refer the reader to the
Appendix, at the end of the paper, for a few proofs on these spectral properties.

3.2.1 Brownian motion in a hypercube

Concerning quasi-stationarity for Brownian motion living in the interior of a general
compact set in Rd and absorbed at its boundary, we refer the reader to [15, Theorem
1.1].

Consider the open set D = CN := (−N,N)d, with N ∈ N, and V = 0, that is to say
(Xt)t≥0 = (

√
2Bt)t≥0. Then the function ηBm defined by

ηBm(x1, . . . , xd) :=

d∏
i=1

cos
( π

2N
xi

)
, ∀(x1, . . . , xn) ∈ CN , (3.9)

is an eigenfunction of ∆ with respect to the eigenvalue −λ0, where

λ0 =
dπ2

4N2
.

A proof of this claim is written in Appendix, at the end of the paper. Moreover, ηBm is
positive on CN , vanishing at ∂CN and

γ(η2
Bm) =

∫
CN

η2
Bm(x)dx =

(∫ N

−N
cos2

( π

2N
x
))d

= Nd.

Thus (BE1) is satisfied. Now, for any (x1, . . . , xd) ∈ CN and i, j = 1, . . . , d,

(Hess log(ηBm(x1, . . . , xd)))i,j =

{
−
(
π

2N

)2 [
1 + tan2

(
π

2N xi
)]

if i = j

0 otherwise

Hence, the Bakry-Émery condition (3.3) in (BE2) holds for κ = π2

2N2 . Then, Theorem 3.1
entails that the probability measure

αBm(dx) = ηBm ◦ γ(dx) =
ηBm(x)dx

γ(ηBm)
=
( π

4N

)d d∏
i=1

cos
( π

2N
xi

)
dx
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is a quasi-stationary distribution for (Xt)t≥0 and So, there exists C > 0 such that, for any
initial measure µ ∈M1(CN ) and t ≥ 0,

||Pµ(Xt ∈ ·|τ∂ > t)−αBm||TV ≤ C
√
γ(D)γ(η2

Bm)

γ(ηBm)
χ2(ηBm◦µ|ηBm◦αBm) exp

(
− π2

2N2
t

)
.

(3.10)

Now, one has

γ(ηBm) =

(∫ N

−N
cos
( π

2N
x
)
dx

)d
=

(
4N

π

)d
, and γ(D) = (2N)d.

As a result, (3.10) becomes: for any µ ∈M1(CN ) and t ≥ 0,

||Pµ(Xt ∈ ·|τ∂ > t)− αBm||TV ≤ C
(

π

2
√

2

)d
χ2(ηBm ◦ µ|ηBm ◦ αBm) exp

(
− π2

2N2
t

)
.

Note however that this Bakry-Émery coefficient κ is not optimal. In particular, denoting
βBm := ηBm ◦ αBm, if we use directly Theorem 2.1, the Poincaré constant CP is equal to

1/CP = inf
f∈L2(βBm),βBm(f)=0

−
∫
E
f L̃fdβBm∫

E
f2dβBm

. (3.11)

By this formula, one can compute (see Appendix to see the computation) that

1

CP
=

3π2

4N2
> κ.

Thus, by Theorem 2.1, for any µ ∈M1(E) and t ≥ 0,

‖Pµ[Xt ∈ ·|τ∂ > t]− αBm‖TV ≤ C
(

π

2
√

2

)d
χ2(ηBm ◦ µ|βBm) exp

(
− 3π2

4N2
t

)
.

Note then, as mentioned in Remark 2.3, the Poincaré constant CP and the Bakry-Emery
constant κ depend on the domain D through the size N .

Concerning the 1-Wasserstein distance, one can remark that the exponential decay in
total variation distance (3.10) implies the one inW1. As a matter of fact, since we are
studying a process living on the compact set (−N,N)d, one has, for any µ, ν ∈M1(CN ),

W1(µ, ν) ≤ dN‖µ− ν‖TV .

This inequality allows actually to get a better estimate for the decay in 1-Wasserstein
distance than the one provided by Corollary 2.6.

Finally, note that, if the initial measure µ admits a density function with respect to
Lebesgue’s measure which vanishes at ∂CN , µ(ηBm) > 0 and, since αBm(dx) = ηBm(x)dx

γ(ηBm) ,∫
CN

dµ

dαBm
ηBmdµ = γ(ηBm)

∫
CN

(
dµ

dx
(x)

)2

dx < +∞,

so that χ2(ηBm ◦ µ|βBm) < +∞ according to Proposition 2.11. If µ = δx, one can show
that the probability measure Pµ[X1 ∈ ·|τ∂ > 1] admits a density function with respect to
Lebesgue’s measure which vanishes at ∂CN , so one has also

χ2(ηBm ◦ Pµ[X1 ∈ ·|τ∂ > 1]|βBm) < +∞.

By Remark 2.4, this shows that the convergence of Pµ[Xt ∈ ·|τ∂ > t] to αBm at rate 3π2

4N2

holds for any initial distributions µ.
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3.2.2 Ornstein-Uhlenbeck process

For this example, consider D = (0,+∞)d and V (x) = λ
2

∑d
i=1 x

2
i , with λ > 0. Then,

(Xt)t≥0 is a d-dimensional Ornstein-Uhlenbeck process satisfying the following stochastic
differential equation

dXt =
√

2dBt − λXtdt, Xt ∈ (0,+∞)d. (3.12)

A positive eigenfunction of ∆−∇V · ∇ is

ηOU (x1, . . . , xn) :=

d∏
i=1

xi, ∀(x1, . . . , xd) ∈ D, (3.13)

associated to the eigenvalue −λd (the computation is in Appendix). Noting that, for this
example,

γ(dx) =

d∏
i=1

e−
λx2i
2 dx,

one has furthermore

γ(η2
OU ) =

(∫ ∞
0

x2e−
λx2

2 dx

)d
=

(√
π

2λ3

)d
.

Thus, (BE1) in Theorem 3.1 is satisfied.
For any x = (x1, . . . , xd) and i, j = 1, . . . , d,

[Hess(V − 2 log(ηOU ))(x)]i,j =

{
λ+ 2

x2
i

if i = j

0 otherwise

So the Bakry-Émery condition (3.3) is satisfied for κ = λ. Hence, by Theorem 3.1, the
probability measure

αOU (dx) := ηOU ◦ γ(dx) =
ηOU (x)γ(dx)

γ(ηOU )
= λd

d∏
i=1

xie
−λxi2 dx

is a quasi-stationary distribution for (Xt)t≥0 there exists Cd > 0 such that, for any µ and
t large enough,

W1(Pµ[Xt ∈ ·|τ∂ > t], αOU ) ≤ Cdχ2(ηOU ◦ µ|ηOU ◦ αOU ) exp (−λt) .

Note that the rate of convergence does not depend on the dimension d, but the constant
Cd explodes in high dimension. More precisely, after computations, one can show that,
when d→ +∞,

Cd ∼
d(d− 1)

4λ

(π
2

)d
.

Contrary to the previous example, the probability measure Pµ[Xt ∈ ·|τ∂ > t] does not
converge to αOU for any initial distribution µ. The curious reader can read the paper
[25], where it is shown, in the one-dimensional case, that there exists an infinity of
quasi-stationary distributions for Ornstein-Uhlenbeck processes absorbed by Dc, each
associated with their own domain of attraction. It is then expected that the property

χ2(ηOU ◦ µ|ηOU ◦ αOU ) < +∞

cannot be satisfied for every initial distributions. However, αOU has the property that,
for any x ∈ D, Px[Xt ∈ ·|τ∂ > t] −→

t→∞
αOU (this can be seen for example in [10]). Such
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a quasi-stationary distribution is called a Yaglom limit (see for example [27] for the
definition). Our aim is then to show that there exists t0 > 0 such that

χ2(ηOU ◦ φt0(δx)|ηOU ◦ αOU ) < +∞, ∀x ∈ D. (3.14)

To do so, we will use Corollary 2.12, stating that this holds when ηOU (x) > 0 for all x ∈ D,
which is satisfied, and when∫

D

dφt0(δx)

dαOU
ηOUdφt0(δx) < +∞.

For sake of simplicity, let us only deal with the case d = 1 (the result in general dimension
could be deduced by tensorization). In this case, for any x ∈ (0,+∞), one claims that the
positive measure δxP1 = Px[X1 ∈ ·, τ∂ > 1] admits a density function with respect to the

measure
√

2λ
π 1x∈Dγ(dx), denoted by fx, which admits the following representation

fx =
∑
n odd

e−λnFn(x)Fn, in L2 (γ) , (3.15)

with

Fn(x) =
Hn(
√
λx)√
n!

, ∀n ∈ Z+,∀x ∈ (0,+∞),

where (Hn)n∈Z+
are Hermite polynomials. See the Appendix for the definition of Hermite

polynomials and the proof of this claim.
Now, let us prove (3.14) for t0 = 1. Since Px[τ∂ > 1] > 0 for all x ∈ D, (3.14) is

equivalent to ∫ ∞
0

δxP1

dαOU
ηOUd(δxP1) < +∞.

Thus, using that δxP1(dy) =
√

2λ
π fx(y)γ(dy) and αOU (dy) = ληOU (y)γ(dy), (3.14) is

equivalent to ∫ ∞
0

f2
x(y)

√
2λ

π
γ(dy) < +∞.

Then, using the representation (3.15) and the fact that (Fn)n∈N is orthonormal in

L2

(√
2λ
π γ

)
(this is proved in the Appendix),

∫ ∞
0

f2
x(y)

√
2λ

π
γ(dy) =

∑
n odd

e−2λnF 2
n(x)

≤
∑
n∈Z+

e−2λnF 2
n(x).

However, the representation
∑
n∈Z+

e−λnFn(x)Fn is no less than the density function,

with respect to
√

λ
2πγ, of the marginal law at time 1 of an Ornstein-Uhlenbeck process of

parameter λ, starting at x (this fact is also proved in the Appendix, see (3.32)). In other
terms, for any y ∈ R,

∑
n∈Z+

e−λnFn(x)Fn(y) ∝ e
−λ(y−xe

−λ)2

1−e−2λ

e−λ
y2

2

, in L2(γ).

This entails that, for any x ∈ (0,+∞),

∑
n∈Z+

e−2λnF 2
n(x) ∝

∫
R

e
− 2λ(y−xe−λ)2

1−e−2λ

e−λ
y2

2

dy < +∞.
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Convergence to quasi-stationarity

Tu sum up, (3.14) holds for t0 = 1 and for any x ∈ (0,+∞), which entails that

χ2(ηOU ◦ φ1(δx)|ηOU ◦ αOU ) < +∞, ∀x ∈ D.

3.3 Diffusion processes on (0,∞)d

In general, contrary to the two previous examples, the eigenfunction η cannot be
explicitly given, so the assumptions of Theorem 3.1 cannot be checked in practice. In
this subsection, one will see how to bypass this problem for diffusion processes living on
D = (0,+∞)d and absorbed when one of its component reaches 0.

3.3.1 When d = 1

Take a one-dimensional diffusion process following

dXt =
√

2dBt − V ′(Xt)dt (3.16)

living on D = (0,+∞) and absorbed at ∂ = 0, where V is a C2-function. Then, one gets
the following proposition.

Proposition 3.4. Assume that V is convex on (0,+∞) and

lim
x→+∞

V ′(x) = +∞.

Then there exists an eigenfunction η such that log(η) is concave.

Proof. In [10, Corollary 4.2.], it is shown that, under the condition limx→+∞ V ′(x) = +∞,
there exists a unique positive eigenfunction η ∈ C2(D) for Pt, for all t ≥ 0, such that
Ptη = e−λ0t and

η′′(x)− V ′(x)η′(x) = −λ0η(x), ∀x ∈ D, (3.17)

with λ0 > 0, and such that there exists C, θ > 0 such that, for any x ∈ D and t ≥ 0,∣∣η(x)− eλ0tPx(τ∂ > t)
∣∣ ≤ Ce−θtϕ1/p(x), (3.18)

where p > 1 and ϕ is a Lyapunov function such that there exists D0 ⊂ (0,+∞), C ′ > 0

and λ > 0 large enough such that

ϕ′′(x)− V ′(x)ϕ′(x) ≤ −λϕ(x) + C ′1x∈D0 , ∀x ∈ D.

For any x ≥ 0, h > 0 and t ≥ 0,

Px+h(τ∂ > t) = Px+h(τ∂ > t, τx ≤ t) + Px+h(τx > t)

= Ex+h[1τx≤tPx(τ∂ > t− u)|u=τx ] + Px+h(τx > t),

where τx is the hitting time of x by the process (Xt)t≥0, and where the strong Markov
property is used for the second equality.

Considering the process (Xt∧τx)t≥0 absorbed at x, it is also a diffusion process coming
down from infinity. So there exists also a positive function ηx on (x,+∞) and a positive
constant λx such that, for any y > x,

ηx(y) = lim
t→∞

eλxtPy(τx > t).

Since τ0 dominates stochastically τx, λ0 < λx for any x > 0, so

lim
t→+∞

eλ0tPx+h(τx > t) = 0.
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Now remark that for any x ≥ 0, h > 0 and t ≥ 0,

eλ0tEx+h[1τx≤tPx(τ∂ > t− u)|u=τx ] = Ex+h[1τx≤te
λ0τx × [eλ0(t−u)Px(τ∂ > t− u)]u=τx ].

The random variable 1τx≤te
λ0τx × [eλ0(t−u)Px(τ∂ > t − u)]u=τx is upper bounded by

eλ0τx [η(x) + Cϕ1/p(x)], and, for h small enough, Ex+h(eλ0τx) < ∞ (see [27, Proposition
3]). Moreover, it converges to η(x)eλ0τx when t goes to infinity. So, by the Lebesgue’s
theorem,

lim
t→+∞

eλ0tEx+h[1τx≤tPx(τ∂ > t− u)|u=τx ] = Ex+h[eλ0τx ]η(x).

In conclusion, one has

η(x+ h) = lim
t→∞

eλ0tPx+h(τ∂ > t) = Ex+h[eλ0τx ]η(x).

So, for any h > 0 small enough,

η(x+ h)− η(x)

h
= η(x)

Ex+h[eλ0τx ]− 1

h
.

Then, since η ∈ C2((0,+∞)), for any x > 0, limh↓0
Ex+h[eλ0τx ]−1

h exists and

η′(x) = η(x) lim
h↓0

Ex+h[eλ0τx ]− 1

h
.

In other words, one has

log(η)′(x) = lim
h↓0

Ex+h[eλ0τx ]− 1

h
.

Now, for h fixed, since V is convex, the derivative V ′ is non-decreasing and, by [20,
Theorem 1.1, Chapter VI, p.437], the function x 7→ Ex+h(eλ0τx) is non-increasing, so one
has for any x ≤ x′,

lim
h↓0

Ex+h[eλ0τx ]− 1

h
≥ lim

h↓0

Ex′+h[eλ0τx′ ]− 1

h
.

So the function log(η)′ is non-increasing, which implies that the function log(η) is concave.

The previous proposition actually tells us that, assuming V convex, the second
derivative of V − 2 log(η) is greater than the one of V . In particular, Proposition 3.4
entails the following corollary:

Corollary 3.5. Let (Xt)t≥0 satisfying (3.16) and assume that there exists κ > 0 such
that

V ′′(x) ≥ κ, ∀x ∈ (0,+∞).

Then there exists a quasi-stationary distribution α, which is absolutely continuous with
respect to γ, and a constant C > 0 such that, for any µ ∈M1(D) and for t large enough,

‖Pµ[Xt ∈ ·|τ∂ > t]− α‖TV ≤ Cχ2(η ◦ µ|η ◦ α)e−κt,

and

W1(Pµ[Xt ∈ ·|τ∂ > t], α) ≤ Cχ2(η ◦ µ|η ◦ α)e−κt,

where η := dα
dγ .

EJP 26 (2021), paper 83.
Page 20/30

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP644
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Convergence to quasi-stationarity

Proof. Integrating twice the Bakry-Émery condition, there exists two constants a1, a2 ∈ R
such that, for any x > 0,

V (x) ≥ a1 + a2x+
κ

2
x2. (3.19)

Hence, one has limx→+∞ V ′(x) = +∞ and there exists an eigenfunction η satisfy-
ing (3.17) and (3.18). Moreover, since V is convex, log(η) is concave by Proposition 3.4,
so for any x > 0,

(V − 2 log(η))′′(x) ≥ V ′′(x) ≥ κ,
which implies also that γ(η2) < +∞. Hence the conditions (BE1)-(BE2) hold. Finally,
by (3.19), ∫ ∞

0

(1 + x)2e−V (x)dx < +∞,

which entails the exponential decay in total variation and 1-Wasserstein distance by
Theorem 3.1, setting α := η ◦ γ.

3.3.2 One-dimensional processes coming down from infinity

Let (Xt)t≥0 be a solution of (3.16) coming down from infinity, which means that there ex-
ists a constant ρ > 0 such that supx≥0Ex(eρτ∂ ) < +∞ (see [5] for alternative definitions).
Quasi-stationarity for such processes have been already studied in [11], in particular
(Xt)t≥0 absorbed at 0 admits a unique quasi-stationary distribution α absolutely contin-
uous with respect to γ and an eigenfunction η, unique up to a multiplicative constant,
satisfying the following relation (see [11, Theorem 4.1.]):

η(x) = 4λ0

∫ ∞
0

(x ∧ y)η(y)γ(dy), (3.20)

where −λ0 < 0 is the eigenvalue associated to α and η. Moreover, [11, Proposition 4.2.]
states that η is proportional to the function

x 7→
∫ ∞

0

(x ∧ y)α(dy).

In particular, log(η) is concave, whatever the convexity of the potential V . For these
processes, one can state the following result:

Theorem 3.6. Let (Xt)t≥0 following (3.16) coming down from infinity such that

κ̃ := inf
x>0

{
V ′′(x) + 8λ0e

−V (x)
}
> 0.

Then there exists a constant C > 0 such that, for any µ ∈M1(D) and for t large enough,

‖Pµ[Xt ∈ ·|τ∂ > t]− α‖TV ≤ Cχ2(η ◦ µ|η ◦ α)e−κ̃t, (3.21)

and
W1(Pµ[Xt ∈ ·|τ∂ > t], α) ≤ Cχ2(η ◦ µ|η ◦ α)e−κ̃t, (3.22)

If moreover V ′(x) > 0 for any x > 0, then the previous statement holds for

κ̃ := inf
x>0

{
V ′′(x) + 8λ0e

−V (x) + 2λ2
0

(
1− 4e−V (x)

V ′(x)

)2
}
.

Remark 3.7. In other words, this theorem states that the rate of convergence κ coming
from the Bakry-Émery condition V ′′ ≥ κ can actually be improved replacing it by κ̃.
Moreover, this entails that the exponential convergences (3.21) and (3.22) holds even if
V is concave in a neighborhood of 0, as soon as the function x 7→ V ′′(x) + 8λ0e

−V (x) is
lower-bounded by a positive constant.
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Proof of Theorem 3.6. The idea is simply to apply Theorem 3.1 and to compute the best
κ satisfying

[V − 2 log(η)]′′(x) ≥ κ, ∀x > 0,

knowing (3.20). First of all, for any x > 0,

[V − 2 log(η)]′′(x) = V ′′(x)− 2

[
η′′(x)

η(x)
−
(
η′(x)

η(x)

)2
]
.

By the equality (3.20),

η(x) = 4λ0

∫ x

0

yη(y)γ(dy) + 4λ0x

∫ ∞
x

η(y)γ(dy).

Then, for any x > 0,

η′(x) = 4λ0

∫ ∞
x

η(y)γ(dy), η′′(x) = −4λ0η(x)e−V (x).

Hence, for any x > 0,

[V − 2 log(η)]′′(x) = V ′′(x) + 8λ0e
−V (x) + 2

(
η′(x)

η(x)

)2

.

As a result, assuming κ̃ := infx>0

{
V ′′(x) + 8λ0e

−V (x)
}
> 0, one has

[V − 2 log(η)]′′(x) ≥ κ̃, ∀x ∈ (0,+∞).

Now, assuming moreover V ′(x) > 0 for any x > 0, and using that η′′(x) − V ′(x)η′(x) =

−λ0η(x) for any x > 0, one has

η′(x) =
η′′(x) + λ0η(x)

V ′(x)
= λ0η(x)

1− 4e−V (x)

V ′(x)
,

which entails that

[V − 2 log(η)]′′(x) = V ′′(x) + 8λ0e
−V (x) + 2λ2

0

(
1− 4e−V (x)

V ′(x)

)2

,

which concludes the proof.

Example 3.8. Considering
V : x 7→ (x+ 1)δ, δ > 2,

the underlying process (Xt)t≥0 satisfying (3.16) comes down from infinity, so Theorem 3.6
applies and the inequalities (3.21) and (3.22) hold for

κ̃ := inf
x>0

{
V ′′(x) + 8λ0e

−V (x) + 2λ2
0

(
1− 4e−V (x)

V ′(x)

)2
}
.

For this example, the eigenvalue −λ0 is not explicitly known, but it is possible to compare
it with the eigenvalue −λOU associated to the one-dimensional absorbed Ornstein-
Uhlenbeck process satisfying

dXOU
t =

√
2dBt − (XOU

t + 1)dt,

and such that, for any x > 0,

λOU = − lim
t→∞

logPOUt [1(0,+∞)](x)

t
,
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where (POUt )t≥0 is the sub-Markovian semi-group associated to (XOU
t )t≥0. This eigen-

value is explicitly known:
λOU = 1.

Likewise one has, for any x > 0,

lim
t→∞

− logPx[τ∂ > t]

t
= λ0.

Hence, since V ′(x) ≥ x+ 1 for any x > 0, one deduces from the theorem of comparison
[20, Theorem 1.1, Chapter VI] that, for any x > 0,

λ0 ≥ λOU = 1.

As a result, one has a lower-bound for λ0 and one can choose κ̃ as

κ̃ := inf
x>0

{
V ′′(x) + 8e−V (x) + 2

(
1− 4e−V (x)

V ′(x)

)2
}
.

3.3.3 Multi-dimensional diffusion processes

Now consider one d-dimensional diffusion process (Xt)t≥0 := (X1
t , . . . , X

d
t )t≥0 satisfying

dXt =
√

2dBt −∇V (Xt)dt

where, for any x1, . . . , xd ∈ (0,+∞)d,

V (x1, . . . , xd) =

d∑
i=1

Vi(xi), (3.23)

where, for any 1 ≤ i ≤ d, Vi : [0,+∞) → R is a convex C2([0,+∞))-function such that
limx→∞ V ′i (x) = +∞. We consider this process as absorbed by the boundary of [0,+∞)d.
In particular, D = (0,+∞)d and

∂D = {(x1, . . . , xd) ∈ [0,+∞)d : xi = 0 for some i}.

Denote η a common nonnegative eigenfunction of (Pt)t≥0. Then, for any x1, . . . , xd, η can
be expressed as follows

η(x1, . . . , xd) :=

d∏
i=1

ηi(xi),

where (ηi)i=1,...,d are functions such that, for any i, there exists λ0,i > 0 such that, for
any t ≥ 0 and x ∈ (0,+∞),

P it ηi(x) = e−λ0,itηi(x),

where
P it f(x) = Ex[f(Xi

t)1τ i∂>t], ∀f ∈ B((0,+∞)),∀t ≥ 0,

where τ i∂ := inf{t ≥ 0 : Xi
t = 0}. η is therefore associated to λ0 :=

∑d
i=1 λ0,i, and one has

for any x1, . . . , xd ∈ (0,+∞)d

(Hess log(η)(x1, . . . , xd))i,j =

{
log(ηi(xi))

′′ if i = j

0 otherwise.

By what it was shown previously, for any i = 1, . . . , d, log(ηi) is concave. As a result, one
can state the following result, which is the the multi-dimensional version of Corollary 3.5,
already stated in the Introduction.
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Theorem 3.9. Assume that the potential can be written as (3.23) and that there exists
κ > 0 such that, for any i = 1, . . . , d,

V ′′i (x) ≥ κ, ∀x ∈ [0,+∞).

Then there exists a quasi-stationary distribution α := η ◦ γ and a constant Cd > 0

(depending on the dimension d) such that, for any µ ∈M1(D) and t large enough,

W1(Pµ[Xt ∈ ·|τ∂ > t], α) ≤ Cdχ2(η ◦ µ|η ◦ α)e−κt,

and

‖Pµ[Xt ∈ ·|τ∂ > t]− α‖TV ≤ Cdχ2(η ◦ µ|η ◦ α)e−κt.

Previously, it was seen, with the two examples of Subsection 3.2, that the constant Cd
could explode when the dimension d goes to infinity. However, it is possible to improve
this result when the initial measure µ is the tensorial product of d probability measures on
(0,+∞). In this case, since (3.23) is assumed, the one-dimensional processes (Xi)i=1,...,d

are mutually independent. Moreover, since {Xt 6= 0} =
⋂
i=1,...,d{Xi

t 6= 0}, then for any
t ≥ 0 and µ1, . . . , µd ∈M1((0,+∞)),

Pµ1⊗···⊗µd [Xt ∈ ·|τ∂ > t] = Pµ1 [X1
t ∈ ·|τ1

∂ > t]⊗ · · · ⊗ Pµd [Xd
t ∈ ·|τd∂ > t],

Then, one obtains the following theorem, which was also stated previously in the Intro-
duction.

Theorem 3.10. Assume the assumptions of Theorem 3.9. Then there exists a con-
stant C > 0, which does not depend on the dimension, such that, for any µ1, . . . , µd ∈
M1((0,+∞)), and for t large enough,

‖Pµ1⊗···⊗µd [Xt ∈ ·|τ∂ > t]− α‖TV ≤ C

[
d∑
i=1

χ2(ηi ◦ µi|ηi ◦ αi)

]
e−κt,

and

W1(Pµ1⊗···⊗µd [Xt ∈ ·|τ∂ > t], α) ≤ C

[
d∑
i=1

χ2(ηi ◦ µi|ηi ◦ αi)

]
e−κt,

where αi(dx) := ηi(x)e−Vi(x)dx.

Proof. The first result comes from the inequalities

‖µ1 ⊗ · · · ⊗ µd − ν1 ⊗ · · · ⊗ νd‖TV ≤
d∑
i=1

‖µi − νi‖TV ,

which can be shown using the equality

1

2
‖µ− ν‖TV = inf

(X,Y )∈Π(µ,ν)
P(X 6= Y ), ∀µ, ν ∈M1(D),

and the result is deduced from the one obtained for d = 1. In the same way, by the
definition ofW1 and recalling thatW1 is defined through the L1-distance defined in (3.1),
one has

W1(µ1 ⊗ · · · ⊗ µd, ν1 ⊗ · · · ⊗ νd) =

d∑
i=1

W1(µi, νi),

which implies the second inequality in the statement of Theorem 3.10.
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Obvioulsy, one can also state a result similar to Theorem 3.6 for multi-dimensional
diffusion processes coming down from infinity:

Theorem 3.11. Assume that, for any i = 1, . . . , d, X i comes down from infinity and
V ′i (x) > 0 for any x > 0. Then the statements of Theorem 3.9 and 3.10 hold replacing κ
by

κ̃ := min
i=1,...,d

inf
x>0

{
V ′′i (x) + 8λ0,ie

−Vi(x) + 2λ2
0,i

(
1− 4e−Vi(x)

V ′i (x)

)2
}
.

Appendix

Spectral analysis for the Brownian motion in a hypercube

This part is dedicated to the spectral analysis of the scaled Brownian motion (Xt)t≥0 =

(
√

2Bt)t≥0 living in the hypercube CN := (−N,N)d.
For any k1, . . . , kn ∈ N, let ηk1,...,kd defined by

ηk1,...,kn(x1, . . . , xd) =
1√
Nd

d∏
i=1

sin

(
kiπ

2N
(xi +N)

)
, ∀(x1, . . . , xd) ∈ CN ,

These functions are therefore eigenfunctions of the Laplacian ∆: for all k1, . . . , kd ∈ N,
for any (x1, . . . , xd) ∈ CN ,

Lηk1,...,kd(x1, . . . , xd) = ∆ηk1,...,kd(x1, . . . , xd) =
1√
Nd

d∑
i=1

∂xi,xi

d∏
i=1

sin

(
kiπ

2N
(xi +N)

)

= − 1√
Nd

d∑
i=1

(
kiπ

2N

)2 d∏
i=1

sin

(
kiπ

2N
(xi +N)

)
= −λk1,...,kdηk1,...,kd(x1, . . . , xd), (3.24)

where

λk1,...,kd :=
π2

4N2

d∑
i=1

k2
i .

In particular, by the definition of the function ηBm in (3.9),

ηBm =
√
Ndη1,...,1.

Hence, by (3.24),
∆ηBm = −λ0ηBm,

where

λ0 := λ1,...,1 =
dπ2

4N2
.

Hence, ηBm is indeed an eigenfunction of ∆, as claimed in Subsection 3.2.
It remains us to compute the Poincaré constant CP . The family (ηk1,...,kd)k1,...,kd is a

total orthonormal basis of L2(γ) (recalling that γ is Lebesgue’s measure in our case) and
are eigenvectors of ∆, by (3.24). Then (ηk1,...,kd)k1,...,kd are also eigenvectors of Pt, for
all t, respectively associated to the eigenvalues (e−λk1,...,kd t)k1,...,kd . Then, defining for
any k1, . . . , kd ∈ N

η̃k1,...,kd =
ηk1,...,kd
ηBm

,

one obtains, for any t ≥ 0,

P̃tη̃k1,...,kd =
eλ0t

ηBm
Pt[ηk1,...,kd ] = e−(λk1,...,kd−λ0)tη̃k1,...,kd .
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Since the family (ηk1,...,kd)k1,...,kd is orthonormal with respect to Lebesgue’s measure,
the family (η̃k1,...,kd)k1,...,kd is orthogonal with respect to the measure βBm = ηBm ◦ αBm.

Thus, the family (
η̃k1,...,kd

‖η̃k1,...,kd‖L2(βBm)
)k1,...,kd is a total orthonormal basis of L2(βBm) and one

obtains by (3.11) that

1/CP = λ1 − λ0,

where λ1 is the smallest λk1,...,kd different from λ0. In other words,

λ1 = λ1,...,1,2 =
(d− 1)π2

4N2
+
π2

N2
,

so that
1

CP
= λ1 − λ0 =

3π2

4N2
> κ,

which is exactly the claim stated in Subsection 3.2.

Spectral analysis of the Ornstein-Uhlenbeck process living in (0,+∞)d

Let us consider the d-dimensional process (Xt)t≥0 defined by

dXt =
√

2dBt − λXtdt,

with λ > 0, living on (0,∞)d and absorbed at its boundary. First, we prove that the
function ηOU defined by

ηOU (x1, . . . , xd) =

d∏
i=1

xi

is a right eigenfunction for the operator L = ∆ − λx · ∇, positive on (0,+∞)d and
vanishing at its boundary. As a matter of fact,

LηOU (x) = ∆ηOU (x)− λx · ∇ηOU (x) = −λ
d∑
i=1

xi∂xiηOU (x1, . . . , xd)

= −λd
d∏
j=1

xj = −λdηOU (x1, . . . , xd),

which proves one of the claim of Subsection 3.2.
It remains us to prove the formula of representation (3.15) for the density function

fx. Before proving this equality, let us recall some facts on Hermite polynomials:

Definition 3.12. Hermite polynomials (Hn)n∈Z+
are defined as follows: for any n ∈ Z+,

for any x ∈ R,

Hn(x) = (−1)ne
x2

2
dn

dnx
e−

x2

2 .

Then two interesting properties can be deduced from this definition:

• For any n,m ∈ Z+, ∫
R

Hn(x)Hm(x)
1√
2π
e−

x2

2 dx = n!δn,m, (3.25)

where δn,m is the Kronecker delta.

• For any n ∈ Z+ and x ∈ R,

H ′′n(x)− xH ′n(x) = −nHn(x). (3.26)
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In particular, by the first property, denoting γ0(dx) = 1√
2π
e−

x2

2 , the family (Hn/
√
n!)n∈Z+

is an orthonormal basis of L2(γ0). Consider now the family (Fn)n∈Z+
defined by

Fn(x) =
Hn(
√
λx)√
n!

, ∀n ∈ N,∀x ∈ (0,+∞). (3.27)

Then, by (3.25),∫
R

Fn(x)Fm(x)

√
λ

2π
e−λ

x2

2 dx =

∫
R

Hn(
√
λx)√
n!

Hm(
√
λx)√

m!

1√
2π
e−

(
√
λx)2

2

√
λdx = δn,m.

(3.28)
Now, by (3.26),

F ′′n (x)− λxF ′n(x) =
λH ′′n(

√
λx)− λ×

√
λxH ′n(

√
λx)√

n!

= −λnFn(x). (3.29)

Hence, by (3.28), the family (Fn)n∈Z+
is an orthonormal basis of L2(γ̃), where

γ̃(dx) :=

√
λ

2π
e−

λx2

2 dx =

√
λ

2π
γ(dx).

Furthermore, by (3.29), for any n ∈ N, Fn is a right eigenfunction for the Ornstein-
Uhlenbeck semi-group (St)t≥0, defined by

Stf(x) = E

[
f

(
xe−λt +

√
1− e−2λt

λ
Z

)]
, ∀f ∈ B(R),∀x ∈ R,

with Z be a standard Gaussian variable. More precisely, for any n ∈ Z+, for any t ≥ 0,

StFn(x) = e−λntFn(x), ∀x ∈ R.

Now, in order to prove the claim in Subsection 3.2, let us prove the following proposition:

Proposition 3.13. Let d = 1. For any A ⊂ D and x ∈ D,

P11A(x) =
∑
n odd

e−λn

(∫
A

Fn(y)

√
2λ

π
e−

λy2

2 dy

)
Fn(x),

where (Fn)n∈Z+ is defined as in (3.27). In particular, for any x ∈ D, δxP1 admits a

density function with respect to the measure
√

2λ
π e

−λy2
2 dy, denoted by fx, whose a

representation is
fx =

∑
n odd

e−λnFn(x)Fn. (3.30)

Proof. Let A ⊂ D. In this proof, let us consider the process (Xt)t≥0 as a non-absorbed
process, so as an Ornstein-Uhlenbeck process living on R following

dXt =
√

2dBt − λXtdt.

Since the Ornstein-Uhlenbeck process satisfies a property of reflection at 0, one has, for
any x ∈ D,

P11A(x) = Px[X1 ∈ A, τ∂ > 1] = Px[X1 ∈ A]− Px[X1 ∈ A, τ∂ ≤ 1]

= Px[X1 ∈ A]− Px[X1 ∈ −A], (3.31)
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where −A := {x ∈ R : −x ∈ A}. Another way to write (3.31) is

P11A(x) = Ex[(1A − 1−A)(X1)].

Since (Fn)n∈Z+
is a total orthonormal basis of L2(γ̃) which are eigenfunctions for the

operator S1, respectively associated to the eigenvalues e−λn, then for any f ∈ L2(γ̃),

Ex[f(X1)] = S1f(x) =
∑
n∈Z+

e−λn < Fn, f >γ̃ Fn(x), (3.32)

where < Fn, f >γ̃=
∫
R
Fn(y)f(y) λ√

2π
e−

λy2

2 dy. Noting that the function 1A − 1−A is odd
and that Fn is odd (respectively even) when n is odd (respectively even), one has

< Fn,1A − 1−A >γ̃=

{
0 if n is even.∫

A
Fn(y)

√
2λ
π e
−λy

2

2 dy otherwise.

In conclusion, using (3.31) and (3.32),

P11A(x) =
∑
n odd

e−λn
∫
A

Fn(y)

√
2λ

π
e−

λy2

2 dyFn(x).

The representation (3.30) is naturally deduced from the previous equality.
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