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Sharp maximal Lp-bounds for continuous martingales
and their differential subordinates
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Abstract

Suppose that X, Y are Hilbert-space-valued continuous-path martingales such that Y
is differentially subordinate to X. The paper contains the proof of sharp estimates
between p-th moments of Y and the maximal function of X for 0 < p < 1. The
proof rests on Burkholder’s method and exploits a certain special function of three
variables, enjoying appropriate size and concavity requirements. The analysis reveals
an unexpected phase transition between the cases 0 < p < 1/2 and 1/2 ≤ p < 1. The
latter case is relatively simple: the special function is essentially quadratic and the
best constant is equal to

√
2/p. The analysis of the former case is much more intricate

and involves the study of a non-linear ordinary differential equation.
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1 Introduction

Suppose that (Ω,F ,P) is a complete probability space, filtered by a nondecreasing
right-continuous family (Ft)t≥0 of sub-σ-fields of F . We assume in addition that F0

contains all the events of probability 0. Suppose further that X, Y are two adapted
martingales taking values in a given separable Hilbert space H with the norm | · | and
scalar product denoted by 〈·, ·〉. With no loss of generality, we may and do assume
that the space is equal to `2. As usual, we impose standard regularity restrictions
on trajectories of X and Y : we assume that the paths are right-continuous and have
limits from the left. Then [X,X], the quadratic covariance process of X, is given by
[X,X] =

∑∞
n=1[Xn, Xn], where Xn is the n-th coordinate of X and [Xn, Xn] is the usual

square bracket of the real-valued martingale Xn (see Chapters VI and VII in Dellacherie
and Meyer [12] or Chapter 4 in Métivier [15] for details). We will also consider the
maximal process X∗ = (X∗t )t≥0, where X∗t = sup0≤s≤t |Xs| for each t ≥ 0.
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Maximal inequalities

Throughout, we will work under the assumption that the martingale Y is differentially
subordinate to X. This concept appeared for the first time in Burkholder’s paper [8] and
concerned discrete-time processes. Recall that a martingale g = (gn)n≥0 is differentially
subordinate to f = (fn)n≥0, if for any n ≥ 0 we have |dgn| ≤ |dfn| almost surely. Here
df = (dfn)n≥0, dg = (dgn)n≥0 are the difference sequences of f and g, given by

fn =

n∑
k=0

dfk and gn =

n∑
k=0

dgk, n = 0, 1, 2, . . . .

This domination was generalized to the continuous-time context by Bañuelos and Wang
[7] and Wang [24]: the martingale Y is differentially subordinate to X, if the process
([X,X]t − [Y, Y ]t)t≥0 is nondecreasing and nonnegative as a function of t. Treating two
given discrete-time martingales f , g as continuous-time processes (via Xt = fbtc and
Yt = gbtc, t ≥ 0), we see this domination is consistent with the original definition of
Burkholder. The following example will be useful to us later: suppose that X is an
H-valued martingale, H is a predictable process taking values in the interval [−1, 1] and
let Y be the stochastic integral of H with respect to X, i.e., Yt = H0X0 +

∫ t
0+
HsdXs,

t ≥ 0. Then Y is differentially subordinate to X, since

[X,X]t − [Y, Y ]t = (1−H2
0 )|X0|2 +

∫ t

0+

(1−H2
s )d[X,X]s.

Another example, which is very important for applications (see e.g. [5], [7], [14]), is
the following. Suppose that B is a Brownian motion in Rν and H, K are predictable
processes taking values in the matrices of dimensions m× ν and n× ν, respectively. For
any t ≥ 0, define

Xt =

∫ t

0+

Hs · dBs and Yt =

∫ t

0+

Ks · dBs.

If the Hilbert-Schmidt norms of H and K satisfy ||Kt||HS ≤ ||Ht||HS for all t > 0, then Y
is differentially subordinate to X: this follows from the identity

[X,X]t − [Y, Y ]t =

∫ t

0+

(
||Hs||2HS − ||Ks||2HS

)
ds.

The differential subordination implies many interesting inequalities comparing the
sizes of X and Y . The literature on this subject is very extensive, so we refer the
interested reader to the survey articles [9], [21] and the monograph [19] for the detailed
description and further references. In addition, these estimates have found numerous
profound applications in harmonic analysis, e.g. in the study of boundedness of wide
classes of Fourier multipliers [4, 5, 6, 14], semigroup theory [11, 13] and quasiconformal
mappings [1, 2, 3], to name just a few.

As the motivation for our research, we recall a celebrated result of Burkholder which
gives the following information on the Lp-norms (see [8], [9] and [24]).

Theorem 1.1. Suppose that X, Y are Hilbert-space-valued martingales such that Y is
differentially subordinate to X. Then for any 1 < p <∞ we have

‖Yt‖Lp ≤ (p∗ − 1)‖Xt‖Lp , t ≥ 0, (1.1)

where p∗ = max{p, p/(p− 1)}. The constant is the best possible, even if H = R: it cannot
be replaced by any smaller number.
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Maximal inequalities

Besides the beauty of this result, its proof is of independent interest and connections.
Burkholder showed how to deduce the validity of (1.1) from the existence of a certain
special function, possessing appropriate size and concavity properties. Since the appear-
ance of the seminal paper [8], this type of approach has turned out to be very efficient
in the study of related semimartingale inequalities (for much more on the subject, see
[19]).

In the boundary case p = 1, the above moment inequality breaks down, but, as a
substitution, there are certain weak-type and logarithmic estimates; see [8], [21] and
[22]. There is also a corresponding maximal L1 bound, which will be important for our
considerations below. Namely, in [10] Burkholder proved the following result.

Theorem 1.2. Suppose that X is a real-valued martingale and Y is the stochastic
integral, with respect to X, of some predictable real-valued process H taking values in
[−1, 1]. Then we have the sharp estimate

‖Yt‖L1 ≤ γ‖X∗t ‖L1 , t ≥ 0, (1.2)

where γ = 2.536 . . . is the unique positive number satisfying γ = 3− exp 1−γ
2 .

This result was strengthened by Osękowski [17] to the case in which the first moment
of Y is replaced by the first moment of its maximal function.

Theorem 1.3. Under the assumptions of the above theorem, we have the sharp inequal-
ity

||Y ∗t ||L1 ≤ 3.4351 . . . ||X∗t ||L1 , t ≥ 0. (1.3)

The precise description of the above constant involves the analysis of a complicated
system of ODE’s. If the dominating martingale has continuous paths, then the best
constants in (1.2) and (1.3) decrease to

√
2 and 2, respectively (cf. [18, 20]). The

following result can be found in [18].

Theorem 1.4. Suppose that X, Y are H-valued, continuous-path martingales such that
Y is differentially subordinate to X. Then for any 1 ≤ p <∞ we have the sharp bound

‖Yt‖Lp ≤ cp||X∗t ||Lp , t ≥ 0, (1.4)

where cp =
√

2/p for 1 ≤ p ≤ 2 and cp = p− 1 for p > 2.

By Burkholder-Davis-Gundy inequalities, the estimate (1.4) holds also, with some
finite constant cp, in the range 0 < p < 1. The purpose of this paper is to identify the
corresponding optimal constant. Our main result can be stated as follows.

Theorem 1.5. Suppose that X, Y are H-valued continuous-path martingales such that
Y is differentially subordinate to X. Then for any 0 < p < 1 we have the estimate

‖Yt‖Lp ≤ Cp‖X∗t ‖Lp , t ≥ 0, (1.5)

where the optimal constant is equal to

Cp =

{
y0(p) + 2 if 0 < p < 1/2,√

2/p if 1/2 ≤ p < 1.

Here y0(p) is the unique positive zero of the solution to a certain ODE: see Lemma 3.1
for the precise definition.

So, the behavior of the best constant Cp in (1.5) is different for p < 1/2 and p ≥ 1/2.
As we will see, the proof in the latter case (‘big p’) is much simpler: it can actually be
extracted from the work [18]. Very interestingly (and quite unexpectedly, at least to
us), there is a phase transition at p = 1/2. The analysis in the case p < 1/2 is much
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more elaborate and the construction of the associated special functions (which are
completely different from those for p ≥ 1/2) will rest on solutions of the non-linear
ordinary differential equation (3.4).

We would also like to point out that if we drop the assumption on the continuity of
paths of the martingales, then the inequality (1.5) is no longer valid, even for H = R. It is
convenient to describe appropriate examples in discrete time. Fix huge integers M and
N and consider the independent random variables ξ0, ξ1, ξ2, . . ., ξN with the distribution
given by P(ξj = 1) = 1− P(ξj = −M) = M/(M + 1), j = 0, 1, 2, . . . , N . These variables
are centered and hence the process fn = ξ0−ξ1+ξ2−ξ3+. . .+(−1)nξn, n = 0, 1, 2, . . . , N ,
is a martingale. On the set A = {ξj = 1 for all j}, which has probability (M/(M + 1))N+1,
we have f∗N = 1; on the complement of this event, we obviously have f∗N ≤ 2M(N + 1).
Consequently,

‖f∗N‖p ≤

[(
M

M + 1

)N+1

+

(
1−

(
M

M + 1

)N+1
)
· (2M(N + 1))p

]1/p
and the right-hand side converges to 1 as M →∞ (the parameter N is fixed). Consider
the martingale gn = ξ0 + ξ1 + ξ2 + . . .+ ξn, n = 0, 1, 2, . . . , N . We have |dgn| = |dfn| for
each n, so g is differentially subordinate to f . Furthermore, g satisfies gN = N + 1 on the
set A, so ‖gN‖p ≥ (N + 1)(P(A))1/p = (N + 1)(M/(M + 1))(N+1)/p. The latter expression
converges to N + 1 as M →∞, so we see that taking M sufficiently large, we may make
the ratio ‖gN‖p/‖f∗N‖p bigger than N . Since N was arbitrary, the estimate (1.5) cannot
hold with any finite constant.

We have organized this paper as follows. The next section contains the description
of Burkholder’s method in the abstract setting: we show how to exploit certain special
appropriately smooth functions to establish maximal estimates for continuous-time
processes. The contents of that section extends significantly the material in [18] (see
below). Section 3 contains the proof of the inequality (1.5): we construct and study the
corresponding special functions there. In Section 4 we show that the constant Cp cannot
be improved, which is accomplished by exhibiting appropriate extremal examples. In
the final part of the paper we describe in detail the reasoning which has led us to the
discovery of the special function in the difficult case 0 < p < 1/2.

2 Burkholder’s method

The original technique developed by Burkholder in [10] concerned the discrete-time
martingales (the passage to the context of stochastic integrals, as in Theorem 1.2,
follows by approximation). The successful treatment of continuous-path, differentially
subordinate and vector-valued martingales required the enhancement of the method,
which was obtained by Osękowski [17] under strong regularity assumptions on the
special function. In this section we relax this requirement and show how to deduce
maximal estimates from the existence of a function satisfying a relatively mild regularity
condition (class C1). Our reasoning rests on mollification arguments, which can be
tracked back to the works of Bañuelos and Wang [7] and Wang [24].

Consider the domain D = {(x, y, z) ∈ H×H× (0,∞) : |x| ≤ z} and fix a Borel function
V : D → R, which is bounded on bounded sets. Let us assume that we want to establish
the estimate

EV (Xt, Yt, X
∗
t ) ≤ 0, t ≥ 0, (2.1)

for all pairs (X,Y ) of continuous and bounded H-valued martingales such that Y is
differentially subordinate to X. Suppose that D1, D2, . . ., Dn is a collection of pairwise
disjoint open subsets of D such that D ⊆ D1 ∪ D2 ∪ . . . ∪ Dn. Assume further that
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U : D → R is a C1 function, which is of class C2 on each Di and satisfies the following
four conditions.

1◦ For any (x, y, z) ∈ D such that |y| ≤ |x| we have

U(x, y, z) ≤ 0.

2◦ We have U ≥ V on D.
3◦ For any (x, y, z) ∈ D, we have

Uz(x, y, z) ≤ 0. (2.2)

4◦ For any j = 1, 2, . . . , n, there is a function cj : Dj → (0,∞), bounded on any set of
the form {(x, y, z) ∈ Dj : |x|, |y| ≤ L, 1/L ≤ z ≤ L} for some L > 0, such that

〈Uxx(x, y, z)h, h〉+ 2〈Uxy(x, y, z)h, k〉+ 〈Uyy(x, y, z)k, k〉 ≤ cj(x, y, z)(|k|2 − |h|2) (2.3)

holds for any (x, y, z) ∈ Dj and all h, k ∈ H.

The interplay between the existence of such a function U and the validity of (2.1) is
described in the statement below. In what follows, X1

0 denotes the first coordinate of X0.

Theorem 2.1. Suppose that U satisfies the conditions 1◦−4◦. Assume further that X, Y
are bounded, H-valued, and continuous-path martingales such that Y is differentially
subordinate to X and P(|X1

0 | ≥ η) = 1 for some η > 0. Then (2.1) holds true.

Proof. It is convenient to split the reasoning into a few separate parts.

Step 1. Reductions. Let t ≥ 0 be fixed. The random variable V (Xt, Yt, X
∗
t ) is

integrable, since V is locally bounded and X, Y ∈ L∞. Furthermore, note that

C = sup
s≤t

max
j

∥∥cj(Xs, Ys, X
∗
s )
∥∥
L∞ <∞, (2.4)

by X∗s ≥ |X1
0 | ≥ η and the boundedness properties of c1, c2, . . . , cn. By the majorization

condition 2◦, the proof will be complete if we show that

EU(Xt, Yt, X
∗
t ) ≤ 0. (2.5)

Fix ε > 0. There is an integer D = D(ε) ≥ 1 such that if d ≥ D, then

E
∑
k>d

[Xk, Xk]t = E
∑
k>d

|Xk
t |2 < ε. (2.6)

For 0 ≤ s ≤ t, consider the projected processes

X(d)
s = (X1

s , X
2
s , . . . , X

d
s , 0, 0, . . .), Y (d)

s = (Y 1
s , Y

2
s , . . . , Y

d
s , 0, 0, . . .)

and let
Z(d)
s = (X(d)

s , Y (d)
s , X(d)∗

s ). (2.7)

Let Dd = {(x, y, z) ∈ Rd ×Rd × (0,∞) : |x| ≤ z} and let U : Dd → R be the restriction of
the function U , given by the formula U(x, y, z) = U((x, 0, 0, . . .), (y, 0, 0, . . .), z).

Step 2. A mollified version of U . Pick a C∞ function ϕ : Rd × Rd × R → [0,∞),
supported on the unit ball B of Rd ×Rd ×R, satisfying

∫
B
ϕ = 1. Next, for a fixed δ > 0

and any (x, y, z) ∈ Dd, define U
δ

by the convolution

U
δ
(x, y, z) =

∫
B

U(x+ δu, y + δv, z + 2δ + δr)ϕ(u, v, r) dudvdr.
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Note that the point (x+ δu, y + δv, z + 2δ + δr) lies in the domain of U : indeed, we have

|x+ δu| ≤ |x|+ δ|u| ≤ z + 2δ − δ|r| ≤ z + 2δ + δr, so in particular, U
δ

is well-defined. By
the properties of convolutions, the function is of class C∞; furthermore, it satisfies the
appropriate versions of 3◦ and 4◦. Indeed, the inequality

U
δ

z ≤ 0 (2.8)

follows at once from the integration by parts. To check 4◦, observe that U is of class C1

(since so is U ) and hence the integration by parts gives

U
δ

xx(x, y, z) =

∫
B

Uxx(x+ δu, y + δv, z + 2δ + δr)ϕ(u, v, r) dudvdr,

with similar formulas for other second-order partial derivatives of U
δ
. Therefore, if

(x, y, z) ∈ Dd and h, k ∈ Rd, then (2.3) yields

〈U δxx(x, y, z)h, h〉+ 2〈U δxy(x, y, z)h, k〉+ 〈Uδyy(x, y, z)k, k〉 ≤ cδ(x, y, z)(|k|2 − |h|2), (2.9)

where cδ : Dd → [0,∞) is given by

cδ(x, y, z) =

∫
B

c(x+ δu, y + δv, z + 2δ + δr)ϕ(u, v, r) dudvdr

and c =
∑
j cjχDj . In particular, note that |cδ(x, y, z)| ≤ C, where C was defined in (2.4).

Step 3. Proof of (2.1). We apply Itô’s formula to the process (U
δ
(Z

(d)
s ))s∈[0,t] (recall

that Z(d) is given by (2.7)), obtaining

U
δ
(Z

(d)
t ) = I0 + I1 + I2 + I3/2, (2.10)

where

I0 = U
δ
(Z

(d)
0 ),

I1 =

∫ t

0

U
δ

x(Z(d)
s ) · dX(d)

s +

∫ t

0

U
δ

y(Z(d)
s ) · dY (d)

s ,

I2 =

∫ t

0

U
δ

z(Z
(d)
s )dX(d)∗

s ,

I3 =

∫ t

0

U
δ

xx(Z(d)
s )d[X(d), X(d)]s + 2

∫ t

0

U
δ

xy(Z(d)
s )d[X(d), Y (d)]s

+

∫ t

0

U
δ

yy(Z(d)
s )d[Y (d), Y (d)]s.

The random variable I1 has zero expectation, since both stochastic integrals are L2-
bounded martingales: this follows from the fact that X, Y , and hence also X(d) and
Y (d), are bounded processes. The term I2 is nonpositive by (2.8). The last term I3
is also nonpositive, which follows from (2.9) and the approximation of the integrals
by Riemann sums. Namely, let 0 ≤ s0 < s1 ≤ t. For any j ≥ 0, let (ηji )0≤i≤ij be

a sequence of nondecreasing finite stopping times with ηj0 = s0, η
j
ij

= s1 such that

limj→∞max0≤i≤ij−1 |η
j
i+1− η

j
i | = 0. Keeping j fixed, we apply, for each i = 0, 1, 2, . . . , ij ,

the inequality (2.9) to x = X
(d)
s0 , y = Y

(d)
s0 , z = X

(d)∗
s0 and h = hji = X

(d)

ηji+1

− X
(d)

ηji
,
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k = kji = Y
(d)

ηji+1

− Y (d)

ηji
. Summing the obtained ij + 1 inequalities and letting j →∞ yields

d∑
m=1

d∑
n=1

[
U
δ

xmxn
(Z(d)

s0 )[(X(d))m, (X(d))n]s1s0 + 2U
δ

xmyn(Z(d)
s0 )[(X(d))m, (Y (d))n]s1s0

+ U
δ

ymyn(Z(d)
s0 )[(Y (d))m, (Y (d))n]s1s0

]
≤ C

d∑
k=1

(
[(Y (d))k, (Y (d))k]s1s0 − [(X(d))k, (X(d))k]s1s0

)
.

Here C is given by (2.4) and we have used the notation [S, T ]s1s0 = [S, T ]s1 − [S, T ]s0 . If we
approximate I3 by discrete sums, we see that the inequality above leads to

I3 ≤ C
d∑
k=1

(
[(Y (d))k, (Y (d))k]t0 − [(X(d))k, (X(d))k]t0

)
≤ −C

∑
k>d

(
[Y k, Y k]t0 − [Xk, Xk]t0

)
,

where the last passage is due to the differential subordination.
Now we take the expectation of the both sides of (2.10) and use (2.6) to obtain

EU
δ
(Z

(d)
t ) ≤ EU δ(Z(d)

0 ) + Cε. Then let δ → 0 and finally d→∞ to get

EU(Xt, Yt, X
∗
t ) ≤ EU(X0, Y0, X

∗
0 ) + Cε ≤ Cε,

by Lebesgue’s dominated convergence theorem and 1◦. Since ε was chosen arbitrarily,
the estimate (2.5) follows.

3 Proof of (1.5)

3.1 Reductions

Fix t ≥ 0. We start with some initial observations. First, note that in the proof of (1.5)
we may assume that ‖X∗t ‖Lp < ∞, since otherwise the claim is evident. Second, it is
enough to establish the estimate

E|Yt|p ≤ CppE(X∗t )p (3.1)

under the additional assumption that X and Y are bounded and P(|X1
0 | ≥ η) = 1 for

some η > 0. Indeed, suppose that we have established the above inequality. To deduce
the claim in the general case, suppose that X, Y are arbitrary H-valued, continuous-path
martingales such that Y is differentially subordinate to X. Adding one dimension to
H if necessary, we may assume that the first coordinates of X and Y vanish: Y 1

t =

X1
t = 0 almost surely for all t. Given a positive integer N , consider the stopping time

τN = inf{t : |Xt|+ |Yt| ≥ N} and fix an auxiliary parameter η > 0. Then the martingales
(((η, 0, 0, . . .) + XτN∧t) · 1{τN>0})t≥0, (YτN∧t · 1{τN>0})t≥0 are bounded and satisfy the
differential subordination, so (3.1) gives

E|YτN∧t|p1{τN>0} ≤ CppE(η +X∗τN∧t)
p1{τN>0} ≤ CppE(η +X∗t )p

for any t ≥ 0. Therefore, letting η → 0, N → ∞ and using Fatou’s lemma, we get
E|Yt|p ≤ CppE(X∗t )p, which is the desired bound (1.5).

The final observation is that the inequality (3.1) is of the form (2.1), with

V (x, y, z) = |y|p − Cppzp. (3.2)

Therefore, by the technique described in the previous section, all we need is the appro-
priate special function U .
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3.2 Proof in the case 1/2 ≤ p < 1

In this range of p, we use the function constructed in [18] and given by the formula

U(x, y, z) =
(p

2

)1−p/2(
|y|2 − |x|2 − 2− p

p
z2
)
zp−2. (3.3)

It was proved in [18] that this object satisfies 1◦, 2◦ and 4◦, and a certain slightly weaker
form of 3◦. Thus, to complete the proof, we need to check (2.2), the full version of 3◦.
But this is easy: we have

Uz(x, y, z) =
(p

2

)1−p/2
(p− 2)zp−3

(
|y|2 − |x|2 + z2

)
≤
(p

2

)1−p/2
(p− 2)zp−3|y|2 ≤ 0.

Therefore (3.1), and hence also (1.5), follow. In the case p < 1/2 the calculations will be
much more involved.

3.3 The case 0 < p < 1/2

Throughout this subsection, p is a fixed exponent from the interval (0, 1/2). To define
the special function, we will need some additional objects. The central role in our further
considerations is played by the non-linear ordinary differential equation

g′(y) =
(p+ y)g(y)− p

y + 1
− g2(y), y ≥ 0, (3.4)

with the initial condition g(0) = p/(p − 1) ∈ (−1, 0). The function (x, y) 7→ ((p + y)x −
p)/(y + 1) − x2 is of class C1 and so locally Lipschitz, which yields the existence and
uniqueness of the solution. We extend this solution to its maximal domain [0,M). It is not
difficult to prove that M <∞, but we will not need this; furthermore, replacing y with
−y in (3.4), it is easy to see that g can be extended ‘backwards’, i.e., to some interval of
the form (m,M) with m < 0 (and, in particular, there is no problem with the existence of
derivatives of g at zero). The following technical fact will be used later on.

Lemma 3.1. Let y0 = y0(p) = inf{y ≥ 0 : g(y) + 1 = 0}. Then y0 is well-defined (the
set over which the infimum is taken, is nonempty) and satisfies 1 − 2p ≤ y0 < ∞.
Furthermore, for all y ∈ [0, y0] we have

(1− p− y)g(y) + p ≥ 0. (3.5)

Proof. The fact that y0 is finite is straightforward. Indeed, we infer from (3.4) that if
g(y) < 0, then g′(y) < 0. But g(0) < 0, so g must be decreasing and negative on [0,M).
Consequently, again by (3.4), we obtain g′(y) ≤ −g2(y) ≤ −g2(0) < 0 for all y and hence
the inequality y0 <∞ follows.

To show that y0 ≥ 1 − 2p, note first that g(y) ≤ g(0) = p/(p − 1), as we have just
proved above. Therefore, we have (p+ y)g(y)− p ≥ (y + 1)g(y) and hence, by (3.4), we
get g′(y) ≥ g(y)− g2(y) or

g′(y)

g(y)(1− g(y))
≤ 1.

The latter estimate is equivalent to saying that
(

ln
(
−g(y)
1−g(y)

))′
≤ 1, which, together with

the identity −g(0)/(1− g(0)) = p, gives

ln
−g(y)

1− g(y)
− ln p ≤ y for all y. (3.6)

Plugging y = y0, we obtain y0 ≥ − ln(2p) and it remains to note that − lnu ≥ 1− u for all
u > 0.
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Finally, to show (3.5), it is enough to consider the case y < 1 − p only; indeed, for
y ≥ 1− p both terms on the left of (3.5) are nonnegative. We rewrite (3.6) in the form
−g(y)(1− pey) ≤ pey, which, because of the elementary estimate 1− pey ≥ 1− pe1−p > 0,
is equivalent to g(y) ≥ −pey/(1− pey). Consequently,

(1− p− y)g(y) + p ≥ −p(1− 2p− y)ey + p

1− pey
≥ −p

2e1−p + p

1− pey
≥ 0.

The function g gives rise to another special function: A : [0, y0]→ R, defined by

A(y) = −p(y0 + 2)p−1(y0 + 1)

2p+ 2y0 + 1
exp

(
−
∫ y0

y

g(u)du

)
.

Actually, since g extends smoothly to some neighborhood of [0, y0], so does A (and hence
we can speak of its derivatives at 0 and y0).

Lemma 3.2. The function A enjoys the following properties.
(i) We have A′′(y)(y + 1)− (p+ y)A′(y) + pA(y) = 0 for y ∈ [0, y0].
(ii) We have A′′(y) ≥ A′′′(y) ≥ 0 for y ∈ [0, y0].
(iii) We have A′′(y)(−y − 1) +A′(y) ≤ 0 for y ∈ [0, y0].

Proof. (i) Obviously, we have A < 0 on [0, y0]: dividing both sides of the desired differen-
tial equation by A and noting that A′(y)/A(y) = g(y), A′′(y)/A(y) = g′(y) + g2(y), we see
that the claim is equivalent to (3.4).

(ii) Differentiating both sides of the equation in (i), we obtain

A′′′(y)(y + 1) = (p+ y − 1)A′′(y) +A′(y)(1− p). (3.7)

Again by (i), the expression on the right is nonnegative if and only if (p + y − 1)[(p +

y)A′(y)− pA(y)] + (1− p)(1 + y)A′(y) ≥ 0. We divide both sides by A < 0 and, after some
straightforward manipulations, the estimate A′′′ ≥ 0 becomes

g(y)[−(1− p)2 − py − y2] ≥ p(1− p− y).

If 1− p− y ≤ 0, there is nothing to prove (the left-hand side is positive). For 1− p− y > 0,
the above estimate follows by multiplying the inequalities g(y) ≤ g(0) = p/(p − 1) and
−(1− p)2 − py − y2 ≤ −(1− p)2 − py + y = (1− p)(p+ y − 1).

It remains to prove that A′′(y) ≥ A′′′(y). Multiplying both sides by y+1 and exploiting
(3.7), we check that the estimate becomes (2− p)A′′(y) ≥ (1− p)A′(y). Multiplying both
sides by y + 1 again, and applying part (i), we obtain the equivalent form

(3p− 1− p2 + y)A′(y) ≥ p(2− p)A(y),

or, if we divide both sides by A < 0,

(3p− 1− p2 + y)g(y) ≤ p(2− p). (3.8)

However, by (3.5), we know that (p+y−1)g(y) ≤ p; furthermore, we have (2p−p2)g(y) <

0 < p(1− p). Adding the latter two estimates we obtain (3.8).
(iii) By (i), the assertion amounts to saying that (1 − p − y)A′(y) + pA(y) ≤ 0 or

(1− p− y)g(y) + p ≥ 0, which we established in the previous lemma.

Let D1, D2, D3 be three subsets of the strip [−1, 1]×R, given by

D1 = {(x, y) ∈ [−1, 1]×R : |x|+ |y| ≤ 1},
D2 = {(x, y) ∈ [−1, 1]×R : 1 < |x|+ |y| ≤ y0 + 1},
D3 = {(x, y) ∈ [−1, 1]×R : |x|+ |y| > y0 + 1}.
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Consider the function u : [−1, 1]×R→ R, defined by the formula

u(x, y) =


− p

2(1−p)A(0)(y2 − x2) + 2−p
2(1−p)A(0) if (x, y) ∈ D1,

A(|x|+ |y| − 1)− |x|A′(|x|+ |y| − 1) if (x, y) ∈ D2,

A(y0)
{
− 2p+y0

2(y0+1) [(|y| − y0)2 − x2 + 1] + 2p−1
y0+1 (|y| − y0) + 2

}
if (x, y) ∈ D3.

The function u is quite regular, as we will prove below.

Lemma 3.3. The function u is continuous on the strip [−1, 1]×R and of class C1 in the
interior of this domain.

Proof. Let us first handle the continuity; by symmetry, it is enough to check it on the set
[0, 1]× [0,∞). If x, y ≥ 0 satisfy x+ y = 1, then

lim
D13(x′,y′)→(x,y)

u(x′, y′) = − p

2(1− p)
A(0)((1− x)2 − x2) +

2− p
2(1− p)

A(0)

= A(0) +
p

1− p
A(0)x

= A(0)− g(0)A(0)x = A(0)−A′(0)x = lim
D23(x′,y′)→(x,y)

u(x′, y′).

Similarly, if x, y ≥ 0 satisfy x+ y = y0 + 1, then

lim
D33(x′,y′)→(x,y)

u(x′, y′) = A(y0)

{
− 2p+ y0

2(y0 + 1)
[(1− x)2 − x2 + 1] +

2p− 1

y0 + 1
(1− x) + 2

}
= A(y0)(1 + x)

= A(y0)− xA′(y0)

= A(y0)(1− xg(y0)) = lim
D23(x′,y′)→(x,y)

u(x′, y′).

This proves that u is a continuous function. To show that it is of class C1, note that
ux = 0 on {0} ×R and uy = 0 on [−1, 1]× {0}. Consequently, by symmetry, it is enough
to check the smoothness on (0, 1)× (0,∞). If x, y > 0 satisfy x+ y = 1, then

lim
D13(x′,y′)→(x,y)

ux(x′, y′) =
p

1− p
A(0)x = −A′′(0)x = lim

D23(x′,y′)→(x,y)
ux(x′, y′),

since by Lemma 3.2 (i), A′′(0) = pA′(0) − pA(0) = p · p
p−1A(0) − pA(0) = p

p−1A(0).
Analogously, if x, y ≥ 0 satisfy x+ y = y0 + 1, then

lim
D33(x′,y′)→(x,y)

ux(x′, y′) =
2p+ y0
y0 + 1

A(y0)x = −A′′(y0)x = lim
D23(x′,y′)→(x,y)

ux(x′, y′),

where we have used Lemma 3.2 (i) again: A′′(y0)(y0 + 1) = (p + y0)A′(y0) − pA(y0) =(
(p+ y0)g(y0)− p

)
A(y0) = −(2p+ y0)A(y0). The calculations for uy are similar and are

left to the reader.

The special function U : D → R, which will lead us to the estimate (1.5) for p ∈ (0, 1/2),
is given by

U(x, y, z) = zpu(|x|/z, |y|/z).

Let us check that this object enjoys all the necessary requirements.

Theorem 3.4. The function U satisfies the conditions 1◦ – 4◦ listed in the previous
section (with V given by (3.2)).

EJP 26 (2021), paper 21.
Page 10/22

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP596
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Maximal inequalities

Proof of 4◦. The inequality is evident if (|x|/z, |y|/z) belongs to the interior of D1: then

〈Uxx(x, y, z)h, h〉+ 2〈Uxy(x, y, z)h, k〉+ 〈Uyy(x, y, z)k, k〉 = − pzp−2

2(1− p)
A(0)(|k|2 − |h|2),

and the coefficient in front of |k|2 − |h|2 on the right is positive. The inequality (2.3) is
also not difficult if (|x|/z, |y|/z) lies in the interior of D3. For such (x, y, z), we have

U(x, y, z) = −2p+ y0
y0 + 1

A(y0)zp−2(|y|2 − |x|2) +A(y0)(2p+ y0 − 1)zp−1|y|+ η,

where η does not depend on x or y. By Lemma 3.1, we have 2p+ y0 − 1 ≥ 0 and hence
(x, y) 7→ A(y0)(2p+ y0 − 1)zp−1|y| is a concave function in x and y. Consequently,

〈Uxx(x, y, z)h, h〉+ 2〈Uxy(x, y, z)h, k〉+ 〈Uyy(x, y, z)k, k〉

≤ −2p+ y0
y0 + 1

A(y0)zp−2(|k|2 − |h|2),

which is the desired bound, since − 2p+y0
y0+1 A(y0)zp−2 ≥ 0. The main technical difficulty

lies in the verification of (2.3) for (|x|/z, |y|/z) lying in the interior of D2. A bit lengthy,
but rather straightforward computations allow to obtain

〈Uxx(x, y, z)h, h〉+ 2〈Uxy(x, y, z)h, k〉+ 〈Uyy(x, y, z)k, k〉 = I1 + I2 + I3,

where

I1 = −zp−3|x|A′′′(u)
(
〈x′, h〉+ 〈y′, k〉

)2
,

I2 = zp−1 · (A′′(u)(−u− 1) +A′(u)) · |k|
2 − 〈y′, k〉2

|y|
,

I3 = zp−2A′′(u)(|k|2 − |h|2)

and u = |x|/z + |y|/z − 1. By Lemma 3.2 (ii), the term I1 is nonpositive. Similarly, the
third part of that lemma combined with 〈y′, k〉2 ≤ |k|2 yields I2 ≤ 0. So,

〈Uxx(x, y, z)h, h〉+ 2〈Uxy(x, y, z)h, k〉+ 〈Uyy(x, y, z)k, k〉 ≤ zp−2A′′(u)(|k|2 − |h|2),

and by Lemma 3.2 (ii) again, the factor in front of |k|2 − |h|2 is positive.

Proof of 3◦. The inequality is equivalent to pu−xux− yuy ≤ 0 on (0, 1)× (0,∞). Observe
that if (x, y) lies in the interior of D1, D2 or D3, then

∂

∂x
(pu− xux − yuy) = (p− 1)ux(x, y)− xuxx(x, y)− yuxy(x, y) ≥ 0. (3.9)

Indeed, the inequality uxx(x, y) ≤ 0 follows from (2.3). The estimate ux(x, y) ≤ 0 is due
to uxx ≤ 0 and the identity ux(0+, y) = 0 for all y ≥ 0. Finally, uxy ≤ 0 follows again from
(2.3): we know that u is linear along line segments of slope −1 and concave along line
segments of slope +1, so uxx − 2uxy + uyy = 0 and uxx + 2uxy + uyy ≤ 0.

Therefore, (3.9) holds true, and hence, to establish pu− xux − yuy ≤ 0, it is enough
to verify this estimate on {1} × [0,∞). If y ≤ y0, then

pu(1, y)− ux(1, y)− yuy(1, y) = A′′(y)(y + 1)− (y + p)A′(y) + pA(y) = 0,

where the last equality is equivalent to (3.4). To prove the inequality for y > y0, note
that the function y 7→ pu(1, y)− ux(1, y)− yuy(1, y) is concave on [y0,∞) (it is a quadratic

function with the coefficient in front of y2 equal to − (2p+y0)(p−2)
2(y0+1) A(y0) < 0) and it vanishes
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for y = y0, as we have just checked above. Thus, it is enough to prove that its derivative
at y = y0 is nonpositive. This is equivalent to (p− 1)uy(1, y0)− y0uyy(1, y0) ≤ 0, or

(p− 1) ·A(y0) · 2p− 1

y0 + 1
+A(y0) · (2p+ y0)y0

y0 + 1
≤ 0.

Since both terms on the left are nonpositive, the bound holds and hence (2.2) follows.

Proof of 2◦. We start with the observation that for any y ∈ H and any z > 0, the function
x 7→ U(x, y, z) is concave on the set {x : |x| ≤ z}: this follows from 4◦. Furthermore, the
analogous function x 7→ V (x, y, z) is constant. Therefore, it is enough to establish the
majorization 2◦ under the additional assumption |x| = z; in the language of u, this is
equivalent to saying that

u(1, y) ≥ yp − Cpp for all y ≥ 0. (3.10)

The function y 7→ u(1, y) is of class C1. Furthermore, it is convex: if y < y0, its second
derivative equals A′′(y)−A′′′(y), which is nonnegative, by Lemma 3.2 (ii); if y > y0, the
function is quadratic, with a positive coefficient in front of y2. On the other hand, the
right-hand side is a concave function of y. Thus, the majorization follows at once from
the observation that both sides match, along with the derivatives, at y = y0 + 2:

u(1, y0 + 2) = 0 = (y0 + 2)p − Cpp

and

uy(1, y0 + 2) = A(y0)

{
−2(2p+ y0)

y0 + 1
+

2p− 1

y0 + 1

}
= p(y0 + 2)p−1.

Proof of 1◦. This is easy. The function ξ : [−1, 1]→ R given by ξ(t) = U(tx, ty, z) is even
and concave (by 4◦). Consequently, we have

U(x, y, z) = ξ(1) ≤ ξ(0) =
2− p

2(1− p)
A(0) < 0,

which is the desired estimate.

4 Sharpness

There are two general methods which are typically used to prove that the constant
involved in a given martingale inequality is the best possible. The first type of approach
rests on the construction of appropriate extremal processes, for which the equality is
attained, or asymptotically attained (i.e., in the limit). This natural method has been
applied in many cases: see e.g. [8, 10, 22]. The second method is more abstract
and indirect in nature: one assumes that an estimate under investigation holds with
some constant and then proves the existence of an associated special function, enjoying
appropriate size and regularity conditions. Then, using these properties in the right
order, one shows that the constant in question must be bounded below by an appropriate
quantity. This type of reasoning originates in Burkholder’s paper [9] and has been
successfully exploited in various contexts: see e.g. [9, 18, 19, 23].

We have decided to follow the first path and show the optimality of the constant Cp
explicitly, with the use of examples. This approach has the additional advantage that
some elements of the proof will be of key importance in the next section, where we
describe some steps leading to the formula for the special function U for 0 < p < 1/2.
We consider the cases 1/2 ≤ p < 1 and 0 < p < 1/2 separately. The first case is simpler
and hence its analysis can be treated as a ‘basis’ for the more complicated reasoning for
p < 1/2.
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4.1 The case 1/2 ≤ p < 1

Let us first describe the behavior of the extremal pair (X,Y ), or rather the extremal
triple (X,Y,X∗). The conditions appearing below are informal and they will be rigorously
specified later. We assume that η < 1 is a fixed parameter, and consider the process
(X,Y,X∗) whose evolution is governed by the following requirements.

(i) We have (X0, Y0, X
∗
0 ) = (1, 0, 1) almost surely.

(ii) The state of the form (x, 0, |x|), |x| ≥ 1, leads to ((1 + δ)x, 0, (1 + δ)|x|) (where δ is
‘infinitesimally small’) or to one of the points ((1− η)x, ηx, |x|), ((1− η)x,−ηx, |x|).

(iii) The state of the form ((1 − η)x,±ηx, |x|) leads to (x,±2ηx, |x|) or to (−ηx,±(η −
1)x, |x|).

(iv) The state of the form (−ηx,±(η−1)x, |x|) leads to (−x, 0, |x|) or to ((η−1)x,∓ηx, |x|).
(v) The points of the form (x,±2ηx, |x|) are absorbing.

To gain some intuition about the evolution, see Figure 1 below. Actually, we have
formulated the above conditions as if the triple (X,Y,X∗) was a discrete-time process.
To avoid confusion, let us explain that the word “leads” means that the triple moves, in a
continuous manner, along the line segments joining the appropriate states.

Figure 1: Bold arrows indicate the local evolution of the pair (X,Y ), under the assump-
tion that X∗ = |x|: the rule (ii) (left) and the rule (iii) (right). Inside the strip bounded
by the vertical lines, the pair evolves along the dotted lines, until it gets to a ‘T-shaped’
crossing: then it changes the direction to the perpendicular line segment.

The formal description of the triple (X,Y,X∗) is the following. The process Y will be
the appropriately stopped one-dimensional Brownian motion started at zero and X will
be a stochastic integral of Y :

Xt = 1 +

∫ t

0+

HsdYt, t ≥ 0.
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Thus, all we need is the specification of the process H. To this end, we will construct
inductively a sequence (σn)n≥0 of stopping times. Set σ0 ≡ 0 and let

σ2n+1 = inf
{
t ≥ σ2n : |Yt| ≥ ηX∗t

}
,

σ2n+2 = inf
{
t ≥ σ2n+1 : |Yt| = 2ηX∗t or Yt = (η − 1)X∗τ2n+1

· sgnYσ2n+1

}
for n = 0, 1, 2, . . .. Here and in what follows, we will use the (slightly unusual) convention
sgn 0 = 1. The predictable ‘control process’ H is given by

Ht =

{
sgnXσ2n

sgnYt if t ∈ [σ2n, σ2n+1),

sgn(Xσ2n+1
) sgn(Yσ2n+1

) if t ∈ [σ2n+1, σ2n+2).

It is easy to see that then the process (X,Y,X∗) evolves according to the rules (i)-(v)
described above.

Let us gather some basic information about the triple (X,Y,X∗), which follows
directly from the above construction. First, note that Y is differentially subordinate to
X: indeed, we have |Y0| = 0 ≤ 1 = |X0| and the transforming process H takes values in
the set {−1, 1}. Furthermore, on the set {s ≥ 0 : X∗s increases}, we have |Xs| = X∗s and
Ys = 0. Finally, we have |Yt| ≤ 2ηX∗t almost surely for all t, and the process (X,Y,X∗)

terminates ultimately when the equality |Yt| = 2ηX∗t is experienced.
The next step of the analysis is to show that if 2η <

√
2/p, then X∗∞ ∈ Lp. The key

observation is that the process (U(Xt, Yt, X
∗
t ))t≥0 is a local martingale. To see this, we

will apply Itô’s formula and check that the finite-variation part vanishes. First, for any
t ≥ 0 we have ∫ t

0+

Uz(Xs, Ys, X
∗
s )dX∗s = 0.

This follows from the identity Uz(±x, 0, |x|) = 0 for all x > 0 and the fact that on the set
where X∗s increases, we have |Xs| = X∗s and Ys = 0 (which follows directly from the
above construction). Next, since H takes values in {−1, 1}, we have∫ t

0+

Uxx(. . .)d[X,X]s + 2

∫ t

0+

Uxy(. . .)d[X,X]s +

∫ t

0+

Uyy(. . .)d[X,X]s

=

∫ t

0+

(−H2
s + 1)ds = 0.

This establishes the local martingale property of (U(Xt, Yt, X
∗
t ))t≥0. Consider the se-

quence τ1 ≤ τ2 ≤ . . . of stopping times given by τn = inf{t > 0 : X∗t = n}. Then we
obviously have |Xτn | = X∗τn (since this is either equal to n, or, if the triple (X,Y,X∗)

terminated earlier, we have |Xτn | = X∗τn = |Yτn |/(2η)). Furthermore, the sequence
(τn)n≥1 is localizing for (U(Xt, Yt, X

∗
t ))t≥0, since for each n the process (X∗τn∧t)t≥0, and

hence also (Xτn∧t)t≥0 and (Yτn∧t)t≥0, are bounded. Consequently, we have

EU(Xτn , Yτn , X
∗
τn) = lim

t→∞
EU(Xτn∧t, Yτn∧t, X

∗
τn∧t) = U(1, 0, 1) = −

(
2

p

)p/2
.

Plugging the formula for U and using the facts that |Yτn | ≤ 2ηX∗τn and |Xτn | = X∗τn , we
obtain

−2

p
= E

(
Y 2
τn −X

2
τn −

2− p
p

(X∗τn)2
)

(X∗τn)p−2 ≤
(

4η2 − 2

p

)
E(X∗τn)p.
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Therefore, if 2η <
√

2/p, then we get

E(X∗τn)p ≤ 2/p

2/p− 4η2

and letting n → ∞ we get X∗∞ ∈ Lp. Consequently, Y converges almost surely (which
follows, for example, from Burkholder-Davis-Gundy inequalities). Denoting the limit by
Y∞, we obtain P(|Y∞| = 2ηX∗∞) = 1 (by the construction of (X,Y,X∗)) and hence, by
Fatou’s lemma,

lim inf
t→∞

‖Yt‖Lp ≥ ‖Y∞‖Lp = 2η‖X∗∞‖Lp = lim
t→∞

2η‖X∗t ‖Lp .

Since 2η can be made arbitrarily close to
√

2/p, the sharpness is established.

4.2 The case p < 1/2

The above reasoning cannot be carried over to exponents smaller than 1/2. Indeed,
the limiting value of the parameter η for which the above construction of the triple
(X,Y,X∗) makes sense, is equal to 1 (for bigger η, the line segments ‘stick out’ of the
picture). Recalling the key identity 2η =

√
2/p, we see that the endpoint value η = 1 leads

to the boundary case p = 1/2. However, the above discussion gives some indications
about the structure of the triple (X,Y,X∗) for the small values of the parameter p.
Namely, let us emphasize that for p ≥ 1/2, we had the pointwise identity |Y∞| = 2ηX∗∞,
even stronger: |Y∞| = 2η|X∞| = 2ηX∗∞, where η could be chosen arbitrarily close to Cp.
It seems quite natural to search, in the case p < 1/2, for a triple satisfying the same
condition. A little thought and experimentation lead to the following candidate. Let Y be
a standard one-dimensional Brownian motion started at zero and define

Xt = 1 +

∫ t

0

HsdYs,

where

Hs =

{
− sgn(Xs) sgn(Ys) if |Xs|+ |Ys| < (2η − 1)X∗s ,

1 if |Xs|+ |Ys| ≥ (2η − 1)X∗s .

Furthermore, define the termination time by σ = inf{t : |Yt| = 2η|Xt| = 2ηX∗t }.
Here is some (very rough and informal) intuition about the behavior of (X,Y,X∗).

The process starts at (1, 0, 1). For any time t, if |Xt| + |Yt| < (2η − 1)X∗t , then the
pair (X,Y ) moves (locally) along a line segment of slope − sgn(XtYt) until one of the
coordinates reaches zero and the slope switches its sign. On the other hand, if we have
|Xt|+ |Yt| = (2η − 1)X∗t , then the pair (X,Y ) is forced to move along the line segment of
slope 1 until |Y | = 2η|X| = 2ηX∗ (then we stop) or |Y | = (2η − 2)|X| = (2η − 2)X∗. If the
latter happens, say, at some time τ , then the third coordinate increases instantly and the
equality |X|+ |Y | = (2η−1)X∗ is no longer valid: we actually have |Xt|+ |Yt| < (2η−1)X∗t
almost surely for t bigger, but infinitesimally close to τ . Hence, we can apply the
preceding evolution rule. See Figure 2 below.

As in the previous case, we will prove that if 2η < y0 + 2, then X∗∞ ∈ Lp and
P(|Y∞| = 2ηX∗∞) = 1, which immediately yield the sharpness. To this end, we will study
the local martingale property of U(X,Y,X∗) with the use of Itô’s formula, exactly in the
same manner as in the case p ≥ 1/2. Actually, to ensure that the function is sufficiently
regular, we will need to modify it slightly. First, define uη : [−1, 1]×R→ R, by uη = u

if 1 ≤ |x|+ |y| ≤ 2η − 1; next, assume that uη is linear along each of the line segments
y − x = ±(2η − 1), x ∈ [−1, 1]; finally, extend uη to the whole [−1, 1]×R (arbitrarily) so
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Figure 2: Bold arrows indicate the evolution of the pair (X,Y ), under the assumption
X∗ = |x|. The pair (X,Y ) moves locally along the dotted line segments (of slope
sgn(XY )).

that it is of class C2. Note that in particular we have

uη(1, 2η) = 2uη(0, 2η − 1)− u(−1, 2η − 2)

= A(2η − 2) +A′(2η − 2) = A(2η − 2)(1 + g(2η − 2)) < 0,
(4.1)

where the last inequality follows from the fact that 2η − 2 < y0 (which gives g(2η − 2) >

−1, directly from the definition of y0). Next, introduce Uη : D → R by Uη(x, y, z) =

zpuη(|x|/z, |y|/z). Observe that U coincides with Uη on the set {(x, y, z) : z ≤ |x|+ |y| ≤
(2η− 1)z}. Arguing as previously, we check that the process (Uη(Xt, Yt, X

∗
t ))t≥0 is a local

martingale. Namely, we apply Itô’s formula and verify that the finite-variation parts
vanish. First, note that ∫ t

0

Uηz (Xs, Ys, X
∗
s )dX∗s = 0.

Indeed, we have |Xs| = X∗s and |Ys| ≤ (2η − 2)X∗s on the set where X∗ increases;
furthermore, if 0 ≤ |y| ≤ (2η − 2)|x|, then Uηz (±x, y, |x|) = Uz(±x, y, |x|) = 0. In addition,
we have ∫ t

0

Uηxx(. . .)d[X,X]s + 2

∫ t

0

Uηxy(. . .)d[X,Y ]s +

∫ t

0

Uηyy(. . .)d[Y, Y ]s = 0

for all t ≥ 0. To see this, recall the directions of the evolution of the pair (X,Y ), discussed
above; it is easy to check that the function Uη is linear along the line segments over
which (X,Y ) moves.

This yields the local martingale property of (Uη(Xt, Yt, X
∗
t ))t≥0. As previously, we

introduce the sequence τ1 ≤ τ2 ≤ . . . of stopping times, given by τn = inf{t > 0 :
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X∗t = n}. This sequence localizes (Uη(Xt, Yt, X
∗
t ))t≥0, since for each n, the process

(Uη(Xτn∧t, Yτn∧t, X
∗
τn∧t))t≥0 is bounded. Consequently, we have

EUη(Xτn , Yτn , X
∗
τn) = lim

t→∞
EUη(Xτn∧t, Yτn∧t, X

∗
τn∧t) = Uη(1, 0, 1) < 0.

However, as in the case p ≥ 1/2, we have |Xτn | = X∗τn almost surely. Actually, there are
two options, either Yτn = 0 and Uη(Xτn , Yτn , X

∗
τn) = (X∗τn)puη(1, 0) < (X∗τn)puη(1, 2η), or

|Yτn | = 2ηX∗τn and Uη(Xτn , Yτn , X
∗
τn) = (X∗τn)puη(1, 2η). Plugging this above gives

uη(1, 2η)E(X∗τn)p > Uη(1, 0, 1),

or equivalently, by (4.1), E(X∗τn)p < Uη(1, 0, 1)/uη(1, 2η). Letting n→∞ we get X∗∞ ∈ Lp,
so Y converges almost surely to some finite random variable Y∞ satisfying P(|Y∞| =

2ηX∗∞) = 1. This yields the sharpness exactly in the same manner as in the case p ≥ 1/2.

5 On the search of the special function, 0 < p < 1/2

Now we will describe some informal steps which have led us to the discovery of the
optimal constant Cp and the special function U : D → R used in the case 0 < p < 1/2. In
principle, the problem of the identification of such objects can be investigated with the
use of two approaches: analytically or with the use of probabilistic methods. Actually,
in a given situation, it is often worth to exploit a combination of both techniques; this
will also be the case here. In the considerations below, we will focus on the real-valued
setting: we assume that H = R. The passage to the vector-valued case is standard: in
the formula for the obtained special function, we interpret all the absolute values as
norms in H.

5.1 Analytic contribution

Let V : D → R be a locally bounded function. Suppose that we are interested in
showing the estimate

EV (Xt, Yt, X
∗
t ) ≤ 0, t ≥ 0, (5.1)

for any pair (X,Y ) of differentially subordinate martingales. In particular, we want
to show this estimate if Y is the stochastic integral, with respect to X, of some pre-
dictable process H with values in {−1, 1}. The fundamental property of the special
function U to be found is that for any X, Y as above, the process U(X,Y,X∗) must be
a supermartingale majorizing V (X,Y,X∗). If we also have U(X0, Y0, X

∗
0 ) ≤ 0, then we

have
EV (Xt, Yt, X

∗
t ) ≤ EU(Xt, Yt, X

∗
t ) ≤ EU(X0, Y0, X

∗
0 ) ≤ 0 (5.2)

and the claim follows. Now suppose that U is of class C2. We may freely impose this
requirement, since our goal is to discover a candidate for the special function; even if
the final function we come up with does not enjoy this regularity, we may hope that it
will still lead to the desired bound anyway (and indeed, this is the case here).

If U is of class C2 and one applies Itô’s formula, the required supermartingale
property gives rise to two partial differential inequalities:

Uz(x, y, z) ≤ 0 if |x| = z (5.3)

and
Uxx(x, y, z)± 2Uxy(x, y, z) + Uyy(x, y, z) ≤ 0 for (x, y, z) ∈ D. (5.4)

Now, if U is the function leading to the sharp inequality, then there is a pair (X,Y ) for
which equality is attained (possibly asymptotically, in the limit). For simplicity, let us
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assume that equality holds in (5.1) for some t > 0 and some nontrivial pair of processes.
This implies that equalities must also hold in (5.2), and hence the partial differential
inequalities (5.3), (5.4) also become equalities (at least on the range of the extremal
triple (X,Y,X∗)): we have seen this, very transparently, in the previous section. As
a priori we do not know how the extremal process (X,Y,X∗) will look like, a natural
starting point is to assume that these equalities hold everywhere. Furthermore, the first
inequality in (5.2) enforces us to impose the condition U ≥ V and the existence of an
extremal pair implies that equality must hold on a nontrivial set.

Summarizing the discussion so far, we search for a C2 function U : D → R which
satisfies the following three assumptions:

(A1) We have Uz(x, y, z) = 0 if |x| = z and y ∈ R.

(A2) For any (x, y, z) ∈ D there is a sign E = E(x, y, z) ∈ {−1, 1} such that

Uxx(x, y, z) + 2EUxy(x, y, z) + Uyy(x, y, z) = 0.

(A3) We have U ≥ V and equality holds for at least one point.

In our case, we have V (x, y, z) = |y|p − Cppzp for some a priori unknown constant Cp.
Note that V is homogeneous of order p, so it seems plausible that the same is true for
U . Setting U(x, y, z) = zpu(x/z, y/z), we see that the problem reduces to the search of a
symmetric function u : [−1, 1]×R→ R of class C2 for which

(a1) We have pu(1, y)− ux(1, y)− yuy(1, y) = 0 if y ≥ 0.

(a2) For any (x, y) ∈ [−1, 1]×R there is a sign ε = ε(x, y) ∈ {−1, 1} such that

uxx(x, y) + 2εuxy(x, y) + uyy(x, y) = 0.

(a3) We have u(x, y) ≥ |y|p − Cpp and equality holds for at least one point.

Let us emphasize that the above set of properties has been obtained on a base of some
more or less reasonable assumptions and guesses. One should also keep in mind that
there might be no function u satisfying the above requirements (for instance, equalities
in (a1), (a2) may hold only on some part of the domain; the function u may not be of
class C2; etc.). So, one should treat the above requirements flexibly, allowing some small
modifications if necessary. We would also like to mention here that in general, there is
no uniqueness; so, there might be several (actually, infinitely many) special functions
leading to the estimate (5.1). In some situations, one might be interested in the best (i.e.,
pointwise smallest) special function, but in practice one often searches for the simplest
function, having as non-complex formula as possible. Then one can expect the analysis
to avoid many tedious technical issues. This will also be the case here.

To proceed, we need to have more information about the structure of the signs in
(a2) and the set of those (x, y) for which equality in (a3) is attained. It is convenient to
incorporate probabilistic arguments.

5.2 Probabilistic contribution

There is an abstract formula for special function U corresponding to (5.1). For any
x, y ∈ R, consider the class M(x, y) which consists of all pairs (X,Y ) of continuous-time
bounded martingales such that X0 = x and

Yt = y +

∫ t

0

HsdXs, t ≥ 0, (5.5)

for some predictable process H with values in {−1, 1}. Here the probability space and
the filtration are also assumed to vary. Define U0 : D → R by the formula

U0(x, y, z) = supEV (X∞, Y∞, X
∗∞∨ z), (5.6)
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where the supremum is taken over all (X,Y ) ∈ M(x, y). Here X∞, Y∞ are the almost
sure limits of X and Y as t→∞, which exist due to the boundedness assumption. By a
standard change-of-time argument, one may assume that X is a stopped one-dimensional
Brownian motion, started at x and run at some fixed speed a (that is, Xt = x+Bat for
t ≥ 0, where B is a standard Brownian motion). The function U0 has all the required
properties. Indeed, we have U0 ≥ V (simply consider the constant pair (X,Y ) ≡ (x, y) in
the definition) and, using standard Markovian arguments, one checks that U0(X,Y,X∗)

is a supermartingale if Y is a stochastic integral of X. The reason why we have decided
to denote this object by U0 (that is, with the additional superscript) is that this is actually
the best (i.e., pointwise smallest) special function. Of course, there is no guarantee that
U0 is of class C2, or even continuous; however, we do not worry about any regularity
issues. Again, we stress that the main purpose of this section is to provide some ideas
which led us to the function of Section 3 (which was rigorously studied there).

In our case, when V (x, y, z) = |y|p − Cppzp, the formula (5.6) becomes

U0(x, y, z) = supE

{
|Y∞|p − Cpp [(X∗∞)p ∨ zp]

}
, (5.7)

where the supremum is taken over appropriate processes as above. Now it can be proved
formally that the special function is homogeneous of order p (which was assumed in
the analytic setting): it follows from the simple scaling property that (X,Y ) ∈ M(x, y)

if and only if (λX, λY ) ∈ M(λx, λy) for any λ > 0. Next, the following ideas turn out

to be helpful. By (5.7), given (x, y, z), we want to maximize the expectation E

{
|Y∞|p −

Cpp (X∗∞ ∨ z)p
}

; naively speaking, we would like to try to maximize E|Y∞|p, keeping

E(X∗∞ ∨ z)p relatively small. As we mentioned above, we may assume that X is a stopped
Brownian motion started at x and hence all we need is the identification of the ‘control’
process H in (5.5). There is a perfect analogy between this problem and the problem of
finding the sign function E in the above analytic context. Namely, both these objects (H
and E) determine the directions of line segments along which the extremal pairs (X,Y )

evolve.
First we will try to identify ‘the shape’ of the termination time for X. We look at the

quantity E(X∗∞ ∨ z)p, which we want to keep relatively small. Obviously, the function
t 7→ (X∗t ∨ z)p is nondecreasing and if |Xt| is strictly less than X∗t , then (X∗t ∨ z) does not
increase for some time. On the other hand, let us inspect the behavior of the function
t 7→ E|Yt|p, which we want to make as large as possible. If Yt is away from zero, then
this expectation decreases (which is not ‘profitable’ from our viewpoint): this follows
from the local concavity of the function y 7→ |y|p. On the other hand, when Y visits zero,
then the expectation will experience a huge increase in a short time, because of the cusp
of the function y 7→ |y|p.

The above discussion suggests the following behavior of the extremal pair (X,Y ):
we should try to keep Y near zero, and stop when it gets far from the origin. What
does ‘far’ mean? In the light of the homogeneity, it seems natural to conjecture that
we should stop if |Y | ≥ ηX∗ for some unknown parameter η. Motivated by the above
analysis of t 7→ EX∗t , it seems plausible to guess that at the moment τ of termination,
we should have |Xτ | = X∗τ (otherwise, it might be profitable to wait for a while. . . ). Can
we say anything about the threshold η? Take the extremal pair (X,Y ) of differentially
subordinate martingales (for which equality is attained). If our intuition is correct, then
we have |Y∞| ≥ η|X∞| = ηX∗∞ almost surely and hence

η‖X∗∞‖Lp ≤ ‖Y∞‖Lp ≤ Cp‖X∗∞‖Lp .
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This leads to the natural guess η = Cp.

Finally, we address the structure of the ‘control’ process H. We want to keep Y

close to zero but, on the other hand, we want it to reach {−CpX∗, CpX∗} after some
finite time. It is not difficult to guess what H should be for some particular points
(formally: how to define H if the triple (X,Y,X∗) lies in some particular set). For
example, suppose that at some time t, (Xt, Yt) got to the point lying on line segment
joining (0, (Cp − 1)z) and (z, Cpz), where z = X∗t . Then the pair should evolve along
this line segment until it gets to one of its endpoints: if it reaches (z, Cpz) then the
whole process terminates ultimately, if it gets to the other endpoint, then the evolution
is continued. A similar analysis can be carried over for the symmetric line segments, i.e.,
those joining (0, (Cp−1)z) and (−z, Cpz); (0,−(Cp−1)z) and (z,−Cpz); (0,−(Cp−1)z) and
(−z,−Cpz). In the language of H, this means that if (X,Y ) visits one of these segments,
then we should take H = sgn(XY ) (until we leave the segment); in the language of the
sign function ε from the analytic setting, this means ε(x, y) = sgn(xy) for (x, y) belonging
to the union of the segments (with z = 1).

Actually, it is quite tempting to take H = sgn(XY ) everywhere, but this is not the
right choice. Indeed, if we took (X0, Y0, X

∗
0 ) = (1, 1, 1), then this identity for H would

simply give X = Y . This cannot be the extremal pair for (5.1), since it would imply that
the best constant Cp is equal to 1 (and, in the light of the case p ≥ 1/2, one expects it to
be bigger). So, let us try to switch the sign of the process H to − sgn(XY ): this leads to
the conjecture that for x, y lying between the line segments, we have ε(x, y) = − sgn(xy).
This turns out to be the right guess, as it leads to the appropriate special function on the
crucial part of the domain (see Figure 3 below).

Figure 3: The slopes of the dotted line segments determine the sign function ε on the set
{(x, y) : −|x| + |y| ≤ Cp − 1}, and the directions along which the extremal pairs (X,Y )

move along.
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5.3 Explicit formula

We return to the analytic setting. By symmetry, it is enough to find the function u

on the quadrant [0, 1]× [0,∞) of the strip [−1, 1]×R. Introduce the auxiliary functions
a(y) = u(0, y) and b(y) = u(1, y) for y ≥ 0. The above discussion suggests

u(x, y) = (1− x)a(x+ y) + xb(x+ y − 1) if 1 ≤ x+ y ≤ Cp − 1, (5.8)

u(x, y) = (1− x)a(Cp − 1) if y − x = Cp − 1. (5.9)

Since we want U to be of class C2, the equality (5.8) implies

− a(y) + a′(y) + b(y − 1) = ux(0, y) = 0 for 1 ≤ y ≤ y0 − 1. (5.10)

Furthermore, the assumption (a1) above yields

a(y + 1) + (p− 1)b(y)− b′(y)(y + 1) = 0 for 0 ≤ y ≤ y0 − 2. (5.11)

Combining these two differential equations, we obtain

a′′(y + 1)(y + 1)− (p+ y)a′(y + 1) + pa(y + 1) = 0, (5.12)

which is the main building block. If we substitute g(y) = a′(y + 1)/a(y + 1), then the
above equation gives (3.4). The initial condition g(0) = p/(p − 1) follows from (5.10),
(5.11) and the equality b′(y) = uy(1, 0) = 0 which must hold due to the symmetry and
regularity of U . To see how the parameter y0 arises, note that by (5.9),

a′(Cp − 1) = ux(0, Cp − 1) + uy(0, Cp − 1) = −a(Cp − 1),

or g(Cp − 2) = −1. In other words, one conjectures that Cp = y0 + 2.
The above discussion leads to the appropriate definition of u on the set {(x, y) ∈

[0, 1] × [0,∞) : 1 ≤ x + y ≤ y0 − 1 or y − x = y0 − 1}. What about the remaining part
of the domain? Motivated by related constructions from the literature, we assumed
that u is given by the quadratic function of the form α(y2 − x2) + β if x + y ≤ 1, and
γ(y2 − x2)− δy − η for x+ y > y0 + 1. The parameters α, β, γ, δ and η were determined
by the requirement u ∈ C1 and ux(0, y) = 0. Fortunately, the function we come up with
enjoys all the required properties and thus leads to the main result of this paper.
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[13] Dragičević, O., and Volberg, A.: Bellman functions and dimensionless estimates of Littlewood-
Paley type. J. Op. Theory 56, (2006), 167–198. MR-2261616

[14] Geiss, S., Montgomery-Smith, S. J. and Saksman, E.: On singular integral and martingale
transforms. Trans. Amer. Math. Soc. 362 (2010), 553–575. MR-2551497

[15] Métivier, M.: Semimartingales: a course on stochastic processes, volume 2. Walter de
Gruyter, Berlin-New York, 1982. MR-0688144
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