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Abstract

We consider the asymmetric simple exclusion process (ASEP) on Z. For continuous
densities, ASEP is in local equilibrium for large times, at discontinuities however, one
expects to see a dynamical phase transition, i.e. a mixture of different equilibriums. We
consider ASEP with deterministic initial data such that at large times, two rarefactions
come together at the origin, and the density jumps from 0 to 1. Shifting the measure
on the KPZ 1/3 scale, we show that the law of ASEP converges to a mixture of the
Dirac measures with only holes resp. only particles. The parameter of that mixture is
the probability that the second class particle, which is distributed as the difference of
two independent GUEs, stays to the left of the shift. This should be compared with
the results of Ferrari and Fontes from 1994 [6], who obtained a mixture of Bernoulli
product measures at discontinuities created by random initial data, with the GUEs
replaced by Gaussians.
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1 Introduction

For large times, interacting particle systems are expected to be in local equilibrium.
However, local equilibrium does not hold when the density of particles is discontinuous.
Rather, one expects to observe what Wick [16] called a dynamical phase transition, a
mixture of different equilibriums. The aim of this paper is to study an interacting particle
system - the asymmetric simple exclusion process (ASEP) on Z - in a situation where
local equilibrium does not hold, and, at the same time, the Kardar-Parisi-Zhang (KPZ)
behavior of ASEP can be observed because no initial randomness supersedes it. We refer
to [3] for an introduction to integrable probability and KPZ universality.

ASEP can be described as follows: Each site i ∈ Z is occupied either by a particle or
a hole. The particles perform independent, continuous-time random walks, waiting a
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Dynamical phase transition of ASEP in the KPZ regime

mean 1 exponential time to make a unit step to the right with probability p > 1/2 or a
unit step to the left with probability q = 1− p < 1/2. However, the step is only made if
the target site is occupied by a hole, and when a step is made, the particle and the hole
exchange positions. Equivalently, we can think of the holes as performing random walks,
jumping to the left (resp. right) with probability p (resp. q), and being only allowed to
jump to sites occupied by particles. This is the particle-hole duality. The state space of
ASEP is Ω = {0, 1}Z, the 1′s are considered particles, the 0′s are considered holes.

The evolution of ASEP is known to be closely related to the Burgers equation for
u(ξ, θ) ∈ R (where ξ, θ ∈ R) given by

∂θu+ (p− q)∂ξ[u(1− u)] = 0.

Indeed, let ζN , N ∈ N, be a sequence in Ω such that the initial empirical density satisfies

lim
N→∞

1

N

∑
i∈Z

ζN (i)δi/N = u(ξ, 0)dξ, (1.1)

where δi/N is the Dirac measure at i/N and the convergence is in the sense of vague
convergence of measures. Denoting by ζNt the state of the ASEP started from ζN at time
t, we have at later times

lim
N→∞

1

N

∑
i∈Z

ζNθN (i)δi/N = u(ξ, θ)dξ, (1.2)

where u(ξ, θ) is the unique entropy solution of the Burgers equation with initial data
u(ξ, 0), see [1].

Closely related to this is the convergence of the law of ζNNθ, which we will denote by
δζNS(Nθ), as a measure on Ω. The set of possible limits, i.e. the invariant measures, were
described completely in [9], they are the closed convex hull of the extremal invariant
measures, which are given by

{νρ, ρ ∈ [0, 1]} ∪ {µZ , Z ∈ Z}. (1.3)

Here νρ, ρ ∈ [0, 1], are the product Bernoulli measure on Ω under which ζ(j), j ∈ Z,
are i.i.d. random variables and P(ζ(j) = 1) = 1 − P(ζ(j) = 0) = ρ. Note that for
ρ ∈ {0, 1}, νρ is a Dirac measure, respectively on the configuration without particles and
the configuration without holes. The µZ are conditional blocking measures and defined
in (2.4) below.

ASEP is in local equilibrium at all macroscopic times θ > 0 whenever u(·, θ) is
continuous: As shown in [1, Theorem 2] in a more general setting, at every continuity
point ξ0 of u(·, θ), ζNθNτξ0N converges in distribution to νu(ξ0,θ). Here the shift operator τn
acts on ζ ∈ Ω by ζτn = ζ(·+ n) and naturally extends to measures on Ω.

This local equilibrium does not hold when there is a discontinuity (shock). For shocks
between regions of constant densities ρ < λ created by random initial data, [6, Theorem
1.3] showed that the limit law of ASEP at this shock is a convex combination of νρ
and νλ, rather than a single product measure. Shifting the measure on the scale of
the fluctuations of the second class particle at the shock, the parameter of this convex
combination is precisely the probability that the second class particle stays to the left
of this shift. This probability is given by a Gaussian, and the Gaussian comes from the
random initial data, not ASEP itself.

This naturally leads to the question what happens in the absence of initial randomness,
where one expects to see the (non-Gaussian) KPZ behavior of ASEP. As in our previous
work [13], here we consider a shock between two rarefaction fans, which meet at the
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Figure 1: Left: The initial particle density u(ξ, 0) of the initial configuration η1. Right:
The large time density u(ξ, θ) at the macroscopic time θ = 1. We can informally think of
the parameter M , while invisible on the hydrodynamic scale, as allowing us to transit
between the fluctuations at θ = 1 and those at θ > 1.

origin where the density jumps from 0 to 1, see Figure 1. We find, see Theorem 1, that
again there is a dynamical phase transition, namely we obtain a convex combination
of the Bernoulli/Dirac measures ν0 and ν1. Shifting the measure on the scale of the
fluctuations of the second class particle at the shock, we find that the parameter of
the convex combination is again the probability that the second class particle stays to
the left of the shift. In our case however, the second class particle is governed by the
KPZ 1/3 fluctuation exponent, and it is distributed as the difference of two independent
GUEs (see (1.5)), rather than the difference of two independent Gaussians. This is the
first example of a dynamical phase transition of ASEP in the KPZ regime, even for p = 1

(TASEP), we are not aware of such a result. Furthermore, in Theorem 4 we obtain the
limit law of the process as seen from the second class particle. Our proofs develop
further the methods employed in [13], we refer to Section 2.1 for a description of our
proof method and describe now our main results.

The initial data we will consider is

η1 = 1Z<−N(t,M)
+ 1{0,...,N(t,M)}, (1.4)

where N(t,M) is given by a parameter M ∈ Z≥1 and

C(M) := 2

√
M

p− q
, N(t,M) := (p− q)(t− C(M)t1/2).

So really, η1 is a sequence of initial data which depends on M and t, when we want to
emphasize this, we may write η1 =: η1,M,t, but we will often omit the M, t to lighten our
notation. For each fixed M , we will look at the process (η1,M,t

` , 0 ≤ ` ≤ t) and then send
t→∞. The configuration η1 has an infinite group of particles starting from Z<−N(t,M),
and another group of particles starting from {0, . . . , N(t,M)}. Each group will form a
region of decreasing density (rarefaction fan), and at time t, these two fans meet at the
origin for the first time, see Figure 1. The parameter M tunes the interaction between
the two rarefaction fans: As M becomes large, more and more particles that started
in Z<−N(t,M) arrive at the origin, and more and more holes that started in Z>N(t,M)

arrive at the origin also. Alternatively, we may remove the parameter M from the initial
configuration completely, start an ASEP from

η̂1 = 1Z<−(p−q)` + 1{0,...,(p−q)`},

and study the ASEP started from η̂1 at time t = ` + C(M)`1/2. From this viewpoint,
sending M →∞ after sending t→∞ can be heuristically interpreted as transitioning
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from the fluctuations at macroscopic time θ = 1 to the fluctuations at macroscopic time
θ > 1, see also Remark 5.2 in Section 5. In the following, we will work with η1, not η̂1.

To formulate our dynamical phase transition, we define the Tracy-Widom GUE distri-
bution function, which originates in random matrix theory [14], as

FGUE(s) =

∞∑
n=0

(−1)n

n!

∫ ∞
s

dx1 . . .

∫ ∞
s

dxn det(K2(xi, xj)1≤i,j≤n), (1.5)

where K2(x, y) is the Airy kernel K2(x, y) = Ai(x)Ai′(y)−Ai(y)Ai′(x)
x−y , x 6= y, defined for x = y

by continuity and Ai is the Airy function.
Let for ξ ∈ R

p(ξ) := P(χGUE − χ′GUE ≤ ξ),

where χGUE, χ
′
GUE are two independent, GUE-distributed random variables. Note p(0) =

1/2. Recall the shift operator τn acting on Ω as ζτn = ζ(·+ n) and naturally extending to
subsets of Ω and measures on Ω. The dynamical phase transition is as follows. Recall
that the initial configuration η1 defined in (1.4) depends also on M and t.

Theorem 1. Denote by δη1S(t) the law of η1
t . We have for ξ ∈ R

lim
M→∞

lim
t→∞

δη1S(t)τM1/3ξ = (1− p(ξ))ν0 + p(ξ)ν1,

where both limits are in the sense of weak convergence of measures.

Theorem 1 is proven in Section 5. In fact, in Theorem 6 of Section 5, we show that
limt→∞ δη1S(t) equals an infinite linear combination of the blocking measures µZ defined
in (2.4) below. A heuristical derivation of this infinite linear combination and Theorem 1
is given in Section 2.1.

1.1 Comparison with shocks created by random initial data

Let νρ,λ be the product measure on Ω for which each nonnegative integer is occupied
by a particle with probability λ and each negative integer is occupied by a particle
with probability ρ, where λ > ρ, (ρ, λ) 6= (0, 1). In this case, the initial density equals
ρ1R− +λ1R+ , the shock moves with speed v = (p− q)(1−λ− ρ) and exhibits a dynamical
phase transition [6, Theorem 1.3].

To compare this shock better to our situation, we can send simultaneously ρ→ 0, λ→
1 : Let ρ = ε, λ = 1− ε. It is then an immediate corollary of [6, Theorem 1.3] that with
D(ε) = 2ε(1−ε)

1−2ε we have

lim
ε→0

lim
t→∞

νε,1−εS(t)τvt+ξ(D(ε)t)1/2 = (1− p̂(ξ))ν0 + p̂(ξ)ν1, (1.6)

where

p̂(ξ) =
1√
2π

∫ ξ

−∞
dse−s

2/2

is the standard Gaussian. This Gaussian is obtained as the difference of two independent
Gaussians, see [6, Theorem 1.1] and Section 1.2.

Theorem 1, as well as the dynamical phase transition (1.6), is best understood via
the behaviour of the second class particle at the shock, which we describe next.

1.2 Second class particles

To define the second class particle, we consider the configuration η2, which is obtained
by replacing the particle η1 has at the origin by a hole:

η2(j) = η1(j)1Z\{0}(j). (1.7)
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We couple the ASEPs starting from η1, η2 via the basic coupling. This allows us to define
the second class particle X(t) as the position where these two ASEPs differ, i.e.

X(t) =
∑
j∈Z

j1{η1t (j) 6=η2t (j)}. (1.8)

The second class particle interacts with holes like a particle, and with particles like a
hole, and we will only consider ASEPs with a single second class particle. Considering
the enlarged state space {0, 1, 2}Z, where a 2 indicates the presence of the second class
particle, we can define the initial configuration η with a second class particle at the
origin as

η(j) = η2(j) + 21{0}(j). (1.9)

The behavior of X(t) in the double limit limM→∞ limt→∞ was obtained previously in our
work [13]. Note M1/3ξ is exactly the shift in Theorem 1.

Theorem 2 (Theorem 1 of [13]). For ξ ∈ R we have

lim
M→∞

lim
t→∞

P
(
X(t) ≤M1/3ξ

)
= p(ξ).

In [13], we obtained an upper and a lower bound for limt→∞P
(
X(t)
M1/3 ≤ ξ

)
which

both converge to p(ξ) as M → ∞. Our refined approach here allows us to compute
limt→∞P (X(t) ≤ i) , i ∈ Z, explicitly, see Theorem 7 in Section 6.

Let ηρ,λ,1 be the particle configuration which has a particle at the origin and for which
each j > 0 is occupied by a particle with probability λ, each j < 0 is occupied by a particle
with probability ρ, and the occupation of different integers happens independently.
Setting ηρ,λ,2(j) = ηρ,λ,11Z\{0}(j), we can define as in (1.8) a second class particle
Xρ,λ(t) starting at the origin. As shown in [6, Theorem 1.2], Xρ,λ(t) converges to a
Gaussian for arbitrary ρ < λ, (ρ, λ) 6= (0, 1). In the situation of (1.6), [6, Theorem 1.2]
yields the following central limit theorem:

lim
ε→0

lim
t→∞

P
(
Xε,1−ε(t) ≤ vt+ (D(ε)t)

1
2 ξ
)

= p̂(ξ). (1.10)

This Gaussian really is the difference of two independent Gaussians, since, as shown in [6,
Theorem 1.1], Xρ,λ(t) is proportional to the difference of the number of particles present
initially in a region of length O(t) and the number of holes present initially in another
region of length O(t). Both these numbers being the sum of i.i.d. Bernoulli random
variables, Xρ,λ(t) is asymptotically distributed as the difference of two independent
Gaussians, i.e. as a Gaussian.

Following the notation of [5], we denote by ν̂ρ,λŜ(t) the law of ηρ,λ,2t τXρ,λ(t), which
is the process as seen from the second class particle. For a measure µ on Ω, we write
µ(f) =

∫
Ω

dµf and for λ, ρ ∈ [0, 1] we write µ ∼ νρ,λ if for all cylindric f on Ω we have

lim
x→−∞

µτx(f) = νρ(f) and lim
x→∞

µτx(f) = νλ(f).

Ferrari [5] proved the following general result, which shows that Xρ,λ is a microscopic
shock, for us the special case (ρ, λ) = (0, 1) will be relevant.

Theorem 3 (Theorem 2.2 of [5]). Let 0 ≤ ρ < λ ≤ 1. Uniformly in t, we have ν̂ρ,λŜ(t) ∼
νρ,λ. As t→∞, ν̂ρ,λŜ(t) converges weakly to an invariant measure µ̂ ∼ νρ,λ.

Note that for λ = 1, ρ = 0, there is initially a second class particle at the origin, which
has only particles to its right, and only holes to its left. While our second class particle
X(t) starts from a quite different environment, it turns out that the process as seen from
X(t) converges to the same limit:
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Theorem 4. The law of η2
t τX(t) converges weakly, as t → ∞, to the measure µ̂ from

Theorem 3 with λ = 1, ρ = 0.

Theorem 4 is proven in Section 6, a heuristical derivation is given in Section 2.1.
Note that for every finite t, X(t) has O(t) many particles (resp. holes) to its right (resp.
left), in contrast to the property ν̂0,1Ŝ(t) ∼ ν0,1. In Corollary 1 of Section 6, we show that
after the t→∞ limit, the density of particles to the right (resp. left) of X(t) approaches
1 (resp. 0) exponentially fast.

In light of Theorem 2 and Theorem 4, we can interpret Theorem 1 as follows: If the
second class particle X(t) stays to the left of M1/3ξ, which happens with probability p(ξ),
then we see only particles in the limit, i.e. ν1, whereas if it stays to the right of M1/3ξ,
which happens with probability 1− p(ξ), we see only holes, i.e. ν0.

1.3 Outline

In Section 2, we recall positive recurrent ASEPs and describe our method of proof. In
Section 3, we introduce key random variables and events which will allow us in Section
4 to reduce our problem to positive recurrent ASEPs. In Section 5, we prove Theorem
1, and in Section 6 we prove Theorem 4, as well as Corollary 1 on the exponential
convergence of densities and Theorem 7 giving the t→∞ limit law of X(t).

2 Positive recurrent ASEPs and method of proof

Recall that a sequence of measures (σn)n≥1 on Ω converges weakly to a measure σ on
Ω if for all continuous f we have that σn(f) converges to σ(f). We will use the following
simple statement to prove weak convergence.

Proposition 2.1. For A ⊆ Z, denote fA = 1{ζ∈Ω:ζ(i)=1 ∀i∈A}. We have that limn→∞ σn =

σ in the sense of weak convergence of meaures if for all finite subsets A ⊂ Z we have
that limn→∞ σn(fA) = σ(fA).

Proposition 2.1 can be shown by writing the configurations ηζ defined in [10, page
22] with η = 1∅ as finite linear combinations of functions of the form fA.

Note that f∅(ζ) = 1 for all ζ ∈ Ω.
A well-known time-invariant measure µ for ASEP is the product blocking measure

(see [11, page 211]) given by

µ({ζ : ζ(i) = 1}) =
(p/q)i

1 + (p/q)i
, (2.1)

for which the particle density approaches 1 (resp. 0) exponentially fast as i→ +∞ (resp.
i→ −∞). The measure µ thus concentrates on configurations ζ ∈ Ω for which∑

j<0

ζ(j) <∞
∑
j>0

(1− ζ(j)) <∞. (2.2)

The set of such configurations is given by the countable, disjoint union of ΩZ , Z ∈ Z,
where

ΩZ =

ζ :
∑
j<Z

ζ(j) =
∑
j≥Z

(1− ζ(j)) <∞

 . (2.3)

An element of ΩZ that will appear later is the reversed step initial data given by

η−step(Z) = 1Z≥Z .

When restricted to ΩZ , ASEP is an irreducible, positive recurrent, countable state space
Markov chain with unique stationary measure

µZ := µ(·|ΩZ), (2.4)
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see [11, page 212] and the reference therein. In particular, we have the following result.

Proposition 2.2. Let ζ ∈ ΩZ . Then, the law of ζt converges to µZ as t→∞.

Finally, we note that there is a partial order on ΩZ : For η′, η′′, we define

η′ � η′′ ⇐⇒
∞∑
j=r

(1− η′′(j)) ≤
∞∑
j=r

(1− η′(j)) for all r ∈ Z. (2.5)

It is easy to see that under the basic coupling, this order is preserved, i.e. if η′ � η′′,
then also η′t � η′′t , t ≥ 0. Note that η−step(Z) is maximal in ΩZ w.r.t. the order �.

2.1 Method of proof

Let us outline here the method of proof for Theorem 1 and Theorem 4, which develops
further and improves the methods described in [13, Section 1.2]. In particular, here
we are able to show convergence of the entire ASEP and the process as seen from the
second class particle, as well as to obtain single t → ∞ limits explicitly and not just
double limits M →∞, t→∞.

Note that in the initial data η1 from (1.4), there is an infinite group of particles
starting from Z<−N(t,M), and an infinite group of holes starting from Z>N(t,M). Let P(t)

(resp. H(t)) be the random number of particles (resp. holes) from these two groups
which at time t are sufficiently close to the origin to affect δη1S(t) in the t→∞ limit. The
random variables P(t),H(t) will be properly defined in (3.3). Let xP(t) be the leftmost
particle that started in Z<−N(t,M), and is close to the origin at time t, and likewise let
HH(t) be the rightmost hole that started from Z>N(t,M) and is close to the origin at time
t. Let T ≤ t be the random first time at which HH(t) and xP(t) have arrived close to the
origin. After time T , no new particles arrive from Z<N(t,M) to affect δη1S(t), and no new
holes arrive from Z>N(t,M) either. So after time T , we may replace all particles to the
left of xP(t) by holes, and all holes to the right of HH(t) by particles.

The point of this replacement is that the resulting ASEP configuration lies in the
random state space ΩH(t)−P(t). Assume now that after time T , there is enough time to
mix to equilibrium irrespective of what value P(t),H(t) take. The bulk of the work in this
paper is to show that this assumption is justified. On the event {P(t) = L} ∩ {H(t) = R},
the equilibrium measure then is µR−L by Proposition 2.2. Let us write

pL,R = lim
t→∞

P({P(t) = L} ∩ {H(t) = R}), R, L ≥ 0.

So conditioned on an event with asymptotic probability pL,R, δη1S(t) should pick µR−L
as limit measure. Summing over all possible values of P(t),H(t) we obtain

lim
t→∞

δη1S(t) =
∑
R,L≥0

pL,RµR−L. (2.6)

This statement appears as Theorem 6 in Section 5. The probability pL,R is defined in
(3.7). Once (2.6) is in place, we can combine the properties of the pL,R and the µZ to
obtain Theorem 1.

To understand Theorem 4, start two ASEPs from η−step(Z+1), η−step(Z), coupled via
the basic coupling and thus giving rise to a second class particle XZ which starts from
Z. Following the preceding heuristics, the law of η2

t τX(t) should be equal to the law of
η−step(R−L+1)τXR−L(t) with probability pL,R. However, the law of η−step(R−L+1)τXR−L(t)

does not depend on R − L: The process as seen from XR−L(t) is the same for all R,L
(see Proposition 6.1), and it converges to µ̂ by Theorem 3. Therefore, η2

t τX(t) converges
to µ̂ also.
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Finally, as opposed to [13], this reasoning can be used to compute

lim
t→∞

P(X(t) ≤ i), i ∈ Z,

also. It follows in particular from the heuristics for Theorem 4, that with probability pL,R,
X(t) should be equal to XR−L(t). Therefore, we should have

lim
t→∞

P(X(t) ≤ i) =
∑
L,R≥0

pL,R lim
t→∞

P(XR−L(t) ≤ i). (2.7)

This statement appears as Theorem 7 in Section 6, and it is possible to rederive Theorem
2 from it.

3 Results for P(t),H(t)
Here we define the random variables P(t),H(t) and give the limiting results we need

from them. Then we define the event FδL,R which will in Proposition 4.4 of Section 4 tell
us in which ΩZ the configuration ηt lies after the replacement procedure described in
Section 2.1. The results of the present section largely come from [13], which dealt with
ηt, the configuration with a second class particle defined in (1.9), and we will mostly
work with ηt to be able to use the results of [13] without justification. Note that we can
always recover η1

t by replacing the second class particle by a first class particle. Let us
first assign a label to the particles of η via

xn(0) =

{
−n−N(t,M) if n ≥ 1

−n+ 1 if −N(t,M) + 1 ≤ n ≤ 0.
(3.1)

and to the holes of η via

Hn(0) =

{
n+N(t,M) forn ≥ 1

n− 1 for −N(t,M) + 1 ≤ n ≤ 0.
(3.2)

We define for 0 < χ < χ′ < 1/2

P(t) = sup{i ∈ Z|xi(t− tχ) > −tχ
′
}

H(t) = sup{i ∈ Z|Hi(t− tχ) < tχ
′
}.

(3.3)

So P(t),H(t) denote the label of the leftmost particle (resp. the rightmost hole) which
have reached the position −tχ′ (resp. tχ

′
) by time t− tχ. The idea behind this definition is

that since χ < χ′, and particles and holes have bounded speed, all particles xP(t)+n, n ≥ 1,
and holes HH(t)+n, n ≥ 1, will at time t be too far from the origin to affect δη1S(t).

To state the limit laws of P(t),H(t), we need to introduce the following distribution
function.

Definition 3.1 ( [15], [7]). Let s ∈ R,M ∈ Z≥1. We define for p ∈ (1/2, 1)

FM,p(s) =
1

2πi

∮
dλ

λ

det(I − λK)∏M−1
k=0 (1− λ(q/p)k)

(3.4)

where q = 1 − p, K = K̂1(−s,∞) and K̂(z, z′) = p√
2π
e−(p2+q2)(z2+z′2)/4+pqzz′ and the

integral is taken over a counterclockwise oriented contour enclosing the poles λ = 0, λ =

(p/q)k, k = 0, . . . ,M − 1. For p = 1, we define

FM,1(s) = P

(
sup

0=t0<···<tM=1

M−1∑
i=0

[Bi(ti+1)−Bi(ti)] ≤ s

)
,
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Dynamical phase transition of ASEP in the KPZ regime

where Bi, i = 0, . . . ,M − 1 are independent standard Brownian motions. Finally, we
define for all p ∈ (1/2, 1]

F0,p(s) = 1.

Upon sending M →∞, we recover the GUE distribution, as the next result shows.

Proposition 3.2 (Proposition 2.1 in [12]). Let s ∈ R. Then we have

lim
M→∞

FM,p

(
2
√
M + sM−1/6

√
p− q

)
= FGUE(s). (3.5)

Note that the preceding Proposition in particular implies for fixed s

lim
M→∞

FM,p (s) = 0. (3.6)

We can now state the result about the limit distribution of P(t),H(t).

Proposition 3.3 (Proposition 4.1 in [13]). Let H(t),P(t) be defined as in (3.3) and recall

C(M) = 2
√

M
p−q . We have for L ∈ Z≥0

lim
t→∞

P(H(t) = L) = lim
t→∞

P(P(t) = L) = FL,p(C(M))− FL+1,p(C(M))

lim
t→∞

P(H(t) < 0) = lim
t→∞

P(P(t) < 0) = 0.

An important feature of P(t),H(t) is that they decouple asymptotically. This indepen-
dence is stated in the following proposition.

Proposition 3.4 (Proposition 4.2 in [13]). We have for R,L ∈ Z

lim
t→∞

P({P(t) = L} ∩ {H(t) = R}) = lim
t→∞

P(P(t) = L)P(H(t) = R).

For later usage, we define the probability

pL,R := (FL,p(C(M))− FL+1,p(C(M)))(FR,p(C(M))− FR+1,p(C(M))) (3.7)

for L,R ≥ 0 and pL,R := 0 if L < 0 or R < 0, so that

pL,R = lim
t→∞

P({P(t) = L} ∩ {H(t) = R}). (3.8)

Furthermore, it is easy to see from the definition and (3.6) that the pL,R sum up to 1:∑
R,L≥0

pL,R = 1. (3.9)

Putting together the preceding Propositions 3.2 - 3.4 then yields the following theorem.

Theorem 5 (Theorem 3 in [13]). Let ξ ∈ R. Recall p(ξ) = P(χGUE − χ′GUE ≤ ξ), where
χGUE, χ

′
GUE are two independent, GUE-distributed random variables. We have

lim
M→∞

lim
t→∞

P

(
H(t)− P(t)

M1/3
≤ ξ
)

= p(ξ).

Next we define for 0 < δ < χ the events

BL = {xL(t− tχ) > −tδ} ∩ {xL+1(t− tχ) ≤ −tχ
′
}

DR = {HR(t− tχ) < tδ} ∩ {HR+1(t− tχ) ≥ tχ
′
}.

The point of the events BL ∩ DR is that if BL, DR happen, we can be sure that the
particles and holes xn(t), n > L,Hn(t), n > R will play no role for how the configuration
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η1
t looks like close to the origin: On BL ∩ DR the xn(t), n > L,Hn(t), n > R will be at

distance at least O(tχ
′ − tχ) from the origin and hence they will not be seen by the

measure δη1S(t) as t→∞. On the other hand, since δ < χ, we can show that HR and xL
are at time t close to the origin and affect δη1S(t) as t→∞. Define

FδL,R = BL ∩DR ∩ {|X(t− tχ)| ≤ tδ}. (3.10)

Note that FδL,R ⊆ {P(t) = L} ∩ {H(t) = R}. As the next Proposition shows, FδL,R has
asymptotically the same probability as {P(t) = L} ∩ {H(t) = R}.
Proposition 3.5. We have

lim
t→∞

P(FδL,R) = pL,R. (3.11)

Proof. Note first that

BL ⊆ {P(t) = L}, DR ⊆ {H(t) = R}. (3.12)

Now it is shown on [13, page 616] that

lim
t→∞

(P({P(t) = L} \BL) + P({H(t) = R} \DR)) = 0.

Furthermore, by [13, Proposition 5.2] we have

lim
t→∞

P(|X(t− tχ)| > tδ) = 0 (3.13)

and hence using Proposition 3.4 and (3.8) we get

lim
t→∞

P(FδL,R) = lim
t→∞

P({P(t) = L} ∩ {H(t) = R}) = lim
t→∞

P(P(t) = L)P(H(t) = R)

= pL,R.

Finally, the following simple proposition will be used repeatedly to justify that the
t→∞ limit may be taken inside a series.

Proposition 3.6. For every ε > 0 there is an integer D > 0 such that

lim
t→∞

∑
0≤R,L≤D

P(FδL,R) ≥ 1− ε.

Proof. According to (3.6), for everyM, ε > 0 there is aD > 0 such that (1−FD+1,p(C(M)))

> 1− ε/2. Furthermore, by Proposition 3.5 we have limt→∞P(FδL,R) = pL,R. Hence∑
0≤R,L≤D

lim
t→∞

P(FδL,R) = (1− FD+1,p(C(M)))(1− FD+1,p(C(M))) ≥ 1− ε.

4 Reduction to positive recurrent ASEPs

The aim of this section is to show that on the event FδL,R, η1
t equals, within a large

enough neighborhood of the origin, a particle configuration in ΩR−L which is close to its
equilibrium µR−L. This is done in three steps. First we show in Proposition 4.2 that η1

t

equals (within a neighborhood of the origin) a configuration η̃1
t which lies in ∪Z∈ZΩZ .

Then we introduce a particle configuration η̂Z which lies in Ω−Z and show that η̂Zt is
close to equilibrium. Finally, in Proposition 4.4 we show on the event FδL,R that η̃1

t equals

η̂L−Rt . Recall that we always have constants 0 < δ < χ < χ′ < 1/2.
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We define
η̃t−tχ(j) = 1{|j|≤tδ}ηt−tχ(j) + 1{j>tδ}.

Then (η̃`, ` ≥ t− tχ) is the ASEP which starts at time t− tχ from η̃t−tχ . If |X(t− tχ)| ≤ tδ,
the process (η̃`, ` ≥ t− tχ) has a second class particle at position X(t− tχ), recall that
by (3.13), P(|X(t − tχ)| > tδ) goes to 0. The processes (η̃1

` , η̃
2
` , ` ≥ t − tχ) are defined

analogously: If |X(t− tχ)| ≤ tδ, then η̃1
t−tχ is obtained from η̃t−tχ by replacing the second

class particle by a first class particle, whereas in η̃2
` , the second class particle is replaced

by a hole (if |X(t− tχ)| > tδ, all three processes coincide).
By (3.13), we thus have that η̃1

t−tχ(j), η̃2
t−tχ(j) disagree at position X(t − tχ) with

probability going to 1. We can then define using the basic coupling the second class
particle

X̃(t) :=
∑
j∈Z

j1{η̃1t (j)6=η̃2t (j)}, (4.1)

which asymptotically equals X(t), as the next proposition shows.

Proposition 4.1. We have
lim
t→∞

P(X(t) = X̃(t)) = 1.

Proof. Let ε > 0. By Proposition 3.6, there is a D > 0 such that

lim
t→∞

P(X(t) 6= X̃(t)) ≤ ε+ lim
t→∞

∑
0≤R,L≤D

P({X(t) 6= X̃(t)} ∩ FδL,R),

and the r.h.s. equals ε by [13, Proposition 5.3]. Since ε > 0 is arbitrary, the result
follows.

Next we show that ηt equals η̃t in a large neighborhood of the origin.

Proposition 4.2. We have that

lim
t→∞

P(η̃t(j) = ηt(j) for all j ∈ {−tχ
′
/2, . . . , tχ

′
/2}) = 1. (4.2)

Proof. Consider the event that neither (η̃`, ` ≥ t− tχ) nor (η`, ` ≥ t− tχ) have a jump at
the sites ±tχ′/2 during [t− tχ, t]. This event can be written as the intersection of

Ẽt = { for all ` ∈ [t− tχ, t] and i ∈ {1, 2}, η̃`((−1)itχ
′
/2) = η̃t−tχ((−1)itχ

′
/2)}

Et = { for all ` ∈ [t− tχ, t] and i ∈ {1, 2}, η`((−1)itχ
′
/2) = ηt−tχ((−1)itχ

′
/2)}.

It was shown in [13, Equation (57)] that

lim
t→∞

(P(FδL,R ∩ Ect ) + P(FδL,R ∩ Ẽct )) = 0. (4.3)

Furthermore, in [13, page 620] it was shown that for all R,L ≥ 0 we have

FδL,R ∩ Ẽt ∩ Et ⊆ {η̃t(j) = ηt(j) for all j ∈ {−tχ
′
/2, . . . , tχ

′
/2}},

which implies⋃
R,L≥0

FδL,R ∩ Ẽt ∩ Et ⊆ {η̃t(j) = ηt(j) for all j ∈ {−tχ
′
/2, . . . , tχ

′
/2}}.

Since FδL,R, R, L ≥ 0 are disjoint events, we thus have

lim
t→∞

P(η̃t(j) = ηt(j) for all j ∈ {−tχ
′
/2, . . . , tχ

′
/2}) ≥ lim

t→∞

∑
R,L≥0

P(FδL,R ∩ Ẽt ∩ Et). (4.4)
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Now by Proposition 3.6, for every ε > 0 there is a D > 0 such that

lim
t→∞

∑
R,L≥0

P(FδL,R ∩ Ẽt ∩ Et) ≥
∑

D≥R,L≥0

lim
t→∞

P(FδL,R ∩ Ẽt ∩ Et)

≥
∑

D≥R,L≥0

lim
t→∞

P(FδL,R) = 1− ε,

where in the second equality we also used (4.3). Since ε > 0 is arbitrary, this finishes the
proof.

Next we define for 0 < δ < χ < χ′, Z ∈ Z and t > 0 with tδ > |Z| the configuration

ηZ := 1{−tδ,...,Z} + 1Z
>tδ
∈ Ω−Z . (4.5)

The following proposition shows that the time interval [0, tχ] is long enough for the ASEP
started from ηZ to converge to equilibrium. A key tool to prove this is the upper bound
on the mixing time of (finite state space) ASEP given in [2] (later the cutoff phenomenon
was proven in [8], and recently, the cutoff profile was obtained [4], however the results
of [2] suffice for our purposes).

Proposition 4.3. Let ηZ be given by (4.5). Then we have in the sense of weak conver-
gence of measures for all χ > δ

lim
t→∞

δηZS(tχ) = µZ . (4.6)

Proof. The idea of the proof is to show that, under the basic coupling, with probability
going to 1, the ASEP started from ηZ coalesces with the ASEP started from η−step(−Z)

before time tχ.
We define

I0 = 1{−tδ−2Z−1,...,−Z−1} + 1Z
>tδ

,

and let (I`, ` ≥ 0) be the ASEP started from I0. Recalling the partial order (2.5), we have
I0 � ηZ .

Now we define a particle configuration IZ+tδ+1 via

1− I0(j) = IZ+tδ+1(j + Z), j ∈ Z. (4.7)

IZ+tδ+1 is exactly the particle configuration defined in equation (4) of the paper [2].
Consider the hitting time

H(I0) = inf{` : I` = η−step(−Z)}.

By (4.7), Theorem 1.9 of [2] gives that for every ε > 0

lim
t→∞

P(H(I0) ≥ tδ+ε) = 0.

We choose ε > 0 so that δ + ε < χ. We note that we have the inclusion

{H(I0) ≤ `} ⊆ {ηZ` = η
−step(−Z)
` } (4.8)

because of the relations

η−step(−Z) � η−step(−Z)
H(I0) � ηZH(I0) � IH(I0) = η−step(−Z),
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and thus η−step(−Z)
H(I0) = ηZH(I0) and (4.8) holds. Hence, with fA from Proposition 2.1, we

have since δ + ε < χ

lim
t→∞

δηZS(tχ)(fA) = lim
t→∞

P({ηZtχ(i) = 1 for all i ∈ A} ∩ {H(I0) ≤ tδ+ε})

= lim
t→∞

P(η
−step(−Z)
tχ (i) = 1 for all i ∈ A).

(4.9)

Applying Proposition 2.2 to the last line of (4.9) finishes the proof by Proposition 2.1.

In the following, we will consider the ASEP which starts at time t− tχ from ηZ with
δ < χ. To make this clear in our notation, we set

η̂Zt−tχ := ηZ (4.10)

so that (η̂Z` , ` ≥ t− tχ) is the process which starts at time t− tχ from ηZ . In particular, the
law of the configuration η̂Zt equals δηZS(tχ). We will couple the process (η̂Z` , ` ≥ t− tχ)

with all other appearing ASEPs via the basic coupling. A simple but crucial observation
is then that since (η̂Z` , ` ≥ t− tχ) starts from a deterministic initial configuration at time
t− tχ, the process (η̂Z` , ` ≥ t− tχ) is independent of all events which solely depend on
what happens during [0, t − tχ]. In particular, η̂Zt is independent from the event FδL,R
defined in (3.10). Likewise, we will consider the ASEP which starts at time t− tχ from
η−step(Z) and set

η̂
−step(Z)
t−tχ := η−step(Z). (4.11)

Proposition 4.4. Recall the event FδL,R from (3.10), the probability pL,R from (3.7) and

η̂Zt−tχ , η̂
−step(Z)
t−tχ from (4.10), (4.11). We have that

lim
t→∞

P
(
FδL,R ∩ {η̂L−Rt = η̂

−step(R−L)
t = η̃1

t } ∩ {η̂L−R−1
t = η̂

−step(R−L+1)
t = η̃2

t }
)

= lim
t→∞

P(FδL,R) = pL,R.

Proof. According to (60) of [13], we have

FδL,R ⊆ {η̂L−Rt−tχ � η̃1
t−tχ , η̂

L−R−1
t−tχ � η̃2

t−tχ}. (4.12)

We can now reason as in the proof of Proposition 4.3: As was shown there, the
processes (η̂L−R` , ` ≥ t − tχ), (η̂L−R−1

` , ` ≥ t − tχ) reach the states η−step(R−L) and
η−step(R−L+1) during [t − tχ, t] with probability going to 1, and hence on FδL,R the pro-

cesses (η̂L−R` , ` ≥ t−tχ), (η̂L−R−1
` , ` ≥ t−tχ) coalesce with the processes (η̂

−step(R−L)
` , ` ≥

t − tχ), (η̂
−step(R−L+1)
` , ` ≥ t − tχ) before time t with probability going to 1. Conse-

quently, the processes (η̃1
` , ` ≥ t − tχ), (η̃2

` , ` ≥ t − tχ) coalesce with the processes

(η̂
−step(R−L)
` , ` ≥ t− tχ), (η̂

−step(R−L+1)
` , ` ≥ t− tχ) before time t with probability going to

1 also.

Finally, we define a second class particle X̂Z(t) which starts at time t − tχ from
position Z ∈ Z, and has initially only particles to its right, and only holes to its left. In
terms of the particle configurations (4.11), we have

X̂Z(t) =
∑
j∈Z

j1{η̂−step(Z+1)
t (j)6=η̂−step(Z)

t (j)}. (4.13)

As corollary from the previous proposition we obtain the following.

Proposition 4.5.

lim
t→∞

P(FδL,R ∩ {X̂R−L(t) = X̃(t)}) = lim
t→∞

P
(
FδL,R

)
. (4.14)
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Proof. Trivially, the l.h.s. in (4.14) is bounded from above by the r.h.s. It thus suffices to
note that

FδL,R ∩ {η̂
−step(R−L)
t = η̃1

t } ∩ {η̂
−step(R−L+1)
t = η̃2

t } ⊆ FδL,R ∩ {X̂R−L(t) = X̃(t)}

and apply Proposition 4.4.

5 Proof of Theorem 1

Here we first prove Theorem 6 and then derive Theorem 1 from it. The follow-
ing proposition collects a few of the properties of the measures µZ that will be used
throughout this section.

Proposition 5.1. Let Z, n ∈ Z and A ⊂ Z be finite. Denote i = min(A). There are
constants C1, C2 > 0 which depend on p but not on Z, n,A such that we have

(i) 1− C1e
−C2(i−Z) ≤ µZ(fA) ≤ C1e

−C2(Z−i−1)

(ii) µZ(fA) ≥ µZ+1(fA)

(iii) µZτn = µZ−n

(iv) µ0(f{n}) = 1− µ0(f{−n−1}).

Proof. Throughout the proof, we will be using Proposition 2.2. For (i), let us deal with
the limit Z → +∞ first. Consider ASEP with reversed step initial data x

−step(Z)
−n (0) =

n+ Z, n ≥ 0. Denote furthermore by H−step(Z)
0 (t) be the position of the rightmost hole of

η
−step(Z)
t . It follows from [12, Proposition 3.1] that there are constants C1, C2 > 0 (which

depend on p) such that for R ∈ Z≥1 we have

P
(
x
−step(Z)
0 (t) < Z −R

)
≤ C1e

−C2R, (5.1)

by choosing C1 > 1, (5.1) trivially extends to all R ∈ Z. Applying particle-hole duality,
this implies

P
(
H
−step(Z)
0 (t) < Z +R

)
≥ 1− C1e

−C2R.

Recall i = min(A). Then we have

µZ(fA) ≤ µZ(f{i}) ≤ lim
t→∞

P
(
x
−step(Z)
0 (t) < Z + i+ 1− Z

)
≤ C1e

−C2(Z−i−1),

and analogously we have

µZ(fA) ≥ lim
t→∞

P
(
H
−step(Z)
0 (t) < Z + i− Z

)
≥ 1− C1e

−C2(i−Z).

To prove (ii), note that under the basic coupling, coordinatewise we have η−step(Z)
t ≥

η
−step(Z+1)
t and hence

µZ(fA) = lim
t→∞

P(η
−step(Z)
t (i) = 1 for all i ∈ A)

≥ lim
t→∞

P(η
−step(Z+1)
t (i) = 1 for all i ∈ A) = µZ+1(fA).

For (iii), we note that we have δζτnS(t) = δζτnS(t) = δζS(t)τn and hence for ζ ∈ ΩZ we
have

µZτn = lim
t→∞

δζS(t)τn = lim
t→∞

δζτnS(t) = µZ−n. (5.2)
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For (iv), set η⊗t (j) = 1Z(−j) − η
−step(0)
t (−j). This is an ASEP starting from 1Z≥1

,
applying Proposition 2.2 twice thus yields

µ1(f{j}) = lim
t→∞

P(η⊗t (j) = 1) = 1− lim
t→∞

P(η
−step(0)
t (−j) = 1) = 1− µ0(f{−j}) (5.3)

Since µ1(f{j}) = µ0(f{j−1}) by (iii), (iv) follows by setting j − 1 = n.

We can now obtain the t→∞ limit law of η1
t . A heuristical derivation of the following

theorem was given in Section 2.1.

Theorem 6. We have in the sense of weak convergence of measures

lim
t→∞

δη1S(t) =
∑
R,L≥0

pL,RµR−L.

Remark 5.2. In the entirety of the paper, we have considered C(M) = 2(M/(p− q))1/2

which in particular goes to +∞ as M → +∞. It is however also possible to replace C(M)

by a C̃(M) that goes to −∞ as M →∞. For such a choice, we have for L,R ≥ 0

pL,R = (FL,p(C̃(M))− FL+1,p(C̃(M)))(FR,p(C̃(M))− FR+1,p(C̃(M)))

so that consequently limM→∞ p0,0 = 1 and limM→∞ pL,R = 0, (L,R) 6= (0, 0). In particular,
we then get by (iii) of Proposition 5.1

lim
M→∞

 ∑
R,L≥0

pL,RµR−L

 τM1/3ξ = lim
M→∞

µ−M1/3ξ =


µ0 ξ = 0

ν0 ξ < 0

ν1 ξ > 0.

(5.4)

In this sense, limt→∞ δη1S(t)τM1/3ξ is an infinite linear combination of invariant measures
which interpolates between the mixture (1 − p(ξ))ν0 + p(ξ)ν1 and one of the single
equilibriums µ0, ν0, ν1 depending on the sign of ξ.

Proof of Theorem 6. By Proposition 2.1, we have to prove

lim
t→∞

δη1S(t)(fA) = lim
t→∞

P(η1
t (i) = 1 for all i ∈ A) =

∑
R,L≥0

pL,RµR−L(fA). (5.5)

This is clear for A = ∅, i.e. if fA is constant 1, since the pL,R sum up to 1. For arbitrary
finite A, note that it follows from Proposition 4.2

lim
t→∞

P(η1
t (i) = 1 for all i ∈ A) = lim

t→∞
P(η̃1

t (i) = 1 for all i ∈ A),

simply because if ηt(i) = η̃t(i), then also η1
t (i) = η̃1

t (i).
Since limt→∞P(∪R,L≥0FδL,R) = 1 and the FδL,R are pairwise disjoint, we obtain

lim
t→∞

P(η̃1
t (i) = 1 for all i ∈ A) = lim

t→∞

∑
R,L≥0

P(FδL,R ∩ {η̃1
t (i) = 1 for all i ∈ A}).

Let now ε > 0. By Proposition 3.6, there is a positive integer D such that

lim
t→∞

∑
R,L≥0

P(FδL,R ∩ {η̃1
t (i) = 1 for all i ∈ A})

≤ ε+ lim
t→∞

∑
D≥R,L≥0

P(FδL,R ∩ {η̃1
t (i) = 1 for all i ∈ A}).

(5.6)

EJP 26 (2021), paper 75.
Page 15/20

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP642
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Dynamical phase transition of ASEP in the KPZ regime

Now by Proposition 4.4, we have that

lim
t→∞

P(FδL,R ∩ {η̃1
t (i) = 1 for all i ∈ A}) = lim

t→∞
P(FδL,R ∩ {η̂R−Lt (i) = 1 for all i ∈ A}).

Note that η̂R−Lt is independent of FδL,R by construction. Furthermore, the law of η̂R−Lt

converges to µR−L by Proposition 4.3, and thus

lim
t→∞

P(FδL,R ∩ {η̂R−Lt (i) = 1 for all i ∈ A}) = lim
t→∞

P(FδL,R)P(η̂R−Lt (i) = 1 for all i ∈ A)

= pL,RµR−L(fA).

Hence we obtain from (5.6) that

lim
t→∞

∑
R,L≥0

P(FδL,R ∩ {η̃1
t (i) = 1 for all i ∈ A}) ≤ ε+

∑
R,L≥0

pL,RµR−L(fA) (5.7)

Likewise we obtain the lower bound

lim
t→∞

∑
R,L≥0

P(FδL,R ∩ {η̃1
t (i) = 1 for all i ∈ A})

≥ lim
t→∞

∑
D≥R,L≥0

P(FδL,R ∩ {η̃1
t (i) = 1 for all i ∈ A})

=
∑

D≥R,L≥0

pL,RµR−L(fA) ≥ −ε+
∑
R,L≥0

pL,RµR−L(fA),

(5.8)

where for the last inequality we used Propositions 3.5 and 3.6. This finishes the proof,
since ε > 0 is arbitrary.

Now we can prove Theorem 1.

Proof of Theorem 1. Recall that by part (iii) of Proposition 5.1 we have µZτn = µZ−n.
Using Theorem 6 and Proposition 2.1, we thus have to prove for all finite A ⊂ Z

lim
M→∞

∑
R,L≥0

pL,RµR−L−M1/3ξ(fA) = (1− p(ξ))ν0(fA) + p(ξ)ν1(fA). (5.9)

The r.h.s. of (5.9) equals 1 for A = ∅ and p(ξ) otherwise. Equation (5.9) is clearly true for
A = ∅ since the pL,R sum up to 1, so we assume A 6= ∅ in the following.

1. Case: (R,L) ∈ S1 := {(R,L) ∈ Z2
0 : R − L ≥ M1/3ξ +M1/4}. Then, using part (ii)

of Proposition 5.1 we may bound∑
(R,L)∈S1

pL,RµR−L−M1/3ξ(fA) ≤ µM1/4(fA)
∑

(R,L)∈S1

pL,R (5.10)

and the r.h.s. goes to zero as M →∞ by part (i) of Proposition 5.1.
2. Case: (R,L) ∈ S2 := {(R,L) ∈ Z2

0 : R− L ≤M1/3ξ −M1/4}. Then we obtain∑
(R,L)∈S2

pL,RµR−L−M1/3ξ(fA) ≥ µ−M1/4(fA)
∑

(R,L)∈S2

pL,R.

By part (i) of Proposition 5.1, we have limM→∞ µ−M1/4(fA) = 1. Combining this with
(3.8) and Theorem 5, we obtain

lim
M→∞

µ−M1/4(fA)
∑

(R,L)∈S2

pL,R ≥ lim
M→∞

lim
t→∞

P

(
H(t)− P(t)

M1/3
≤ ξ −M−1/12

)
= p(ξ).

(5.11)
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On the other hand, we have

lim
M→∞

∑
(R,L)∈S2

pL,RµR−L−M1/3ξ(fA) ≤ lim
M→∞

∑
(R,L)∈S2

pL,R = p(ξ).

In total, this yields

lim
M→∞

∑
(R,L)∈S2

pL,RµR−L−M1/3ξ(fA) = p(ξ).

3. Case: (R,L) ∈ S3 = {(R,L) ∈ Z2
0 : M1/3ξ−M1/4 ≤ R−L ≤M1/3ξ+M1/4}. Note that

from (3.8) we get

∑
(R,L)∈S3

pL,R = lim
t→∞

P

(
−M−1/12 ≤ H(t)− P(t)

M1/3
− ξ ≤M−1/12

)
, (5.12)

and the r.h.s. converges to zero as M →∞ by Theorem 5. This finishes the proof.

6 Results for the second class particle

Here we prove Theorem 4. Furthermore, we show in Corollary 1 that the density of
particles to the right (resp. left) of X(t) approaches 1 (resp. 0) exponentially fast. Finally,
we also prove the t→∞ limit law of X(t) in Theorem 7. We start with an observation
needed for Theorem 4 that was already mentioned in Section 2.1. Consider two ASEPs
starting from η−step(Z+1), η−step(Z) and coupled via the basic coupling, and denote by
XZ(t) the position of the induced second class particle which starts at position Z.

Proposition 6.1. The law of η−step(Z+1)
t τXZ(t) does not depend on Z, and it converges

weakly to the measure µ̂ from Theorem 3 with λ = 1, ρ = 0.

Proof. Define ξ := η−step(1)τ−Z , so that (ξ`, ` ≥ 0) is an ASEP starting from η−step(Z+1).

Setting X̃Z(t) = X0(t)+Z we see that (ξ`τX̃Z(`), ` ≥ 0) is a version of (η
−step(Z+1)
` τXZ(`), ` ≥

0). In particular, ξtτX̃Z(t) has the same law as η
−step(Z+1)
t τXZ(t). Since ξtτX̃Z(t) =

η
−step(1)
t τ−ZτX0(t)+Z = η

−step(1)
t τX0(t), this shows the first part of the proposition. For the

second part, note that the law of η−step(1)
t τX0(t) is exactly ν̂0,1Ŝ(t) from Theorem 3, which

gives the desired convergence.

Now we can prove Theorem 4.

Proof of Theorem 4. Combining Propositions 4.1 and 4.2, we get for any finite subset A
of Z

lim
t→∞

P
(
η2
t (X(t) + i) = 1 for all i ∈ A

)
= lim
t→∞

P
(
η̃2
t (X̃(t) + i) = 1 for all i ∈ A

)
.

Intersecting with the union of the disjoint events ∪R,L≥0FδL,R yields

lim
t→∞

P
(
η̃2
t (X̃(t) + i) = 1 for all i ∈ A

)
= lim
t→∞

∑
R,L≥0

P(FδL,R ∩ {η̃2
t (X̃(t) + i) = 1 for all i ∈ A}). (6.1)
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A truncation argument identical to the one given in (5.6), (5.7), (5.8) shows that for any
ε > 0 we have

− ε+
∑
R,L≥0

lim
t→∞

P(FδL,R ∩ {η̃2
t (X̃(t) + i) = 1 for all i ∈ A})

≤ lim
t→∞

∑
R,L≥0

P(FδL,R ∩ {η̃2
t (X̃(t) + i) = 1 for all i ∈ A})

≤ ε+
∑
R,L≥0

lim
t→∞

P(FδL,R ∩ {η̃2
t (X̃(t) + i) = 1 for all i ∈ A}),

i.e. we may take the limt→∞inside the series (6.1). Using Propositions 4.4, 4.5 we have

lim
t→∞

P(FδL,R ∩ {η̃2
t (X̃(t) + i) = 1 for all i ∈ A})

= lim
t→∞

P(FδL,R ∩ {η̂
−step(R−L+1)
t (X̂R−L(t) + i) = 1 for all i ∈ A}).

Furthermore, η̂−step(R−L+1)
t (X̂R−L(t) + ·) is by construction independent from FδL,R.

Combining this with Proposition 6.1, we get

lim
t→∞

P(FδL,R ∩ {η̂
−step(R−L+1)
t (X̂R−L(t) + i) = 1 for all i ∈ A})

= lim
t→∞

P(FδL,R)P({η̂−step(R−L+1)
t (X̂R−L(t) + i) = 1 for all i ∈ A})

= pL,Rµ̂(fA).

So in total, using again that the pL,R sum up to one, we obtain

lim
t→∞

P
(
η2
t (X(t) + i) = 1 for all i ∈ A

)
=
∑
R,L≥0

pL,Rµ̂(fA) = µ̂(fA).

Next we show that the densities 1, 0 are reached exponentially fast from X(t). For
this, we need the limit law of XZ(t).

Proposition 6.2 (Proposition 1.2 in [13]). Consider ASEP started from η−step(Z+1) and a
second class particle XZ starting from Z. Then for i ∈ Z

lim
t→∞

P(XZ(t) = i) = µ0(f{i−Z+1})− µ0(f{i−Z}). (6.2)

We now have all the ingredients to show the following:

Corollary 1. There are constants C1, C2 > 0 such that for all n ≥ 1

lim
t→∞

P(η2
t (X(t) + n) = 1) ≥ 1− C1e

−C2n

lim
t→∞

P(η2
t (X(t)− n) = 0) ≥ 1− C1e

−C2n.

Proof. We can compute

lim
t→∞

P(η
−step(1)
t (X0(t) + n) = 1)

≥ lim
t→∞

P({η−step(1)
t (j) = 1 for all j = n/2, . . . , 3n/2} ∩ {|X0(t)| ≤ n/2})

≥ µ1(f{n/2,...,3n/2})− lim
t→∞

P({|X0(t)| > n/2})

≥ 1− C1e
−C2n − µ0(f{−2−n/2})− µ0(f{−n/2}) ≥ 1− 3C1e

−C2n,

where for the third inequality we used Proposition 6.2 and (i),(iv) from Proposition 5.1,
and the last inequality used again (i) from Proposition 5.1. This proves the first claim of
the corollary, since

lim
t→∞

P(η
−step(1)
t (X0(t) + n) = 1) = lim

t→∞
P(η2

t (X(t) + n) = 1)

by Theorem 4. The second claim follows by the particle-hole duality.

EJP 26 (2021), paper 75.
Page 18/20

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP642
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Dynamical phase transition of ASEP in the KPZ regime

Finally, we are able to obtain the t→∞ limit law of X(t).

Theorem 7. We have for i ∈ Z

lim
t→∞

P(X(t) ≤ i) =
∑
L,R≥0

pL,Rµ0

(
f{i+L−R+1}

)
. (6.3)

Proof. This is very similar to the proof of Theorem 4: We intersect with the event
∪R,L≥0FδL,R, then we use that on each FδL,R we can replace X(t) by X̂R−L(t), which is

independent from FδL,R. Doing this yields

lim
t→∞

P(X(t) ≤ i) = lim
t→∞

∑
L,R≥0

P(FδL,R ∩ {X̂R−L(t) ≤ i}) (6.4)

=
∑
L,R≥0

lim
t→∞

P(FδL,R)P(X̂R−L(t) ≤ i) (6.5)

=
∑
L,R≥0

pL,R lim
t→∞

P(XR−L(tχ) ≤ i). (6.6)

The result follows from Proposition 6.2.

We remark that, by the same argument used in the proof of Theorem 1, it is possible
to rederive Theorem 2 from Theorem 7.
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