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Abstract

The vertex-reinforced jump process (VRJP) is a form of self-interacting random walk
in which the walker is biased towards returning to previously visited vertices with
the bias depending linearly on the local time at these vertices. We prove that, for
any initial bias, the weights sampled from the magic formula on a two-dimensional
graph decay at least at a power-law rate. Via arguments of Sabot and Zeng, the result
implies that the VRJP is recurrent in two dimensions for any initial bias.
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1 Introduction

In this paper we study an interacting stochastic process known as the vertex-
reinforced jump process (VRJP for short) in two dimensions using a technique known as
the Mermin–Wagner theorem. We start by describing VRJP, our object of study.

1.1 The vertex-reinforced jump process

VRJP was first studied in [3] as a continuous-time version of linearly edge reinforced
random walk (LRRW), a process studied earlier by Diaconis and Coppersmith (unpub-
lished, 1987) who noted that it has an interesting property not shared by other reinforced
random walks: partial exchangeability. Partial exchangeability for a discrete-time pro-
cess means that the probability of any particular path depends only on the number
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Power-law decay of weights in the 2D VRJP

of times each edge was crossed, and not on the order in which this happened. This
property allows, via a soft argument [5], to conclude that LRRW is in fact a random
walk in random environment (RWRE) and using a more elaborate argument to get a
formula for the distribution of the environment, known fondly as “the magic formula”.
See [16] for the history of the magic formula. For VRJP the picture is slightly different.
The process is not a (continuous time) RWRE as stated. Instead, the process becomes
a RWRE after a time change and then has its own magic formula. A hint of the magic
formula for VRJP appeared in [4] but the full picture was only revealed by Sabot and
Tarrès [23]. The magic formula will be stated exactly below, in §1.2.

A second special property of VRJP is the connection to supersymmetry. We will not
attempt to describe supersymmetry in details in this short introduction, but roughly
it postulates a symmetry between fermions and bosons. The specific supersymmetric
model relevant to VRJP is the hyperbolic sigma model, defined by Zirnbauer [27, 11]
(see also [10, 9]). The hyperbolic sigma model has two fermions and two bosons at
each vertex, with an interaction that enjoys a hyperbolic symmetry. Integrating both
fermionic fields and one of the bosonic fields leads to a single field, let us denote it by u,
but with a complicated interaction term. It was discovered in [23] that eu has exactly
the same distribution as the environment described by the magic formula for the VRJP,
establishing a link between these two topics. Supersymmetry brings a new set of tools
to the problem, but the most relevant to us is the Ward identity. It states that Eeux = 1

always.
In this paper we study the VRJP in two dimensions. We show that the environment of

its RWRE representation decays at least like a power law, namely Ee
1
2ux 6 |x|−c where

the constant c may depend on the initial weight a (see exact definitions below). For
LRRW this was proved by Merkl and Rolles [17]. This result is not sharp for small a. In
this case it was known [23, 1] that in fact u decays exponentially. The true decay rate
for large a thus remains open. We do not know if it is really a power law (and hence a
transition of Kosterlitz–Thouless type occurs) or rather if the decay is exponential for all
a. This is related to the question of asymptotic freedom in quantum field theory, but this
introduction is too short to cover these connections.

While this paper was written (which, unfortunately, took much too much time), Sabot
gave an alternative proof of this result, see [22] (see also [6] for the quasi one-dimensional
case).

1.2 Exact definitions and statements

Definition 1.1. Let G be a finite graph, let o be a vertex of G and let W : E(G)→ [0,∞)

be a function. The vertex-reinforced jump process (VRJP) on G with initial vertex o and
weights W is a continuous-time process (Yt)t>0 on the vertices of G defined as follows:
Y0 := o and at every t > 0, Y jumps from its current position x to a neighbour y with rate
WxyLy(t) where L is the local time:

Ly(t) := 1 +

∫ t

0

1{Ys = y} ds. (1.1)

The time-changed VRJP on G with initial vertex o and weights W is the process (Zs)s>0

obtained by setting Zs = YD−1(s) where D : [0,∞) → [0,∞) is the (random) increasing
bijection

D(t) :=
∑
x∈G

(L2
x(t)− 1). (1.2)

We remark at this point that the time change is not as bad as it looks on first sight: it
applies at each vertex essentially independently, a fact that we use below in the proof of
Lemma 3.3.
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Power-law decay of weights in the 2D VRJP

Convention. The u in the theorem below, and more generally any function defined on
G \ {o} is considered to be zero on o.

Theorem 1.2 (“The magic formula”). Let G be a finite connected graph, let o be a vertex
of G and let W : E(G)→ (0,∞).

1. The function ρ : RG\{o} → R below is a probability density function:

ρ(u) :=
1

(2π)(|G|−1)/2
exp

(
−
∑
x∈G

ux

)
exp

(
−

∑
{x,y}∈E(G)

Wxy(cosh(ux − uy)− 1)
)√

D(W,u)
(1.3)

where D(W,u) is any diagonal minor of the matrix A = (axy : x, y ∈ G) given by

axy :=


−Wxye

ux+uy x 6= y, {x, y} ∈ E(G)

0 x 6= y, {x, y} /∈ E(G)

−
∑
z 6=x axz x = y.

(1.4)

(Note that the convention uo = 0 was used in the sums in (1.3).)

2. Sample u randomly from the density ρ. Let (Zs)s>0 be a continuous-time random
walk on G, with Z0 := o, which transitions from x to a neighbour y with rate
1
2Wxye

uy−ux . Then (Zs) (considered after averaging over the randomness in u) is
distributed as the time-changed VRJP on G with initial vertex o and weights W .

See Sabot and Tarrès [23, Theorem 2]. The result there is stated for 2 sinh2( 1
2 (ux−uy)

instead of for cosh(ux − uy) − 1 but this is of course the same. It is stated under the
condition

∑
ui = 0 whereas our normalisation is uo = 0 but, again, this is the same: the

measure on {
∑
ui = 0} used in [23] is not the volume measure but simply the measure

one gets by fixing ux = 0 for an arbitrary vertex x (see the comment immediately after
[23, Theorem 2]); and the ρ is unchanged, except the term euo in [23] which becomes
our exp(−

∑
ux).

The result of this paper is that in a two-dimensional graph the weights decay at least
at a power-law rate. The result is local, only the structure at the vicinity of the point of
interest is used. Here is the exact formulation.

Here and below, for vertices x, y in a graph write d(x, y) for their graph distance and,
for integer L > 0, denote the closed ball of radius L around x by B(x, L) := {y : d(x, y) 6
L}. We denote by c and C positive absolute constants whose value might change from
line to line or even within the same line. We use c for constants which are “small enough”
and C for constants which are “large enough”. We use c(· · · ) and C(· · · ) for constants
that depend on some parameters.

Theorem 1.3. There exists C, c(a) > 0 such the following holds for each a > 0: Let
L ∈ N. Let G be a finite connected graph with a distinguished vertex o and assume that
B(o, L) is isomorphic to the ball B((0, 0), L) in Z2. Let W : E(G) → (0,∞) satisfy that
W |B(o,L) ≡ a. Let u be sampled from the density (1.3) with respect to G and W . Then
for every x ∈ B(o, 2L),

P(ux > −c(a) log(d(o, x))) 6
C

d(o, x)c(a)
,

and

E
(
e

1
2ux

)
6

C

d(o, x)c(a)
. (1.5)

Further, for every a0 > 0 there exists c(a0) > 0 such that c(a) > c(a0)/a for a > a0.
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Power-law decay of weights in the 2D VRJP

Part of the motivation for proving a local result comes from its application in Sabot–
Zeng [24]. They proved recurrence of two-dimensional VRJP, conditioned on Theorem 1.3
in the specific case of wired boundary conditions. Here is the exact formulation. For an
integer L > 1 let GL be the graph with vertex set {−L, . . . , L}2 ∪ {δL}, with vertices in
{−L, . . . , L}2 connected by an edge if they differ by exactly one in exactly one coordinate
and with δL adjacent to every vertex (x1, x2) for which either |x1| = L or |x2| = L (or
both). Correspondingly, for a real a > 0, WL : E(GL) → R satisfies WL(e) = a for all
edges except the edges connecting δL with (x1, x2) having both |x1| = |x2| = L for which
WL(e) = 2a (as these edges result from two edges of Z2 when identifying the vertices of
Z2 adjacent to VL into the single vertex δL). Let o = (0, 0) ∈ GL. Then Remark 7 in [24]
says that if (1.5) holds for this graph then VRJP on the whole of Z2 is recurrent. Since
this falls under our Theorem 1.3 this gives a proof of recurrence of VRJP. We remark that
a proof of a weaker notion of recurrence was given recently in [2].

1.3 Overview of the proof

The core of the proof is an argument of Mermin–Wagner type, so let us start with a
short discussion of this approach. For physicists, the Mermin–Wagner theorem states
that continuous symmetries cannot be spontaneously broken in a system with short-range
interactions in dimension 2 or lower (see e.g. [26, p. 198]). Every use of the Mermin–
Wagner approach starts with a perturbation argument: a calculation (usually easy to do)
shows that it is possible to take one instance of the field u and then deform it so that the
local deformation is small, small enough to have low energetic cost, while the overall
deformation is significant. For example, take the field u to have density exp

(
−
∑

(∇u)2
)
,

i.e. a two-dimensional lattice Gaussian free field. The continuous group of symmetries
in this case is simply the symmetries taking ux 7→ ux + C for some constant C, which
preserves the density. Consider u in the discrete box {−L,−L+ 1, . . . , L}2, normalized so
that u(0,0) = 0. The perturbation argument entails comparing ux to u±x := ux ± τ , with τ
chosen, e.g., as log(|x|+ 1)/

√
logL. The energy of u is necessarily close to either that of

u+ or that of u− (since (∇u)2− 1
2 ((∇u+)2 +(∇u−)2) = (∇τ)2 and the sum of the last term

is uniformly bounded in L by the choice of τ ) but overall the fields diverge by
√

logL,
which is significant. One concludes that the fluctuations of u must grow without bound
as L increases (specifically, Varux > c logL at vertices at distance L from the origin).
There are multiple approaches to harness the perturbation argument; the reader may
find a discussion with references in [15, page 4].

Let us now describe how to apply the above approach to the VRJP model. Recall that
the density of u (1.3) (“the magic formula”) is proportional to

exp

(
−

∑
{x,y}∈E(G)

WxyU(ux − uy) + F (u)

)
with

U(s) := cosh(s)− 1,

F (u) := −
∑
x∈G

ux +
1

2
log(D(W,u)).

The idea is to use an argument of Mermin–Wagner type to lower bound the fluctuations
of u by (a constant multiple of) the fluctuations of the Gaussian free field, normalized to
be zero at o, whose density is proportional to

exp

(
−

∑
{x,y}∈E(G)

Wxy(ux − uy)2

)
.
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On a two-dimensional graph, with Wxy ≡ a, this yields that

Var(ux) >
c

a
log(d(o, x)) (1.6)

and corresponding Gaussian lower bounds on the tail behavior. As a separate input,
we use that the field u is known not to be too big. Specifically, the Ward identity of
Theorem 2.1 shows that

E(exp(ux)) = 1. (1.7)

In order to avoid a contradiction between (1.6) (and the corresponding tail bounds)
and (1.7), the value of ux must typically be small. For a quantitative inequality, recall
that if Z is a Gaussian random variable with mean m and variance σ2 then

E(eZ) = em+ 1
2σ

2

.

Thus if ux were Gaussian then (1.6) and (1.7) would imply that

E(ux) 6 −c
′

a
log(d(o, x))

Theorem 1.3 states quantitative results of this flavor.
In a different context, the idea that fluctuation lower bounds plus an a priori input

that the field is not large could be used to prove that the field is typically small was used
by Schenker in [25] following a suggestion of Aizenman. A version of the Mermin–Wagner
method was also applied by Merkl and Rolles [17] in proving power-law decay of the
weights for the LRRW.

There are two main obstacles to the application of a Mermin–Wagner type argument
to the VRJP model. First, the field u does not have short-range interactions due to the
presence of the determinant term. This is handled by noting that the function F (u)

above is log-convex (Lemma 2.2) and can thus be discarded in comparing the energy
of u with the energy of its perturbations u± (as

√
F (u+ τ)F (u− τ) > F (u) for any τ ).

Second, the Mermin–Wagner method is easiest to implement for gradient fields whose
interaction function U is twice-continuously differentiable with supU ′′ < ∞ (see, e.g.,
[15, § 1.1] or [20, § 2.6]). As the hyperbolic cosine function does not satisfy this bound
we need to resort to a more sophisticated version of the argument, based on ideas of
Richthammer [21] and developed in [15] (see the “addition algorithm” of § 4). A price
to pay is that an additional a priori input is required: We need to show that for some
sufficiently large constant K, the random set of edges on which the gradient of u exceeds
K in absolute value is sparse in an appropriate probabilistic sense. For other models,
such an input was established either using reflection positivity [15] or using symmetries
of the state space [19]. Here, this input is proved by the approach of [1], namely, by
considering together the VRJP and RWRE pictures for the field u (see § 3). The obtained
constant K is uniform in the weight a for a bounded away from zero.

2 Inputs on the weight distribution

Let G be a finite connected graph, W : E(G) → (0,∞) and o ∈ G. We describe two
inputs on the density (1.3) of the weight vector u.

The first input is known as a Ward identity.

Theorem 2.1. If u is sampled from the density (1.3) then Eeux = 1 for all x ∈ G.

See [8], formula (5.26) (formula (5.19) in the arXiv version). The model is defined
slightly differently in [8], there is an extra function s : G \ {o} → R and an extra term
in the density, exp(− 1

2s
tAs). Our model is the marginal distribution of u in the model
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of [8]: integrating the term exp(− 1
2s
tAs) gives a term (2π)−(|G|−1)/2D(W,u)−1/2 which,

together with the term D(W,u) in [8], gives our term (2π)−(|G|−1)/2
√
D(W,u).

The second input is a simple log-convexity property which will be key to the applica-
tion of Mermin–Wagner type techniques in the proof of Theorem 1.3. This is well-known
(see, e.g., Disertori–Spencer–Zirnbauer [10, Remark 2.3] where the proof is attributed
to David Brydges), but for completeness we provide a proof.

Lemma 2.2. Let A be the matrix given by (1.4). Let D(W,u) be the determinant of any
diagonal minor of A. Then

√
D(W,u) is a log-convex function of u.

Proof. SinceA is a Laplacian matrix, i.e. a symmteric matrix with nonpositive off-diagonal
entries and rows summing to 0, we may apply the matrix-tree theorem [13, theorem
1.19]. It gives

D := D(W,u) =
∑
T∈T

∏
{x,y}∈E(T )

Wxye
ux+uy

where T is the set of all spanning trees G (recall that a spanning tree of a graph is
a subgraph which contains all vertices and some of the edges, and is connected and
cycle-free). Rearranging gives

D =
∑

f :G→Z

af
∏
x∈G

ef(x)ux

for some coefficients af > 0 (all but finitely many of which are zero). Any such sum is
log-convex: indeed, for each x, y ∈ G,

D2 ∂2

∂ux∂uy
(logD) =

∂2D

∂ux∂uy
D − ∂D

∂ux

∂D

∂uy

=
∑
f,g

afag(f(x)f(y)− f(x)g(y))
∏
z

e(f(z)+g(z))uz

and the symmetry between f and g allows to write the sum as

1

2

∑
f,g

afag(f(x)f(y)− f(x)g(y) + g(x)g(y)− g(x)f(y))
∏
z

e(f(z)+g(z))uz =

1

2

∑
f,g

afag(f(x)− g(x))(f(y)− g(y))
∏
z

e(f(z)+g(z))uz .

To see that the resulting matrix is positive semi-definite, let µ be some test vector and
write

D2
∑
x,y

µxµy
∂2

∂ux∂uy
(logD) =

1

2

∑
f,g

afag

(∑
x

µx(f(x)− g(x))
)2∏

z

e(f(z)+g(z))uz .

Since this is nonnegative, the lemma is proved.

3 Comparing to percolation

Let G be a finite connected graph, W : E(G) → (0,∞) and o ∈ G. Let a > 0 and
let H ⊂ G be some induced subgraph such that W |E(H) ≡ a. Let u be sampled from
the density (1.3). In this section we show that the (random) set of edges {x, y} where
|ux − uy| is large is sparse in a suitable sense.

A random set of edges is called an ε-percolation if each edge of the underlying graph
is present in the random set with probability ε, independently between different edges.
Our proof entails consideration of two ε-percolations, which may be dependent among
themselves.
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Proposition 3.1. For every ε > 0 there exists K = K(ε, a) such that the set {{x, y} ∈
E(H) : |ux−uy| > K} is dominated by a union of two (dependent) ε-percolations. Further,
sup{K(ε, a) : a > a0} <∞ for each a0 > 0.

Write ~E(H) for the set of directed edges of H. The proof revolves around an “es-
timator” for exp(ux − uy), (x, y) ∈ ~E(H), which we denote by Qxy (note that Q is not
symmetric). We define Q via the Z process; recall that it has two equivalent definitions,
via the VRJP picture (see Definition 1.1) and via the RWRE picture (see Theorem 1.2).

Define Qxy to be the local time spent by Z at x up to the first jump from x to y.

Lemma 3.2. For ε > 0 let K1 = a/2ε. Then the set {(x, y) ∈ ~E(H) : exp(ux − uy) >
K1Qxy} is dominated by ε-percolation.

Lemma 3.3. For every ε > 0 there exists K2 = K2(ε, a) such that the set {(x, y) ∈
~E(H) : Qxy > K2} is dominated by ε-percolation. Further, one may assume that
K2 6 C(ε)(a−1 + a−2).

Proposition 3.1 following immediately from these two lemmas, with KProposition 3.1 =

log(K1K2) and with εLemmas 3.2 and 3.3 = 1
2εProposition 3.1 (the 1

2 is needed because both
lemmas give directed ε-percolation, while the proposition is about undirected percolation,
and projecting a directed ε-percolation to an undirected one gives a (2ε−ε2)-percolation).
Let us therefore move to the proofs of these lemmas.

Proof of Lemma 3.2. Examine the RWRE picture. We claim that conditioned on the
environment u, Qxy · ( 1

2Wxy exp(uy−ux)) is an i.i.d. field of exponential random variables
of rate 1. This implies that the unconditioned field (after integrating over u) satisfies
the same. The lemma follows, as an exponential random variable T with rate 1 satisfies
P(T 6 ε) =

∫ ε
0
e−xdx 6 ε.

To see the above claim we recall a method for implementing a continuous-time
random walk. For each directed edge (x, y), denote the jump rate from x to y by ρxy and
associate to (x, y) an independent Poisson process with intensity ρxy. The walk is then
defined by the rule that a jump from x to y occurs at times t for which (i) the walker is at
the vertex x just before time t, and (ii) an event of the Poisson process of (x, y) occurs at
time Lx(t), where Lx(t) is the local time accumulated at the vertex x by time t. It is a
standard fact that the walk defined in this way indeed has the correct distribution. With
this representation, it becomes clear that if Qxy is the local time spent by the walk at x
up to its first jump to y then the (Qxy) are independent and each Qxy has an exponential
distribution with rate ρxy.

Proof of Lemma 3.3. Examine the VRJP picture, and denote by qxy the time spent by Y
in x up to the first jump from x to y. The instantaneous jump rate from x to y, WxyLy(t),
is always larger than a (as Ly > 1, see (1.1)). Hence qxy is dominated by a field of i.i.d.
exponential random variables with rate a. In particular,

P

(
qxy >

t

a

)
6 e−t. (3.1)

We now claim that Qxy = q2xy + 2qxy, which will then imply the lemma. Indeed, let ti
be the ith time that Y enters x, let t′i be the ith time Y exits x, and let k be the minimal
i for which Y exits x towards y at time t′i, so qxy =

∑k
i=1(t′i − ti). The RWRE picture

makes it clear that all the ti and t′i, as well as k, are almost surely finite. Recall the time
change function D from (1.2), so Qxy =

∑k
i=1D(t′i) −D(ti). But between ti and t′i the

sum defining D changes only at x so

D(t′i)−D(ti) = L2
x(t′i)− L2

x(ti) = L2
x(t′i)− L2

x(t′i−1)
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where we define t′0 = 0. Hence

Qxy =

k∑
i=1

D(t′i)−D(ti) =

k∑
i=1

L2
x(t′i)− L2

x(t′i−1)2

= L2
x(t′k)− L2

x(0) = (1 + qxy)2 − 1 = q2xy + 2qxy

as needed. The lemma follows.

4 The addition algorithm

The final ingredient used in our proof is the following, so called addition algorithm,
which is introduced in [15] following earlier work of Richthammer [21].

The input to the addition algorithm is a finite, connected graph H, a function τ : H →
[0,∞) and a constant K. Its output is two bijections T+, T− on RH such that T±(ϕ) is an
approximation of ϕ± τ , chosen in a way that preserves the gradients of ϕ whenever the
latter are larger than K. The exact formulation is below.

While the explicit description of the addition algorithm is not long or difficult (see [15,
§ 2.2]), we refrain from giving it here and instead list the properties of the algorithm
which we require. The list follows the properties in [15, § 2.1], with the exception of
property (iv) for which we provide the stronger statement given in [15, Proposition 2.7],
and with a few differences in formulation which are explained following the list.

Let H be a finite connected graph with a distinguished vertex o. We sometimes write
v ∼ w to denote that {v, w} ∈ E(H). Let τ : H → [0,∞), τo = 0 and K > 0 be given. The
addition algorithm defines a pair of measurable mappings T+, T− : RH\{o} → RH\{o}

related by the equality

T+(ϕ)− ϕ = ϕ− T−(ϕ), ϕ ∈ RH\{o}, (4.1)

and satisfying the following properties:

(i) (bijections) T+ and T− are one-to-one and onto.

(ii) (add at most τ ) For every ϕ ∈ RH\{o} and every v ∈ H,

0 6 T+(ϕ)v − ϕv = ϕv − T−(ϕ)v 6 τv. (4.2)

(iii) (gradient preservation) For every ϕ ∈ RH\{o} and every (v, w) ∈ E(H),

|ϕv − ϕw| > 2K =⇒ T±(ϕ)v − T±(ϕ)w = ϕv − ϕw,
|ϕv − ϕw| < 2K =⇒ |T±(ϕ)v − T±(ϕ)w| < 2K.

The properties stated so far do not exclude the possibility that T+ is the identity mapping
(implying the same for T− by (4.1)). The next property shows that T+(ϕ)− ϕ is close to
τ under certain restrictions on the set of edges on which ϕ changes by at least K. We
require a few definitions.

Recall that d stands for graph distance, here on the graph H. The next two definitions
concern the Lipschitz properties of τ .

τ ′(v, k) := max{τv − τw : w ∈ H, d(v, w) 6 k}, (4.3)

L(τ,K) := max
{
k : d(v, w) < k =⇒ |τv − τw| 6 1

2K
}

(4.4)

(the ′ in τ ′ is supposed to remind the reader of differentiation). In the following definitions
we consider the connectivity properties of the subset of edges on which ϕ changes by
more than K. For ϕ ∈ RH define

E (ϕ) := {(v, w) ∈ E(H) : |ϕv − ϕw| > K} (4.5)
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and write, for a pair of vertices v, w ∈ H,

v
E (ϕ)←−−→ w if v is connected to w by edges of E (ϕ), (4.6)

where we mean in particular v
E (ϕ)←−−→ v for all v ∈ H. Let

r(ϕ, v) := max{d(v, w) : w ∈ H, v E (ϕ)←−−→ w}, (4.7)

M(ϕ) := max{d(v, w) : v, w ∈ H, v E (ϕ)←−−→ w}. (4.8)

(iv) (add close to τ ) For any ϕ ∈ RH\{o} satisfying M(ϕ) 6 L(τ,K)− 2,

τv − τ ′(v, r(ϕ, v)) 6 T+(ϕ)v − ϕv 6 τv for all v ∈ H.

Our final property regards the change of measure induced by the mappings T+ and T−.
We bound the Jacobians of these mappings when the subgraph E (ϕ) does not contain
many large connected components.

(v) (Jacobians) There exist measurable functions J+, J− : RH\{o} → [0,∞) satisfying∫
g(T+(ϕ))J+(ϕ) dϕ =

∫
g(T−(ϕ))J−(ϕ) dϕ =

∫
g(ϕ) dϕ (4.9)

for every measurable g : RH\{o} → [0,∞) (where dϕ stands for Lebesgue measure
on RH\{o}). These functions satisfy the estimate

√
J+(ϕ)J−(ϕ) > exp

(
− 1

K2

∑
v∈H

τ ′
(
v, 1 + max

w∼v
r(ϕ,w)

)2)
(4.10)

at every ϕ ∈ RH\{o} for which M(ϕ) 6 L(τ,K)− 2.

For easier comparison with [15] let us explain the few differences between the way
the result is formulated here and there.

(1) In [15] there is an additional parameter ε. We set this ε to 1
2 .

(2) The parameter K does not appear in [15]. There, the constant 2K appearing in
property (iii) is replaced by 1. The version here is achieved by dividing ϕ and τ by
2K, applying the addition algorithm of [15] and then multiplying back by 2K.

(3) Our L is defined slightly differently than in [15], with L = L[15] + 2.

(4) In [15] there is no distinguished vertex o on which the functions τ and ϕ are
assumed to be zero. In addition, the Jacobians are shown to satisfy a stronger
property than (4.9), allowing to fix the functions ϕ to arbitrary values on vertices
where τ is zero. Here, for simplicity, we restricted to the case that τ and ϕ are
fixed to zero at o as this is the only case we will use.

5 Proof of the main result

In this section we combine the previous ingredients to prove Theorem 1.3.

Let L ∈ N. Let G be a finite connected graph with a distinguished vertex o and
assume that B(o, L) is isomorphic to the ball B((0, 0), L) in Z2. Let W : E(G) → (0,∞)

satisfy that W |B(o,L) ≡ a. Let u be sampled from the density (1.3) with respect to G
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and W . We need to show that there exist C, c(a) > 0 so that for any a > 0 and any
x ∈ B(o, 2L),

P(ux > −c(a) log(d(o, x))) 6
C

d(o, x)c(a)
, (5.1)

E
(
e

1
2ux

)
6

C

d(o, x)c(a)
(5.2)

and that c(a) can be taken to be at least c(a0)/a for all a > a0. We assume throughout the
following that d(o, x) (and thus also L) is at least a large absolute constant as for each
fixed d(o, x) we may take C large enough and c(a0) small enough to make (5.1) trivial
and make (5.2) follow from the Ward identity (Theorem 2.1).

The following is our main lemma, which shows that ux must be either larger than
c(a) log d(o, x) or smaller than −c(a) log d(o, x), with high probability. The theorem follows
from it, see page 13, by a simple application of the Ward identity (which is also used in
the proof of the lemma).

Lemma 5.1. Let a0 > 0. There exist C, c(a0) > 0 such that for every a > a0,

P

(
|ux| 6

c(a0)

a
log
(1

4

√
d(o, x)

))
6 C d(o, x)−c(a0)/a.

The rest of the section is devoted to proving the lemma and deducing Theorem 1.3.
Throughout we fix a0 > 0 and assume that a > a0.

We wish to use the addition algorithm from the previous section and to this end we
need to specify the graph H, target function τ and constant K. Let H be the induced
subgraph of G on the closed ball B(o, 12d(o, x)) = {y ∈ G : d(o, y) 6 1

2d(o, x)}, so that H
is a ball in Z2 regardless of the choice of x. The choice to make the radius of the ball
proportional to d(o, x) is made in order for the parameter M(ϕ) appearing in the addition
algorithm to typically not be too large. The parameter K will be fixed using Lemma 5.3
below to a value depending only on a0. To specify τ we introduce a parameter λ which
will be fixed later (following (5.22)) to a value of the form c(a0)/a. Define τ : H → [0,∞)

by

τy :=


0 d(o, y) <

√
d(o, x)

λ log
(

d(o,y)√
d(o,x)

) √
d(o, x) 6 d(o, y) < 1

4d(o, x)

λ log
(

1
4

√
d(o, x)

)
1
4d(o, x) 6 d(o, y) 6 1

2d(o, x).

(5.3)

The reason for taking τ to be 0 up to a large distance from o is to increase the size of the
parameter L(τ,K) defined in (4.4). Indeed,

L(τ,K) >
K

2λ

√
d(o, x), (5.4)

as nearest-neighbour differences satisfy maxy∼z |τy − τz| 6 λd(o, x)−1/2.
For these H, τ (and the parameter K to be fixed below), the addition algorithm

produces mappings T± : RH\{o} → RH\{o} and the associated J± : RH\{o} → [0,∞). We
define extensions of these maps on the whole of RG\{o} as follows. First, T̄± : RG\{o} →
RG\{o} are defined by

u±y := T̄±(u)y :=

{
T±(u|H)(y) d(o, y) 6 1

2d(o, x)

uy ± λ log
(

1
4

√
d(o, x)

)
otherwise.

(5.5)

Second, the maps J̄± : RG\{o} → [0,∞) are defined by J̄±(u) = J±(u|H). It is simple to
check that the extension of Property (v) of the addition algorithm holds, namely that∫

g(T̄±(ϕ))J̄±(ϕ) dϕ =

∫
g(ϕ) dϕ (5.6)
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where dϕ now stands for Lebesgue measure on RG\{o}. It is convenient to introduce a
notation for the actual increments due to the addition algorithm

iy := u+y − uy (5.7)

where the reader should keep in mind that (as will be shown) i is close to τ on H in a
suitable sense. In particular, by (4.2), iy = 0 whenever τy = 0, i.e.,

iy = 0 when d(o, y) <
√
d(o, x). (5.8)

We require some control over the Jacobians and increments resulting from the
addition algorithm and this is provided by the following definition and lemma.

Definition 5.2. For a constant σ we define a “good” event G = G (σ) ⊆ RG\{o} as the set
of all u satisfying that√

J+(u)J−(u) >
1

d(o, x)σλ2 , (5.9)

iy = τy for all y satisfying d(o, y) =
⌊
1
2d(o, x)

⌋
, (5.10)∑

y∼z
(iy − iz)2 6 σλ2 log d(o, x). (5.11)

Lemma 5.3. Suppose λ 6 1. There exist absolute constants C, c, σ and a choice of K as
a function solely of a0 for which P(G (σ)) > 1− C exp(−cd(o, x)1/4).

Lemma 5.3 follows in a pretty straightforward manner from the “two dependent
percolations” picture and properties of the addition algorithm so we postpone its proof.
Continuing with the proof of lemma 5.1, denote by H the event to be estimated in the

lemma, i.e., H is the set of all u satisfying |ux| 6 λ
3 log

(
1
4

√
d(o, x)

)
. Fix K and σ as in

lemma 5.3, define G using this σ and define the event

I := H ∩ G .

Let ρ be the density of the field u (“the magic formula”) as given in (1.3). The proof of
Lemma 5.1 makes use of the Ward identity and the fact that ρ has the form

ρ(u) = ρ1(u) · ρ2(u) · ρ3(u) (5.12)

with

ρ1(u) = exp

(
−a

∑
{y,z}∈E(H)

cosh(uy − uz)

)
(using that W |B(o,L) ≡ a by assumption), with ρ2 a function of the gradients of u on the
edge set E(G) \ E(H) and with ρ3 a log-convex function. We take ρ3 = exp(−

∑
ux) ·√

D(W,u), a product of a log-linear term and a term whose log-convexity is justified by
Lemma 2.2.

Our analysis starts with the quantity

I :=

∫
I

√
ρ(u+)ρ(u−)J̄+(u)J̄−(u) du

for which we proceed to establish upper and lower bounds (again, u ∈ RG\{o} and the
integration is with respect to the Lebesgue measure on RG\{o}). On the one hand, by
the Cauchy-Schwarz inequality and (5.6),

I 6

(∫
I

ρ(u+)J̄+(u)du

∫
I

ρ(u−)J̄−(u)du

)1/2

(5.6)
=
(
P(u ∈ T̄+(I ))P(u ∈ T̄−(I ))

)1/2
. (5.13)
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(recall that T̄+, T̄− mean the transformations mapping u to u+, u−, i.e., the transforma-
tions defined on the whole graph G rather than just on the subgraph H.) On the other
hand, by property (5.9) of the good event G (which contains I ),

I >
1

d(o, x)σλ2

∫
I

√
ρ(u+)ρ(u−)du (5.14)

and we proceed to find a lower bound for the integrand. We study the three factors
in (5.12) separately. First, by log-convexity and the relation (4.1) of the addition algo-
rithm, √

ρ3(u+)ρ3(u−) > ρ3
(
1
2 (u+ + u−)

)(4.1)
= ρ3(u). (5.15)

Second, by (5.5), we have iy = u+y − uy = λ log
(

1
4

√
d(o, x)

)
for all y ∈ G \H. In addition,

by property (5.10) of the good event G we have iy = λ log
(

1
4

√
d(o, x)

)
for all y ∈ H with

d(o, y) =
⌊
1
2d(o, x)

⌋
, i.e., those y ∈ H which are endpoints of an edge in E(G) \ E(H).

Thus, on the event I the gradients of u+, u− on E(G) \ E(H) equal the gradients of u
there and we obtain

ρ2(u+) = ρ2(u−) = ρ2(u). (5.16)

Lastly, we calculate√
ρ1(u+)ρ1(u−)

= exp

(
−a

∑
{y,z}∈E(H)

1

2

(
cosh(uy − uz + (iy − iz)) + cosh(uy − uz − (iy − iz))

))

To obtain a simpler expression for the summands we note that by property (iii) of the
addition algorithm, iy = iz when |uy −uz| > 2K. A second-order Taylor expansion of cosh

thus gives

1

2
(cosh(uy − uz + (iy − iz)) + cosh(uy − uz − (iy − iz))) 6 cosh(uy − uz) + C(K)(iy − iz)2

with C(K) > 0 solely a function of K. For simplicity, denote all constants that depend
only on a0 by C(a0), in particular the C(K) above. In conclusion,

√
ρ1(u+)ρ1(u−) > ρ1(u) exp

(
−C(a0)a

∑
{y,z}∈E(H)

(iy − iz)2
)
. (5.17)

Putting together (5.15), (5.16) and (5.17) we thus have on I that

√
ρ(u+)ρ(u−) > ρ(u) exp

(
−C(a0)a

∑
{y,z}∈E(H)

(iy − iz)2
)
.

Plugging this bound back into (5.14) and using property (5.11) of the good event G ,

I >
1

d(o, x)σλ2(C(a0)a+1)

∫
I

ρ(u)du >
1

d(o, x)C(a0)λ2a
P(u ∈ I ), (5.18)

where in the second inequality we compensated for removing the +1 and the σ from
the power by increasing C(a0) (recall that a > a0 and that σ is an absolute constant).
Combining (5.18) with the upper bound (5.13) brings us to the key inequality

P(u ∈ I ) 6 d(o, x)C(a0)λ
2a
(
P(u ∈ T̄+(I ))P(u ∈ T̄−(I ))

)1/2
6 d(o, x)C(a0)λ

2aP(u ∈ T̄+(I ))1/2.
(5.19)
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We develop the right-hand side of the inequality. As I = H ∩ G we have

P(u ∈ T̄+(I )) 6 P(u ∈ T̄+(H )). (5.20)

Further recalling that H is the set of u satisfying |ux| 6 λ
3 log

(
1
4

√
d(o, x)

)
and that T̄+

is given by (5.5) we have that

P(u ∈ T̄+(H )) = P

(∣∣∣ux − λ log
(1

4

√
d(o, x)

)∣∣∣ 6 λ

3
log
(1

4

√
d(o, x)

))
6 P

(
ux >

2

3
λ log

(1

4

√
d(o, x)

))
.

(5.21)

Putting together (5.20) and (5.21) and making use of Markov’s inequality and the Ward
identity (Theorem 2.1) now shows that

P(u ∈ T̄+(I )) 6 exp
(
− 2

3
λ log

(1

4

√
d(o, x)

))
=

(
16

d(o, x)

)λ/3
.

Combining this inequality with (5.19) we get

P(u ∈ I ) 6 d(o, x)C(a0)λ
2a−λ/6 · 4λ/3. (5.22)

We see that for λ 6 c(a0)/a for some positive c(a0) sufficiently small, the power becomes
negative (and we may also ensure that λ 6 1, to satisfy the assumption of Lemma 5.3, by
taking c(a0) 6 a0). Fix λ to such a value. The proof of Lemma 5.1 is now finished since,
by Lemma 5.3,

P(u ∈H ) 6 P(u ∈ I ) + P(u /∈ G ) 6 Cd(o, x)−c(a0)/a + C exp(−cd(o, x)1/4)

and the second term is negligible.

Proof of Theorem 1.3. Fix a0 > 0 and suppose that a > a0. By Lemma 5.1 there exist
C, c1(a0) > 0 so that

P (|ux| 6 t) 6 C d(o, x)−c1(a0)/a. (5.23)

with

t :=
c1(a0)

a
log
(1

4

√
d(o, x)

)
.

The probability that ux is large can be bounded by the Ward identity (Theorem 2.1) and
Markov’s inequality:

P(ux > t) 6
E(eux)

et
= e−t. (5.24)

Together (5.23) and (5.24) show (5.1). To further deduce (5.2) we write

E
(
e

1
2ux

)
= E

(
e

1
2ux1ux∈I1

)
+ E

(
e

1
2ux1ux∈I2

)
+ E

(
e

1
2ux1ux∈I3

)
where I1 := (−∞,−t), I2 := [−t, s], I3 := (s,∞), s := min{t, c1(a0)a log(d(o, x))} and t is as
before. We trivially have

E
(
e

1
2ux1ux∈I1

)
6 e−t/2.

Using (5.23) we have

E
(
e

1
2ux1ux∈I2

)
6 es/2P(ux ∈ I2)

(5.23)
6 C

d(o, x)c1(a0)/2a

d(o, x)c1(a0)/a
=

C

d(o, x)c1(a0)/2a
.

For I3 we use the Ward identity to get

E(e
1
2ux1ux>s) 6 e−s/2E(eux1ux>s) 6 e−s/2E(eux) = e−s/2.

The inequality (5.2) follows by combining the last four displayed equations and plugging
the definitions of t and s.
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6 Properties of a union of percolations

In this section we discuss two specific quantitative ways in which the union of ε-
percolations is sparse, which are required for the proof of lemma 5.3. Our analysis takes
the underlying graph to be the whole square lattice as this suffices for our purposes.

Let P1,P2 be two (dependent) ε-percolations on Z2. Write P for their union. Define
the radius of connected components in P by

r(y) := max{d(y, z) : z is connected to y by edges in P}, y ∈ Z2.

Lemma 6.1. There exists ε0 > 0 such that if ε 6 ε0 then

P(r(y) > k) 6 e−k for y ∈ Z2 and integer k > 1.

Proof. The event in question entails the existence of a simple path γ with k edges of P
starting from y. In this case there is some i ∈ {1, 2} such that at least dk/2e of the edges
of γ are in Pi. For a fixed γ and i this probability can be bounded by εk/22k. Summing
over γ (for which there are less than 4k possibilities) and i gives

P(r(y) > k) 6 2 · 8k · εk/2.

For ε sufficiently small, this is smaller than e−k for all k > 1.

Lemma 6.2. There exist ε0, C, c > 0 such that if ε 6 ε0 then for all ` > 0,

P
( ∑
y : `6d(o,y)6`2

r(y)2

d(o, y)2
> log `

)
6 Ce−c `

1/2

. (6.1)

(the value 1
2 can be improved easily, but this is not useful for us).

Proof. We assume that ` is sufficiently large as otherwise the claim is trivial. Denote
the sum in (6.1) by S. We proceed to upper bound S by sums involving simpler random
variables. Let M > 1 be a parameter and write

SM :=
∑

`6d(o,y)6`2

r(y)2

d(o, y)2
1{r(y) ∈ [M, 2M)},

so that S =
∑∞
m=0 S2m . Observe that

SM 6 4M2
∑

`6d(o,y)6`2

1

d(o, y)2
1{r(y) >M}. (6.2)

Denote by E (y, i,M) the event that there is a simple path γ from y to some z with
d(y, z) = M with at least half of the edges of γ in Pi. As in the proof of Lemma 6.1 we
have

{r(y) >M} ⊂ E (y, 1,M) ∪ E (y, 2,M)

so that

SM 6
2∑
i=1

4M2
∑

`6d(o,y)6`2

1{E (y, i,M)}
d(o, y)2

. (6.3)

The proof of Lemma 6.1 also implies that, for ε 6 ε0,

P(E (y, i,M)) 6 e−M . (6.4)
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For M small we also need the fact that for every δ > 0 there exists an ε1(δ) such that
ε 6 ε1(δ) implies P(E (y, i,M)) 6 δ, which holds for any M > 1. This is also proved
exactly like Lemma 6.1.

Going back to SM , we further subdivide (6.3) according to the value of the coordinates
of y modulo 3M , defining

Sv,i,M :=
∑

`6d(o,y)6`2

y≡v mod 3M

1{E (y, i,M)}
d(o, y)2

, v ∈ [0, 3M)2.

The events in this last sum are independent (each E (y, i,M) depends only on Pi in
B(y,M) and these subsets are disjoint). Hence any of the standard methods may lead to
the following estimate: for every s > 2ESv,i,m,

P
(
Sv,i,M > s

)
6 C exp(−cs`2).

(we used exponential moments, i.e. wrote P(S > s) 6 E(exp(µ(S − E(S))) exp(−µ(s −
E(S))) with µ = c`2, but any other standard method would give a usable estimate).
Summing over i and v and using (6.3) gives

P(SM > 18M2s) 6 CM2 exp(−cs`2).

We use this inequality for s = 1
36M

−3 log `, and note that if ε is sufficiently small then the
condition s > 2ESv,i,M will be satisfied: indeed, for every M > 1, by summing (6.4) over
y, ESv,i,M 6 Ce−M log `, while for M small the fact that P(E (y, i,M)) can be made as
small as needed by reducing ε allows to make ESv,i,M 6 Cδ log ` for any δ > 0. We get

P(SM > 1
2M log `) 6 CM2 exp(−cM−3`2 log `).

Summing over M = 1, 2, 4, . . . , 2k for k = blog2 `
1/2c gives

P
( k∑
m=0

S2m > log `
)
6 C exp(−c`1/2 log `).

Finally, the probability that SM > 0 for any M > 1 (in particular, for M > 2k) is no more
than C`4e−M by (6.2) and (6.4). This establishes the lemma.

7 Proof of Lemma 5.3

Fix ε to be the minimum of the constants ε0 from Lemma 6.1 and Lemma 6.2. Fix
K = K(a0) using proposition 3.1 to

K := max
{

sup{KProposition 3.1(ε, a) : a > a0}, 1
}
. (7.1)

Recall from the addition algorithm the notations E (u) (4.5) and r(u, y) (4.7) which we
write here as EK and r(y), respectively. We may apply to EK the probability estimates of
Lemma 6.1 and Lemma 6.2 as, by Proposition 3.1, EK is dominated by the union of two
ε-percolations and as H is a subgraph of Z2.

The event G is comprised of 3 parts (recall Definition 5.2), and it will be convenient
to name them G2,G3,G4 so, for example, G2 = {u :

√
J+(u)J−(u) > d(o, x)−σλ

2}. We
reserved G1 to the following auxiliary event (recall the definition of M from (4.8)),

G1 = {M(u|H) 6 1
4

√
d(o, x)− 2}.
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Using Lemma 6.1,

P(G c
1 ) 6 |H| exp

(
− 1

4

√
d(o, x)− 2

)
6 C exp

(
−c
√
d(o, x)

)
.

For the rest of the proof it is important to note that the bound (5.4) and the fact that
λ 6 1 (by assumption) and K > 1 (by (7.1)) show that

G1 ⊆ {M (u|H) 6 L(τ,K)− 2} .

This is important because properties (iv) and (v) of the addition algorithm rely on this
assumption, so most of the argument will work only on G1.

Let us start by bounding P(G3) (recall (5.10)). Let y ∈ H satisfy d(o, y) =
⌊
1
2d(o, x)

⌋
.

Property (iv) of the addition algorithm implies that on G1, if iy 6= τy then τ ′(y, r(y)) > 0.
Since τ is constant on B(y, 15d(o, x)) (see (5.3)), this can only be if r(y) > 1

5d(o, x). Thus,
relying again on Lemma 6.1,

P({iy 6= τy} ∩ G1) 6 P
(
r(y) > 1

5d(o, x)
)
6 exp

(
− 1

5d(o, x)
)
.

Before estimating G2 and G4 let us first discuss the discrete derivative of τ . One
checks that if y, z are neighbours in H then |τy − τz| 6 2λ/d(o, y). Summing this gives
(recall (4.3))

τ ′(y, k) 6
3λk

d(o, y)
, 0 6 k 6

√
d(o, x), (7.2)

using that d(o, x) is sufficiently large. In addition,∑
{y,z}∈E(H)

(τy − τz)2 6 Cλ2 log(d(o, x)), (7.3)

again using that d(o, x) is large. Lastly, the fact that τy = 0 when d(o, y) <
√
d(o, x)

implies that

τ ′(y, k) = 0 when d(o, y) + k <
√
d(o, x). (7.4)

We proceed to estimate P(G2) (recall (5.9)). By (4.10), (7.2) and (7.4) we have on G1

that √
J+(u)J−(u)

(4.10)
> exp

(
− 1

K2

∑
y∈H

τ ′
(
y, 1 + max

z∼y
r(z)

)2)
(7.2, 7.4)

> exp

(
− 9λ2

K2

∑
d(o,y)> 3

4

√
d(o,x)

(1 + maxz∼y r(z))
2

d(o, y)2

)
.

For each y ∈ H, (
1 + max

z∼y
r(z)

)2
6 2 + 2

(
max
z∼y

r(z)
)2

6 2 + 2
∑
z∼y

r(z)2

whence ∑
d(o,y)> 3

4

√
d(o,x)

(1 + maxz∼y r(z))
2

d(o, y)2
6 C

∑
d(o,y)> 3

4

√
d(o,x)−1

(
1

d(o, y)2
+

r(y)2

d(o, y)2

)

6 C log(d(o, x)) + C
∑

d(o,y)> 3
4

√
d(o,x)−1

r(y)2

d(o, y)2
.
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so

P(G c
2 ∩ G1) = P

({√
J+(u)J−(u) <

1

d(o, x)σλ2

}
∩ G1

)
6 P

(
exp

(
− 9λ2

K2

(
C log(d(o, x)) + C

∑
d(o,y)> 3

4

√
d(o,x)−1

r(y)2

d(o, y)2

))
<

1

d(o, x)σλ2

)

= P

( ∑
d(o,y)> 3

4

√
d(o,x)−1

r(y)2

d(o, y)2
>
(σK2

9C
− 1
)

log(d(o, x))

)
.

Taking σ large, as an absolute constant, will make σK2/9C > 3
2 (recall that K > 1) and

allow to apply Lemma 6.2 (taking into account that H is the induced subgraph of Z2 on
B(o, 12d(o, x))). We get that P(G1 \ G2) 6 C exp(−cd(o, x)1/4).

We finally turn to the estimate of P(G4) (recall (5.11)). Property (iv) of the addition
algorithm shows that on G1, for y, z ∈ H, y ∼ z,

(iy − iz)2 6 max {τy − τz + τ ′(z, r(z)), τz − τy + τ ′(y, r(y))}2

6 2
(
(τy − τz)2 + τ ′(y, r(y))2 + τ ′(z, r(z))2

)
.

Thus, still on G1, we may use (7.3), (7.4) and (7.2) to obtain∑
{y,z}∈E(H)

(iy − iz)2
(7.3)
6 Cλ2 log(d(o, x)) + 8

∑
y∈H

τ ′(y, r(y))2

(7.2, 7.4)
6 Cλ2 log(d(o, x)) + 72λ2

∑
d(o,y)> 3

4

√
d(o,x)

r(y)2

d(o, y)2
.

Again, taking σ large, as an absolute constant, we deduce from Lemma 6.2 that

P(G c
4 ∩ G1) = P

({ ∑
y,z∈H
y∼z

(iy − iz)2 > σλ2 log d(o, x)
}
∩ G1

)

6 P

( ∑
d(o,y)> 3

4

√
d(o,x)

r(y)2

d(o, y)2
>
σ − C
C

log(d(o, x))

)
6 C exp(−cd(o, x)1/4).

Combining the estimates on the probabilities of G2, G3 and G4, the lemma is proved.
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