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Abstract

Three concepts of local times for deterministic càdlàg paths are developed and the
corresponding pathwise Tanaka–Meyer formulae are provided. For semimartingales,
it is shown that their sample paths a.s. satisfy all three pathwise definitions of local
times and that all coincide with the classical semimartingale local time. In particular,
this demonstrates that each definition constitutes a legit pathwise counterpart of
probabilistic local times. The last pathwise construction presented in the paper
expresses local times in terms of normalized numbers of interval crossings and does
not depend on the choice of the sequence of grids. This is a new result also for càdlàg
semimartingales, which may be related to previous results of Nicole El Karoui [11]
and Marc Lemieux [23].
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1 Introduction

Stochastic calculus, with its foundational notions developed by Kyiosi Itô in the 1940s,
is a par excellence probabilistic endeavour. The stochastic integral, the integration
by parts formula – these basic building blocks are to be understood almost surely,
and so is the edifice they span. This thinking has proved to be exceedingly powerful
and fruitful, and underpins many beautiful developments in probability theory since
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then. Nevertheless, for decades now, mathematicians have been trying to develop a
more analytic, pathwise understanding of these probabilistic objects. On one hand,
this was, and is, driven by mathematical curiosity. The classical calculus remains an
irresistible reference point and, e.g., in developing a notion of an integral it is important
to understand when and how it can be seen as a limit of its Riemann sums. On the other
hand, this was, and is, driven by applications. Stochastic differential equations have
became a ubiquitous tool for mathematical modelling from physics, through biology to
finance. Yet, they do not offer the same level of path-by-path description of the system’s
evolution as the classical differential equations do. This becomes particularly problematic
if one needs to work simultaneously with many probability measures, possibly mutually
singular. One field where this proves important, and which has driven renewed interest
in pathwise stochastic calculus, is robust mathematical finance, see for example [8] and
the references therein. Both of the above reasons – mathematical curiosity and possible
applications – are important for us. We add to this literature and develop a pathwise
approach to stochastic calculus for càdlàg paths using local times.

In his seminal paper [14], Föllmer introduced, for twice continuously differentiable
f : R→ R, a non-probabilistic version of the Itô formula

f(xt)− f(x0) =

∫ t

0

f ′(xs−) dxs +
1

2

∫ t

0

f ′′(xs) d[x]cs + Jft (x), t ∈ [0, T ],

where x : [0, T ] → R is càdlàg and possesses a suitably defined quadratic variation [x]

such that, for 0 ≤ t ≤ T ,

[x]t = [x]ct +
∑

0<s≤t

(∆xs)
2, where ∆xt := xt − xt−,

and Jft (x) is defined by the following absolutely convergent series

Jft (x) :=
∑

0<s≤t

(
∆f(xs)− f ′(xs−)∆xs

)
.

In particular, this leads to a pathwise definition of the “stochastic” integral
∫ t

0
f ′(xs−) dxs,

assuming [x] exists. Soon after, Stricker [35], showed that one could not extend the
above to all continuous functions f . This could only be done adopting a much more
bespoke discretisation and probabilistic methods, see for example [3, 19]. Accordingly,
the main remaining challenge was to understand the case of functions f which are
not twice continuously differentiable but are weakly differentiable, in some sense. In
probabilistic terms, this realm is covered by the Tanaka–Meyer formula.

For continuous paths Föllmer’s pathwise Itô formula was generalized to a pathwise
Tanaka–Meyer formulae in the early work of [36] and more recently in [29] and in [9],
who offered a comprehensive study. Furthermore, we refer to [16] and [2, 8] for related
work in a pathwise spirit. Our contribution here is to study this problem for càdlàg paths.
Jump processes, e.g., Lévy processes, are of both theoretical and practical importance
and, as stressed above, our study is motivated by both mathematical curiosity as well
as applications. Already in the classical, probabilistic, setting stochastic calculus for
jump processes requires novel insights over and above the continuous case. This was
also observed in recent works focusing on Föllmer’s Itô calculus for càdlàg paths, see
[5] and [17]. We face the same difficulty, which of course makes our study all the more
interesting. In particular, we need more information and new ideas to handle jumps.
This is consistent with the definition of quadratic variation for càdlàg paths, cf. [5].

Our non-probabilistic versions of Tanaka–Meyer formula, extend the above Itô formula
allowing for functions f with weaker regularity assumptions than C2. More precisely,
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we derive pathwise formulae

f(xt)− f(x0) =

∫ t

0

f ′(xs−) dxs +
1

2

∫
R

Lt(x, u)f ′′(du) + Jft (x), t ∈ [0, T ],

for twice weakly differentiable functions f , supposing that the càdlàg path x possesses
a suitable pathwise local time L(x). As in the case of the Itô formula, there exists
no unique pathwise sense to understand such a formula, see also Remark 2.14 below.
We develop three natural pathwise approaches to local times and, consequently, to
their stochastic calculus. First, we start with the key property relating local times and
quadratic variation: the time-space occupation formula, and use it to define pathwise
local times. Second, in the spirit of [14, 36], we discretise the path along a sequence
of partitions and obtain local times as limits of discrete level crossings and stochastic
integrals as limits of their Riemann sums. Finally, we discretise the integrand via the
Skorokhod map which provides a natural approximation of the “stochastic” integral
and links to the concept of truncated variation. In all of the three cases we show that
a pathwise variant of the Tanaka–Meyer formula holds. Further, we prove that for a
càdlàg semimartingale, all three constructions coincide a.s. with classical local times.
This shows that all three approaches are legitimate extensions of the classical stochastic
results to pathwise analysis. Each has its merits and limitations which we explore in
detail. Our aim is to provide a comprehensive understanding of how to deal with jumps in
the context of pathwise Tanaka–Meyer formulae. We thus do not seek further extensions
of the setup, e.g., to cover time-dependent functions f , cf. [12], path-dependent functions,
cf. [6, 18, 34], nor to develop higher order local times in the spirit of [7] for càdlàg paths.
These, while interesting, would distract from the main focus of the paper and are left as
avenues for future research.

Outline: In Section 2 we propose three notions of local times for càdlàg paths and
establish the corresponding Tanaka–Meyer formulae. Then, in Section 3, we show that
sample paths of semimartingales almost surely possess such local times and all three
definitions agree a.s. in the classical stochastic world.

2 Pathwise local times and Tanaka–Meyer formulae

The first non-probabilistic version of Itô’s formula and the corresponding notion of
pathwise quadratic variation of càdlàg paths was introduced by H. Föllmer in the seminal
paper [14]. Before providing non-probabilistic versions of Tanaka–Meyer formulae and
introducing the corresponding pathwise local times, we recall in the next subsection
some results from [14].

2.1 Quadratic variation and the Föllmer–Itô formula

For T ∈ (0,∞), let D([0, T ];R) be the space of all càdlàg (RCLL) functions x : [0, T ]→
R, that is, x is right-continuous and possesses finite left-limits at each t ∈ [0, T ]. For
x ∈ D([0, T ];R) we set xt− := lims<t,s→t xs for t ∈ (0, T ], x0− := x0 and ∆xs := xs − xs−
for s ∈ [0, T ].

In order to define the summation over the jumps of a càdlàg function, we need the
concept of summation over general sets, see for example [21, p.77–78]. Let I be a set,
let b : I → R be a real valued function and let I be the family of all finite subsets of I.
Since I is directed when endowed with the order of inclusion ⊆, the summation over I
can be defined by ∑

i∈I
bi := lim

Γ∈I

∑
i∈Γ

bi (2.1)
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as limit of a net, i.e., limΓ∈I
∑
i∈Γ bi =: l ∈ [−∞,∞] exists if, for any neighbourhood1 Vl of

l, there is Γ ∈ I such that for all Γ̃ ∈ I such that Γ̃ ≥ Γ (i.e., Γ̃ ⊇ Γ) one has
∑
i∈Γ̃ bi ∈ Vl.

If bi ≥ 0 for all i ∈ I, then it is easy to see that

∃
∑
i∈I

bi = sup

{∑
i∈J

bi : J ∈ I
}
∈ [0,∞]. (2.2)

We say that the series
∑
i∈I bi is absolutely summable if the limit

∑
i∈I |bi| (which

always exists, by (2.2)) is finite, in which case also the limit (2.1) exists and satisfies
|
∑
i∈I bi| ≤

∑
i∈I |bi|, and there exists2 a countable subset K ⊆ I s.t. bi = 0 if i ∈ I \K.

For a continuous function f : R→ R possessing a left-derivative f ′, we now set

Jft (x) :=
∑

0<s≤t

(
∆f(xs)− f ′(xs−)∆xs

)
, (2.3)

provided the sum exists. Furthermore, the space of continuous functions f : R→ R is
denoted by C(R) := C(R;R), the space of twice continuously differentiable functions by
C2(R) := C2(R;R) and the space of smooth functions by C∞(R) := C∞(R;R).

A partition π = (tj)
N
j=0 is a finite sequence such that 0 = t0 < t1 < · · · < tN = T

(for some N ∈ N). We write |π| := maxj∈N |tj − tj−1| for its mesh size and define
π(t) := π ∩ [0, t] the restriction of π to [0, t]. A sequence of partitions (πn)n∈N is said to
be refining if for all tj ∈ πn we also have tj ∈ πn+1 and a refining sequence (πn)n∈N is
said to exhaust the jumps of x if for all t ∈ [0, T ] with ∆xt 6= 0, t ∈ πn for n large enough.
The Dirac measure at t ∈ [0, T ] is denoted by δt.

Definition 2.1. Let (πn)n be a sequence of partitions such that limn→∞ |πn| = 0. A
function x ∈ D([0, T ];R) has quadratic variation [x] along (πn)n if the sequence of
discrete measures

µn :=
∑
tj∈πn

(xtj+1
− xtj )2δtj

converges weakly3 to a finite4 measure µ such that the jumps of the (increasing, càdlàg)
function [x]t := µ([0, t]) are given by ∆[x]t = (∆xt)

2 for all t ∈ [0, T ]. Q((πn)n) denotes
the set of functions in D([0, T ];R) having a quadratic variation along (πn)n.

For x ∈ Q((πn)n), we write [x]c and [x]d for the continuous and purely discontinuous
parts of the càdlàg function [x] and note that by the above definition we have

[x]dt =
∑

0<s≤t(∆xs)
2, 0 < t ≤ T.

We now recall Föllmer’s pathwise version of Itô’s formula for paths in Q((πn)n). Here
and throughout,

∫ t
0

stands for
∫

(0,t]
and increasing is understood as non-decreasing.

Theorem 2.2 ([14]). Let x ∈ Q((πn)n) and f ∈ C2(R). Then, the pathwise Itô formula

f(xt)− f(x0) =

∫ t

0

f ′(xs−) dxs +
1

2

∫ t

0

f ′′(xs) d[x]cs + Jft (x), t ∈ [0, T ], (2.4)

1The space [−∞,∞] is given the usual topology which makes it isomorphic to [−1, 1]; in particular one can
take (x− ε, x+ ε) (resp. (M,+∞), resp. (−∞,−M)), where 0 < ε < 1 < M <∞, as a neighbourhood basis
of x ∈ R (resp. +∞, resp. −∞), and metrize this topology with the distance d(x, y) := arctan(|x− y|), where
arctan(±∞) := ±1, x, y ∈ [−∞,∞].

2Since In := {i ∈ I : |bi| ≥ 1/n} is finite for each n, because #In
n
≤

∑
i∈In |bi| ≤

∑
i∈I |bi| <∞.

3Meaning that
∫ T
0 hdµn →

∫ T
0 hdµ for every continuous h : [0, T ]→ R.

4If we were working on the unbounded time interval [0,∞) instead of [0, T ], we would have to ask, following
[14], that µ is Radon (i.e., finite on compacts) and that µn → µ vaguely (i.e.,

∫
hdµn →

∫
hdµ for every

continuous h with compact support).
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holds with Jft (x) as in (2.3), and with∫ t

0

f ′(xs−) dxs := lim
n→∞

∑
tj∈πn(t)

f ′(xtj )(xtj+1
− xtj ), t ∈ [0, T ], (2.5)

where the series in (2.3) is absolutely convergent and the limit in (2.5) exists.

We note that, to define
∫ t

0
f ′(xs−) dxs, Föllmer [14] takes limits of sums of the form∑

πn3tj≤t

g(xtj )(xtj+1 − xtj ), whereas we consider
∑
tj∈πn

g(xtj )(xtj+1∧t − xtj∧t).

This however has no consequences, since the difference between these two sums is

g(xtc(πn,t))(xtc(πn,t)+1
− xt), where c(π, t) := max{j : π 3 tj ≤ t},

which goes to zero as |πn| → 0 since g is bounded on [inft∈[0,T ] xt, supt∈[0,T ] xt], x is càdlàg
and t < tc(π,t)+1 ≤ t + |π|. In consequence, Föllmer’s pathwise Itô formula (2.4) holds

also with our definition of
∫ t

0
f ′(xs−) dxs and we shall exploit it in our proofs. Notice that

analogously ∑
πn3tj≤t

g(xtj )(xtj+1 − xtj )2 and
∑
tj∈πn

g(xtj )(xtj+1∧t − xtj∧t)2

differ by
g(xtc)((xtc+1

− xtc)2 − (xt − xtc)2), with c = c(πn, t),

which goes to zero as |πn| → 0.

2.2 Local time via occupation measure

In order to extend the Itô formula for twice continuously differentiable functions f
to twice weakly differentiable functions f , the notion of quadratic variation is not
sufficient and the concept of local time is required. In probability theory there exist
various classical approaches to define local times of stochastic processes. In the present
deterministic setting, we first introduce a pathwise local time corresponding to the
notation of local time as an occupation measure with respect to the quadratic variation.

The space of q-integrable (equivalence classes of) functions g : R → R is denoted
by Lq(R) := Lq(R;R) with corresponding norm ‖ · ‖Lq for q ∈ [1,∞] and W k,q(R) :=

W k,q(R;R) stands for the Sobolev space of functions g : R→ R which are k-times weakly
differentiable in Lq(R), for k ∈ N. Moreover, Lq(K;R) is the space of q-integrable
functions f : K → R for a Borel set K ⊂ R and we recall the left-continuous sign-function

sign(x) :=

{
1 if x > 0

−1 if x ≤ 0
.

We define, for a, b ∈ R,

Ja, bM :=

{
[a, b) if a ≤ b
[b, a) if a > b

with [a, a) := ∅.

Definition 2.3. Let x ∈ Q((πn)n). A Borel function L·(x, ·) : [0, T ]×R→ [0,∞) is called
the occupation local time of x if∫ ∞

−∞
g(u)Lt(x, u) du =

∫ t

0

g(xs) d[x]cs, t ∈ [0, T ], (2.6)

holds for any positive Borel function g : R→ [0,∞).
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Naturally, this approach to local time is not new, see for example [1]. To extend Itô’s
formula to a Tanaka–Meyer formula, as, e.g., in [31], we will consider the quantity

Jt(x, ·) := Jfut (x), where fu := | · −u|/2.

We will, at times, drop x from the notation, and simply write Lt(u) and Jt(u). It is
straightforward to verify5 that

|xs − u| − |xs− − u| − sign(xs− − u)∆xs = 2|xs − u|1Jxs−,xsM, (2.7)

which yields the useful compact expression

Jt(x, u) =
∑

0<s≤t |xs − u|1Jxs−,xsM(u), u ∈ R, (2.8)

which readily implies that J is a positive and increasing function. In particular, see
Remark 2.7 below, Lt(·)/2 + Jt(·) ∈ Lp(R) if and only if Lt(·), Jt(·) ∈ Lp(R). Notice that
x is bounded, since it is càdlàg, and Lt(u) and Jt(u) equal 0 if u does not belong to the
compact set [infs∈[0,T ] xs, sups∈[0,T ] xs].

Definition 2.4. We let Lp((πn)n) denote the set of all paths x ∈ Q((πn)n) having an
occupation local time L and such that Kt(x, ·) := Lt(x, ·)/2 + Jt(x, ·) ∈ Lp(R) for all
t ∈ [0, T ].

There is no common agreement in the related literature in probability theory as
to whether L or L/2 is to be called local time, cf. [20, Remark 6.4]; here we decided
to follow the convention made in the standard textbook [31]. A classical approach to
extend Itô’s formula and, in particular, the “stochastic” integral

∫ t
0
f ′(xs−) dxs to twice

weakly differentiable functions f , is to approximate the function f by smooth functions,
cf. [20, Theorem 3.6.22] for the case of Brownian motion. For this purpose we consider
a “mollifier” ρ, i.e., a positive function ρ ∈ C∞(R) and such that

∫∞
−∞ ρ(u) du = 1, and

set ρn(u) := nρ(nu) for n ∈ N. Given a function f ∈ W 2,q(R) we approximate it via the
convolution fn := ρn ∗ f . In this way, fn ∈ C2(R), fn → f in W 2,q(R) if q <∞ (if q =∞
this is true if one assumes f ′′ is continuous) and, in particular, limn→∞ fn(x) = f(x) for
x ∈ R.

Proposition 2.5. Let x ∈ Lp((πn)n) and f ∈ W 2,q(R) with 1/p+ 1/q ≥ 1 and q ∈ [1,∞).

Then, the series (2.3) defining Jft (x) is absolutely convergent,
∫ t

0
f ′n(xs−) dxs defined

by (2.5) converges to the finite limit∫ t

0

f ′(xs−) dxs := lim
n→∞

∫ t

0

f ′n(xs−) dxs, t ∈ [0, T ], (2.9)

which does not depend on the choice of ρ, and the pathwise Tanaka–Meyer formula

f(xt)− f(x0) =

∫ t

0

f ′(xs−) dxs +
1

2

∫
R

Lt(x, u)f ′′(du) + Jft (x), t ∈ [0, T ], (2.10)

holds with such definition of
∫ t

0
f ′(xs−) dxs.

The statements hold for q =∞ if f ′′ is continuous.

Because of Proposition 2.5, it is of interest to ask under which assumptions one can
get that Lt(x, ·) and Jt(x, ·) are in Lp(R). First, remark that, since both quantities are
equal to 0 outside a compact, the p-integrability requirement in Definition 2.4 is a local
one. Then, notice that if x ∈ Q((πn)n) has an occupation local time then Lt, Jt ∈ L1(R)

(i.e., x ∈ L1((πn)n)), since∫
R

Lt(x, u) du = [x]ct <∞,
∫
R

Jt(x, u) du =
1

2
[x]dt <∞.

5Either checking separately the six cases where u ≤ xs− ≤ xs, xs− ≤ u ≤ xs etc., or using the
identity (2.12) with the function fu(·) := | · −u|/2 and noting that f ′u(·) = sign(· − u).

EJP 26 (2021), paper 77.
Page 6/29

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP638
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Local times and Tanaka–Meyer formulae for càdlàg paths

Remark 2.6. If p ∈ [1,∞) and Cp := 1/(p+ 1)1/p then

‖Jt(x, ·)‖Lp ≤ Cp
∑

0<s≤t

|∆xs|1+ 1
p .

This can be seen as a consequence of Minkowski’s integral inequality and of the identity∫
Ja,bM
|b− u|p du =

|b− a|p+1

p+ 1
. (2.11)

A similar bound for L can be given under the stronger assumption x ∈ LWp ((πn)n), see
Definition 2.17 and equation (2.22) in the next subsection. Alternatively, if x ∈ L1((πn)n),
then p-summability for L, for p ∈ (1,∞), is equivalent to:

‖Lt(x, ·)‖Lp = sup
{∫ t

0

g(xs) d[x]cs : ‖g‖Lq ≤ 1
}
<∞.

Notice that an occupation local time L is only unique up to equality a.e.6 u for each t;
in particular, L could be thought of as an equivalence class, and one is then led to look
for good representatives. In particular, it is often of interest to have a version L which
is càdlàg in t. This can be ensured along the same lines as standard results on càdlàg
version of supermartingales since Ls ≤ Lt a.e. for any 0 ≤ s ≤ t, Lt ∈ L1(R) for all t and
t 7→

∫
R
Lt(u) du = [x]ct is continuous. Similarly, existence of a càdlàg version for J follows

from the fact that JT (u) < ∞ for a.e. u, that x is càdlàg and that Jt(x, ·), see (2.8), is
defined using jumps of x up to and including time t.

Remark 2.7. If x has an occupation local time L, then one can choose for each t ∈ [0, T ] a
version L̃t(·) of Lt such that L̃·(u) is positive, finite, càdlàg and increasing for each u ∈ R.
Moreover, J·(u) is positive, finite and càdlàg increasing for a.e. u. In particular, it follows
that Lt(·), Jt(·) ∈ Lp(R) holds for every t ∈ [0, T ] if and only if LT (·), JT (·) ∈ Lp(R).

It can also be useful to have right-continuity of L, J in the variable u. For J here is a
simple criterion; for L, it has to be assumed: cf. Remark 2.15 below.

Remark 2.8. Notice that

TV(Jt(x, ·),R) := sup

{N−1∑
i=0

|Jt(x, ui+1)− Jt(x, ui)| : (ui)
N
i=0 ⊂ R, N ∈ N

}
≤
∑

0<s≤t

|∆xs|,

and so if
∑

0<s≤t |∆xs| <∞ for all t, then Jt(x, ·) is càdlàg and of finite variation for all
t ∈ [0, T ].

As an application of having a version L̃ of L which is càdlàg in t, notice that the
occupation time formula (2.6) then extends to all positive Borel h = h(s, u) as follows∫ ∞

−∞

(∫ t

0

h(s, u) dL̃s(x, u)

)
du =

∫ t

0

h(s, xs) d[x]cs, t ∈ [0, T ].

Moreover, since J is càdlàg in t it also satisfies a restricted occupation time formula: if
h = h(s, u) is a positive Borel function such that h(s, u) = h(s, xs) for a.e. u ∈ Jxs−, xsM,
then Fubini’s theorem gives that∫ ∞

−∞

(∫ t

0

h(s, u) dJs(x, u)

)
du =

1

2

∫ t

0

h(s, xs) d[x]ds ,

and this observation seems to be new.
6Here, and elsewhere unless otherwise specified, a.e. u is with respect to the Lebesgue measure.
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Local times and Tanaka–Meyer formulae for càdlàg paths

To facilitate the proof of Proposition 2.5, as well as for later use, let us recall some
well known facts. A function g : R→ R is convex iff its second distributional derivative
g′′ is a positive Radon measure. Thus f : R→ R equals to the difference of two convex
functions iff f ′′ is a signed Radon measure. We may then write f = g − h with g, h

convex and |f ′′| = g′′ + h′′ being the measure associated with the total variation of f ,
TV(f ′(·), [0, t]) = |f ′′|([0, t]). Given such f , f ′ denotes the left-derivative of f , which is

left-continuous and of locally bounded variation and satisfies f(b) − f(a) =
∫ b
a
f ′(y) dy

for all a, b ∈ R. Thus for b ≥ a we get that

f(b)− f(a)− f ′(a)(b− a) =

∫ b

a

(f ′(u)− f ′(a)) du =

∫
[a,b)

(b− u) f ′′(du),

where we used integration by parts. For b < a, we get instead

f(b)− f(a)− f ′(a)(b− a) =

∫
[b,a)

(u− b) f ′′(du),

so we obtain the identity

Jf (a, b) := f(a)− f(b)− f ′(b)(a− b) =

∫
Ja,bM
|b− u| f ′′(du), a, b ∈ R, (2.12)

which can often be used in proofs in lieu of the following representation

f(x) = ax+ b+ (| · | ∗ f ′′)(x), x ∈ R, (2.13)

(which holds for some a, b ∈ R), which is often used in the literature. Representa-
tion (2.13) holds whenever

∫
R
|a−u| f ′′(du) <∞ for all a (in particular if f ′′ has compact

support), and is proved after Proposition 3.2 in [32, Appendix 3].
A version of the following statement appears without proof during the course of the

proof of [31, Chapter 4, Theorem 70].

Lemma 2.9. If f : R → R is a convex function then the series (2.3) defining Jft (x)

consists only of positive terms. If f equals to the difference of two convex functions and∫
R

Jt(x, u) |f ′′|(du) <∞,

then the series (2.3) is absolutely convergent. In both cases, the series (2.3) defining
Jft (x) is well defined7 and satisfies

Jft (x) =

∫
R

Jt(x, u) f ′′(du), t ∈ [0, T ]. (2.14)

Proof. From (2.12) we get

Jf (xs, xs−) =

∫
R

|xs − u|1Jxs−,xsM(u) f ′′(du). (2.15)

If f is convex the series (2.3) defining Jft (x) consists only of positive terms, and the thesis
follows from (2.15), summing over s ≤ t and applying Fubini’s theorem. If instead f = g−
h with g, h convex then |f ′′| = g′′+h′′ and, by assumption,

∫
R
Jt(x, u) |f ′′|(du) <∞. (2.14)

follows again from Fubini’s theorem. The absolute convergence of the series (2.3) follows
writing

|∆f(xs)− f ′(xs−)∆xs| ≤ (∆g(xs)− g′(xs−)∆xs) + (∆h(xs)− h′(xs−)∆xs),

summing the latter over s ≤ t and applying (2.14) to g and h.
7See (2.1).
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Local times and Tanaka–Meyer formulae for càdlàg paths

Remark 2.10. It follows from Lemma 2.9 and Hölder’s inequality that, if Jt(x, ·) ∈ Lp(R)

and f ′′(du) = f ′′(u) du with f ′′ ∈ Lq(R), where p, q ≥ 1 are conjugate exponents, that
is satisfy 1/p + 1/q = 1, then the series (2.3) defining Jft (x) is absolutely convergent.
Moreover, if Jt(x, ·) is bounded8 then the series (2.3) is absolutely convergent for every
f which is a difference of convex functions: indeed, Jt(x, ·) = 0 outside a compact, and
|f ′′|(C) <∞ for every compact C ⊆ R.

An alternative, possibly more intuitive but also more cumbersome, way of get-
ting (2.15) is to define

g(·) := |xs − ·|1Jxs−,xsM(·),

which is in L1(R), equals zero outside a compact, and has distributional derivatives

Dg = (∆xs)δxs− − 1[xs−,∞) + 1[xs,∞), D2g = (∆xs)Dδxs− − δxs− + δxs .

Then equation (2.15) is simply9 the identity
∫
R
f(u) (D2g)(du) =

∫
R
g(u) (D2f)(du).

Proof of Proposition 2.5. The series (2.3) defining Jft (x) is absolutely convergent by
Remark 2.10. If h ∈ C2(R), from Föllmer’s pathwise Itô formula (2.4), the definition of
occupation local time L and of K := L/2 + J , and Lemma 2.9, it follows that∫ t

0

h′(xs−) dxs = h(xt)− h(x0)−
∫
R

Kt(x, u)h′′(du), t ∈ [0, T ], (2.16)

holds with
∫ t

0
h′(xs−) dxs defined via (2.5). Applying (2.16) to h = fn = ρn ∗ f ∈ C2(R)

and taking limit as n→∞, the right-hand side converges to

f(xt)− f(x0)−
∫
R

Kt(x, u)f ′′(u) du

because Kt(x, ·) ∈ Lp(R) and fn → f in W 2,q(R) (so fn → f pointwise and f ′′n → f ′′ in
Lq(R)). It follows that the LHS converges as well.

Remark 2.11. It follows from (2.14) that, whenever Tanaka–Meyer’s formula holds, it
can be written as

f(xt)− f(x0) =

∫ t

0

f ′(xs−) dxs +

∫
R

Kt(x, u) f ′′(du), t ∈ [0, T ], (2.17)

where we recall that Kt(u) := Lt(u)/2 + Jt(u). While uncommon, writing (2.17) seems
rather elegant and simpler than (2.10).

Remark 2.12. One can recover a continuous in time, for a.e. level u, version L̃ of the
occupation time L from knowing just a jointly measurable function Kt(u) such that K·(u)

is càdlàg increasing for a.e. u, K0 = 0, KT ∈ L1(R), and (2.17) holds for all f ∈ C2 with∫ t
0
f ′(xs−) dxs defined via (2.5). Indeed, L̃·(u) (resp. J·(u)) is the continuous (resp. purely

discontinuous) part of the increasing càdlàg function K·(u). To show this, consider that
for f ∈ C2(R) Föllmer’s formula (2.4), (2.16) and Lemma 2.9 give that

Kf
t :=

∫
R

Kc
t (u)f ′′(u) du+

∫
R

Kd
t (u)f ′′(u) du =

1

2

∫ t

0

f ′′(xs) d[x]cs +

∫
R

Jt(u)f ′′(u) du,

8This happens for example if
∑

s≤t |∆xs| <∞, by Remark 2.8.
9This equality holds a priori only when f is C∞(R) (by definition of distributional derivatives). However,

with some work it follows that it holds for any f which equals the difference of convex functions: indeed,
since g is càdlàg, convolving against a mollifier with support in [0,∞) shows that there exist fε ∈ C∞(R)
such that fε → f uniformly on compacts and

∫
g(u)(D2fε)(u) du→

∫
g(u) d(D2f), as shown in [9, Proof of

Theorem 5.2].
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where Kc (resp. Kd) denotes the continuous (resp. purely discontinuous) part of K·(u).
In each of the two above representations of the càdlàg increasing function Kf

t the
first term is continuous and the second purely discontinuous, so by uniqueness of such
decomposition∫

R

Kc
t (u)g(u) du =

1

2

∫ t

0

g(xs) d[x]cs,

∫
R

Kd
t (u)g(u) du =

∫
R

Jt(u)g(u) du

holds for any g of the form f ′′, i.e., for any continuous g; but then it also automatically
holds for any Borel g, so 2Kc is an occupation local time of x and Jt = Kd

t a.e. u for each
t; since Jt and Kd

t are càdlàg in t, Jt = Kd
t a.e. u for all t.

Remark 2.13. For continuous paths x the above approximation argument can be used to
obtain space-time Tanaka–Meyer formulae without relying on the representation (2.13),
see [12]. Although elaborated in a probabilistic framework, the proofs in [12] are
(primarily) of pathwise nature.

Remark 2.14. The definition of occupation local times and the generalization of Itô’s
formula to only twice weakly differentiable functions in Proposition 2.5 is based on
Föllmer’s notion of quadratic variation and his pathwise Itô formula (Theorem 2.2).
However, the Föllmer–Itô formula is by no means the only pathwise Itô-type formula,
which can be extended to an Tanaka–Meyer formula in the spirit of in Proposition 2.5.
For example, one could also start from the pathwise Itô formula based on càdlàg rough
paths ([15, Theorem 2.12]) or the one based on truncated variation ([27, Theorem 4.1])
and proceed in an analogous manner as done in the present subsection.

Remark 2.15. If x has an occupation local time L, then one can give explicit formulae
for L. Indeed, since Lt(·) ∈ L1(R), taking limε↓0 of (2.6) applied to g := 1[u−ε,u+ε] gives
that

Lt(x, u) = lim
ε↓0

1

2ε

∫ t

0

1[u−ε,u+ε](xs) d[x]cs, for a.e. u,

meaning that the limit on the right-hand side exists for a.e. u ∈ R and is a version of
Lt(·). Analogously, if we can apply Tanaka–Meyer’s formula to the convex function | · −u|
we get the following expression for L:

Lt(x, u) = |xt − u| − |x0 − u| −
∫ t

0

sign(xs− − u) dxs − 2Jt(x, u), t ∈ [0, T ]. (2.18)

It is thus desirable to establish if (a version of) Proposition 2.5 holds in the case where
f : R→ R equals to the difference of two convex functions. This is the case under the
additional assumptions that the mollifier ρ has compact support in [0,∞), that Jt(u) is
càdlàg in u for all t (see Remark 2.8), and that there exists a version L̃t of the pathwise
local time Lt which is càdlàg in u for all t (in particular, unlike in the stochastic setting,
one cannot use (2.18) to prove that L has a version which is càdlàg in u for all t without
running into circular arguments). Indeed, under these assumptions the proof of [9,
Theorem 5.2] shows that

∫
R
g(u) f ′′n (du) →

∫
R
g(u) f ′′(du) for any càdlàg g, and if we

apply this to g = Kt the rest of the proof of Proposition 2.5 goes through.

Remark 2.16. As in10 the stochastic setting, if we can11 apply Tanaka–Meyer’s formula
to the convex function f(x) = (x− u)+, we find that the measure dL·(u) is supported by
the set {s ∈ (0, t] : xs = xs− = u}, and correspondingly, the measure dJ·(u) is carried by
the set

{s ∈ (0, t] : u ∈ (xs−, xs) or u ∈ (xs, xs−]}
10One can apply the proof found in [31, Chapter 4, Theorem 69], which simplifies somewhat as we do not

need to deal with the dependence on ω.
11See Remark 2.15.
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of times at which x jumps across12 level u.

2.3 Local time via discretization

An alternative approach to achieve a pathwise Tanaka–Meyer formula goes back
to Würlmi [36] and is based on a discrete version of the Tanaka–Meyer formula. For
continuous paths x this approach is well-understood and led to several extensions,
see [29, 9, 7]. One feature of this discretization argument is that the “stochastic”
integral

∫ t
0
f ′(xs−) dxs is still given as a limit of left-point Riemann sums, see also [8]. In

the present subsection we generalize Würlmi’s approach to the case of càdlàg paths x.
Given a partition π = (tj)

n
j=0 of [0, T ], we define the discrete level crossing time of x at u

(along π) as the function

Kπ
t (x, u) :=

∑
tj∈π |xtj+1∧t − u|1Jxtj∧t,xtj+1∧tM

(u), t ∈ [0, T ]. (2.19)

Then, applying (2.12) to a = xti∧t, b = xti+1∧t and summing over i, we obtain the discrete
version of Tanaka–Meyer formula

f(xt)− f(x0)−
∑
ti∈π

f ′(xti)(xti+1∧t − xti∧t) =

∫
R

Kπ
t (u) f ′′(du). (2.20)

Taking limits along a sequence of partitions (πn)n, with |πn| → 0, we obtain the following
definition of Lp-level crossing time. We note that it extends the previous works for
continuous paths, e.g., [8, Definition B.3]. We also note that using the same notation Kt

as before will be justified by Proposition 2.19.

Definition 2.17. Let x ∈ D([0, T ];R) and let (πn)n be a sequence of partitions such
that |πn| → 0. A function K : [0, T ] × R → R is called the Lp-level crossing time of x
(along (πn)n) if Kπn

t converges weakly in Lp(R) to Kt for each t ∈ [0, T ] as n→∞, and
t 7→

∫
R
Kt(u) du is right-continuous. The set LWp ((πn)n) denotes all paths x ∈ D([0, T ];R)

having an Lp-level crossing time along (πn)n.

Lemma 2.18. The level crossing time K in Definition 2.17 is increasing in t ∈ [0, T ], i.e.,
Ks(·) ≤ Kt(·) a.e. for each s ≤ t.

Proof. Given π = (tj)j , let m(π, s) be the value of j such that tj < s ≤ tj+1, and write

Kπ
s =

∑
j<m(π,s)

aj(u) + |xs − u|1Jxtm(π,s)
,xsM(u), where aj(u) := |xtj+1 − u|1Jxtj ,xtj+1

M(u).

If s < t, analogously write

Kπ
t −

∑
j<m(π,s)

aj(u)− am(π,s)(u) =
∑

m(π,s)<j<m(π,t)

aj(u) + |xt − u|1Jxtm(π,t)
,xtM(u) =: Rπs,t.

Thus
Kπ
t −Kπ

s −Rπs,t = am(π,s)(u)− |xs − u|1Jxtm(π,s)
,xsM(u) =: Ss(π, u),

and since Rπs,t ≥ 0 the thesis follows once we prove that Ss(πn, u)→ 0 for every u when
|πn| → 0. This holds since if m(n) := m(πn, s) then tm(n) and tm(n)+1 converge to s, and
tm(n) < s ≤ tm(n)+1, so

am(n)(u) and |xs − u|1Jxtm(n)
,xsM(u)

both converge to |xs − u|1Jxs−,xsM(u) as n→∞, since x is càdlàg.

12More precisely, if the jump is downward, then x is allowed to jump from xs− = u.
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Notice that Kt is only defined as an equivalence class. Using the same arguments as
in the discussion preceding Remark 2.7, for each t we can take the version of Kt such
that the resulting process is càdlàg increasing in t for each u. From now on, we will
always work with such a version and we let Kc (resp. Kd) denote the continuous (resp.
purely discontinuous) part of the increasing càdlàg function K·(u).

Proposition 2.19. Suppose that x ∈ LWp ((πn)n) for p, q ∈ [1,∞], with 1/p+ 1/q = 1, and
let K be the Lp-level crossing time of x along (πn)n. If f ∈W 2,q(R), then the following
limit exists (and is finite)∫ t

0

f ′(xs−) dxs := lim
n→∞

∑
ti∈πn

f ′(xti)(xti+1∧t − xti∧t), t ∈ [0, T ], (2.21)

and the pathwise Tanaka–Meyer formula (2.17) holds with this definition of
∫ t

0
f ′(xs−) dxs

and K. Moreover, 2Kc is the occupation local time of x and Jt(u) in (2.8) satisfies
Jt(u) = Kd

t (u) for a.e. u and for all t ≤ T . In particular, also the pathwise Tanaka–Meyer
formula (2.10) holds (with L = 2Kc), the two definitions (2.9) and (2.21) of

∫ t
0
f ′(xs−) dxs

coincide, and LWp ((πn)n) ⊆ Lp((πn)n).

Proof of Proposition 2.19. Taking the limit as n goes to∞ of the discrete Tanaka–Meyer
formulae (2.20) applied to πn, the RHS converges and hence also does the LHS. The
pathwise Tanaka–Meyer formula (2.17) thus holds if using the definition (2.21). Now,
from Remark 2.12 it follows that 2Kc satisfies the occupation time formula and the
remaining statements readily follow.

Remark 2.20. Following the seminal paper [14], we consider the “stochastic” integral
as limit of left-point Riemann sums (2.21) and not as limit of∑

ti∈πn
f ′(xti−)(xti+1∧t − xti∧t), t ∈ [0, T ].

In a probabilistic setting, where x is assumed to be a semimartingale, these limits
coincide with the classical Itô integral almost surely (see [31, Chapter II.5, Theorem 21])
and so they are equal. In the present pathwise setting however, they could be different.

Remark 2.21. Applying Minkowski’s integral inequality and using the identity (2.11),
we obtain that if p ∈ [1,∞) and Cp := 1/(p+ 1)1/p, then

‖Kπ
t ‖Lp ≤ Cp

∑
ti∈π
|xti+1∧t − xti∧t|

1+ 1
p .

In particular, if x ∈ LWp ((πn)n), then the occupation local time L equals 2Kc and so
satisfies

‖Lt‖Lp ≤ 2‖Kt‖Lp ≤ 2Cp lim inf
n

∑
ti∈πn

|xti+1∧t − xti∧t|
1+ 1

p for every p ∈ [1,∞). (2.22)

Remark 2.22. Given the definition of Jt(u), it seems natural that, if x ∈ LWp ((πn)n) and

Jπt (u) :=
∑

ti∈π(t)

1Lxti−,xtiK
(u)|xti − u|, u ∈ R, t ∈ [0, T ],

then Jπ
n

t also converges weakly in Lp(R). If we assume this and denote by Ldt the limit,
if (πn)n are refining and ∪nπn ⊇ {s ∈ [0, T ] : ∆xs 6= 0}, then Ldt = Jt = Kd

t a.e. In
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particular, Kπn

t − Jπ
n

t converges weakly in Lp(R) to Kc
t . Indeed, if f ′′ ∈ Lq(R), (2.12)

gives

Jf,π
n

t :=
∑

ti∈πn(t)

f(xti)− f(xti−)− f ′(xti−)(xti − xti−) =

∫
R

Jπ
n

t (u)f ′′(u) du, (2.23)

so our assumptions and Lemma 2.9 imply that the series (2.3) defining Jft is absolutely
convergent. Using the dominated convergence theorem we conclude that Jf,π

n

t → Jft ,
so taking n→∞ in (2.23) we get

Jft =

∫
R

Ldt (u)f ′′(u) du,

so by Lemma 2.9 Ldt = Jt a.e.

2.4 Local time via normalized numbers of interval crossings

In Proposition 2.5 above we approximated f with regular functions fn for which the
“stochastic” integral

∫ t
0
f ′n(xs−) dxs was defined via Theorem 2.2. An alternative regular-

isation idea would be to approximate the path x by sufficiently regular functions (xn),
ensuring that the “stochastic” integral

∫ t
0
f ′(xns−) dxs is well-defined for each xn (via

integration by parts). We pursue this approach now using for xn the solutions to the
so-called double Skorokhod problem. This choice of approximations has the additional
feature that it leads to a natural interpretation of the resulting local time in terms of
interval crossings.

Let V 1([0, T ];R) ⊂ D([0, T ];R) and V +([0, T ];R) ⊂ D([0, T ];R) be the space of all
functions on [0, T ] with bounded variation (also called of finite total variation) and
of all non-decreasing functions, respectively. Let us recall that for [0, t] ⊂ [0, T ] and
y : [0, T ]→ R, the total variation of y on the interval [0, t] is given by

TV(y, [0, t]) := sup

{N−1∑
i=0

|yti+1 − yti | : (ti)
N
i=0 is a partition of [0, t], N ∈ N

}
.

Definition 2.23. Given x ∈ D([0, T ];R) and ε > 0, a pair (φε,−xε) ∈ D([0, T ];R) ×
V 1([0, T ];R) is called a solution to the Skorokhod problem on [−ε/2, ε/2] if the following
conditions are satisfied:

(i) xt − xεt = φεt ∈ [−ε/2, ε/2] for every t ∈ [0, T ],
(ii) xε = xε↑ − xε↓ with xε↑, xε↓ ∈ V +([0, T ];R) ⊂ D([0, T ];R) and the corresponding

measures dxε↑t and dxε↓t are supported in {t ∈ [0, T ] : φεt = ε/2} and {t ∈ [0, T ] :

φεt = −ε/2}, respectively,
(iii) φε0 = 0.

A solution to the above Skorokhod problem exists and is unique, see [28, Proposi-
tion 2.7], and its properties are well studied in the literature, see, e.g., [22, 4]. Let us
emphasise that for any ε > 0, xε is a càdlàg and piecewise monotonic path of bounded
variation, which uniformly approximates x with accuracy ε/2.

While f ◦ y is of finite variation for all y : [0, T ]→ R which are of finite variation if and
only if f is locally Lipschitz (see [24]), we can nonetheless assert that f(xε) is of finite
variation for any f ∈ W 2,q(R), because xε is a special function of finite variation: it is
piecewise monotonic, i.e., there exists a partition 0 = a0 < a1 < . . . < aN+1 = T of [0, T ]

s.t. xε is either increasing or decreasing on each Ii, where13

Ii := [ai, ai+1), i = 0, . . . , N − 1, IN := [aN , aN+1],

13[28, Remarks 2.5 and 2.6] imply that there is finite number of such intervals: otherwise, the càdlàg function
φε would have no left limit at the point limi→+∞ ai, a contradiction.
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see [28, formula (2.4)], where even a more general Skorokhod problem is considered.
Thus, keeping in mind integration by parts for the Lebesgue–Stieltjes integral, for ε > 0

and f ∈W 2,q(R), q ≥ 1, we can define∫ t

0

f ′(xεs−) dxs := f ′(xεt )xt − f ′(xε0)x0 −
∫ t

0

xs− df ′(xεs)−
∑

0<s≤t

∆xs∆f
′(xεs), (2.24)

where
∫ t

0
xs− df ′(xεs) exists as the Lebesgue–Stieltjes integral and we recall the conven-

tion
∫ t

0
=
∫

(0,t]
. For a brief summary of the theory of Lebesgue–Stieltjes integration, we

refer to [33, Chapter 4, Section 3.18]; we also remind the reader that, if x, y are of finite
variation, ∫ t

0

ys dxs =

∫ t

0

ys− dxs +
∑
s≤t

∆ys∆xs.

We will define the pathwise local time as normalised limits of the numbers of interval
crossings. To this end, for x ∈ D([0, T ];R), z ∈ R, ε > 0 and t ∈ (0, T ] we define the
number of upcrossings by the path x of the interval (z − ε/2, z + ε/2) over the time [0, t]

by

uz,ε(x, [0, t]) := sup
n∈N

sup
0≤t1<s1<···<tn<sn≤t

n∑
i=1

1{xti≤z−ε/2 and xsi≥z+ε/2}.

The number of downcrossings dz,ε(x, [0, t]) is defined analogously. We set

nz,ε(x, [0, t]) := dz,ε(x, [0, t]) + uz,ε(x, [0, t]) (2.25)

for the total number of crossings.

Definition 2.24. Consider a sequence (cn)n such that cn > 0 and cn → 0. For x ∈
D([0, T ];R) denote by (φn,−xn) the solution to the Skorokhod problem on [−cn/2, cn/2],
n ∈ N. We denote LSp ((cn)n) the set of all paths x ∈ D([0, T ];R) such that, for all
0 < t ≤ T ,

(i) the sequence of functions

R 3 z 7→ cn · nz,cn(x, [0, t]), n ∈ N,

converges weakly in Lp(R) as n→∞; and
(ii) the sequence of functions

R 3 z 7→ Jt(x
n, z), n ∈ N,

defined by formula (2.8), converges weakly in Lp(R) to Jt(x, ·) as n→∞.

A function L : [0, T ] × R → R which is the weak limit in (ii) is called an Lp-interval
crossing local time of x along (cn)n.

The corresponding pathwise Tananka–Meyer formula reads as follows.

Proposition 2.25. Suppose that x ∈ LSp ((cn)n) for p, q ≥ 1 with 1/p + 1/q = 1. If
f ∈W 2,q(R), then the following limit exists and is finite∫ t

0

f ′(xs−) dxs := lim
n→∞

∫ t

0

f ′(xns−) dxs, t ∈ [0, T ],

where the right-hand side is defined using (2.24), and the pathwise Tanaka–Meyer
formula

f(xt)− f(x0) =

∫ t

0

f ′(xs−) dxs +
1

2

∫
R

Lt(x, u)f ′′(du) + Jft (x), t ∈ [0, T ],

holds with such definition of
∫ t

0
f ′(xs−) dxs and with Jft (x) as given in (2.3).
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Before proving Proposition 2.25, we prove the following very intuitive lemma, where
we write g(x) for g ◦ x.

Lemma 2.26. Let I ⊆ R be an open interval (i.e., I is open and convex), x : I → [c, d] be
càdlàg and monotonic (i.e., increasing or decreasing), and g : [c, d] → R be absolutely
continuous and increasing. If dx is concentrated on a Borel set F , then so is dg(x).

Proof. We can w.l.o.g. assume that I = R, since otherwise we can trivially extend x to
R in a way that R \ I has dx mass 0. We have to prove that the dx null set E := R \ F
is also a dg(x) null set. Denote with L the Lebesgue measure on R. Let y be càdlàg
monotonic, so if I, J ⊆ R are intervals with disjoint interiors, then so are y(I), y(J) (even
if I ∩ J = ∅ does not imply y(I) ∩ y(J) = ∅). Set s(y) := 1 (resp. = −1) if y is increasing
(resp. decreasing). Since∫

R

1A(u) dyu = s(y)

∫
R

1y(A)(u) du = s(y)L(y(A)) (2.26)

holds (by definition of dy) when A is an interval, it holds whenever A ⊆ R is a countable
union of intervals (In)n with disjoint interiors (because the interiors of (y(In))n are
disjoint).

Fix arbitrary ε > 0 and recall that there exists a δ > 0 s.t. L(V ) ≤ δ implies∫
1V dg = L(g(V )) ≤ ε whenever V is a finite union of intervals with disjoint interiors (by

definition of absolute continuity), and thus whenever V is a countable union of intervals
with disjoint interiors.

Now cover E with an open set A ⊇ E s.t. |
∫
1A dx| ≤ δ; since A is open, it is

a countable union of disjoint open intervals, so (2.26) with y = x gives L(x(A)) ≤ δ.
Since V := x(A) ⊇ x(E) is a countable union of intervals with disjoint interiors we get
L(g(x(A))) ≤ ε, and so (2.26) with y = g(x) gives |

∫
1A dg(x)| ≤ ε. Thus |

∫
1E dg(x)| ≤ ε

for any ε > 0, concluding the proof.

Proof of Proposition 2.25. We introduce first slightly modified numbers of interval (up-
, down-) crossings by replacing ≤,≥ with <,> in the inequality involving xti in the
definition of up- and down- crossings: for z ∈ R, ε ≥ 0, t ∈ (0, T ] and x ∈ D([0, T ];R) we
set

ũz,ε(x, [0, t]) := sup
n∈N

sup
0≤t1<s1<···<tn<sn≤t

n∑
i=1

1{xti<z−ε/2 and xsi≥z+ε/2},

d̃
z,ε

(x, [0, t]) := sup
n∈N

sup
0≤t1<s1<···<tn<sn≤t

n∑
i=1

1{xti>z+ε/2 and xsi≤z+ε/2},

ñz,ε(x, [0, t]) := d̃
z,ε

(x, [0, t]) + ũz,ε(x, [0, t]) .

As f ∈W 2,q(R), f ′ can be decomposed as the difference of two increasing AC (Absolutely
Continuous) functions; since the result we want to prove is linear in f , we can assume
w.l.o.g. that f ′ is increasing and AC. Moreover, since x (as defined on [0, t]) is bounded,
and the result only depends on the behaviour of f on [inf x, supx], we can additionally
assume w.l.o.g. that f ′′ has compact support. As the proposition holds trivially for affine
functions, thanks to (2.13) we may further assume that

f(x) = (| · | ∗ f ′′)(x), x ∈ R.

Let us consider the integral
∫ t

0
f ′(xns−) dxs. For t ∈ [0, T ] we have∫ t

0

f ′(xns−) dxs = f ′(xnt )xt − f ′(xn0 )x0 −
∫ t

0

xs− df ′(xns )−
∑

0<s≤t

∆xs∆f
′(xns ), (2.27)
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where
∫ t

0
xs− df ′(xns ) is the Lebesgue–Stieltjes integral. Further, we have∫ t

0

xs− df ′(xns ) +
∑

0<s≤t

∆xs∆f
′(xns ) =

∫ t

0

xs df ′(xns )

=

∫ t

0

(xs − xns ) df ′(xns ) +

∫ t

0

xns df ′(xns ).

(2.28)

To calculate the first integral we use the properties of f ′ and xn.
Recall that the positive (resp. negative) part of dxn is concentrated on {x−xn = cn/2}

(resp. {x− xn = −cn/2}). Thus, the identity∫
I

(xs − xns ) df ′(xns ) =
cn
2

TV(f ′ (xn· ) , I) , (2.29)

holds if I is the interior of an interval on which xn is increasing (resp. decreasing), by
Lemma 2.26, and if I is a singleton, since in that case it reduces to the identity

(xs − xns )∆f ′(xns ) =
cn
2
|∆f ′(xns )|.

Since xn is piecewise monotonic, we conclude that (2.29) holds for I = [0, t].
Using (2.27), (2.28) and (2.29), we finally arrive at∫ t

0

f ′(xns−) dxs = f ′(xnt )xt − f ′(xn0 )x0 −
∫ t

0

xns df ′(xns )− cn
2

TV(f ′ (xn· ) , [0, t]) . (2.30)

Let us note that the right side of (2.29) may be also calculated using the following
generalisation of the Banach indicatrix theorem:

TV(f ′ (xn· ) , [0, t]) =

∫
R

Ny (f ′ (xn· ) , [0, t]) dy, (2.31)

where Ny (g, [0, t]) is the number of up- and down- crossings of the level y by càdlàg g,
as defined in [26, Remark 1.3], which is closely related to the number of crossings ny,ε

via the relation
Ny (g, [0, t]) = lim

ε→0+
ny,ε(g, [0, t]) ,

of which we will not make use, and which can be proved similarly to [26, Remark 1.4].
Moreover, the relationship∫

R

Ny (f ′ (h·) , [0, t]) dy =

∫
R

Nz (h, [0, t]) df ′ (z) (2.32)

clearly holds for any monotonic h : I → R defined on an open interval I, and thus holds
for any completely monotonic h.

Thus, equation (2.30) may be rewritten as∫ t

0

xns df ′(xns ) = f ′(xnt )xt − f ′(xn0 )x0 −
∫ t

0

f ′(xns−) dxs −
cn
2

TV(f ′ (xn· ) , [0, t])

which, thanks to (2.31), (2.32), takes the form∫ t

0

xns df ′(xns ) =f ′(xnt )xt − f ′(xn0 )x0 −
∫ t

0

f ′(xns−) dxs

− cn
2

∫
R

Nz (xn, [0, t]) df ′ (z).

(2.33)
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Now we will compute an alternative expression for
∫ t

0
xns df ′(xns ). Since xn and f ′ (xn· )

have finite total variation the rules of the Lebesgue–Stieltjes integral (integration by
parts and the substitution rule) apply here and we have∫ t

0

xns df ′(xns ) = f ′(xnt )xnt − f ′(xn0 )xn0 −
∫ t

0

f ′(xns ) dxns +
∑

0<s≤t

∆xns∆f ′(xns ) (2.34)

and ∫ t

0

f ′(xns ) dxns = f(xnt )− f(xn0 )−
∑

0<s≤t

(
∆f(xns )− f ′(xns )∆xns

)
. (2.35)

Since (
∆f(xns )− f ′(xns )∆xns

)
+ ∆xns∆f ′(xns ) = ∆f(xns )− f ′(xns−)∆xns ,

whose sum over s ≤ t equals Jft (xn), substituting in (2.34) the value for
∫ t

0
f ′(xns ) dxns

obtained from (2.35) we get∫ t

0

xns df ′(xns ) = f ′(xnt )xnt − f ′(xn0 )xn0 − (f(xnt )− f(xn0 )) + Jft (xn). (2.36)

Finally, equating the RHS of (2.36) and (2.33) we get

f(xnt )− f(xn0 ) =

∫ t

0

f ′(xns−) dxs +
cn
2

∫
R

Nz (xn, [0, t]) df ′ (z) + Jft (xn)

− f ′(xnt ) (xt − xnt ) + f ′(xn0 ) (x0 − xn0 ) .

(2.37)

Let us now compute

lim
n→∞

cn

∫
R

Nz (xn, [0, t]) df ′ (z) .

Since the set of local extrema (maxima and minima) of any function f : R → R is
countable (see e.g. [30, Lemma 5.1]), the numbers Nz (xn, [0, t]) and ñz,0(xn, [0, t]) are
equal for all z ∈ R except a countable set, because they are equal if z /∈ {x0, xt}
and z is not a local extremum of x. Similarly, for all z ∈ R except a countable set,
the numbers ñz,cn(x, [0, t]) and nz,cn(x, [0, t]) are equal, because they are equal if z /∈
{x(0)± cn/2, x(t)± cn/2} and z±cn/2 are not local extrema of x. Next, by [28, Lemma 3.3
and 3.4], ñz,0(xn, [0, t]) and ñz,cn(x, [0, t]) differ by at most 2. Thus Nz (xn, [0, t]) and
nz,cn(x, [0, t]) differ by at most 2 for all but a countable number of z ∈ R. Using this
observation and noticing that Nz (xn, [0, t]) = nz,cn(x, [0, t]) = 0 when z < infs∈[0,t] xs −
cn/2 or z > sups∈[0,t] xs + cn/2 we have that

lim
n→∞

cn

∫
R

Nz (xn, [0, t]) df ′ (z) = lim
n→∞

∫
R

cn · nz,cn(x, [0, t]) f ′′ (z) dz =

∫
R

Lt(z)f
′′ (z) dz,

where the last equality follows from the first assumption in Definition 2.24. Also, by the
second assumption in Definition 2.24 and Lemma 2.9

lim
n→∞

Jft (xn) = lim
n→∞

∫
R

Jt(x
n, y)f ′′(y) dy =

∫
R

Jt(x, y)f ′′(y) dy = Jft (x).

The last two limits together with (2.37) give the thesis.

Remark 2.27. To apply Proposition 2.25 we need to know when Jt(x
n, ·) converge

weakly in Lp (R) to Jt(x, ·) ∈ Lp (R) and cn · n·,cn(x, [0, t]) converges weakly in Lp (R) to
some Lt ∈ Lp (R). However, in general, it is not even clear when cn · n·,cn(x, [0, t]) and
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Jt(x
n, ·) belong to Lp (R) although we now give some sufficient criteria. If for some r > 0,

the r-variation is finite, i.e.,

V r (x, [0, T ]) := sup

{N−1∑
i=0

|xti+1
− xti |r : (ti)

N
i=0 is a partition of [0, T ], N ∈ N

}
<∞,

then cn · n·,cn(x, [0, t]) is bounded (and is equal 0 outside a compact subset of R) and thus
belongs to Lp (R) for all t ≤ T . It follows from the easy estimate: for any z ∈ R

nz,cn(x, [0, t]) ≤ V r (x, [0, t])

crn
.

Unfortunately, this observation does not yield any condition which guarantees Lt ∈
Lp (R), except in the rather trivial case r ≤ 1.

Similarly as in Remark 2.6 we have that if p ∈ [1,∞) and
∑

0<s≤t |∆xs|1+1/p <∞ then
Jt(x

n, ·), Jt(x, ·) ∈ Lp (R): this follows from Minkowski’s inequality and the fact that for
any s > 0, |∆xns | ≤ |∆xs| (see [28, (2.5)] or [25, Section 2]).

Since xn → x uniformly, there exists c ∈ R s.t., for all s ∈ [0, t],

|xns | ≤ c for all n ∈ N,
∃ lim

n
|xns − u|1Jxns−,xns M(u) = |xs − u|1Jxs−,xsM(u) for all u 6= xs−, xs.

(2.38)

Now let q be s.t. 1/p+ 1/q = 1, and fix any f ∈W 2,q (R) and s ∈ [0, t]. Since f ′′ is locally
integrable, it follows from (2.38) and the dominated convergence theorem that∫

R

|xns − u|1Jxns−,xns M(u)f ′′(u) du→
∫
R

|xs − u|1Jxs−,xsM(u)f ′′(u) du as n→∞.

We can then apply again the dominated convergence theorem to obtain weak conver-
gence of Jt(xn, ·) to Jt(x, ·) in Lp (R), using the domination∫

R

|xns − u|1Jxns−,xns M(u)|f ′′(u)|du ≤ Cp |∆xns |
1+ 1

p ‖f ′′‖Lq ≤ Cp |∆xs|1+ 1
p ‖f ′′‖Lq ,

which follows from the estimate |∆xns | ≤ |∆xs|, Hölder’s inequality and (2.11).

3 Construction of local times for càdlàg semimartingales

The purpose of this section is to give probabilistic constructions of the pathwise local
time, as introduced in Definitions 2.4, 2.17 and 2.24, for càdlàg semimartingales. In
particular, we show that all three definitions agree a.s. and coincide with the classical
probabilistic notion of local times for càdlàg semimartingales.

3.1 Local times via discretisation and as occupation measure

Let (Ω,F ,F,P) be a filtered probability space where the filtration F := (Ft)t∈[0,∞) is
supposed to satisfy the usual conditions. Given a càdlàg semimartingale X = (Xt)t∈[0,∞)

and u ∈ R, one can define Jt(u)(ω) := Jt(X·(ω), u), with Jt(x, u) given by (2.8), and the
increasing càdlàg adapted process K(u) by

2Kt(u) := |Xt − u| − |X0 − u| −
∫

(0,t]

sign(Xs− − u) dXs. (3.1)

It can then be shown that there exists a jointly measurable version of Kt(u, ω) such that
the family of processes L = 2K − 2J , called the (classical) local time of X, satisfies
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the Tanaka–Meyer formula (2.10) for x = X(ω) P(dω)-a.e., is càdlàg in t and is jointly
measurable: see14 [31, Chapter 4, Section 7].

In the following we denote by Lp(µ) the Lp-space with respect to a measure µ. If
π = (τk)k∈N, where τk are [0,∞]-valued random variables such that τ0 = 0, τk ≤ τk+1

with τk < τk+1 on {τk+1 <∞}, and limk→∞ τk =∞, then π is called a random partition.
If moreover {τk ≤ t} ∈ Ft for all k, t, then π is called an optional partition. We recall Kπ

s

was defined in (2.19). The following is the main theorem of this subsection.

Theorem 3.1. Assume that f : R→ R is a difference of two convex functions, (πn)n are
optional partitions of [0,∞) such that |πn ∩ [0, t]| → 0 a.s. for all t and X = (Xt)t∈[0,∞) is
a càdlàg semimartingale. Then, there exists a subsequence (nk)k such that, for ω outside
of a P-null set (which may depend on f ′′),

sup
s∈[0,t]

∣∣∣Kπnk (ω)
s (X·(ω), u)−Ks(ω, u)

∣∣∣→ 0 in Lp(|f ′′|(du)) as k →∞

simultaneously for all p ∈ [1,∞), t ∈ [0,∞).

Remark 3.2. Theorem 3.1 says that the pathwise crossing time Kπn

· (X·, u) sampled
along optional partitions (πn)n (defined applying (2.19) to each path X·(ω) and partition
πn(ω)) converges to K(u). Applying Theorem 3.1 with f(x) = x2/2 gives in particular that
P(dω)-a.e. X(ω) ∈ LWp ((πnk)k) ⊂ Lp((πnk)k) for all p < ∞ and T > 0, i.e., the Lp-level
crossing time and the occupation local time exist for a.e. paths of a semimartingale.
Indeed, Kπnk

t (X, ·) → Kt(·) strongly (and thus weakly) in Lp(R) for a.e. ω, locally
uniformly in t.

To prove the previous theorem we need some preliminaries. Given p ∈ [1,∞) we
denote by Sp the set of càdlàg special semimartingales X which satisfy

‖X‖Sp :=
∥∥∥[Y ]1/2∞

∥∥∥
Lp(P)

+

∥∥∥∥∫ ∞
0

d|V |t
∥∥∥∥
Lp(P)

<∞,

where X = Y + V is the canonical semimartingale decomposition of X,

[Y ]t := Y 2
t − 2

∫ t

0

Ys− dYs

is the quadratic variation of the martingale Y , and |V |t is the variation up to time t of
the predictable process (Vt)t∈[0,∞). We recall the existence of cp < ∞ such that the
inequality ∥∥∥∥ sup

t∈[0,∞)

|Xt|
∥∥∥∥
Lp(P)

≤ cp‖X‖Sp , (3.2)

holds for all local martingales X (this being one side of the Burkholder–Davis–Gundy
inequalities), and thus also trivially extends to all X ∈ Sp. The core of Theorem 3.1 is
the following more technical statement.

Proposition 3.3. Let (πn)n be optional partitions of [0,∞) such that |πn ∩ [0, t]| → 0 a.s.
for all t. If X ∈ Sp for p ∈ [1,∞), and

hπ
n

(u) :=

∥∥∥∥∥ sup
t∈[0,∞)

∣∣∣Kπn(ω)
t (X·(ω), u)−Kt(ω, u)

∣∣∣∥∥∥∥∥
Lp(P)

, u ∈ R,

then, for every u ∈ R, hπ
n

(u)→ 0 as n→∞ and 0 ≤ hπn(u) ≤ cp‖X‖Sp for all n ∈ N.

14Recall the identity (2.7) and notice that the notations used in [31] differ from ours: he calls Aa what we
call 2K(u).
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As discussed in detail in [9] after Theorem 6.2, for a continuous process X and
properly chosen (πn)n the convergence of Kπn

· (X·, u) is closely related to the number
of upcrossings of X from the level u to the level u+ εn > u. While stronger versions of
the above theorems have already appeared in the case of continuous semimartingales
(the strongest being [23, Theorem II.2.4]), in the càdlàg setting we were only able to
locate in the literature a version of Theorem 3.1 where, under the strong assumption that∑
s≤t |∆Xs| <∞ a.s., the Lp(|f ′′|(du)) convergence is replaced by pointwise convergence

for all but countably many values of u, see [23, Theorem III.3.3]. Thus, compared to the
literature, our method provides a novel strong conclusion, with the benefit of a simple
proof. Other differences are that we consider the crossing time instead of the number of
upcrossings, and we use any optional partitions such that |πn| → 0 instead of “Lebesgue
partitions” (in the language of [9]).

Proof of Proposition 3.3. Consider the convex function f(x) := |x − u| and let us take
its left-derivative sign(x− u) and its second (distributional) derivative 2δu. Subtracting
from the discrete-time Tanaka–Meyer formula (2.20) its continuous-time stochastic
counterpart (3.1) and considering the process Kπn

t (u)(ω) := Kπn

t (X·(ω), u) we obtain

0 =

∫ t

0

(Hπn

s (u)−Hs(u)) dXs + 2(Kπn

t (u)−Kt(u)), (3.3)

where for πn = (τni )i by Hπn and H(u) we denote the predictable processes

Hπn

s (u) :=
∑
i

sign(Xτni
− u)1(τni ,τ

n
i+1](s) and Hs(u) := sign(Xs− − u).

Now hπ
n

(u)→ 0 for each u ∈ R follows from (3.2) and (3.3) if we show that∫ ·
0

Hπn

s (u) dXs →
∫ ·

0

Hs(u) dXs in Sp.

To this end fix n and u and notice that from

Hπn

s (u) = sign(Xτni
− u), for i such that τni < s ≤ τni+1

and |πn ∩ [0, t]| → 0 a.s. for all t it follows that Hπn

s (u) → Hs(u) a.s. for all s. Since
|Hπn

s (u) −Hs(u)| ≤ 2, it follows that
∫ ·

0
Hπn

s (u) dXs →
∫ ·

0
Hs(u) dXs in Sp (by the domi-

nated convergence theorem) and that

hπ
n

(u) ≤ cp
2

∥∥∥∥∫ ·
0

(Hπn

s (u)−Hs(u)) dXs

∥∥∥∥
Sp
≤ cp‖X‖Sp for all u ∈ R,

concluding the proof.

Proof of Theorem 3.1. Let (τm)m be a sequence of stopping times which prelocalizes X
to Sp (see e.g. [31, Chapter V, Theorem 4]), i.e., τm ↑ ∞ a.s. and Xτm− ∈ Sp for all m.
Let µi(A) := |f ′′|(A ∩ [−i, i]) and set, for T > 0,

Gn := Gn(ω, T, u) := supt≤T |K
πnk (ω)
t (X·(ω), u)−Kt(u, ω)|

and Gmn := 1{T<τm}Gn. Since µi is a finite measure, Proposition 3.3 implies that, as
n→∞, Gmn converges to 0 in Lp(P× µi) for all m, i ∈ N and T ≥ 0. By Fubini’s theorem
||Gmn ||Lp(µi) converges to zero in Lp(P), and so passing to a subsequence (without

relabelling) we find that, for every ω outside a P-null set Np,T
i,m , ||Gmn (ω, T, ·)||Lp(µi) → 0.

Then along a diagonal subsequence we obtain that Gmn (ω, T, ·) converges to 0 in Lp(µi)
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for all i,m, p, T ∈ N\{0} for every ω outside the null set Nf ′′ := ∪i,m,T,p∈N\{0}Np,T
i,m . Since

Gn = Gmn on {T < τm}, Gn → 0 in Lp(µi) for all i, p, T ∈ N \ {0} for every ω outside Nf ′′ .
Since outside a compact set Gn(ω, T, ·) = 0 for all n, convergence in Lp(µi) for arbitrarily
big i, p implies convergence in Lp(|f ′′|(du)) for all p ∈ [1,∞). Since Gn(ω, ·, u) = 0 is
increasing, convergence for arbitrarily big T implies convergence for all T ∈ [0,∞).

3.2 Local times via interval crossings

Recall the definition of Lp-interval crossing local time of a deterministic path along a
sequence of positive reals tending to 0 in Definition 2.24. In this subsection we prove
the following theorem.

Theorem 3.4. Let X = (Xt)t∈[0,∞) be a càdlàg semimartingale and T > 0. There exist
a P-null set E such that for any ω ∈ Ω \ E and any sequence of positive reals (cn)n∈N
which converges to 0, xt = Xt (ω), t ∈ [0, T ], belongs to LS1 ((cn)n∈N) and for any t ∈ [0, T ]

the L1-interval crossing local time of x along (cn)n∈N, Lt, coincides (in L1 (R)) with the
classical local time of X, Lt.

We note a difference in the above result when compared with Theorem 3.1. In the
former, we obtained pathwise convergence on a subsequence and outside a null set which
depended on the discretisation, i.e., on the optional partitions (πn)n of [0,∞). Here, the
method of discretisation is fixed and implicit in the Skorokhod problem, however we are
able to obtain pathwise convergence, outside of a common null set E, simultaneously for
all sequences (cn).

As noted already after the statement of Proposition 3.3, a similar result was proven
in [23, Theorem III.3.3], namely that for any càdlàg semimartingale X, as c → 0,
c · nu,c(X, [0, t]) → Lut a.s. for all but countably many u ∈ R, where nu,c was defined
in (2.25). However this was only established for semimartingales whose jumps are a.s.
summable, i.e.,

∑
0<s≤t |∆Xs| <∞ for any t > 0.

Theorem 3.4 is easily proved using the following technical statement (of independent
interest), about the quantity

Qz,dt := d · nz,d(X, [0, t])− 1

d

∫ z+d/2

z−d/2
Lut du, t ∈ [0,∞).

Theorem 3.5. Let X = (Xt)t∈[0,∞) be a càdlàg semimartingale and Lut , t ≥ 0, u ∈ R, its
local times. If (dk)k∈N is a sequence of positive reals such that

∑
k∈N dk <∞ then∫

R

|Qz,dkt |dz → 0 P(dω)-a.e. as k →∞, (3.4)

and if X ∈ S2p for p ∈ [1,∞) and |X| is bounded by a constant then for any t ∈ [0,∞)

∃ lim
d↓0

∥∥∥∥∫
R

|Qz,dt |dz
∥∥∥∥
Lp(P)

= 0. (3.5)

Let us now prove Theorem 3.4; the rest of the subsection will be devoted to the proof
of Theorem 3.5.

Proof of Theorem 3.4. By standard properties of convolutions, for example [13, Theo-

rem 8.14], 1
d

∫ z+d/2
z−d/2 L

y
t dy → Lzt in L1 (R) as d → 0+. By this and Theorem 3.5 there

exists a P-null set E1 such that for any ω ∈ Ω1 = Ω \ E1 and x = X (ω) the limit
of dk · n·,dk(x, [0, t]) in L1 (R) (thus also the weak limit in L1 (R)), where for example
dk = k−2, exists and is equal Lt(·) as k →∞. Now, for the given sequence (cn)n and n
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such that cn ≤ 1/2 define k(n) to be such natural number that dk(n)+1 < cn ≤ dk(n). For
such n we have bounds(

dk(n)+1

dk(n)

)
dk(n) · n·,dk(n)(x, [0, t]) ≤ cn · n·,cn(x, [0, t])

≤
(

dk(n)

dk(n)+1

)
dk(n)+1 · n·,dk(n)+1(x, [0, t]) .

(3.6)

Notice, that since dk/dk+1 → 1 as k → ∞, we have that for any ω ∈ Ω1 the limits in
L1 (R) of both – lower and upper – bounds in (3.6) as n→∞ coincide with the limit of
dk · n·,dk(x, [0, t]) which is equal Lt(·). Thus for ω ∈ Ω1, cn · n·,cn(x, [0, t]) tends in L1 (R)

to the same limit Lt(·).
Let us denote Ω2 = Ω1 ∩ {ω ∈ Ω : [X]T (ω) <∞}. Naturally, P (Ω2) = 1. For ω ∈ Ω2

we also have
∑

0<s≤t (∆Xs(ω))
2
<∞. This observation together with Remark 2.27 yields

that if ω ∈ Ω2 and x = X(ω) then the sequence (Jt(x
n, ·))n converges weakly in L1 (R) to

Jt(x, ·).
Thus we proved that for ω ∈ Ω2 and x = X (ω) both required (weak) convergences

hold, thus x ∈ LS1 ((cn)n).

We now begin the proof of Theorem 3.5. It is achieved via several lemmas. From
now on, X = (Xt)t∈[0,∞) will be a càdlàg semimartingale, and Lut , t ≥ 0, u ∈ R, its local
times. We will also need to consider, given d > 0 and z ∈ R, the semimartingale Xz,d, the
processes Y z,d, X̃z,d, the functions F z,d, Idz : R→ R and the sequence of stopping times
(τz,dn )n∈N defined as follows:

Xz,d
t := F z,d (Xt) , where F z,d(x) := (z − d/2) ∨ (x ∧ (z + d/2)) ,

Y z,dt := Xz,d
t −Xz,d

t− − Idz (Xt−) ∆Xt, where Idz (x) := 1(z−d/2,z+d/2](x),

X̃z,d
t :=

∞∑
n=1

Xz,d

τz,dn−1

1[τz,dn−1,τ
z,d
n ) (t) ,

where the sequence of stopping times is defined by induction as follows: τz,d0 := 0,

τz,d1 :=

{
inf
{
s > 0 : Xz,d

s ∈ {z − d/2, z + d/2}
}

if Xz,d
0 /∈ {z − d/2, z + d/2}

inf
{
s > 0 :

∣∣∣Xz,d
s −Xz,d

0

∣∣∣ = d
}

if Xz,d
0 ∈ {z − d/2, z + d/2}

,

and, for n ≥ 1,

τz,dn+1 :=

{
inf
{
s > τz,dn :

∣∣∣Xz,d
s −Xz,d

τz,dn

∣∣∣ = d
}

if τz,dn <∞

∞ if τz,dn =∞
,

where we apply the usual conventions inf ∅ :=∞ and [∞,∞) := ∅.
The first step in the proof of Theorem 3.5 is to obtain a convenient formula for the

quantity to be estimated, as we will now do.

Lemma 3.6. There exists a càdàg adapted process Rz,d with values in (−2, 0] such that

Qz,dt = Rz,dt d+
1

d

∑
0<s≤t

(
∆Xz,d

s

)2
+

2

d

∫ t

0

(
Xz,d
s− − X̃

z,d
s−

)
dXz,d

s , t ∈ [0,∞).

In the proof of Lemma 3.6, and later on, we will make use of the following simple
lemma.
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Lemma 3.7. Xz,d is a semimartingale and the following identity holds

Xz,d
t −Xz,d

0 =
1

2

(
Lz−d/2t − Lz+d/2t

)
+

∫ t

0

Idz (Xs−) dXs +
∑

0<s≤t

Y z,ds , t ∈ [0,∞).

Proof. Expressing F z,d as

F z,d(x) = z +
1

2
|x− (z − d/2)| − 1

2
|x− (z + d/2)| (3.7)

shows that it equals the difference of convex functions, and allows to quickly calculate
its derivatives as follows. Its first left-derivative is

(
F z,d

)′
(x) = Idz (x), and its second

(distributional) derivative is
(
F z,d

)′′
= δz−d/2 − δz+d/2. The thesis follows from the

Tanaka–Meyer formula applied to X and F z,d (see e.g. [31, Chapter IV, Theorem 70]).

Proof of Lemma 3.6. We have

nz,d(X, [0, t]) = nz,d
(
Xz,d, [0, t]

)
. (3.8)

We can now define

Rz,dt := nz,d
(
Xz,d, [0, t]

)
− 1

d2

∞∑
n=1

(
Xz,d

τz,dn ∧t
−Xz,d

τz,dn−1∧t

)2

. (3.9)

Notice that Rz,dt ∈ (−2, 0] since only the first and last non-zero term in the above sum
may differ from d2, and they are then strictly smaller than d2. Let us now work out an
alternative expression for Rz,dt . Using integration by parts we get

∞∑
n=1

(
Xz,d

τz,dn ∧t
−Xz,d

τz,dn−1∧t

)2

−
[
Xz,d

]
t

= 2

∫ t

0

(
Xz,d
s− − X̃

z,d
s−

)
dXz,d

s , (3.10)

where
[
Xz,d

]
denotes the quadratic variation of Xz,d. Lemma 3.7 shows that

Xz,d
t −Xz,d

0 −
∫ t

0

Idz (Xs−) dXs

is a process of finite variation and thus, denoting by [Y ]
c the continuous part of the

quadratic variation of the semimartingale Y , we get that

[
Xz,d

]c
t

=

[∫ ·
0

Idz (Xs−) dXs

]c
t

=

∫ t

0

Idz (Xs−) d[X]cs,

and so by the occupation formula (2.6) we get

[
Xz,d

]
t

=
[
Xz,d

]c
t

+
∑

0<s≤t

(
∆Xz,d

s

)2
=

∫ z+d/2

z−d/2
Lut du+

∑
0<s≤t

(
∆Xz,d

s

)2
. (3.11)

Combining (3.8), (3.9), (3.10), and (3.11) yields the thesis.

To take advantage of the formula in Lemma 3.6, we need a more convenient expres-
sion for the integral with respect to Xz,d; to obtain one, we again employ Lemma 3.7.
This leads us to have to estimate the integral in dz of three stochastic integrals (with
respect to Lz+d/2 −Lz−d/2, X and

∑
0<s≤· Y

z,d
s , respectively); we will now do that, using

a lemma for each integral.
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Lemma 3.8. For t ∈ [0,∞), one has∫ t

0

(
Xz,d
s− − X̃

z,d
s−

)
dLz±d/2s = 0.

Proof. By [31, Chapter IV, Theorem 69]), each of the atomless measures dLz±d/2s is
carried by the corresponding set

{s > 0 : Xs = Xs− = z ± d/2} ,

and since the sets {
s > 0 : Xs = Xs− = z ± d/2 6= X̃z,d

s−

}
are countable (because they are subsets of the jumps of the càdlàg process X̃z,d), we
conclude that dLz±d/2s is carried by the set{

s > 0 : Xs = Xs− = z ± d/2 = X̃z,d
s−

}
⊆
{
s > 0 : Xz,d

s− = X̃z,d
s−

}
.

The stochastic integral with respect to X will be estimated using the following lemma.

Lemma 3.9. Let (Hz)z∈R be a measurable15 family of predictable process and assume
that there exist constants d,M ∈ (0,∞) s.t., for all s ≥ 0, |Hz

s | ≤ d a.s. for all z ∈ R, and
Hz
s = 0 a.s. for all |z| > M + d/2. Given a semimartingale S, define

Wt(S) := W z,d
t (S) :=

∫
R

∣∣∣∣2d
∫ t

0

Hz
s I

d
z (Xs−) dSs

∣∣∣∣ dz.

If we assume that S = V has finite variation |V |t <∞ a.s., then

|Wt(V )| ≤ 2d · |V |t,

whereas if S = N is a martingale s.t. E[N ]pt <∞, then there exists a constant Cp ∈ (0,∞)

(which depends only on p) s.t.

E(Wt(N))2p ≤ (2M + d)
2p−1

dCpE(N)pt . (3.12)

Proof. Since Idz (Xs−) = 1 if Xs− − d
2 ≤ z < Xs− + d

2 , and Idz (Xs−) = 0 otherwise, we get∫
R

Idz (Xs−) dz = d (3.13)

and so by Fubini’s theorem

|Wt(V )| ≤ 2

∫
R

(∫ t

0

Idz (Xs−) d |V |s

)
dz = 2d |V |t .

Since (
∫
|g|dµ)p ≤

∫
|g|p dµ holds for any probability measure µ, we get that(∫

Ω

|g|dµ
)p
≤ µ(Ω)p−1

∫
Ω

|g|p dµ (3.14)

for any positive finite measure µ on Ω. Since

Gzt := 2
d

∫ t
0
Hz
s I

d
z (Xs−) dNs

15We mean that the function (z, ω, t) 7→ Hz
t (ω) is B(R)× P-measurable, where B(R) are the Borel sets and

P the predictable σ-algebra.
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equals 0 when |z| > M + d/2, applying (3.14) it follows that

E(Wt(N))2p = E

(∫ M+d/2

−M−d/2
|Gzt |dz

)2p

≤ (2M + d)2p−1E

(∫
R

(Gzt )
2p

dz

)
. (3.15)

Burkholder-David-Gundy inequality applied to Gz gives that

E (Gzt )
2p ≤ cpE

(√
[Gz]t

)2p

= cpE

(∫ t

0

(2

d
Hz
s I

d
z (Xs−)

)2

d[N ]s

)p
=: Azt . (3.16)

Using first (3.14), and then |H| ≤ d and (Idz )2p = Idz , we get the two inequalities

Azt ≤ cpE
(

[N ]p−1
t

∫ t

0

(2

d
Hz
s I

d
z (Xs−)

)2p

d[N ]s

)
≤ 4pcpE

(
[N ]p−1

t

∫ t

0

Idz (Xs−) d[N ]s

)
.

(3.17)

Applying Fubini’s theorem and combining (3.15), (3.16) and (3.17) we get

E(Wt(N))2p ≤ 4pcp(2M + d)2p−1E
(

[N ]p−1
t

∫ t

0

( ∫
R

Idz (Xs−) dz
)

d[N ]s

)
,

and now (3.13) yields the thesis with Cp := 4pcp.

To deal with the stochastic integral with respect to
∑

0<s≤· Y
z,d
s we will use the

following lemma.

Lemma 3.10. ∫
R

dz
∑

0<s≤t

|Y z,ds | ≤
∑

0<s≤t

(∆Xs)
2gd(∆Xs),

where

gd(x) :=

{
1 if |x| ≤ d
5d
|x| if |x| > d

, x ∈ R, d > 0.

Proof. Since the expression ∆f(Xs)− f ′(Xs−)∆Xs is linear in f and equals 0 when f is
a constant, using (3.7) and (2.7) shows that

Y z,ds = Zz,−ds − Zz,ds , where Zz,us := |Xs − (z + u/2)|1JXs−,XsM (z + u/2) , z, u ∈ R,

and to conclude we only need to compute the L1-norm∑
0<s≤t

∫
R

dz |Zz,−ds − Zz,ds |

of Zz,−ds − Zz,ds .
If d ≥ |∆Xs|, then (2.11) with p = 1 gives that∫

R

dz|Zz,−ds − Zz,ds | ≤
∫
R

dz
(
|Zz,−ds |+ |Zz,ds |

)
= (∆Xs)

2. (3.18)

To deal with the case d < |∆Xs|, let us notice that

if z + d/2 < Xs− ∧Xs or z − d/2 > Xs− ∨Xs then Zz,−ds = Zz,ds = 0
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and

if Xs− ∧Xs < z − d/2 < z + d/2 < Xs− ∨Xs then |Zz,−ds − Zz,ds | ≤ d.

The last estimate follows from the fact that if

Xs− ∧Xs < z − d/2 < z + d/2 < Xs− ∨Xs,

then Zz,−ds = |Xs − (z − d/2)|, Zz,ds = |Xs − (z + d/2)|, and the inequality ||a| − |b|| ≤
|a− b|.

Finally, in the case

z ∈ [Xs− ∧Xs − d/2, Xs− ∧Xs + d/2] ∪ [Xs− ∨Xs − d/2, Xs− ∨Xs + d/2]

we apply the estimate |Zz,us | ≤ |∆Xs|, valid for any z, u ∈ R.
Putting together three considered cases we have the estimate∫
R

dz|Zz,−ds − Zz,ds | ≤
∫ Xs−∧Xs+d/2

Xs−∧Xs−d/2
dz
(
|Zz,−ds |+ |Zz,ds |

)
+

∫ Xs−∨Xs−d/2

Xs−∧Xs+d/2
ddz

+

∫ Xs−∨Xs+d/2

Xs−∨Xs−d/2
dz
(
|Zz,−ds |+ |Zz,ds |

)
≤2d|∆Xs|+ (|∆Xs| − d) d+ 2d|∆Xs| ≤ 5d|∆Xs|.

(3.19)

From (3.18), (3.19) it follows that the L1-norm of Zz,−ds − Zz,ds is bounded by∑
0<s≤t:d≥|∆Xs|

(∆Xs)
2 +

∑
0<s≤t

1(0,|∆Xs|) (d) 5d|∆Xs| =
∑

0<s≤t

(∆Xs)
2gd(∆Xs),

which concludes the proof.

Proof of Theorem 3.5. For now assume that X is in S2p for some p ∈ [1,∞), and |X| is
bounded by a constant M . Since nz,d(X, [0, t]) and Lut are equal 0 for |z| , |u| > Mt :=

sup0≤s≤t |Xs| <∞, Qz,dt = 0 for any z /∈ [−Mt − d/2,Mt + d/2], and thus∫
R

∣∣∣Qz,dt ∣∣∣ dz =

∫ Mt+d/2

−Mt−d/2

∣∣∣Qz,dt ∣∣∣ dz.

We can now apply Lemma 3.6 to estimate the latter as a sum of three terms. The first is∣∣∣∣∣
∫ Mt+d/2

−Mt−d/2
d ·Rz,dt dz

∣∣∣∣∣ ≤ 2d · 2 · (Mt + d/2) = 4Mtd+ 2d2. (3.20)

The second term is∫ Mt+d/2

−Mt−d/2

1

d

∑
0<s≤t

(
∆Xz,d

s

)2
dz =

∑
0<s≤t

∫ Mt+d/2

−Mt−d/2

1

d

(
∆Xz,d

s

)2
dz. (3.21)

By definition of Xz,d
s we have that |∆Xz,d

s | ≤ |∆Xs| ∧ d, and if Xs− < Xs then ∆Xz,d
s = 0

whenever z /∈ [Xs− − d
2 , Xs + d

2 ], and analogously if Xs ≤ Xs− then ∆Xz,d
s = 0 whenever

z /∈ [Xs − d
2 , Xs− + d

2 ]. This gives the first of the following inequalities∫
R

1

d

(
∆Xz,d

s

)2
dz ≤ 1

d

(
|∆Xs| ∧ d

)2(
|∆Xs|+ d

)
≤ 1

d

(
|∆Xs| ∧ d

)2

2(|∆Xs| ∨ d). (3.22)

EJP 26 (2021), paper 77.
Page 26/29

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP638
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Local times and Tanaka–Meyer formulae for càdlàg paths

Thus, using the identity

1

d

(
|∆Xs| ∧ d

)2(
|∆Xs| ∨ d

)
= (∆Xs)

2 ∧ (d|∆Xs|),

which can easily verified separately for the cases d < |∆Xs| and d ≥ |∆Xs|, combined
with (3.22) and (3.21), gives that∫ Mt+d/2

−Mt−d/2

1

d

∑
0<s≤t

(
∆Xz,d

s

)2
dz ≤ 2

∑
0<s≤t

(∆Xs)
2 ∧ (d|∆Xs|) =: Dd

t . (3.23)

The third and last term which we need to estimate is∫
R

∣∣∣∣2d
∫ t

0

(
Xz,d
s− − X̃

z,d
s−

)
dXz,d

s

∣∣∣∣ dz. (3.24)

To do so, we use Lemma 3.7 to write this as the sum of the integrals with respect to
Lz+d/2 − Lz−d/2, X, and

∑
0<s≤· Y

z,d
s . The first integral is zero, thanks to Lemma 3.8. To

estimate the second integral (in dX), we write the canonical semimartingale decomposi-
tion X = N +V of X as a local martingale N and a predictable process of finite variation
V , and apply Lemma 3.9 with

Hz
s := Xz,d

s− − X̃
z,d
s− .

Assumptions of Lemma 3.9 are satisfied because∣∣∣Xz,d
s− − X̃

z,d
s−

∣∣∣ ≤ d for alld, s > 0, z ∈ R, (3.25)

X ∈ S2p implies [N ]∞ ∈ Lp (R) , |V |∞ ∈ L2p (R), and from the implication

if Xs− /∈ [z − d/2, z + d/2] then Xz,d
s− − X̃

z,d
s− = 0

it follows that Xz,d
s− − X̃

z,d
s− = 0 unless |z −Xs−| ≤ d/2, and since the constant M satisfies

M ≥ sup0≤s |Xs|, this implies that Xz,d
s− − X̃

z,d
s− = 0 for |z| > M + d/2. To estimate the

third integral, we apply Lemma 3.10 and (3.25). Combining these three estimates we can
bound the third term (the one in (3.24)), and this bound, combined with those obtained
in (3.20) and (3.23) for the first and second terms gives that∫

R

|Qz,dt |dz ≤ 4Mtd+ 2d2 +Dd
t + 2d|V |t +W z,d

t (N) + 2
∑

0<s≤t

(∆Xs)
2gd(∆Xs). (3.26)

Clearly (3.5) follows from (3.26) and the dominated convergence theorem, since any X in
S2p satisfies E([X]pt + sups≤t |Xs|2p) <∞ (see e.g. [10, Chapter 7, Section 3, Number 98,
Page 295, Equations 98.5 and 98.7]), gd satisfies 0 ≤ gd(x) ≤ 5 and gd(x)→ 0 at all x 6= 0

as d ↓ 0, and we use the fact that E(W z,d
t (N))p ≤

√
E(W z,d

t (N))2p, which goes to zero
thanks to Lemma 3.9.

If X is an arbitrary semimartingale, to prove (3.4) we can assume w.l.o.g. that X is
in S2 by pre-localisation, see e.g. [31, Chapter IV, Theorem 13]). Now let dk ≥ 0 be such
that

∑∞
k=1 dk < ∞; the term W z,d

t (N) is controlled by the estimate (3.12), which gives
that

E

( ∞∑
k=1

(
W z,dk
t (N)

)2
)
<∞,

from which we conclude that W z,dk
t (N) → 0 a.s. as k → ∞. As the remaining terms

in (3.26) converge to 0 a.s. as k → ∞ (the term Ddk
t and the last term by dominated

convergence, the others trivially), (3.4) follows.
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