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Abstract

This paper presents new limit theorems for power variations of fractional type
symmetric infinitely divisible random fields. More specifically, the random field
X = (X(t))t∈[0,1]d is defined as an integral of a kernel function g with respect to a
symmetric infinitely divisible random measure L and is observed on a grid with mesh
size n−1. As n→ ∞, the first order limits are obtained for power variation statistics
constructed from rectangular increments of X. The present work is mostly related
to [8, 9], who studied a similar problem in the case d = 1. We will see, however,
that the asymptotic theory in the random field setting is much richer compared to
[8, 9] as it contains new limits, which depend on the precise structure of the kernel
g. We will give some important examples including the Lévy moving average field,
the well-balanced symmetric linear fractional β-stable sheet, and the moving average
fractional β-stable field, and discuss potential consequences for statistical inference.
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1 Introduction

The last decades have witnessed an immense progress in limit theory for power
variations of stochastic processes. Power variation functionals and related statistics play
a major role in the analysis of the fine structure of the underlying model, in stochastic
integration theory and statistical applications. Asymptotic theory for power variations
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of various classes of stochastic processes has received a great deal of attention in the
probabilistic and statistical literature. We refer e.g. to [6, 23, 24, 35] for limit theory for
power variations of Itô semimartingales, to [4, 5, 14, 19, 30] for the asymptotic results in
the framework of fractional Brownian motion and related processes, and to [12, 13, 44]
for investigations of power variation of the Rosenblatt process.

More recently, there appeared numerous studies on limit theorems for statistics of
non-Gaussian infinitely divisible moving-average processes. Central limit theorems for
low frequency statistics of infinite-variance stable moving averages have been investi-
gated in [33, 34]. During the past years high frequency statistics of stationary increments
Lévy driven moving averages have been discussed in [8, 9]. In [9] the authors showed
a variety of first and second order asymptotic results for power variation statistics,
which heavily depend on the behaviour of the kernel near 0, the Blumenthal–Getoor
index of the driving Lévy process and the considered power p. Later on these findings
have been extended to a more general class of statistics and processes in [7, 8]. We
remark that the aforementioned probabilistic results are of immense importance for
statistical applications. Indeed, they have been applied in [27, 28, 29] to obtain complete
parametric estimation of the linear fractional stable models and related processes in
low and high frequency settings. Earlier studies on similar estimation problems, which
are mainly concerned with estimation of the self-similarity parameter, can be found in
[3, 17, 34, 40]. Studies of high frequency statistics for Lévy driven random fields are
much more scarce in the literature. Functional limit theorems for generalised variations
of the fractional Brownian sheet have been investigated in [32], while power variations
for certain integrals with respect to Gaussian white noise have been studied in [31].
We remark however that both classes of models are driven by a Gaussian field and the
considered techniques do not apply in the more general Lévy setting.

The aim of this paper is to study power variation statistics built from rectangular
increments of certain random fields driven by an infinitely divisible random measure
without a Gaussian part. More precisely, we consider an R-valued random field X =

(X(t))t∈Rd defined as

(X(t))t∈Rd =
(∫

Rd
g(t, s)L(ds)

)
t∈Rd

, (1.1)

where g : Rd × Rd → R is a deterministic kernel to be introduced in (2.2) and L is an
infinitely divisible random measure on Rd. We will focus on determining the first order
asymptotic theory for power variation statistics of the form

Vn(p) :=
∑

i∈{0,...,n−1}d
|∆1/nX(i/n)|p,

∆1/nX(i/n) :=
∑

ε∈{0,1}d
(−1)d+

∑d
j=1 εjX ((i1 + ε1)/n, . . . , (id + εd)/n) ,

where i = (i1, . . . , id), ∆1/nX(i/n) are rectangular increments of X, and p > 0. We will
show that the type of convergence and the limit of Vn(p) crucially depend on the Lévy
measure of L, the considered power p > 0 and the behaviour of rectangular increments
of g near 0 ∈ Rd. These results can be considered as a extension of [9, Theorem 1.1]
to the framework of random fields. However, the picture turns out to be more complex
than for processes studied in [9, Theorem 1.1]. Indeed, we will show that different forms
of local homogeneity of the kernel g, which are summarised in Assumptions (H1) and
(H2), lead to different asymptotic results, a phenomenon that does not appear in the
case d = 1. In particular, the limit types stated in Theorem 3.2(i) and (ii) do not have a
one-dimensional counterpart. We will discuss how our theoretical results apply to most
popular Lévy driven random fields including the moving average field, the well-balanced
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symmetric linear fractional β-stable sheet and the moving average fractional β-stable
field among other models. Furthermore, we will present a short discussion on potential
application of our theory to parameter identification and parameter estimation.

This paper is organised as follows. Section 2 presents the model setting and the nec-
essary definitions. The main theoretical results and their applications are demonstrated
in Section 3. All major proofs are collected in Section 4. Some technical statements can
be found in the Appendix.

2 The setting, notations and definitions

2.1 Notations

Throughout the paper we denote all multi-indexed quantities by bold letters. For
x = (x1, . . . , xd) ∈ Rd and y = (y1, . . . , yd) ∈ Rd, we write x < y if xi < yi, i = 1, . . . , d;
the relation x ≤ y is defined similarly. We denote the rectangle [x1, y1]× · · · × [xd, yd] by
[x,y] for x ≤ y. For each real number x ∈ R let {x} = x− bxc denote its fractional part,
and write {x} = ({x1}, . . . , {xd}) for the fractional part of x ∈ Rd taken coordinate-wise.
We set ‖x‖ = (x2

1 + · · · + x2
d)

1/2. We define the open ball of radius r > 0 centered at a
point x0 ∈ Rd as Br(x0) := {x ∈ Rd : ‖x− x0‖ < r}. We denote the complement of a set
B in Rd by Bc := Rd \B. Furthermore, Bb(Rd) denotes a collection of all bounded Borel
measurable subsets of Rd and λd denotes the Lebesgue measure on Rd. Finally, ∂dg(s)

denotes the partial derivative ∂d

∂s1...∂sd
g(s) of g at s ∈ Rd if it exists, and otherwise we set

∂dg(s) equal to 0.

We write
P→,

L1

→,
d→ for convergence in probability, mean, distribution of a sequence of

random variables. The notation
d
= stands for equality in distribution of random variables

and
fdd
= denotes the equality of finite-dimensional distributions of stochastic processes.

We write Yn
F -d→ Y if a sequence (Yn)n∈N of random variables defined on the probability

space (Ω,F ,P) converges F -stably in law to Y . That is, Y is a random variable defined
on the extension of (Ω,F ,P) such that for all F -measurable random variables Z the joint

convergence in distribution (Yn, Z)
d→ (Y, Z) holds. For a detailed treatment of stable

convergence we refer to [21].
Finally, C stands for a generic positive finite constant whose precise value is unim-

portant and may change from line to line. By convention, summation and product over
an empty set is 0 and 1, respectively.

2.2 The model

We consider a random field X = (X(t))t∈Rd defined in (1.1) as an integral of a kernel
g with respect to an infinitely divisible random measure L. We recall that the collection
L = (L(B))B∈Bb(Rd) is an infinitely divisible random measure when

(i) for every sequence (Bi)i∈N of pairwise disjoint sets in Bb(Rd), (L(Bi))i∈N forms a se-
quence of independent random variables and if ∪∞i=1Bi ∈ Bb(Rd), then L(∪∞i=1Bi) =∑∞
i=1 L(Bi) almost surely,

(ii) for every B ∈ Bb(Rd), the distribution of L(B) is infinitely divisible.

We will make a number of assumptions about g and L in the following, which in particular
guarantee the existence of the stochastic integral in (1.1) in the sense of [37] (see
Appendix).

We assume that for every B ∈ Bb(Rd), the characteristic function of L(B) has the
form

E[exp(itL(B))] = exp
(
λd(B)

∫
R0

(exp(ity)− 1− ity1(|y| ≤ 1))ν(dy)
)
, t ∈ R, (2.1)
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where ν is a symmetric measure on R0 := R \ {0} satisfying
∫
R0

min(1, y2)ν(dy) < ∞.
Moreover, there exist some 0 ≤ β < 2, 0 < θ ≤ 2 such that

(β) limy→0 y
βν({u ∈ R0 : |u| > y}) ∈ (0,∞) if β > 0, and ν(R0) <∞ if β = 0,

(θ) lim supy→∞ yθν({u ∈ R0 : |u| > y}) <∞ if θ < 2, and
∫
R0
y2ν(dy) <∞ if θ = 2,

(g) for every t ∈ Rd, g(t, ·)1(|g(t, ·)| ≤ 1) ∈ Lθ(Rd) and g(t, ·)1(|g(t, ·)| > 1) ∈ Lβ(Rd).

Sometimes we choose L to be a symmetric β-stable random measure with 0 < β < 2

and control measure λd, i.e. for every B ∈ Bb(Rd), L(B) is a symmetric β-stable random
variable with characteristic function

E[exp(itL(B))] = exp(−λd(B)|t|β), t ∈ R.

In this case the stability index matches the parameter β in Assumption (β) and we can
set θ = β in Assumption (θ). In the general case the parameter β in (β) corresponds to
the Blumenthal–Getoor index of L(B):

β = inf
{
q ≥ 0 :

∫
0<|y|≤1

|y|qν(dy) <∞
}
.

On the other hand, Assumption (θ) implies that
∫
|y|>1

|y|qν(dy) <∞ henceE[|L(B)|q] <∞
for every 0 < q < θ if θ < 2 and 0 < q ≤ θ if θ = 2.

Last, we assume that the kernel g in (1.1) has the form

g(t, s) :=
∑

ε∈{0,1}d
(−1)d+

∑d
j=1 εjgε(ε1t1 − s1, . . . , εdtd − sd), t, s ∈ Rd, (2.2)

where gε : Rd → R is a measurable function for every ε ∈ {0, 1}d. This form of the
kernel is directly motivated by several popular random field models. Let us present some
particular examples.

Example 2.1. In cases (ii) and (iv) below L is a symmetric β-stable random measure
with β ∈ (0, 2) and control measure λd.

(i) A random field X given in (1.1) is called a Lévy driven moving average field if

g(t, s) = g(1,...,1)(t− s),

i.e. gε ≡ 0 for every ε 6= (1, . . . , 1).
(ii) It is called a moving average fractional β-stable field (see [43]) if

g(t, s) = ‖t− s‖H−
d
β − ‖s‖H−

d
β , H ∈ (0, 1), H 6= d

β
,

which corresponds to the choice g(1,...,1)(s) = ‖s‖H−
d
β , g(0,...,0)(s) = (−1)d+1‖s‖H−

d
β

and gε ≡ 0 for every ε 6= (1, . . . , 1), (0, . . . , 0).
(iii) In [10, 15] a fractional field X has been studied with θ = 2 and the kernel

g(t, s) = ‖t− s‖H− d2 − ‖s‖H− d2 , H ∈ (0, 1), H 6= d

2
,

which similarly to the previous example admits the representation (2.2).
(iv) The well-balanced symmetric linear fractional β-stable sheet X has the kernel

g(t, s) =

d∏
i=1

(|ti − si|Hi−
1
β − |si|Hi−

1
β ), Hi ∈ (0, 1), Hi 6=

1

β
,

which can be represented via (2.2) so that all gε are non-trivial. Note that X is
an extension of both a well-balanced symmetric linear fractional stable motion,
which corresponds to d = 1, and of an ordinary fractional Brownian sheet, which
corresponds to β = 2.
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2.3 Power variations and main assumptions

We consider rectangular increments of the random field X (or any function from Rd

to R) over [s, t] =
∏d
i=1[si, ti] ⊂ Rd for s < t, which are defined as

X([s, t]) :=
∑

ε∈{0,1}d
(−1)d+

∑d
j=1 εjX(s1 + ε1(t1 − s1), . . . , sd + εd(td − sd)). (2.3)

For instance, when d = 1 (2.3) reduces to X([s, t]) = X(t) − X(s), while X([s, t]) =

X(t1, t2)−X(t1, s2)−X(s1, t2) +X(s1, s2) when d = 2. The rectangular increment can
also be recovered by differencing iteratively with respect to each of the arguments of X,
that is

X([s, t]) = ∆
(1)
t1−s1 . . .∆

(d)
td−sdX(s),

where ∆
(i)
ti−siX(s) = X(s + (ti − si)ei) − X(s) is a directional increment, i = 1, . . . , d,

and {e1, . . . , ed} is the standard basis of Rd. The random field X in (1.1) has stationary
rectangular increments, i.e. for any fixed s ∈ Rd,

(X([s, t]))s<t
fdd
= (X([0, t− s]))s<t.

Indeed, the rectangular increment of the function g(·,u) in (2.2) over [s, t] coincides with
that of g(1,...,1) over [s−u, t−u], while all of the other functions gε, ε 6= (1, . . . , 1), vanish
after the computation of the rectangular increments (but they are usually still needed for
the stochastic integrals in (1.1) to exist). Since only the function g(1,...,1) matters when
taking rectangular increments, we write with a slight abuse of notation

g(s) = g(1,...,1)(s), s ∈ Rd. (2.4)

We also write ∆rX(s) for X([s, s+ r1]), where 1 = (1, . . . , 1) ∈ Rd and all edges of the
rectangle have equal length r > 0.

Our main focus are power variation statistics of X computed over the set [0, 1]d:

Vn(p) :=
∑

i∈{0,...,n−1}d
|∆1/nX(i/n)|p

for p > 0. The main goal of this paper is to study the asymptotic behaviour of the
statistic Vn(p) as n→∞. We will see that the type and mode of the limit crucially depend
on the behaviour of the function g : Rd → R introduced in (2.4). More specifically,
we will assume that g is locally homogenous near 0. That is, we consider g(s) ∼ h(s)

as s → 0, where h is an absolutely homogeneous function of some degree δ 6= 0, i.e.
h(as) = |a|δh(s) for all a ∈ R and s ∈ Rd. However, this type of assumption still does
not uniquely determine the asymptotic theory in contrast to the theory of case d = 1

investigated in [9]. We will therefore distinguish two classes of homogeneous functions
h : Rd → R:

(H1) For all s ∈ Rd,

g(s) = f(s)h(s), where h(s) := ‖s‖dα for some α 6= 0,

and f has continuous partial derivatives up to the d-th order at every point in Rd

and f(0) = 1. Moreover, there exists ρ > 0 such that |∂dg| is in Lθ(Bcρ(0)) and is
radially non-increasing, i.e. |∂dg(s)| ≥ |∂dg(t)| if ρ ≤ ‖s‖ ≤ ‖t‖, s, t ∈ Rd.

(H2) For all s ∈ Rd, g(s) =
∏d
i=1 gi(si). For all s ∈ R,

gi(s) = fi(s)hi(s), where hi(s) := |s|αi for some αi 6= 0,
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and fi ∈ C1(R) satisfies fi(0) = 1, i = 1, . . . , d. Moreover, there exists ρ > 0 such
that g′i ∈ Lq((−ρ, ρ)c) with q := min(θ,max(β, p)) and |g′i(s)| ≥ |g′i(t)| if ρ ≤ |s| ≤ |t|,
s, t ∈ R, i = 1, . . . , d. We set

f(s) :=

d∏
i=1

fi(si), h(s) :=

d∏
i=1

hi(si), s ∈ Rd.

We will see in the next section that under (H1), where the homogeneous function h does
not depend on the direction, the limit theory for the power variation Vn(p) in some sense
resembles the case d = 1 studied in [9]. On the other hand, the asymptotic results for
kernel satisfying (H2) are more complex because they allow for mixtures in terms of
conditions and limits obtained before.

Remark 2.2. The assumption f(0) = 1 in (H1) is not essential (the same applies to the
corresponding assumption in (H2)). As long as f(0) 6= 0 we may deduce the setting of
(H1) by adjusting the Lévy measure ν accordingly. In (H2) the multiplicative form of the
homogeneous function h is essential, while the analogous assumption on the function f
is not necessary and it is considered for simplicity of exposition.

3 Main results

In this section we consider the random field X = (X(t))t∈Rd defined in (1.1) with L
and g given by (2.1) and (2.2), respectively, and satisfying Assumptions (g), (θ) and (β)
for some 0 < θ ≤ 2 and 0 ≤ β < 2. The two following theorems state the limit theory
for power variation statistics Vn(p) of X under (H1) and (H2). Its mode of convergence
and limit depend on the interplay between the power p, the Blumenthal–Getoor index
β and the form of the kernel g at the origin. In each case we use the most convenient
representation of X or L. In Theorem 3.1(i) we will use a Poisson random measure Λ†

on [0, 1]d ×R0 with intensity measure λd ⊗ ν, which is constructed by adding to the jump
sizes of L restricted to [0, 1]d, the marks that are i.i.d. random vectors with a common
uniform distribution on [0, 1]d, defined on the extension of the underlying probability
space (Ω,F ,P) and independent of the σ-algebra F . Similarly, in Theorem 3.2(i) a
Poisson random measure Λ‡ with intensity measure λk ⊗ λd−k ⊗ ν on [0, 1]k ×Rd−k ×R0

is constructed from the jumps of L on [0, 1]k ×Rd−k for some k = 1, . . . , d. First we state
the limit theory for the statistic Vn(p) under (H1).

Theorem 3.1. Let Assumption (H1) hold for some α ∈ R0.

(i) Let p > β and α+ 1/p ∈ (0, 1). Then

ndαpVn(p)
F -d→
∫

[0,1]d×R0

(
|y|p

∑
j∈Zd

|∆1h(j − u)|p
)

Λ†(du,dy),

where Λ† is the Poisson random measure on [0, 1]d ×R0 having intensity measure
λd ⊗ ν defined in Definition 4.1.

(ii) Let L be a symmetric β-stable random measure on Rd with β ∈ (0, 2) and control
measure λd. Let p < β = θ and H := α+ 1/β ∈ (0, 1). Then

nd(Hp−1)Vn(p)
L1

→ E[|L([0, 1]d)|p]
(∫

Rd
|∆1h(s)|βds

) p
β

.

(iii) Let p ≥ 1 and α+ 1/max(β, p) > 1. Then

nd(p−1)Vn(p)
a.s.→
∫

[0,1]d
|Y (t)|pdt,
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where (Y (t))t∈[0,1]d is a measurable random field satisfying

Y (t) =

∫
Rd
∂dg(t− s)L(ds) a.s. for all t ∈ [0, 1]d,

and ∫
[0,1]d

|Y (t)|pdt <∞ a.s.

We note that Theorem 3.1 covers all α ∈ R0 satisfying α > −1/max(β, p) except for
the three boundary cases p = β and α = 1− 1/max(β, p) with the additional assumption
that L is β-stable if both p < β and α < 1 − 1/β, and with the additional assumption
that p ≥ 1 if α > 1 − 1/max(β, p). Remark that we obtain very different convergence
rates and types/modes of limits in Theorem 3.1. While Theorem 3.1(ii) is of ergodic
type, Theorem 3.1(i) and (iii) are quite non-standard. A similar phenomenon has been
observed for processes in [9]. Indeed, the results of Theorem 3.1 look like a direct
extension of [9, Theorem 1.1] from d = 1 to a general dimension d ≥ 1. In contrast to the
imposed assumptions in [9, Theorem 1.1], (H1) allows for negative values of α. The next
result presents the asymptotic theory for the statistic Vn(p) under (H2).

Theorem 3.2. Let Assumption (H2) hold for some α1, . . . , αd ∈ R0, and p 6= θ if θ < 2.

(i) Let p > β. For some k = 1, . . . , d let αi + 1/p ∈ (0, 1), i = 1, . . . , k, and αi + 1/p > 1,
i = k + 1, . . . , d. Then

n(d−k)(p−1)+
∑k
i=1 αipVn(p)

F -d→
∫

[0,1]k×Rd−k×R0

(
|y|p
( k∏
i=1

∑
j∈Z
|∆1hi(j − ui)|p

)

×
d∏

i=k+1

∫ 1

0

|g′i(t− xi)|pdt
)

Λ‡(du,dx,dy),

where Λ‡ is the Poisson random measure on [0, 1]k ×Rd−k ×R0 having intensity
measure λk ⊗ λd−k ⊗ ν defined in Definition 4.2, and u = (u1, . . . , uk) ∈ [0, 1]k,
x = (xk+1, . . . , xd) ∈ Rd−k.

(ii) Let L be a symmetric β-stable random measure on Rd with β ∈ (0, 2) and control
measure λd. Let p < β = θ. For some k = 1, . . . , d let Hi := αi + 1/β ∈ (0, 1),
i = 1, . . . , k, and αi + 1/β > 1, i = k + 1, . . . , d. Then

n(d−k)(p−1)+
∑k
i=1(Hip−1)Vn(p)

L1

→ E[|L([0, 1]d)|p]
k∏
i=1

(∫
R

|∆1hi(s)|βds
) p
β

d∏
i=k+1

(∫
R

|g′i(s)|βds
) p
β

.

(iii) Let p ≥ 1 and αi + 1/max(β, p) > 1, i = 1, . . . , d. Then

nd(p−1)Vn(p)
a.s.→
∫

[0,1]d
|Y (t)|pdt,

where (Y (t))t∈[0,1]d is a measurable random field satisfying

Y (t) =

∫
Rd

d∏
i=1

g′i(ti − si)L(ds) a.s. for all t ∈ [0, 1]d, (3.1)

and ∫
[0,1]d

|Y (t)|pdt <∞ a.s.
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Under Assumption (H2) there is no loss of generality by assuming that α1 ≤ α2 ≤
· · · ≤ αd, and therefore Theorem 3.2 covers all α1, . . . , αd ∈ R0 with α1 > −1/max(β, p)

except for the boundary cases where p = β or αk = 1− 1/max(β, p) for some k = 1, . . . , d

with the two additional assumptions that L is β-stable if both p < β and αk + 1/β < 1

for some k = 1, . . . , d, and moreover that p ≥ 1 if αi + 1/max(β, p) > 1 for all i = 1, . . . , d.
The results of Theorem 3.2 are more complex compared to the isotropic type setting of
Theorem 3.1. Since we have more degrees of freedom for the powers αi under Assump-
tion (H2) than under Assumption (H1), certain mixtures of Theorem 3.1(i)–(iii) appear
in Theorem 3.2. Indeed, when p > β and the first k indices αi satisfy the assumption
of Theorem 3.1(i) while the last ones satisfy the assumption of Theorem 3.1(iii), we
obtain their mixture in Theorem 3.2(i). Similarly, Theorem 3.2(ii) can be interpreted as a
mixture of Theorem 3.1(ii) and (iii).

Remark 3.3. (i) Theorems 3.1(ii) and 3.2(ii) remain valid for β = 2, where L is a
Gaussian random measure on Rd with zero mean and variance λd. In this case the
result holds true for all p > 0.

(ii) Assume that the function h satisfies (H2) with α1 = · · · = αd. Then we have k = d

in Theorem 3.2(i) and (ii). Furthermore, rates of convergence and limits of Vn(p)

coincide with those in Theorem 3.1, which implies that we cannot distinguish
between the classes (H1) and (H2) based upon the statistic Vn(p).

Next, we examine how the results of Theorems 3.1 and 3.2 apply to models discussed
in Example 2.1.

Example 3.4 (Continuation of Example 2.1). In cases (ii), (iv) and (v) below let L be a
symmetric β-stable random measure with β ∈ (0, 2) and control measure λd. In all cases
let p > 0.

(i) We consider a special case of a Lévy driven moving average field X having

g(t, s) = g(1,...,1)(t− s) with g(1,...,1)(s) =
2

Γ(d4 −
γ
2 )

∥∥∥2s

σ

∥∥∥ γ2− d4K γ
2−

d
4
(σ‖s‖),

where γ ∈ (0, d/2), σ > 0 and Kγ/2−d/4 denotes the modified Bessel function of the
second kind. It holds that

K γ
2−

d
4
(s) ∼ 1

2
Γ
(d

4
− γ

2

)(s
2

)−( d4−
γ
2 )

as s ↓ 0,

see [1, Eq. (9.6.9), p. 375]. This implies g(1,...,1)(s) ∼ ‖s‖γ−
d
2 as s→ 0. It has been

shown in [20, 22] that such a choice of g induces a covariance function

Cov(X(0), X(t)) = Var(X(0))
21−γ

Γ(γ)
(σ‖t‖)γKγ(σ‖t‖), t ∈ Rd,

belonging to the Matérn family when E[|X(0)|2] < ∞ (see [18] for more details).
Then Theorem 3.1(i) applies if p > β and (1/2 − 1/p)d < γ < (3/2 − 1/p)d, The-
orem 3.1(ii) applies if p < β, (1/2 − 1/β)d < γ < (3/2 − 1/β)d and L is β-stable.
Theorem 3.1(iii) never applies to this example.

(ii) The kernel

g(t, s) = ‖t− s‖H−
d
β − ‖s‖H−

d
β , H ∈ (0, 1), H 6= d

β
,

satisfies (H1). Therefore, Theorem 3.1(i) applies if p > β and H > (1/β − 1/p)d,
Theorem 3.1(ii) applies if p < β. Again Theorem 3.1(iii) never applies for this
example.
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(iii) The kernel

g(t, s) = ‖t− s‖H− d2 − ‖s‖H− d2 , H ∈ (0, 1), H 6= d

2
,

obviously satisfying (H1), induces the covariance function

Cov(X(t), X(s)) = Var(X(e1))
1

2
(‖s‖2H + ‖t‖2H − ‖t− s‖2H), t, s ∈ Rd,

when E[|X(e1)|2] <∞. Hence Theorem 3.1(i) applies if p > β and (1/2− 1/p)d <

H < (3/2 − 1/p)d, Theorem 3.1(ii) applies if p < β, H < (3/2 − 1/β)d and L is
β-stable. Theorem 3.1(iii) never applies to this example.

(iv) The kernel

g(t, s) =

d∏
i=1

(|ti − si|Hi−
1
β − |si|Hi−

1
β ), Hi ∈ (0, 1), Hi 6=

1

β
,

satisfies assumption (H2) with αi = Hi − 1/β, i = 1, . . . , d, and q = β. We may
and do assume that H1 ≤ H2 ≤ · · · ≤ Hd. Therefore, Theorem 3.2(i) applies if
H1 > 1/β−1/p and p > β, Theorem 3.2(ii) applies if p < β, whereas Theorem 3.2(iii)
never applies to this example.

(v) Recalling the notation of rectangular increments we introduce a new kernel

g(t, s) = h([−s, t− s]) with h(s) = ‖s‖d(H− 1
β ), H ∈ (0, 1), H 6= 1

β
.

In particular, when d = 2 it holds that g(t, s) = h(t1 − s1, t2 − s2)− h(t1 − s1,−s2)−
h(−s1, t2−s2)+h(−s1,−s2). In this case (H1) is satisfied and Theorem 3.1(i) applies
if H > 1/β − 1/p and p > β, Theorem 3.1(ii) applies if p < β. Theorem 3.1(iii) never
applies to this example.

Theorems 3.1 and 3.2 have important consequences for parameter identification and
parameter estimation. To illustrate the potential of Theorem 3.1 let us consider the
moving average fractional β-stable field defined in Example 2.1(ii). A standard strategy
to estimate the Hurst parameter H ∈ (0, 1) is to use a ratio statistic based on a change
of frequency. More specifically, the ergodic result of Theorem 3.1(ii) immediately implies
the convergence

Rn :=

∑
i∈{0,...,n−2}d |∆2/nX(i/n)|p∑
i∈{0,...,n−1}d |∆1/nX(i/n)|p

P→ 2dHp

if p < β. Hence,

Hn :=
logRn
dp log 2

P→ H, if p < β. (3.2)

Obviously, the proposed estimation procedure assumes prior knowledge of the parameter
β, since we need to choose p ∈ (0, β). In the case d = 1 the papers [17, 27, 28, 29]
have suggested to use negative powers p ∈ (−1, 0) to estimate the parameter H for
unknown β. A similar idea should apply in the random field setting, although negative
power variations are beyond the scope of our paper. A construction of confidence regions
for parameters of the moving average fractional β-stable field requires proving the weak
limit theory associated with Theorem 3.1(ii). However, this is a rather complex problem
since the martingale type techniques, which have been applied for processes in [8, 9],
do not easily extend to our setting.

A straightforward consequence of Theorems 3.1 and 3.2 is the identification of some
involved parameters via the corresponding convergence rates. Indeed, we observe
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that the statistic Sn(p) := log Vn(p)/ log n converges in probability to the exponent of
the convergence rates given in Theorems 3.1 and 3.2. Considering again the moving
average fractional β-stable field as an example, the three convergence rates described
in Theorem 3.1 and the points of phase transition uniquely determine the parameter
(H,β). In other words, the limit of the process (Sn(p))p>0 identifies (H,β). The same
logic applies to the well-balanced symmetric linear fractional β-stable sheet discussed
in Example 2.1(iv), where the limit of (Sn(p))p>0 uniquely determines the parameter

(
∑d
i=1Hi, β); however, Theorem 3.2 does not suffice to identify/estimate the parameters

(Hi)1≤i≤d separately. To provide such an inference we can identify/estimate H := Hi

from increments of a line process (X(1+tei))t∈R. Indeed, it is a well-balanced symmetric
linear β-stable motion, to which Theorem 3.1(ii) applies with d = 1. Hence, we may
obtain a consistent estimator of Hi via (3.2).

4 Proofs

We first present some preliminary facts that will be used in the proofs. We will use
a stable convergence of fractional parts of random variables: if V ∼ U([0, 1]d), then as
n→∞,

{nV } F -d→ U , (4.1)

where U is U([0, 1]d)-distributed random vector, defined on the extension of the underly-
ing probability space (Ω,F ,P) and independent of the σ-algebra F ; see e.g. [9, Lemma
4.1]. We will repeatedly use the following inequalities. Let m ∈ N, p > 0. For a ∈ Rm,
set ‖a‖p = (

∑m
i=1 |ai|p)1/p. For a, b ∈ Rm, it holds that

|‖a‖pp − ‖b‖pp| ≤ ‖a− b‖pp if 0 < p ≤ 1, (4.2)

|‖a‖p − ‖b‖p| ≤ ‖a− b‖p if p > 1. (4.3)

For an n ∈ N we set n := (n, . . . , n) ∈ Nd.

4.1 Some Poisson random measures related to L

By extending our probability space (Ω,F ,P) if necessary we may and do assume that
it is rich enough to support a U([0, 1])-distributed random variable independent of L. To
the infinitely divisible random measure L given in (2.1), we associate a random field
(L(t))t∈Rd by L(t) = L([0, t]) (for t > 0, and similarly otherwise). We note that (L(t))t∈Rd

is a Lévy process in the sense of [2, page 5] and in particular for all n ∈ N and all
disjoint rectangles [a1, b1], . . . , [an, bn] in Rd, L([a1, b1]), . . . , L([an, bn]) are independent.
As càdlàg functions of several variables are less standard than the univariable case,
we will define the appropriate sample path space for (L(t))t∈Rd in the following. For
d = 1, 2, . . . we say that a function x : Rd → R is lamp (limits along monotone paths) if
for all t ∈ Rd we have

1. the limit x(t,R) := limu→t,uRt x(u) exists in R for each of the 2d order relations
R = (R1, . . . , Rd), where Ri is either ≥ or < for i = 1, . . . , d,

2. x(t) = x(t,R) when R = (≥, . . . ,≥).

For each lamp function x: Rd → R we define the point mass jump Jt(x) of x at t ∈ Rd
as Jt(x) = limu→t,uRt x([u, t]), where R = (<, . . . , <). For instance, when d = 1, we
have Jt(x) = x(t) − x(t−), where x(t−) = x(t, <) denotes the left-hand limit, while
Jt(x) = x(t1, t2) − x(t1, t2−) − x(t1−, t2) + x(t1−, t2−) when d = 2. The above notation
and terminology are due to Straf [41]. By Proposition 4.1 of [2] and homogeneity of
L, (L(t))t∈Rd has a lamp modification, which also will be denoted (L(t))t∈Rd . For every
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Borel set A of Rd ×R0, set

Λ(A) = #{v ∈ Rd : (v, Jv(L)) ∈ A}, (4.4)

where #S denotes the number of elements in a set S. From Proposition 4.4 of [2] we
deduce that Λ is a Poisson random measure on Rd ×R0 with intensity measure λd ⊗ ν,
and by Theorem 4.6 of [2] we have that for all t ∈ Rd,

L(t) =

∫
(0,t]×{|y|>1}

yΛ(dv,dy) + lim
ε↓0

∫
(0,t]×{ε<|y|≤1}

y
(
Λ(dv,dy)− (λd ⊗ ν)(dv,dy)

)
= lim

ε↓0

∫
(0,t]×{|y|>ε}

yΛ(dv,dy) =:

∫
(0,t]×R0

yΛ(dv,dy)

where the second equality follows by symmetry of ν, and the convergence to the two
limits is uniform in t on compact subsets of Rd almost surely.

In the following we will construct a proper point process representation of Λ restricted
to [0, 1]d ×R0, which we are going to use in Theorem 3.1(i). Since ν is a σ-finite measure
we may choose a probability measure ν̃ such that ν is absolute continuous with respect to
ν̃ with density ρ > 0. Let (Wk)k∈N be an i.i.d. sequence of real-valued random variables
with the common distribution ν̃, (Ṽ k)k∈N be an i.i.d. sequence of U([0, 1]d)-distributed
random vectors, and (Γk)k∈N be a sequence of partial sums of i.i.d. standard exponential
random variables. Assume that the three sequences (Ṽ k)k∈N, (Wk)k∈N and (Γk)k∈N are
independent, and set

J̃k = Wk1(ρ(Wk) ≥ Γk), k ∈ N, and Λ̃ =

∞∑
k=1

δ(Ṽ k,J̃k).

Then Λ̃ is a Poisson random measure on [0, 1]d ×R0 with intensity measure λd ⊗ ν, and
since our probability space supports an U([0, 1])-random variable independent of L by
assumption, there exists a sequence (V k, Jk)k∈N which equals (Ṽ k, J̃k)k∈N in distribution,
and satisfies

Λ =

∞∑
k=1

δ(V k,Jk) (4.5)

on [0, 1]d ×R0 almost surely, cf. Proposition 2.1 in [38]. In the following we will describe
some Poisson random measures appearing in the limit of Theorem 3.1(i).

Definition 4.1. Let (Uk)k∈N be an i.i.d. sequence of U([0, 1]d)-distributed random vec-
tors, defined on an extension of (Ω,F ,P) and independent of F , and set

Λ† =

∞∑
k=1

δ(Uk,Jk). (4.6)

For Theorem 3.2(i) we need a proper point process representation of Λ restricted
to [0, 1]k × Rd−k × R0, where k = 1, . . . , d. To this aim, let us introduce a probabil-
ity measure κ on Rd−k by κ(dx) = h1(x)λd−k(dx), where h1 : Rd−k → R is given
by h1(x1, . . . , xd−k) = 2−(d−k) exp(−

∑d−k
j=1 |xj |). Choose a probability measure ν̃ and a

strictly positive measurable function h2 : R→ R such that ν̃(dy) = h2(y)ν(dy). Note that
κ⊗ ν̃(dx,dy) = h(x, y)λd−k(dx)ν(dy), where h(x, y) = h1(x)h2(y). On some probability

space (Ω̃, F̃ , P̃) let (Ṽ
1

j )j∈N be an i.i.d. sequence of U([0, 1]k)-distributed random vectors,

(Ṽ
2

j )j∈N be an i.i.d. sequence of random vectors with the common distribution κ, (Wj)j∈N
be an i.i.d. sequence of real-valued random variables with the common distribution ν̃,
and let (Γj)j∈N be a sequence of partial sums of i.i.d. standard exponential random
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variables. Assume that the four sequences (Ṽ
1

j )j∈N, (Ṽ
2

j )j∈N, (Wj)j∈N and (Γj)j∈N are
independent, and set

J̃j = Wj1(h(Ṽ
2

j ,Wj) ≤ Γ−1
j ), j ∈ N, and Λ̃ =

∞∑
j=1

δ
(Ṽ

1
j ,Ṽ

2
j ,J̃j)

.

Then Λ̃ is a Poisson random measure on [0, 1]k × Rd−k × R0 with intensity measure
λk ⊗ λd−k ⊗ ν. Using again that our probability space is rich enough to support a
U([0, 1])-distributed random variable independent of L, we deduce by Proposition 2.1
in [38] that there exists a sequence (V 1

j ,V
2
j , Jj)j∈N defined on (Ω,F ,P) which equals

(Ṽ
1

j , Ṽ
2

j , J̃j)j∈N in distribution, and satisfies

Λ =

∞∑
j=1

δ(V 1
j ,V

2
j ,Jj)

(4.7)

on [0, 1]k × Rd−k × R0 almost surely. In the following definition we will introduce the
Poisson random measure appearing in the limit of Theorem 3.2(i).

Definition 4.2. Let (U j)j∈N be an i.i.d. sequence of U([0, 1]k)-distributed random vec-
tors, defined on an extension of (Ω,F ,P) and independent of F , and set

Λ‡ =

∞∑
j=1

δ(Uj ,V 2
j ,Jj)

.

We note that Λ‡ appearing in Definition 4.2 is a Poisson random measure on [0, 1]k ×
Rd−k×R0 with intensity measure λk⊗λd−k⊗ν. Moreover, the Poisson random measures
Λ† and Λ‡ appearing in Definitions 4.1 and 4.2 are neither measurable with respect to L
nor independent of L.

4.2 Proof of Theorem 3.1(i)

We denote the limiting variable in Theorem 3.1(i) by Z. We have that |Z| <∞ almost
surely if∫

R0×(0,1)d
min(1, |y|pH(u))ν(dy)du ≤

∫
R0

min
(

1, |y|p
∫

(0,1)d
H(u)du

)
ν(dy) <∞,

where H(u) :=
∑

j∈Zd |∆1h(j − u)|p, u ∈ (0, 1)d. Indeed,
∫
R0

min(1, |y|p)ν(dy) <∞ since

p > β. Therefore, we only need to show
∫

(0,1)d
H(u)du <∞. For large ‖y‖, by rewriting

∆1h(y) =
∫

(0,1)d
∂dh(y + v)dv and using |∂dh(y)| ≤ C‖y‖d(α−1) we see that |∆1h(y)| ≤

C‖y‖d(α−1). By changing to spherical coordinates we know that
∫
Bc1(0)

‖y‖d(α−1)pdy <∞
if and only if α + 1/p < 1. So the integral test implies that for large ρ > 0 there exists
C > 0 such that

∑
j∈Bcρ(0) |∆1h(j − u)|p ≤ C for all u ∈ (0, 1)d. Finally, for ‖j‖ < ρ, we

have
∫

(0,1)d
|∆1h(j − u)|pdu ≤ C

∫
B2ρ(0)

‖y‖dαpdy < ∞ since α + 1/p > 0. Hence, we

conclude that |Z| <∞ almost surely.
Now, we start with the proof of the stable convergence, which is divided into two

steps. In Step 1 we prove Theorem 3.1(i) for ν(R0) <∞, which corresponds to treatment
of “big jumps of L”. In Step 2 we show that “small jumps of L” are asymptotically
negligible and complete the proof of Theorem 3.1(i) for ν(R0) =∞.

Step 1. In the following we will prove Theorem 3.1(i) in case where ν(R0) <∞. Choose a
small ε ∈ (0, 1). For every 0 ≤ i < n, decompose ∆1/nX(i/n) = Mn,ε(i)+R′n,ε(i)+Rn,ε(i)
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so that

Mn,ε(i) =

∫
Bε(i/n)∩[0,1]d

∆1/ng (i/n− s)L(ds),

R′n,ε(i) =

∫
Bε(i/n)\[0,1]d

∆1/ng (i/n− s)L(ds), (4.8)

Rn,ε(i) =

∫
Bcε (i/n)

∆1/ng (i/n− s)L(ds). (4.9)

First, we will prove the stable convergence for the power variation statistics built
from Mn,ε(i) instead of the original increments ∆1/nX(i/n); later we will show that
contribution of the terms R′n,ε(i) and Rn,ε(i) is asymptotically negligible. Let Λ be given
by (4.4) with the representation Λ =

∑∞
k=1 δ(V k,Jk) on [0, 1]d×R0 given by (4.5). We have

Mn,ε(i) =

∫
[0,1]d×R0

y∆1/ng (i/n− x)1 (‖i/n− x‖ < ε) Λ(dx,dy)

=

∞∑
k=1

Jk∆1/ng (i/n− V k)1 (‖i/n− V k‖ < ε) , (4.10)

where there are at most finitely many terms in the sum in (4.10) which are different
from zero, due to the fact ν(R0) <∞ and hence Λ([0, 1]d ×R0) <∞ almost surely. Let
us now prove that as n→∞ on the event

Ωε := {ω ∈ Ω : ‖V k1(ω)− V k2(ω)‖ > 2ε for all k1 6= k2 with |Jk1(ω)|, |Jk2(ω)| 6= 0,

and V k(ω) ∈ [ε, 1− ε]d for all k with |Jk(ω)| 6= 0}

it holds

ndαp
∑

0≤i<n

|Mn,ε(i)|p
F -d→

∞∑
k=1

|Jk|p
∑
j∈Zd

|∆1h(j −Uk)|p = Z. (4.11)

Here (Uk)k∈N is a sequence of independent U([0, 1]d)-distributed random vectors, defined
on the extension of the underlying probability space (Ω,F ,P) and independent of the
σ-algebra F . We first note that on Ωε every Mn,ε(i) satisfies either |Mn,ε(i)| = 0 or
|Mn,ε(i)| = |Jk∆1/ng(i/n− V k)| for some k. Hence, it holds that on Ωε,

∑
0≤i<n

|Mn,ε(i)|p = Vn,ε, where Vn,ε :=

∞∑
k=1

|Jk|p
∑

j∈Bnε({nV k})

∣∣∆1/ng ((j − {nV k})/n)
∣∣p .

Since Ωε ∈ F , on Ωε the relation (4.11) follows if we prove that

ndαpVn,ε
F -d→ Z as n→∞. (4.12)

Next, we will prove for each k:

ndαp
∑

j∈Bnε({nV k})

∣∣∆1/ng ((j − {nV k})/n)
∣∣p F -d→

∑
j∈Zd

|∆1h(j −Uk)|p = H(Uk). (4.13)

Under Assumption (H1) we have the identity

ndαg ((j − {nV k})/n) = h(j − {nV k})f ((j − {nV k})/n)

with limx→0 f(x) = 1 and by (4.1)

{nV k}
F -d→ Uk.
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By the continuous mapping theorem for stable convergence, we get that

ndαp
∑

j∈Br(0)

∣∣∆1/ng ((j − {nV k})/n)
∣∣p F -d→

∑
j∈Br(0)

|∆1h(j −Uk)|p =: Hr(Uk)

for some large r > 0. Since limr→∞Hr(u) = H(u) for u ∈ (0, 1)d, it suffices to show that

lim
r→∞

lim sup
n→∞

sup
u∈(0,1)d

ndαp
∑

j∈Bnε(u)\Br(0)

|∆1/ng((j − u)/n)|p = 0. (4.14)

Indeed, for j ∈ Bnε(u) \Br(0), rewriting ndα∆1/ng((j − u)/n) = nd(α−1)
∫

(0,1)d
∂dg((j −

u+ v)/n)dv with nd(α−1)|∂dg((j − u+ v)/n)| ≤ C‖j − u+ v‖d(α−1), we get

ndα
∣∣∆1/ng((j − u)/n)

∣∣ ≤ C‖j‖d(α−1).

Finally, we have limr→∞
∑

j∈Bcr(0) ‖j‖d(α−1)p = 0 since α+ 1/p < 1, which implies (4.14)
and thus completes the proof of (4.13). By independence and the continuous mapping
theorem we get for all K = 1, 2, . . .

K∑
k=1

|Jk|p
∑

j∈Bnε({nV k})

∣∣∆1/ng ((j − {nV k})/n)
∣∣p F -d→

K∑
k=1

|Jk|pH(Uk). (4.15)

Since the event AK := {ω ∈ Ω : Jk(ω) = 0 for all k > K} is F -measurable, it follows
by (4.15) that (4.12) holds on AK for all K = 1, 2, . . . , and since AK ↑ Ω as K → ∞ we
deduce that (4.12) holds.

Next, let us prove that the terms R′n,ε(i) in (4.8) satisfy

lim
ε↓0

lim sup
n→∞

P
(
ndαp

∑
0≤i<n

|R′n,ε(i)|p > δ
)

= 0 (4.16)

for all δ > 0. For this purpose, choose a large rectangle B′ in Rd. Recall Λ associated to
L by (4.4) and use its representation Λ =

∑∞
k=1 δ(V ′k,J′k) on B′ \ [0, 1]d ×R0, analogous to

that in (4.5). Then, for p̄ = max(p, 1), it holds that

(
ndαp

∑
0≤i<n

|R′n,ε(i)|p
)1/p̄

≤
∞∑
k=1

(
Gn,ε(V

′
k)|J ′k|p

)1/p̄
with

Gn,ε(V
′
k) := ndαp

∑
0≤i<n

∣∣∆1/ng(i/n− V ′k)
∣∣p 1 (‖i/n− V ′k‖ < ε

)
.

Note that a U(B′ \ [0, 1]d)-distributed random vector V ′k does not belong to Bε(i/n) if
i ∈ [nε, n(1− ε)]d. Therefore, E[|Gn,ε(V ′k)|] ≤ Cε(I0

n,ε + I1
n,ε) with

I0
n,ε := npdα+d

∫
‖x‖<d/n

|∆1/ng(x)|pdx, I1
n,ε := npdα+d

∫
d/n≤‖x‖<ε

|∆1/ng(x)|pdx,

(4.17)
where

I0
n,ε ≤ Cnpdα+d

∫
‖x‖<2d/n

|g(x)|pdx

≤ Cnpdα+d

∫
‖x‖<2d/n

‖x‖pdαdx = C

∫
‖x‖<2d

‖x‖pdαdx <∞
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since pdα + d − 1 > −1, whereas |nd∆1/ng(x)| ≤
∫

(0,1)d
|∂dg(x + u/n)|du ≤ C‖x‖d(α−1)

for d/n ≤ ‖x‖ < ε. This implies

I1
n,ε ≤ Cnpdα+d−pd

∫
d/n≤‖x‖<ε

‖x‖pd(α−1)dx ≤ C
∫
d≤‖x‖

‖x‖pd(α−1)dx <∞

since pdα− pd+ d− 1 < −1. From E[|Gn,ε(V ′k)|] ≤ Cε it follows

lim
ε↓0

lim sup
n→∞

P
(
Gn,ε(V

′
k)|J ′k|p > δ

)
= 0,

hence

lim
ε↓0

lim sup
n→∞

P
( ∞∑
k=1

(
Gn,ε(V

′
k)|J ′k|p

)1/p̄
> δ1/p̄

)
= 0,

which in turn implies (4.16).
Finally, we consider the terms Rn,ε(i) having representation (4.9). We prove that

npdα
∑

0≤i<n

|Rn,ε(i)|p
P→ 0 as n→∞. (4.18)

For this purpose, we will first determine a bounded function ψ ∈ Lθ(Rd), which satisfies

nd|∆1/ng(i/n− x)|1(x ∈ Bcε (i/n)) ≤ ψ(x) (4.19)

for all x ∈ Rd, 0 ≤ i < n and large enough n ∈ N. Let ρ > 0 be large. Consider the
identity

nd∆1/ng(i/n− x) =

∫
(0,1)d

∂dg((u+ i)/n− x)du,

where |∂dg((u + i)/n − x)| ≤ C(ε/2)d(α−1) if x ∈ B2ρ(0) ∩ Bcε (i/n), since |∂dg(v)| ≤
C‖v‖d(α−1), v ∈ B3ρ(0). Furthermore, |∂dg((u+ i)/n− x)| ≤ |∂dg(x/2)| if x ∈ Bc2ρ(0), by
monotonicity of |∂dg| on Bcρ(0). Consequently, for x ∈ Rd, we define

ψ(x) := C1(x ∈ B2ρ(0)) + |∂dg(x/2)|1(x ∈ Bc2ρ(0)),

where C depends on ε. In what follows, w.l.o.g. assume |ψ(x)| ≤ 1, x ∈ Rd.
With Λ given by (4.4) we set Λ1(·) = Λ(· ∩ {(x, y) ∈ Rd ×R0 : |ψ(x)y| > 1}) and for all

B ∈ Bb(Rd) set

L1(B) =

∫
B×R0

yΛ1(dx,dy) and L0(B) = L(B)− L1(B).

The L0 and L1 are independent infinitely divisible random measures such that for every
B ∈ Bb(Rd),

E
[
eitL0(B)

]
= exp

(∫
B×R0

(eity − 1− ity1(|y| ≤ 1))1(|ψ(x)y| ≤ 1)dxν(dy)
)
,

E
[
eitL1(B)

]
= exp

(∫
B×R0

(eity − 1− ity1(|y| ≤ 1))1(|ψ(x)y| > 1)dxν(dy)
)
, t ∈ R.

Then, for every i, we decompose ndRn,ε(i) = Q0
n,ε(i) +Q1

n,ε(i), where

Qjn,ε(i) :=

∫
Bcε (i/n)

nd∆1/ng(i/n− s)Lj(ds), j = 0, 1.
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We claim that for j = 0, 1,

npd(α−1)
∑

0≤i<n

|Qjn,ε(i)|p
P→ 0

follows from

sup
n∈N, 0≤i<n

E[|Q0
n,ε(i)|p] <∞ and sup

n∈N, 0≤i<n
|Q1

n,ε(i)| <∞ a.s., (4.20)

since pdα− pd+ d < 0.
For the first relation in (4.20), it suffices to show that∫

Bc(i/n)

Φp
(
|nd∆1/ng(i/n− x)|,x

)
dx ≤ C,

where

Φp(v,x) =

∫
R0

(
|vy|p1(|vy| > 1) + |vy|21(|vy| ≤ 1)

)
1(|ψ(x)y| ≤ 1)ν(dy),

cf. Theorem 3.3 in [37]. In view of (4.19) we have that∫
Bc(i/n)

Φp
(
|nd∆1/ng(i/n− x)|,x

)
dx ≤

∫
Rd×R0

|ψ(x)y|21(|ψ(x)y| ≤ 1)ν(dy),

where the estimate (A.2) implies∫
R0

|xy|21(|xy| ≤ 1)ν(dy) ≤ C|x|θ for |x| ≤ 1,

and ψ ∈ Lθ(Rd) is bounded. We conclude that the first relation in (4.20) holds. Finally,
the second relation in (4.20) follows in view of (4.19) from

|Q1
n,ε(i)| ≤

∫
Bcε (i/n)×R0

|nd∆1/ng(i/n− x)y|Λ1(dx,dy) ≤
∫
Rd×R0

|ψ(x)y|Λ1(dx,dy) <∞,

where the last stochastic integral is well-defined because we have that ψ ∈ Lθ(Rd) is
bounded and∫

R0

min(|xy|, 1)1(|xy| > 1)ν(dy) = 2

∫ ∞
0

1(|xy| > 1)ν(dy) ≤ C|x|θ for |x| ≤ 1

by (A.2). This completes the proof of (4.18).
Let us now complete the proof of Theorem 3.1(i) in case ν(R0) <∞. For some small

ε ∈ (0, 1) we have the decomposition ∆ 1
n
X( i

n ) = Mn,ε(i) +R′n,ε(i) +Rn,ε(i). Correspond-
ingly, with p̄ := max(p, 1) we decompose

(Vn(p))
1
p̄ = (Vn(p))

1
p̄ −

( ∑
0≤i<n

|Mn,ε(i)|p
) 1
p̄

+
( ∑

0≤i<n

|Mn,ε(i)|p
) 1
p̄

.

Concerning the last term, the limiting result (4.11) holds on the event Ωε with the limit
satisfying Z

1
p̄1(Ωε)→ Z

1
p̄ , since P(Ωε) ↑ 1 as ε ↓ 0. Applying (4.2) and (4.3), we see that∣∣∣(Vn(p))

1
p̄ −

( ∑
0≤i<n

|Mn,ε(i)|p
) 1
p̄
∣∣∣ ≤ ( ∑

0≤i<n

|R′n,ε(i)|p
) 1
p̄

+
( ∑

0≤i<n

|Rn,ε(i)|p
) 1
p̄

,

where the r.h.s. terms satisfy (4.16), (4.18), proving that

lim
ε↓0

lim sup
n→∞

P
(∣∣∣(ndαpVn(p))

1
p̄ −

(
ndαp

∑
0≤i<n

|Mn,ε(i)|p
) 1
p̄
∣∣∣ > δ

)
= 0
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for all δ > 0. We conclude that (ndαpVn(p))
1
p̄
F -d→ Z

1
p̄ as n→∞.

Step 2. Let ν(R0) =∞. We choose a some small ε > 0, and use Λ given by (4.4) to define
Λ>ε(·) = Λ(· ∩ (Rd × [−ε, ε]c)) and for all B ∈ Bb(Rd) set

L>ε(B) =

∫
B×R0

yΛ>ε(dx,dy) and L≤ε(B) = L(B)− L>ε(B).

Then L≤ε and L>ε are independent infinitely divisible random measures such that for
every B ∈ Bb(Rd),

E
[
eitL≤ε(B)

]
= exp

(
λd(B)

∫
0<|y|≤ε

(eity − 1− ity1(|y| ≤ 1))ν(dy)
)
,

E
[
eitL>ε(B)

]
= exp

(
λd(B)

∫
|y|>ε

(eity − 1− ity1(|y| ≤ 1))ν(dy)
)
, t ∈ R.

Then we decompose ∆1/nX(i/n) = ∆1/nX
≤ε(i/n) + ∆1/nX

>ε(i/n) with

∆1/nX
≤ε(i/n) =

∫
Rd

∆1/ng(i/n− s)L≤ε(ds),

∆1/nX
>ε(i/n) =

∫
Rd

∆1/ng(i/n− s)L>ε(ds).

Let Λ† be the Poisson random measure given by (4.6). Since ν([−ε, ε]c) <∞, we obtain
by Step 1 that

ndαp
∑

0≤i<n

|∆1/nX
>ε(i/n)|p

F -d→
∫

[0,1]d×[−ε,ε]c
|y|p

∑
j∈Zd

|∆1h(j − u)|pΛ†(du,dy) =: Z>ε as n→∞.

On the other hand, as ε ↓ 0

Z>ε
P→
∫

[0,1]d×R0

|y|p
∑
j∈Zd

|∆1h(j − u)|pΛ†(du,dy) = Z.

By (4.2) and (4.3), it only remains to show that for all δ > 0,

lim
ε↓0

lim sup
n→∞

P
(
ndαp

∑
0≤i<n

|∆1/nX
≤ε(i/n)|p > δ

)
= 0. (4.21)

Indeed, by Markov’s inequality (4.21) follows if we show that

lim
ε↓0

lim sup
n→∞

ndαp+dE[|∆1/nX
≤ε(0)|p] = 0,

for which it suffices to show that

lim
ε↓0

lim sup
n→∞

∫
Rd

∫
0<|y|≤ε

φp(n
d(α+1/p)∆1/ng(x)y)ν(dy)dx = 0, (4.22)

where φp(y) := |y|p1(|y| > 1) + |y|21(|y| ≤ 1) for y ∈ R, cf. Theorem 3.3 in [37]. Us-
ing (4.19) with bounded ψ ∈ Lθ(Rd), we obtain∫

Bc1(0)

∫
0<|y|≤ε

φp(n
d(α+1/p)∆1/ng(x)y)ν(dy)dx

≤
∫
Bc1(0)

∫
0<|y|≤ε

(
|nd(α+1/p−1)ψ(x)y|p1(|ψ(x)| > 1)

+ |nd(α+1/p−1)ψ(x)y|2
)
ν(dy)dx = o(1)
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as n→∞, since α+ 1/p < 1. Using φp(y) ≤ |y|p + |y|21(p > 2) for y ∈ R, we get∫
B1(0)

∫
0<|y|≤ε

φp(n
d(α+1/p)∆1/ng(x)y)ν(dy)dx ≤ In(p)

∫
0<|y|≤ε

|y|pν(dy)

+ In(2)

∫
0<|y|≤ε

|y|2ν(dy)1(p > 2)

with the second term present on the r.h.s. only if p > 2 and with

In(q) :=

∫
B1(0)

|nd(α+1/p)∆1/ng(x)|qdx, q > 0.

Note that by Jensen’s inequality In(2) ≤ C(In(p))2/p if p > 2, whereas In(p) ≤ C follows
from analysis of the integrals in (4.17). Similarly to (A.3), we have

∫ ε
0
ypν(dy) ≤ Cεp−β =

o(1) as ε ↓ 0, since p > β. This completes the proof of (4.22) and (4.21), and hence the
proof of Theorem 3.1(i).

4.3 Proof of Theorem 3.1(ii)

Let us verify that the limiting constant in Theorem 3.1(ii) is finite. This follows from∫
Rd
|∆1h(s)|βds <∞. (4.23)

Choose ρ > 0 to be large. Then it holds∫
B2ρ(0)

|∆1h(s)|β ≤ C
∫
B3ρ(0)

|h(s)|βds = C

∫
B3ρ(0)

‖s‖dαβds <∞

if and only if α > −1/β. For s ∈ Bc2ρ(0), rewrite

∆1h(s) =

∫
[0,1)d

∂dh(s+ u)du,

where ∂dh(s) = ‖s‖d(α−1)`(s) with `(s) :=
∏d
i=1(dα− 2(i− 1))(si/‖s‖) satisfies

|∆1h(s)| ≤
∫

[0,1)d
|∂dh(s+ u)|du ≤ C

∫
[0,1)d

‖s+ u‖d(α−1)du ≤ C‖s‖d(α−1).

Then ∫
Bc2ρ(0)

‖s‖d(α−1)βds <∞

if and only if α+ 1/β < 1. Hence, (4.23) holds.
Now, we show the convergence in probability in Theorem 3.1(ii). Using the scaling

property of the β-stable random measure L, we have that {ndH∆1/nX(i/n)}i∈Zd
fdd
=

{Yn(i)}i∈Zd with

Yn(i) :=

∫
Rd
ndα∆1/ng((i− s)/n)L(ds).

Thus, we deduce the distributional identity

ndHpVn(p)
d
=

∑
0≤i<n

|Yn(i)|p.

Next, we approximate (Yn(i))i∈Zd by (Y∞(i))i∈Zd , where

Y∞(i) :=

∫
Rd

∆1h(i− s)L(ds)
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is well defined due to (4.23). More specifically, we will prove that

E[|Yn(0)− Y∞(0)|p] = C
(∫

Rd
|ndα∆1/ng(s/n)−∆1h(s)|βds

)p/β
= o(1). (4.24)

Observe that for almost every s ∈ Rd, the pointwise convergence ndα∆1/ng(s/n) →
∆1h(s) follows from the definition of g and homogeneity of h. Let us verify the dom-
inated convergence argument. By the definition of g and homogeneity of h, we have
ndα|g(s/n)| ≤ C max(1, ‖s‖dα) for ‖s‖ < 3ρ. For 2ρ ≤ ‖s‖ < 2ρn, we have

ndα|∆1/ng(s/n)| ≤ nd(α−1)

∫
[0,1)d

|∂dg((s+ u)/n)|du ≤ C‖s‖d(α−1)

using ‖s + u‖ ≥ ‖s‖/2 and |∂dg(v)| ≤ C‖v‖d(α−1), ‖v‖ < 3ρ. Hence the dominated
convergence theorem in Lβ(Rd) implies∫

B2ρn(0)

|ndα∆1/ng(s/n)−∆1h(s)|βds = o(1).

We next consider

In := ndαβ
∫
Bc2ρn(0)

|∆1/ng(s/n)|βds,

where

nd|∆1/ng(s/n)| ≤
∫

[0,1)d
|∂dg((s+ u)/n)|du ≤ |∂dg(s/(2n))|

using ‖(s+ u)/n‖ ≥ ‖s/(2n)‖ ≥ ρ and the monotonicity of |∂dg| on Bcρ(0). Hence

In ≤ Cnd(α−1)β

∫
Rd
|∂dg(s/(2n))|β1(‖s‖ ≥ 2ρn)ds

= Cnd(H−1)β

∫
Bcρ(0)

|∂dg(s)|βds = o(1),

since H < 1. From this estimate and (4.23) it follows that∫
Bc2ρn(0)

|ndα∆1/ng(s/n)−∆1h(s)|βds = o(1).

This completes the proof of (4.24), which implies convergence in probability

n−d
∑

0≤i<n

|Yn(i)− Y∞(i)|p P→ 0. (4.25)

By combining Theorem 4.1 and Remark 4.3 of [45] it follows that the stationary process
(Y∞(i))i∈Zd is ergodic since it is a stable moving average. Therefore, we obtain from a
multiparameter Birkhoff theorem [45, Theorem 2.8] the convergence

n−d
∑

0≤i<n

|Y∞(i)|p P→ E[|Y∞(0)|p]. (4.26)

By (4.2), (4.3), (4.25) and (4.26) it follows that

nd(Hp−1)Vn(p)
d
= n−d

∑
0≤i<n

|Yn(i)|p P→ E[|Y∞(0)|p].

Due to the scaling properties of stable random variables it follows that E[|Y∞(0)|p]
coincides with the limiting constant in the statement of Theorem 3.1(ii), and hence the
proof of convergence in probability is complete.
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Finally, we recall that convergence in L1 follows from convergence in probability and
uniform integrability. In turn, a sequence of random variables is uniformly integrable if it
is bounded in Lq for some q > 1. Let us choose a q > 1 such that qp < β. By Minkowski’s
inequality we conclude that

E[|nd(Hp−1)Vn(p)|q] ≤

(
n−d

∑
0≤i<n

(
E[|ndH∆1/nX(i/n)|qp]

) 1
q

)q
= E[|ndH∆1/nX(0)|qp]

= E[|L([0, 1]d)|qp]
(∫

Rd
|ndα∆1/ng(s/n)|βds

)qp/β
= O(1),

where the last relation follows from (4.24). Hence, the statistic in Theorem 3.1(ii) is
uniformly integrable, and the proof is complete.

4.4 Proof of Theorem 3.1(iii)

We start noticing that under (H1), g has continuous partial derivatives up to d-order
in all s = (s1, . . . , sd) ∈ Rd with si 6= 0 for all i = 1, . . . , d. Furthermore,

(a) :

∫
Bρ(0)

|∂dg(s)|βds <∞ and (b) :

∫
Bρ(0)

|∂dg(s)|pds <∞, (4.27)

which follows from the estimate |∂dg(s)| ≤ C‖s‖d(α−1) for all s ∈ Bρ(0), and the fact
that

∫
Bρ(0)

‖s‖dr(α−1)ds < ∞ if and only if dr(α − 1) + d − 1 > −1. The latter condition

is satisfied for r = p and r = β since 1 < α+ 1/max(β, p). From (4.27)(b) and p ≥ 1, we
deduce that

∫
Bρ(0)

|∂dg(s)|ds <∞ from which we conclude that

g([s, t]) =

∫
[s,t]

∂dg(u)du, for all s ≤ t, (4.28)

where the left-hand side of (4.28) denotes the increments of g over [s, t] defined in (2.3).
We now define a process Y = (Y (t))t∈[0,1]d by

Y (t) =

∫
Rd
∂dg(t− s)L(ds).

It follows from [37, Theorem 2.7], that Y (t) is well-defined if and only if∫
Rd
V
(
∂dg(s)

)
ds <∞, where V (x) :=

∫ ∞
0

min
(
|xy|2, 1

)
ν(dy) for x ∈ R. (4.29)

Recall the estimate (A.2), where we have V (x) ≤ C|x|θ for |x| < 1, whereas V (x) ≤ C|x|β
for |x| ≥ 1. By assumption (H1), there exists a ρ > 0 such that ∂dg is bounded on Bcρ(0)

and is in Lθ(Bcρ(0)), and ∂dg ∈ Lβ(Bρ(0)), cf. (4.27)(a), which shows (4.29).
Next we will show existence of a measurable and separable modification of Y with

values in the extended reals [−∞,∞], and to this aim we let LΦ denote the Musielak–
Orlicz space of all h : Rd → R with

Φ(h) :=

∫
Rd

(∫ ∞
0

(
|yh(s)|2 ∧ 1

)
ν(dy)

)
ds <∞

equipped with the F -norm

‖h‖Φ = inf{c > 0 : Φ(h/c) ≤ 1}.

Then, LΦ is a separable linear metric space, and hence the mapping t 7→ ft := ∂dg(t− ·)
from [0, 1]d into LΦ is measurable if t 7→ ‖g − ft‖Φ is measurable for all g ∈ LΦ. However,
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the latter follows directly from the joint measurability of (s, t) 7→ ∂dg(t− s). Since the
mapping h ∈ LΦ into

∫
Rd
h(s)L(ds) ∈ L0 is continuous, cf. Theorem 3.3 of [37], it follows

that the mapping t ∈ [0, 1]d into Y (t) ∈ L0 is measurable, from which we conclude that
there exists a measurable and separable modification of (Y (t))t∈[0,1]d , cf. Theorem 3 of
[16]. In the following (Y (t))t∈[0,1]d will always denote such measurable and separable
modification.

Step 1. We now consider the integrability of Y = (Y (t))t∈[0,1]d with respect to t. It
follows from [11, Theorem 3.1(i)] that Y has sample paths in Lp([0, 1]d, λd) almost surely
if the following conditions hold:

‖∂dg(· − s)‖p :=
(∫

[0,1]d
|∂dg(t− s)|pdt

)1/p

<∞ for λd-almost every s ∈ Rd; (4.30)

for some c > 0 and δ′ > 0,∫
Rd
ν
(( c

‖∂dg(· − s)‖p
,∞
))

ds <∞ and

∫
[0,1]d

σp(t)dt <∞, (4.31)

where
σ(t) := inf{θ > 0 : Φ(∂dg(t− ·)/θ) ≤ δ′},

and ∫
[0,1]d

(∫
Rd

(∫ c/‖∂dg(·−s)‖p

cσ(t)/|∂dg(t−s)|
|y∂dg(t− s)|pν(dy)

)
ds
)

dt <∞, (4.32)

where the inner integral in the last formula is set to be zero, if its lower limit of integration
exceeds the upper limit.

The condition (4.30) holds because ∂dg is bounded on Bcρ(0) and |∂dg(t)| ≤ C‖t‖d(α−1)

for all t ∈ Bρ(0), where
∫
Bρ(0)

‖t‖pd(α−1)ds < ∞ if and only if pd(α − 1) + d − 1 > −1.

Next, let us verify the first condition in (4.31). Let ρ > 0 be large enough. For s ∈ B2ρ(0),
use ‖∂dg(· − s)‖p ≤ C, furthermore, ν((1/C,∞)) < ∞. For s ∈ Bc2ρ(0), t ∈ [0, 1]d, note
that |∂dg(t− s)| ≤ |∂dg(s/2)|, which leads to ‖∂dg(· − s)‖p ≤ |∂dg(s/2)|. Finally, use that
∂dg ∈ Lθ(Bcρ(0)) is bounded and ν((y,∞)) ≤ Cy−θ for y ≥ 1 to see that∫

Bc2ρ(0)

ν
(( c

‖∂dg(· − s)‖p
,∞
))

ds ≤ C
∫
Bc2ρ(0)

|∂dg(s/2)|θds <∞.

Note that Φ(∂dg(t− ·)), and hence σ(t), both do not depend on t ∈ [0, 1]d. With V (x) as
given in (4.29), we have that

Φ(∂dg(t− ·)) =

∫
Rd
V (∂dg(s))ds <∞

since α+ 1/β > 1. Hence, we conclude that the second condition in (4.31) holds.
Finally, we show (4.32). Recall that ρ is large enough so that we have |∂dg(t− s)| ≤

|∂dg(s/2)| ≤ C for s ∈ Bc2ρ(0), t ∈ [0, 1]d. We obtain∫
[0,1]d

(∫
Bc2ρ(0)

(∫ c/‖∂dg(·−s)‖p

cσ(t)/|∂dg(t−s)|
|y∂dg(t− s)|pν(dy)

)
ds
)

dt

≤
∫
Bc2ρ(0)

( cp

‖∂dg(· − s)‖pp

∫
[0,1]d

|∂dg(t− s)|pdt
)(∫ ∞

C/|∂dg(s/2)|
ν(dy)

)
ds

≤ C
∫
Bc2ρ(0)

|∂dg(s/2)|θds <∞.
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We next deal with

I :=

∫
[0,1]d

(∫
B2ρ(0)

(∫ c/‖∂dg(·−s)‖p

cσ(t)/|∂dg(t−s)|
|y∂dg(t− s)|pν(dy)

)
ds
)

dt.

If p > β, then for t ∈ [0, 1]d, s ∈ B2ρ(0),∫ ∞
0

1
( cσ(t)

|∂dg(t− s)|
< y <

c

‖∂dg(· − s)‖p

)
ypν(dy)

≤
∫ 1

0

ypν(dy) +
cp

‖∂dg(· − s)‖pp

∫ ∞
1

ν(dy) ≤ C
(

1 +
1

‖∂dg(· − s)‖pp

)
and so

I ≤ C
∫

[0,1]d

(∫
B2ρ(0)

(
1 +

1

‖∂dg(· − s)‖pp

)
|∂dg(t− s)|pds

)
dt

= C

∫
B2ρ(0)

(‖∂dg(· − s)‖pp + 1)ds <∞.

If p ≤ β < β′ with α+ 1/β′ > 1, then for t ∈ [0, 1]d, s ∈ B2ρ(0),∫ ∞
0

1
( cσ(t)

|∂dg(t− s)|
< y <

c

‖∂dg(· − s)‖p

)
ypν(dy)

≤
∫ 1

0

1
( cσ(t)

|∂dg(t− s)|
< y <

c

‖∂dg(· − s)‖p

)
y(p−β′)+β′ν(dy) +

cp

‖∂dg(· − s)‖pp

∫ ∞
1

ν(dy)

≤
( cσ(t)

|∂dg(t− s)|

)p−β′ ∫ 1

0

yβ
′
ν(dy) +

cp

‖∂dg(· − s)‖pp

∫ ∞
1

ν(dy)

≤ C
(
|∂dg(t− s)|β

′−p +
1

‖∂dg(· − s)‖pp

)
and so

I ≤ C
∫

[0,1]d

(∫
B2ρ(0)

(
|∂dg(t− s)|β

′−p +
1

‖∂dg(· − s)‖pp

)
|∂dg(t− s)|pds

)
dt

= C

∫
B2ρ(0)

(∫
[0,1]d

|∂dg(t− s)|β
′
dt+ 1

)
ds <∞.

We conclude that (4.32) holds.

Step 2. In the following we will show that for all t ∈ [0, 1]d we have almost surely

X([0, t]) =

∫
[0,t]

Y (u)du. (4.33)

Note that the right-hand side of (4.33) is well-defined since Y has sample paths in
Lp([0, 1]d, λd) ⊆ L1([0, 1]d, λd). Choose a probability measure κ on Rd ×R equivalent to
λd ⊗ ν and let η denote the density of κ with respect to λd ⊗ ν. According to Theorem 5.1
and Remark 5.2(a) of [39] we may choose three sequences (εj)j∈N, (Γj)j∈N and (ξj)j∈N,

where ξj = (ξ1
j , ξ

2
j ) ∈ Rd ×R, such that

Y (t) =

∞∑
j=1

εj∂
dg(t− ξ1

j )ξ
2
j1(η(ξj) ≤ Γ−1

j ), (4.34)

X(t) =

∞∑
j=1

εjg(t, ξ1
j )ξ

2
j1(η(ξj) ≤ Γ−1

j )
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almost surely for all t ∈ [0, 1]d. Moreover, (ξj)j∈N is an i.i.d. sequence of Rd ×R-valued
random vectors with the common distribution κ, (Γj)j∈N is a sequence of partial sums
of i.i.d. standard exponential random variables, and (εj)j∈N denotes an i.i.d. sequence
of symmetric Bernoulli random variables, that is, P(εj = 1) = P(εj = −1) = 1/2 for
all j ∈ N. In addition, the three sequences (ξj)j∈N, (Γj)j∈N and (εj)j∈N are indepen-
dent. Since conditionally on (ξj ,Γj)j∈N, the summands in (4.34) are independent and
symmetric random elements with values in L1([0, 1]d, λd) and furthermore Y has paths
in L1([0, 1]d, λd), it follows by the Itô–Nisio theorem, see [26, Theorem 2.1.1], that the
series (4.34) convergence in L1([0, 1]d, λd) with probability one. In particular, for all
t ∈ [0, 1]d we have with probability one∫

[0,t]

Y (u)du =

∞∑
j=1

εj

(∫
[0,t]

∂dg(u− ξ1
j )du

)
ξ2
j1(η(ξj) ≤ Γ−1

j )

=

∞∑
j=1

εjg([−ξ1
j , t− ξ

1
j ])ξ

2
j1(η(ξj) ≤ Γ−1

j ) = X([0, t]),

where the second equality follows by (4.28). Hence the proof of (4.33) is complete.

Step 3. For a given p ≥ 1, we denote by ACp([0, 1]d) the space of functions ξ : [0, 1]d → R

such that there is a function ∂dξ ∈ Lp([0, 1]d, λd) with

ξ([0, t]) =

∫
[0,t]

∂dξ(u)du, for all t ∈ [0, 1]d.

For ξ ∈ ACp([0, 1]d) let us prove that as n→∞,

nd(p−1)V ξn (p) := nd(p−1)
∑

0≤i<n

|∆1/nξ(i/n)|p →
∫

[0,1]d
|∂dξ(t)|pdt. (4.35)

Firstly, assume that ξ : Rd → R has continuous partial derivatives up to the (2d)-th
order at every point t ∈ Rd. We have that nd∆1/nξ(i/n) = ∂dξ(i/n) + rn(i/n), where
|rn(i/n)| ≤ C/n uniformly for all 0 ≤ i < n. By Minkowski’s inequality,∣∣∣(nd(p−1)V ξn (p)

)1/p

−
(
n−d

∑
0≤i<n

|∂dξ(i/n)|p
)1/p∣∣∣ ≤ (n−d ∑

0≤i<n

|rn(i/n)|p
)1/p

= o(1)

as n→∞. By continuity of ∂dξ, we have that

n−d
∑

0≤i<n

|∂dξ(i/n)|p →
∫

[0,1]d
|∂dξ(t)|pdt as n→∞.

This proves (4.35). Then, for general ξ ∈ ACp([0, 1]d), p ≥ 1, we approximate V ξn (p) by
V ξmn (p), where (ξm) is a sequence of functions having continuous partial derivatives up to
the (2d)-th order at every point in Rd. Indeed, the existence of such a sequence follows
since continuous functions are dense in Lp([0, 1]d, λd). A combination of (4.33) and (4.35)
finishes the proof Theorem 3.1(iii).

4.5 Proof of Theorem 3.2(i)

We denote by Z the limiting variable∫
[0,1]k×Rd−k×R0

k∏
j=1

Hj(uj)

d∏
j=k+1

‖g′j(· − xj)‖pp|y|pΛ‡(du,dx,dy)
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with Hj(u) :=
∑
l∈Z |∆1hj(l − u)|p, u ∈ (0, 1), j = 1, . . . , k, and ‖g′j(· − x)‖p := (

∫ 1

0
|g′j(t−

x)|pdt)1/p, x ∈ R, j = k + 1, . . . , d, where Λ‡ is a Poisson random measure with intensity
measure λk ⊗ λd−k ⊗ ν on [0, 1]k ×Rd−k ×R0 introduced in Definition 4.2. Then |Z| <∞
almost surely if

∫
[0,1]k×Rd−k×R0

min
(

1,

k∏
j=1

Hj(uj)

d∏
j=k+1

‖g′j(· − xj)‖pp|y|p
)

dudxν(dy) <∞.

As in Theorem 3.1(i) for d = 1, we have
∫ 1

0
Hj(u)du < ∞ since αj + 1/p ∈ (0, 1), j =

1, . . . , k. Hence, we only need to show that

∫
Rd−k×(0,∞)

min
(

1,

d∏
j=k+1

‖g′j(· − xj)‖pp|y|p
)

dxν(dy) <∞. (4.36)

If p 6= θ < 2, then for |x| ≤ 1,∫ ∞
0

min(1, |xy|p)ν(dy) ≤ |x|p
∫ 1

0

ypν(dy) + C
(
|x|p

∫ 1/|x|

1

yp−θ−1dy +

∫ ∞
1/|x|

y−θ−1dy
)

≤ C|x|min(p,θ),

since p > β. On the other hand, if θ = 2 then for x ∈ R,∫ ∞
0

min(1, |xy|p)ν(dy) ≤
∫ ∞

0

min(1, |xy|min(p,2))ν(dy) ≤ C|x|min(p,2),

since min(p, 2) > β and
∫∞

0
y2ν(dy) < ∞. This proves (4.36), because for αj + 1/p > 1

and |g′j(s)| ≥ |g′j(t)| if ρ ≤ |s| ≤ |t|, it holds that

‖g′j(· − x)‖p ≤ C1(|x| < 2ρ) + |g′j(x/2)|1(|x| ≥ 2ρ), x ∈ R,

as in the proof of Theorem 3.1(iii) with d = 1 (see also the verification of (4.30) in the
proof of Theorem 3.2(iii)), moreover, g′j ∈ Lq((−ρ, ρ)c), q = min(p, θ), j = k + 1, . . . , d.

Step 1. Let ν(R0) < ∞. We choose a small ε ∈ (0, 1) and a large m ∈ N. The way
how m depends on ε will be specified later. Now we decompose every ∆1/nX(i/n) =

M̃n,ε(i) + R̃′n,ε(i) + R̃n,ε(i) so that

M̃n,ε(i) =

∫
[0,1]k×Rd−k

k∏
j=1

1(|ij/n− sj | < ε)

d∏
j=k+1

1(|sj | ≤ m)∆1/ng(i/n− s)L(ds),

R̃′n,ε(i) =

∫
Rk\[0,1]k×Rd−k

k∏
j=1

1(|ij/n− sj | < ε)

d∏
j=k+1

1(|sj | ≤ m)∆1/ng(i/n− s)L(ds),

(4.37)

R̃n,ε(i) =

∫
Rd

(
1−

k∏
j=1

1(|ij/n− sj | < ε)

d∏
j=k+1

1(|sj | ≤ m)
)

∆1/ng(i/n− s)L(ds). (4.38)

First, we will prove the stable convergence for the power variation statistics built
from M̃n,ε(i) instead of the original increments ∆1/nX(i/n). For this purpose, we
use Λ associated to L by (4.4) and on [0, 1]k × Rd−k × R0 having the representation
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Λ =
∑∞
l=1 δ(V 1

l ,V
2
l ,Jl)

with (V 1
l ,V

2
l ) = V l = (Vl,1, . . . , Vl,d) given in (4.7). Particularly, we

express the terms M̃n,ε(i) as integrals with respect to Λ on [0, 1]k ×Rd−k ×R0:

M̃n,ε(i) =

∫
[0,1]k×Rd−k×R0

k∏
j=1

1(|ij/n− xj | < ε)

×
d∏

j=k+1

1(|xj | ≤ m)∆1/ng(i/n− x)yΛ(dx,dy)

=

∞∑
l=1

k∏
j=1

1(|ij/n− Vl,j | < ε)

d∏
j=k+1

1(|Vl,j | ≤ m)∆1/ng(i/n− V l)Jl.

We will prove that as n→∞ on the event

Ωε :=
{
ω ∈ Ω : ‖V 1

l1(ω)− V 1
l2(ω)‖∞ > 2ε and V 1

l1 ,V
1
l2(ω) ∈ [ε, 1− ε]k

with Jl1(ω), Jl2(ω) 6= 0 for all l1, l2 = 1, 2, . . .
}

it holds

n
∑k
j=1 αjp+(d−k)(p−1)

∑
0≤i<n

|M̃n,ε(i)|p

F -d→
∞∑
l=1

|Jl|p
k∏
j=1

Hj(Ul,j)

d∏
j=k+1

‖g′j(· − Vl,j)‖pp 1(|Vl,j | ≤ m) = Z̃, (4.39)

where (U l)l∈N with U l = (Ul,1, . . . , Ul,k) ∼ U([0, 1]k) is an i.i.d. sequence of random
vectors, defined on the extension of the underlying probability space (Ω,F ,P) and
independent of the σ-algebra F . To prove (4.39), we observe that on Ωε every M̃n,ε(i)

satisfies either |M̃n,ε(i)| = 0 or |M̃n,ε(i)| = |Jl∆1/ng(i/n − V l)|
∏d
j=k+1 1(|Vl,j | ≤ m) for

some l = 1, 2, . . . Hence, it holds that on Ωε,∑
0≤i<n

|M̃n,ε(i)|p = Ṽn,ε,

where

Ṽn,ε :=

∞∑
l=1

|Jl|p
k∏
j=1

∑
i∈Bnε({nVl,j})

|∆1/ngj((i− {nVl,j})/n)|p

×
d∏

j=k+1

∑
0≤i<n

|∆1/ngj(i/n− Vl,j)|p1(|Vl,j | ≤ m).

Since Ωε ∈ F then (4.39) on Ωε follows if we prove that

n
∑k
j=1 αjp+(d−k)(p−1)Ṽn,ε

F -d→ Z̃ as n→∞. (4.40)

To prove (4.40) we use the following arguments. On the left hand side of (4.40) each
summand indexed by l is a product of independent factors. As for these factors, we have

n−1
∑

0≤i<n

|n∆1/ngj(i/n− Vl,j)|p1(|Vl,j | ≤ m)

P→
∫ 1

0

|g′j(t− Vl,j)|pdt1(|Vl,j | ≤ m) = ‖g′j(· − Vl,j)‖pp 1(|Vl,j | ≤ m) as n→∞,
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using Lemma 4.4 of [9] and αj + 1/p > 1 for j = k + 1, . . . , d, and

nαjp
∑

i∈Bnε({nVl,j})

|∆1/ngj((i− {nVl,j})/n)|p F -d→
∑
i∈Z
|∆1hj(i− Ul,j)|p = Hj(Ul,j),

using the proof of Theorem 3.1(i) and αj + 1/p < 1 for j = 1, . . . , k. At last we note that
as ε ↓ 0 together with m→∞,

Z̃1(Ωε)
P→
∞∑
l=1

|Jl|p
k∏
j=1

Hj(Ul,j)

d∏
j=k+1

‖g′j(· − Vl,j)‖pp

=

∫
[0,1]k×Rd−k×R0

|y|p
k∏
j=1

Hj(uj)

d∏
j=k+1

‖g′j(· − xj)‖ppΛ‡(du,dx,dy) = Z.

In the sequel let m→∞ so that εmd−k ↓ 0 as ε ↓ 0. Let us prove that the terms R̃′n,ε(i)
in (4.37) satisfy

lim
ε↓0

lim sup
n→∞

P
(
n
∑k
j=1 αjp+(d−k)(p−1)

∑
0≤i<n

|R̃′n,ε(i)|p > δ
)

= 0 (4.41)

for all δ > 0. The proof runs similarly to that of (4.16). Recall that Λ is associated
to L by (4.4) and use its representation Λ =

∑∞
l=1 δ(V ′ 1l ,V ′ 2l ,J′l ) on [−ε, 1 + ε]k \ [0, 1]k ×

[−m,m]d−k ×R0, analogous to that in (4.7). Let (V ′ 1l ,V
′ 2
l ) = V ′l = (V ′l,1, . . . , V

′
l,d). Then,

for p̄ = max(p, 1), it holds that

(
n
∑k
j=1 αjp+(d−k)(p−1)

∑
0≤i<n

|R̃′n,ε(i)|p
)1/p̄

≤
∞∑
l=1

(Gn,ε(V
′
l)|J ′l |p)1/p̄, (4.42)

furthermore, on the right hand side of (4.42) every summand satisfies

Gn,ε(V
′
l) := n

∑k
j=1 αjp+(d−k)(p−1)

∑
0≤i<n

|∆1/ng(i/n− V ′l)|p
k∏
j=1

1(|ij/n− V ′l,j | < ε) = OP(1)

as n→∞. The last property follows from

nαjp+1

∫
|x|<1

|∆1/ngj(x)|pdx = O(1) (4.43)

for αj + 1/p ∈ (0, 1), j = 1, . . . , k, see the proof of Theorem 3.1(i), and

np
∫
|x|<2/n

|∆1/ngj(x)|pdx ≤ Cnp
∫
|x|<3/n

|gj(x)|pdx

≤ Cnp
∫
|x|<3/n

|x|αjpdx = Cnp−(αjp+1) = o(1) (4.44)

combined with

np
∫
|x|≥2/n

|∆1/ngj(x)|pdx ≤ C
∫
|x|<ρ

|x|(αj−1)pdx+

∫
|x|>ρ

|g′j(x)|pdx <∞ (4.45)

for αj + 1/p > 1, j = k + 1, . . . , d. From this we conclude (4.41) since the number of sum-
mands on the right hand side of (4.42) has mean λk([−ε, 1+ε]k\[0, 1]k)λd−k([−m,m]d−k)×
ν(R0) = O(εmd−k) = o(1).
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Finally, consider the terms R̃n,ε(i) in (4.38). Let us prove that

lim
ε↓0

lim sup
n→∞

P
(
n
∑k
j=1 αjp+(d−k)(p−1)

∑
0≤i<n

|R̃n,ε(i)|p > δ
)

= 0 (4.46)

for all δ > 0. Without loss of generality we discuss the case, where

R̃n,ε(i) =

∫
Rd

∏
0<j≤J

1(|ij/n− sj | < ε)
∏

J<j≤k

1(|ij/n− sj | ≥ ε)

×
∏

k<j≤K

1(|sj | > m)
∏

K<j≤d

1(|sj | ≤ m)∆1/ng(i/n− s)L(ds)

for 0 ≤ J < k < K ≤ d. We note that if k = d then the index set k < j ≤ d is empty, but
there is at least one j in J < j ≤ k, whereas if k < d then J < j ≤ k can be empty but in
that case there is at least one index j in the set k < j ≤ K. Now we define a bounded
function ψj ∈ Lmin(p,θ)(R) so that

n|∆1/ngj(i/n− x)|1(|i/n− x| ≥ ε) ≤ ψj(x) (4.47)

for all x ∈ R, 0 ≤ i < n, J < j ≤ k, and then we define πJ,K(x) =
∏
J<j≤k ψj(xj) ×∏

k<j≤K |g′j(xj/2)|. We use Λ associated to L by (4.4) and set Λ1(·) = Λ(· ∩ {(x, y) ∈
Rd ×R0 : πJ,K(x)|y| > 1}) and for every B ∈ Bb(Rd) set

L1(B) =

∫
B×R0

yΛ1(dx,dy) and L0(B) = L(B)− L1(B).

Then L0 and L1 are independent infinitely divisible random measures such that for every
B ∈ Bb(Rd),

E
[
eitL0(B)

]
= exp

(∫
B×R0

(eity − 1− ity1(|y| ≤ 1))1(πJ,K(x)|y| ≤ 1)dxν(dy)
)
,

E
[
eitL1(B)

]
= exp

(∫
B×R0

(eity − 1− ity1(|y| ≤ 1))1(πJ,K(x)|y| > 1)dxν(dy)
)
, t ∈ R.

We decompose R̃n,ε(i) = n−(K−J)(Q̃0
n,ε(i) + Q̃1

n,ε(i)) with

Q̃ln,ε(i) :=

∫
Rd

∏
0<j≤J

1(|ij/n− sj | < ε)
∏

J<j≤k

1(|ij/n− sj | ≥ ε)

×
∏

k<j≤K

1(|sj | > m)
∏

K<j≤d

1(|sj | ≤ m)nK−J∆1/ng(i/n− s)Ll(ds),

l = 0, 1.

We claim that for all δ > 0,

lim sup
n→∞

P
(
n
∑

0<j≤k αjp+(d−k)(p−1)−(K−J)p
∑

0≤i<n

|Q̃ln,ε(i)|p > δ
)
, l = 0, 1, (4.48)

are 0 if J < k, and tend to zero as m→∞ if J = k. For l = 0 it follows once we show that

sup
n∈N, 0≤i<n

n
∑

0<j≤J αjp+J+(d−K)pE[|Q̃0
n,ε(i)|p] (4.49)
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is bounded since αj + 1/p− 1 < 0, J < j ≤ k, in case J < k, and (4.49) tends to zero as
m→∞ in case J = k. For this purpose, by Theorem 3.3 in [37], we need to show that∫

Rd

∫
R0

∣∣∣n∑0<j≤J αj+J/p+d−J
∏

0<j≤J

1(|ij/n− xj | < ε)

×
∏

J<j≤k

1(|ij/n− xj | ≥ ε)
∏

k<j≤K

1(|xj | > m)

×
∏

K<j≤d

1(|xj | ≤ m)∆1/ng(i/n− x)y
∣∣∣q1(πJ,K(x)|y| ≤ 1)ν(dy)dx,

is finite for q = p and in addition q = 2 if p > 2. Here we rewrite ∆1/ng(i/n − x) =∏
0<j≤d ∆1/ngj(ij/n− xj). For q = p and in addition q = 2 if p > 2,∫

|x|<1

|nαj+1/p∆1/ngj(x)|qdx = O(1), n→∞,

since αj + 1/p ∈ (0, 1), 0 < j ≤ J , whereas∫
R

|n∆1/ngj(x)|qdx = O(1), n→∞,

since K < j ≤ d, as shown in (4.43), (4.44), (4.45). Next we use the dominating
function ψj in (4.47) for the remaining factors indexed by J < j ≤ k and n|∆1/ngj(i/n−
x)| ≤ |g′j(x/2)| for |x| > m, 0 ≤ i < n, k < j ≤ K. Note that the resulting function∏
J<j≤k ψj(xj)

∏
k<j≤K |g′j(xj/2)| = πJ,K(x) on Rk−J × ([−m,m]c)K−k is bounded and

min(p, θ)-th power integrable, which proves our statement about (4.49) and hence (4.48)
because

∫
R0
|xy|p1(|xy| ≤ 1)ν(dy) ≤ C|x|min(p,θ) for |x| ≤ 1, where p 6= θ if θ < 2.

Next, we show (4.48) for l = 1. We use (4.47), where J < j ≤ k, and n|∆1/ngj(i/n−
x)| ≤ |g′j(x/2)| for |x| > m, 0 ≤ i < n, k < j ≤ K to see that

Q̃1
n,ε(i) ≤

∫
Rd×R0

∣∣∣y ∏
0<j≤J

∆1/ngj(ij/n− xj)1(|ij/n− xj | < ε)

×
∏

J<j≤k

ψj(xj)
∏

k<j≤K

g′j(xj/2)1(|xj | > m)

×
∏

K<j≤d

∆1/ngj(ij/n− xj)1(|xj | ≤ m)
∣∣∣Λ1(dx,dy).

We denote the term above on the right hand side by Q̃1
n,ε(i), but note that it does not

depend on ij , J < j ≤ K. Furthermore, for p̄ = max(p, 1),(
n
∑

0<j≤k αjp+(d−k)(p−1)+(J−K)p
∑

0≤i<n

|Q̃1
n,ε(i)|p

)1/p̄

≤
∫
Rd×R0

(
|y|p

∏
0<j≤J

nαjp
∑

0≤ij<n

|∆1/ngj(ij/n− xj)|p1(|ij/n− xj | < ε)

×
∏

J<j≤k

nαjp+1−p|ψj(xj)|p
∏

k<j≤K

|g′j(xj/2)|p1(|xj | > m)

×
∏

K<j≤d

np−1
∑

0≤ij<n

|∆1/ngj(ij/n− xj)|p1(|xj | ≤ m)
)1/p̄

Λ1(dx,dy) =: Z̃1
n,ε,

where Z̃1
n,ε is well defined as integral with respect to Poisson random measure Λ1 having

intensity measure 1(πJ,K(x)|y| > 1)dxν(dy) since
∫
R0
1(|xy| > 1)ν(dy) ≤ C|x|θ for |x| ≤ 1
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and πJ,K(x) on Rk−J × ([−m,m]c)K−k is bounded and θ-th power integrable. Finally,
following Step 1 we can show that Z̃1

n,ε = oP(1) as n→∞ if J < k, since αjp+ 1− p < 0,

J < j ≤ k, whereas if J = k, then Z̃1
n,ε converges weakly to the integral∫

[0,1]k×Rd−k×R0

(
|y|p

∏
0<j≤k

Hj(uj)
∏

k<j≤K

|g′j(xj/2)|p1(|xj | > m)

×
∏

K<j≤d

‖g′j(· − xj)‖pp1(|xj | ≤ m)
)1/p̄

Λ1,‡(du,dx,dy) = Z̃1

with respect to the Poisson random measure Λ1,‡(·) = Λ‡(·∩{(u,x, y) ∈ [0, 1]k×Rd−k×R0 :

πk,K(x)|y| > 1}) with intensity measure 1(πk,K(x)|y| > 1)dudxν(dy) on [0, 1]k×Rd−k×R0

as n→∞, which further converges in probability to 0 as m→∞. This finishes the proof
of (4.48), hence of (4.46). Theorem 3.2(i) is proved in case ν(R0) <∞.

Step 2. Let ν(R0) =∞. We aim to show that as n→∞,

n
∑k
j=1 αjp+(d−k)(p−1)V Xn (p)

F -d→
∫

[0,1]k×Rd−k×R0

|y|p
k∏
j=1

Hj(uj)

d∏
j=k+1

‖g′j(· − xj)‖ppΛ‡(du,dx,dy) =: Z, (4.50)

where the notation V Xn (p) is used to stress that Vn(p) is calculated for process X. For
some small ε > 0, we decompose ∆1/nX(i/n) = ∆1/nX

≤ε(i/n) + ∆1/nX
>ε(i/n) following

Step 2 of the proof of Theorem 3.1(i). Since ν([−ε, ε]c) <∞, we have that as n→∞,

n
∑k
j=1 αjp+(d−k)(p−1)V X

>ε

n (p)

F -d→
∫

[0,1]k×Rd−k×[−ε,ε]c
|y|p

k∏
j=1

Hj(uj)

d∏
j=k+1

‖g′j(· − xj)‖ppΛ‡(du,dx,dy) =: Z>ε, (4.51)

as shown in Step 1. Since Z>ε
P→ Z as ε ↓ 0, (4.50) follows from (4.51) if we show that

for all δ > 0,

lim
ε↓0

lim sup
n→∞

P
(
n
∑k
j=1 αjp+(d−k)(p−1)V X

≤ε

n (p) > δ
)

= 0 (4.52)

using (4.2) and (4.3). Furthermore, (4.52) follows by Markov’s inequality, if we prove
that

lim
ε↓0

lim sup
n→∞

n
∑k
j=1 αjp+(d−k)(p−1)+dE[|∆1/nX

≤ε(0)|p] = 0.

For the latter it suffices to show the convergence

lim
ε↓0

lim sup
n→∞

∫
Rd

∫
0<|y|≤ε

φp(n
∑k
j=1 αj+(d−k)(1−1/p)+d/p∆1/ng(x)y)ν(dy)dx = 0, (4.53)

where φp(y) := |y|p1(|y| > 1)+ |y|21(|y| ≤ 1) satisfies φp(y) ≤ |y|p+ |y|21(p > 2) for y ∈ R,
cf. Theorem 3.3 in [37]. For q = p and in addition q = 2 if p > 2, we have∫

R

|nαj+1/p∆1/ngj(x)|qdx

≤
∫
|x|<1

|nαj+1/p∆1/ngj(x)|qdx+

∫
|x|>1

|nαj+1/p−1ψj(x)|qdx = O(1), j = 1, . . . , k,

and

In,j(q) :=

∫
R

|n∆1/ngj(x)|qdx = O(1), j = k + 1, . . . , d,
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as shown in Step 1. Finally, similarly to (A.3), we get
∫ ε

0
ypν(dy) = O(εp−β) = o(1) as

ε ↓ 0, since p > β. This completes the proof of (4.53) and (4.52), and therefore the proof
of Theorem 3.2(i).

4.6 Proof of Theorem 3.2(ii)

Let us first verify that the limiting constant m(p) := E[|L([0, 1]d)|p] × (
∏k
j=1 Ij ×∏d

j=k+1 I
′
j)
p/β is finite. Indeed, for j = 1, . . . , k, we have Ij :=

∫
R
|∆1hj(s)|βds <∞ since

αj + 1/β ∈ (0, 1) as in Theorem 3.1(ii) in case d = 1, whereas I ′j =
∫
R
|g′j(s)|βds < ∞

follows from |g′j(s)| ≤ C|s|αj−1, |s| < ρ, and g′j ∈ Lβ((−ρ, ρ)c) for 1 < αj + 1/β, j =

k + 1, . . . , d.
Let us now prove that the convergence stated in Theorem 3.2(ii) holds in proba-

bility. Note that working on the assumption (H2) increments of X can be approxi-
mated coordinate-wise since those of its kernel g(s) =

∏d
j=1 gj(sj) can be factorized

g([s, t]) =
∏d
j=1(gj(tj) − gj(sj)) for all s < t in Rd. We define the first approximation

(Zn(i))i∈Zd by

Zn(i) :=

∫
Rd

k∏
j=1

nHj∆1/ngj(ij/n− sj)
d∏

j=k+1

g′j(ij/n− sj)L(ds).

Then the above-stated convergence in probability follows using (4.2), (4.3) if we prove

n−d
∑

0≤i<n

|nd−k+
∑k
j=1 Hj∆1/nX(i/n)− Zn(i)|p P→ 0 and n−d

∑
0≤i<n

|Zn(i)|p P→ m(p).

(4.54)
By Markov’s inequality we deal with the first sequence with mean

E[|nd−k+
∑k
j=1 Hj∆1/nX(0)− Zn(0)|p] = C(

k∏
j=1

In,jR
′
n)p/β ,

where

In,j =

∫
R

|nHj∆1/ngj(s)|βds =

∫
R

|nαj∆1/ngj(s/n)|βds = O(1), j = 1, . . . , k,

follows from (4.24) for d = 1 and it remains to show

R′n =

∫
Rd−k

|
d∏

j=k+1

n∆1/ngj(sj)−
d∏

j=k+1

g′j(sj)|βdsk+1 . . . dsd = o(1). (4.55)

We rewrite the above integrand using the identity
∏d
j=k+1 aj −

∏d
j=k+1 bj =

∑
#J≥1∏

j∈J(aj − bj)
∏
j∈Jc bj , a, b ∈ Rd−k, where the sum

∑
#J≥1 is taken over all subsets

J ⊆ {k + 1, . . . , d} of cardinality #J ≥ 1. We thus reduce our task in (4.55) to proving∫
R

|n∆1/ngj(s)− g′j(s)|βds = o(1), j = k + 1, . . . , d.

We note that n∆1/ngj(s)→ g′j(s) for almost every s. Moreover, |n∆1/ngj(s)| = |
∫ 1

0
g′j(s+

u/n)du| ≤ |g′j(s/2)| for |s| ≥ 2ρ and |n∆1/ngj(s)| ≤ C|s|αj−1 for 2/n ≤ |s| < 2ρ. Hence,∫
|s|≥2/n

|n∆1/ngj(s)− g′j(s)|βds = o(1) by the dominated convergence theorem, whereas∫
|s|<2/n

|n∆1/ngj(s)|βds ≤ Cnβ
∫ 3/n

0
sαjβds = o(1) since 1 < αj + 1/β, j = k + 1, . . . , d.

Now, we prove that the second convergence in (4.54) holds in L1. Since for every
(ik+1, . . . , id) ∈ Zd−k,

(Zn(i))(i1,...,ik)∈Zk
fdd
= (Zn(i1, . . . , ik, 0, . . . , 0))(i1,...,ik)∈Zk ,
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it follows from

n−k
∑

0≤i1,...,ik<n

|Zn(i1, . . . , ik, 0, . . . , 0)|p L
1

→ m(p). (4.56)

To show that the convergence (4.56) holds in probability, we use the same arguments
as in the proof of Theorem 3.1(ii). Using the scaling property of the β-stable random

measure, we have that (Zn(i1, . . . , ik, 0, . . . , 0))(i1,...,ik)∈Zk
fdd
= (Yn(i1, . . . , ik))(i1,...,ik)∈Zk ,

and so ∑
0≤i1,...,ik<n

|Zn(i1, . . . , ik, 0, . . . , 0)|p d
=

∑
0≤i1,...,ik<n

|Yn(i1, . . . , ik)|p,

where

Yn(i1, . . . , ik) :=

∫
Rd

k∏
j=1

nαj∆1/ngj((ij − sj)/n)

d∏
j=k+1

g′j(sj)L(ds1, . . . ,dsd).

Next, we approximate (Yn(i1, . . . , ik))(i1,...,ik)∈Zk by Y∞ = (Y∞(i1, . . . , ik))(i1,...,ik)∈Zk ,
where

Y∞(i1, . . . , ik) :=

∫
Rd

k∏
j=1

∆1hj(ij − sj)
d∏

j=k+1

g′j(sj)L(ds1, . . . ,dsd),

more specifically, we have that

E[|Yn(0, . . . , 0)− Y∞(0, . . . , 0)|p]

= C
(∫

Rk
|
k∏
j=1

nαj∆1/ngj(sj/n)−
k∏
j=1

∆1hj(sj)|βds1 . . . dsk

×
d∏

j=k+1

∫
R

|g′j(s)|βds
)p/β

= o(1)

using similar arguments to those in the proof of (4.55) and (4.24) for d = 1. Hence, it
follows that

n−k
∑

0≤i1,...,ik<n

|Yn(i1, . . . , ik)− Y∞(i1, . . . , ik)|p P→ 0.

Since the process Y∞ is a symmetric β-stable mixed moving average, by [42, Theorem 3],
it is mixing, and hence ergodic. According to Birkhoff’s theorem (see [25, Theorem
10.6]),

n−k
∑

0≤i1,...,ik<n

|Y∞(i1, . . . , ik)|p P→ E[|Y∞(0, . . . , 0)|p],

where E[|Y∞(0, . . . , 0)|p] = m(p). By (4.2), (4.3) the sequence in (4.56) converges in
probability. The sequence converges in mean if and only if it converges in probability
and is uniformly integrable. The latter follows, because for some q > 1 such that qp < β,
by Minkowski’s inequality,

E
[∣∣∣n−k ∑

0≤i1,...,ik<n

|Zn(i1, . . . , ik, 0, . . . , 0)|p
∣∣∣q]

≤
(
n−k

∑
0≤i1,...,ik<n

(E|Zn(i1, . . . , ik, 0, . . . , 0)|qp)1/q
)q

= E[|Zn(0)|]qp = O(1).

Similarly, E[|nd−k+
∑k
j=1 Hj∆1/nX(0)|qp] = O(1), which completes the proof of Theo-

rem 3.2(ii).
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4.7 Proof of Theorem 3.2(iii)

The proof is analogous to that of Theorem 3.1(iii). It follows from [37, Theorem 2.7],
that the random field Y := (Y (t))t∈[0,1]d given in (3.1) is well-defined if and only if

∫
Rd
V (∂dg(s))ds <∞, ∂dg(s) :=

d∏
i=1

g′i(si), s ∈ Rd, (4.57)

where

V (x) :=

∫ ∞
0

min(|xy|2, 1)ν(dy) ≤ C(|x|θ1(|x| < 1) + |x|max(β,p)1(|x| ≥ 1)), x ∈ R,

as shown in (A.2). So (4.57) follows from g′i ∈ Lθ(R) ∩ Lmax(β,p)(R), i = 1, . . . , d, in case
θ < max(β, p) and from g′i ∈ Lmax(β,p)(R), i = 1, . . . , d, in case θ ≥ max(β, p). Note that
(H2) implies that every g′i ∈ Lq

′
((−ρ, ρ)c) with q′ ≥ min(θ,max(β, p)) and |g′i(s)| ≤ C|s|αi−1

for |s| < ρ with αi − 1 > −1/max(β, p) ≥ −1/min(θ,max(β, p)), i = 1, . . . , d. By the same
arguments as in the proof of Theorem 3.1(iii) we may choose a measurable and separable
modification of Y , which also will be denoted Y .

According to [11, Theorem 3.1(i)], Y has sample paths in Lp([0, 1]d, λd) almost surely
if the conditions (4.30), (4.31), (4.32) hold. For all s ∈ Rd, we have that ‖∂dg(· − s)‖p =∏d
i=1 ‖g′i(· − si)‖p, where for s ∈ R,

‖g′i(· − s)‖p :=
(∫

[0,1]

|g′i(t− s)|pdt
)1/p

≤ C1(|s| < 2ρ) + |g′i(s/2)|1(|s| ≥ 2ρ) ≤ C,

because |g′i(t)| ≤ C|t|αi−1 for |s| < 3ρ with αi − 1 > −1/p and |g′i(s)| ≥ |g′i(t)| for
1 < ρ ≤ |s| ≤ |t|, i = 1, . . . , d. We conclude that condition (4.30) holds.

Next, let us verify the first condition in (4.31). From above it follows that∫
Rd
ν
(( c

‖∂dg(· − s)‖p
,∞
))

ds ≤ C
∫
Rd
‖∂dg(· − s)‖θpds

≤ C
∫
Rd

d∏
i=1

(1(|si| < 2ρ) + |g′i(si/2)|θ1(|si| ≥ 2ρ))ds <∞

since g′i ∈ Lθ((−ρ, ρ)c), i = 1, . . . , d. Note that

Φ(∂dg(t− ·)) =

∫
Rd
V (∂dg(s))ds <∞,

see (4.57), hence both Φ(∂dg(t− ·)) and σ(t) do not depend on t ∈ [0, 1]d. We conclude
that the second condition in (4.31) holds.

For 0 < c0 < c1, decompose
∫ c1
c0
ypν(dy) = I0 + I1, where

I1 :=

∫ ∞
1

1(c0 < y < c1)ypν(dy) ≤
∫ ∞

1

1(c0 < y < c1)yp−θ−1dy

≤ C(cp−q0 1(p < q) + cp−q1 1(p > q) + 1(p = q))

with q = min(θ,max(β, p)) in case p 6= θ, θ < 2 and I1 ≤ C in case p = θ = 2 and

I0 :=

∫ 1

0

1(c0 < y < c1)ypν(dy) ≤ C
∫ 1

0

(1(β < p) + 1(p ≤ β)1(c0 < y)) ypν(dy)

≤ C(1(β < p) + 1(p ≤ β)cp−β
′

0 )
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with β′ > β chosen so that min(α1, . . . , αd)+1/β′ > 1. Therefore, the last condition (4.32)
follows from∫

Rd
(‖∂dg(· − s)‖β

′

β′1(p ≤ β) + ‖∂dg(· − s)‖pp1(β < p)

+ ‖∂dg(· − s)‖qq1(p < q) + ‖∂dg(· − s)‖qp1(p > q) + ‖∂dg(· − s)‖pp1(p = q))ds <∞.

To end the proof recall that g′i ∈ Lq
′
((−ρ, ρ)c) with q′ ≥ q and |g′i(s)| ≤ C|s|αi−1 for |s| < ρ

with αi − 1 > −1/max(β, p) ≥ −1/q, i = 1, . . . , d.

A Appendix

Let us verify that imposed Assumptions (g), (θ) and (β) for some 0 < θ ≤ 2, 0 ≤ β < 2

ensure the existence of the random field X. From [37, Theorem 2.7] it follows that the
stochastic integral for t ∈ Rd on the r.h.s. of (1.1) exists if and only if∫

Rd
V (g(t,u))du <∞ with V (x) :=

∫ ∞
0

min(|xy|2, 1)ν(dy) for x ∈ R, (A.1)

when ν is a symmetric Lévy measure on R. Let us first show that Assumptions (β) and
(θ) imply the following important estimate: there is a constant C > 0 such that

V (x) ≤ C(|x|θ1(|x| ≤ 1) + |x|β1(|x| > 1)). (A.2)

Set ν̄(y) := ν({u ∈ R0 : u ≥ y}) for y > 0. If θ < 2, then yθν̄(y) ≤ C for y ≥ 1,
that is

∫∞
1
f(u)ν(du) ≤ C

∫∞
1
f(u)u−θ−1du with f(u) = 1(u ≥ y), u ∈ R, for y ≥ 1,

and the inequality remains valid by monotone approximation for f : [1,∞) → [0,∞)

non-decreasing. Hence,

V (x) ≤ C
(
x2 +

∫ ∞
1

min(|xy|2, 1)y−θ−1dy
)

≤ C
(
x2 + x2

∫ 1
|x|

1

y1−θdy +

∫ ∞
1
|x|

y−θ−1dy
)
≤ C|x|θ

for |x| ≤ 1 if θ < 2, whereas V (x) ≤ C|x|2 for x ∈ R if θ = 2.
Furthermore, if β > 0, then yβ ν̄(y) ≤ C for 0 < y < 1. For 0 < ε0 < ε1 < 1,∫ ε1

ε0

y2ν(dy) = −
∫ ε1

ε0

u2ν̄(du) = ε20ν̄(ε0)− ε21ν̄(ε1) + 2

∫ ε1

ε0

u1−βuβ ν̄(u)du,

and so as ε0 → 0, ∫ ε1

0

y2ν(dy) ≤ Cε2−β1 . (A.3)

Hence,

V (x) ≤ C
(
|x|2

∫ 1
|x|

0

|y|2ν(dy) +

∫ ∞
1
|x|

ν(dy)
)
≤ C|x|β

for |x| > 1 if β > 0, whereas V (x) ≤ C for x ∈ R if β = 0. This completes the proof
of (A.2), and if moreover Assumption (g) holds, that of (A.1). We conclude that X is
well-defined.
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