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Abstract

This paper obtains Hölder continuity of the mild solution to a stochastic parabolic
equation defined on a bounded domain with homogeneous Dirichlet boundary condi-
tion. The Gaussian noise involved in the equation is white in time and correlated in
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1 Introduction

This paper concerns the Dirichlet problem for the following stochastic partial differ-
ential equation (SPDE) in a bounded domain D ⊂ Rd:

∂tu(t, x) = Lu(t, x) + g(t, x, u) + σ(t, x, u)Ẇ , t ≥ 0, x ∈ D,
u(t, x) = 0, t ≥ 0, x ∈ ∂D, (1.1)

u(0, x) = ψ(x), x ∈ D,

where L is a second-order differential operator defined as

Lu(t, x) := aij(t, x)∂iju(t, x) + bi(t, x)∂iu(t, x), (1.2)

and Ẇ is the centered Gaussian noise that satisfies

E[Ẇ (t, x)Ẇ (s, y)] = δ0(t− s)f(x− y), (1.3)

where δ0(·) denotes the Dirac measure and f is a nonnegative and continuous function
defined on Rd\{0}. Einstein summation convention is used in this paper.

*The research of Kai Du was partially supported by National Key R&D Program of China
(No. 2018YFA0703900), by National Natural Science Foundation of China (No. 11801084), and by Natu-
ral Science Foundation of Shanghai (No. 20ZR1403600).

†School of Mathematical Sciences, Fudan University, Shanghai 200433, China. E-mail: 18110180044@fudan.
edu.cn

‡Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200438, China. E-mail: kdu@
fudan.edu.cn.

https://doi.org/10.1214/21-ECP433
https://imstat.org/journals-and-publications/electronic-communications-in-probability/
https://ams.org/mathscinet/msc/msc2020.html
mailto:18110180044@fudan.edu.cn
mailto:18110180044@fudan.edu.cn
mailto:kdu@fudan.edu.cn
mailto:kdu@fudan.edu.cn


The Dirichlet problem for SPDEs

SPDEs with space-time noise have been widely studied. Although stochastic integrals
with respect to space-time noise are well-defined in very general settings (cf. [27, 4,
20, 3]), the analytic property of the solution to an SPDE is affected significantly by the
specific form of the noise, and in some cases, the solution may not be a function but
only a distribution in Schwartz’s sense. For example, if the noise is white in space and
time, only in one-dimensional case the solutions to second-order SPDEs are function-
valued (cf. [27, 13]). On the other hand, when considering nonlinear SPDEs, the
solutions are expected to be regular so that the nonlinear mappings can be defined.
For one-dimensional case, many results have been done for both Cauchy problems and
initial-boundary value problems [27, 10, 11, 6].

In the study of nonlinear SPDEs, Dalang and Frangos [5] and Dalang [4] proposed
the following condition on the space-time noise: the spectral measure µf , defined as the
inverse Fourier transform of f in (1.3), satisfies∫

Rd

µf (dξ)

1 + |ξ|2
<∞. (1.4)

Under this condition, Dalang [4] proved that the Cauchy problem for SPDE (1.1) has a
unique mild solution that satisfies supt,xE[|u(t, x)|p] <∞ for any p ≥ 1, but did not show
whether the solution has a continuous modification. Later, Sanz-Solé and Sarrà [24, 23]
proposed a reinforcing condition:∫

Rd

µf (dξ)

(1 + |ξ|2)1−η <∞ with η ∈ (0, 1), (1.5)

under which they proved Hölder continuity of solutions to the Cauchy problem for
SPDE (1.1) with L = ∆. Their result was extended by Márquez-Carreras and Sarrà [19]
to the Dirichlet problem with D = [0, 1]d and L = ∆. It is worth noting that condition (1.4)
alone cannot guarantee the existence of a continuous version of the solution (cf. [2, 1]).

Krylov et.al. established a complete Lp-theory on the whole space [16] and domain
[15, 14]. By Sobolev’s embedding, the regularity in proper Hölder spaces can be obtained,
but requires higher regularities of the data.

Most literatures about SPDEs on bounded domains in the sense of Walsh are dealing
with convex domains (c.f. [12, 25]). In the last decade, the interests on the results
including large deviation principle, intermittency and spatial asymptotics of the solutions
have grown up considerably. However, all of these results deal with the special domains
such as Rd, [0, 1] or a closed ball (c.f. [19, 22, 7, 26]). Since the shape of the domains
play a crucial role, some results do not extend directly to general bounded domains (c.f.
[21]). This article allows to go a step further on the assumptions of domains.

The aim of this paper is to prove Hölder continuity of solutions to SPDE (1.1) in
general bounded domains, under condition (1.5). The approach in [19] is based on the
specific form of the heat kernel on [0, 1]d, which is constructed by the method of images
[8]. Their approach does not seem to work for L in (1.2) and general domains. Our
method is based on a crucial estimate of the Green function associated with L (see
Lemma 3.3). We prove that the mild solution is Hölder continuous with exponents η/2− ε
in time and η − ε in space for any ε > 0. The indices coincide with those for the Cauchy
problem (cf. [23]) and the Dirichlet problem with D = [0, 1]d (cf. [19]).

We remark that some other assumptions instead of condition (1.5) were proposed in
the literature to study the continuity of solutions to SPDEs. For example, Sanz-Solé and
Vuillermot [25] introduced the condition

sup
(t,x)∈[0,T ]×D

∫ t

0

(t− τ)−η
∞∑
j=1

λj

(∫
D

|G(t, x; τ, y)|ej(y)dy

)2

dτ <∞ (1.6)
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The Dirichlet problem for SPDEs

involving the Green function for L, and obtained Hölder regularity for SPDE (1.1)
in bounded convex domains. As condition (1.6) is weaker than condition (1.5), it is
interesting to extend our results under it, especially for non-convex domains.

This paper is organized as follows. Section 2 gives the main theorem after introducing
notations and assumptions. In Section 3, we apply Kolmogorov’s continuity criterion
and crucial esitmates of the Green function to prove Hölder continuity of the solution to
SPDE (1.1).

2 Notation and main results

Let Rd be the Euclidean space of points x = (x1, . . . , xd) and Br(x) := {y ∈ Rd :

|x−y| < r}. Let D ⊂ Rd be a bounded domain. Cm+β(D) denotes the usual Hölder space
with m = 0, 1, . . . and β ∈ (0, 1) (cf. [18]); C0(D) consists of all continuous real-valued
functions vanishing on ∂D. Let T > 0 be a fixed constant. Define QT := [0, T ]×D.

For i = 1, . . . , d, we write ∂iu = ∂u/∂xi and ∇u = (∂1u, . . . , ∂du).
Let (Ω,F , {Ft},P) be a complete filtered probability space and P be the predictable

σ-algebra generated by {Ft}. Let W = {W (ϕ), ϕ ∈ D(Rd+1)} be a centered Gaussian
random field with covariance functional given by

J(ϕ,ψ) :=

∫
R+

∫
Rd

∫
Rd
ϕ(s, x)f(x− y)ψ(s, y)dxdyds,

where f : Rd\{0} → R+ is a continuous function with f(x) = f(−x) for all x. We assume
that the inverse Fourier transform of f is a non-negative tempered measure on Rd, which
is denoted by µf , and satisfies (1.5).

Fix a constant β ∈ (0, 1). We assume the boundary ∂D ∈ C1+β , the definition of which
is standard (cf. [18, Page 9]).

Definition 2.1 (Boundary regularity). We write ∂D ∈ C1+β if there is a constant ρ0 > 0

such that ∂D ∩Bρ0(x) for each x ∈ ∂D is a connected surface whose equation under a
local coordinate system {yi} is given by y1 = Ψ(y2, . . . , yd) with Ψ ∈ C1+β .

Define the Green function G(t, x; s, y) associated with L on D as follows:

∂G(t, x; s, y)

∂t
= LxG(t, x; s, y),

G(t, x; s, y)|t=s = δ0(x− y),

G(t, x; s, y)|x∈∂D = 0.

Then we can introduce the mild solution to SPDE (1.1) (cf. [27]).

Definition 2.2. A P ⊗ B(D)-measurable function u(·, ·) is a mild solution to SPDE (1.1)
if it holds for all (t, x) ∈ QT that

u(t, x) =

∫
D

G(t, x; 0, y)ψ(y)dy +

∫ t

0

∫
D

G(t, x; s, y)g(s, y, u(s, y))dyds (2.1)

+

∫ t

0

∫
D

G(t, x; s, y)σ(s, y, u(s, y))W (ds, dy).

Let D be the closure of D.

Assumption 2.3 (Parabolicity). There exist positive constants λ1 and λ2 such that for
any (t, x) ∈ [0, T ]×D and ξ = (ξ1, . . . , ξd) ∈ Rd,

λ1|ξ|2 ≤ aij(t, x)ξiξj ≤ λ2|ξ|2.
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The Dirichlet problem for SPDEs

Assumption 2.4. There exist a positive constant A and a constant α ∈ (0, 1) such that
for all t, s ∈ [0, T ] and x, y ∈ D,

|aij(t, x)− aij(s, y)| ≤ A(|x− y|α + |t− s|α2 ),

|bi(t, x)− bi(t, y)| ≤ A|x− y|α.

Assumption 2.5. The functions g and σ are P ⊗B(D)⊗B(R)-measurable on Ω× [0, T ]×
D ×R, and there exists a constant M such that

sup
(ω,t,x)∈Ω×[0,T ]×D

[|g(ω, t, x, 0)|+ |σ(ω, t, x, 0)|] ≤M.

Assumption 2.6. There exists a constant K such that

|g(ω, t, x, r)− g(ω, t, x, r′)|+ |σ(ω, t, x, r)− σ(ω, t, x, r′)| ≤ K|r − r′|,

for any (ω, t, x, r, r′) ∈ Ω× [0, T ]×D ×R2.

In view of [7, Theorem 7.2] and [25, Theorem 5], the following existence and unique-
ness result follows immediately from Gaussian estimates (see Lemma 2.10).

Lemma 2.7. Let (1.4) and Assumptions 2.3–2.6 be satisfied. If ψ ∈ C0(D), then
SPDE (1.1) has a unique mild solution u which satisfies

sup
(t,x)∈QT

E[|u(t, x)|p] <∞, ∀ p ≥ 2. (2.2)

Our main result stated below shows that the unique mild solution of (1.1) has a
Hölder continuous version.

Theorem 2.8. Let (1.5) and Assumptions 2.3–2.6 be satisfied. If ψ ∈ C2(D) ∩ C0(D),
then the mild solution of SPDE (1.1) has a modification in the space C

η
2−,η−([0, T ]×D) :=

∩ε>0C
η
2−ε,η−ε([0, T ]×D).

Remark 2.9. Although [7, Theorem 7.2] and [25, Theorem 5] do not address the same
problem in this article, their methods can be extended based on Lemma 2.10. Besides,
it has been shown that Ẇ in our paper satisfies their assumptions on the noise (see [4,
Remark 10] and [25, Page 839]).

The proof of Theorem 2.8 is given in the next section. Here we remark that the
property (2.2) along with Assumptions 2.5 and 2.6 ensures that the stochastic integral
in (2.1) is well-defined (cf. [27, 4]). Indeed, one will see that

E

[(∫ t

0

∫
D

∫
D

G(t, x; s, y)σ(s, y, u)f(y − z)σ(s, z, u)G(t, x; s, z)dydzds

) p
2

]
(2.3)

is bounded for any p ≥ 2.
The following estimates for the Green function, taken from [18, Chapter IV], play a

key role in the proof of Theorem 2.8.

Lemma 2.10. Under Assumptions 2.3 and 2.4, there exist two positive constants k1 and
k2 such that

G(t, x; s, y) ≤ k1(t− s)− d2 exp

(
− k2

|x− y|2

t− s

)
, (2.4)

|∇xG(t, x; s, y)| ≤ k1(t− s)−
d+1
2 exp

(
− k2

|x− y|2

t− s

)
, (2.5)

|∂tG(t, x; s, y)| ≤ k1(t− s)−
d+2
2 exp

(
− k2

|x− y|2

t− s

)
, (2.6)

for all x, y ∈ D and 0 ≤ s < t ≤ T .
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The Dirichlet problem for SPDEs

Letting Γk(t, x; s, y) be the fundamental solution of ∂tu = 1
4k∆u in Rd, the esti-

mate (2.4) implies that there is a positive constant k3 depending on k1, k2, and d such
that

G(t, x; s, y) ≤ k3Γk2(t, x; s, y), (2.7)

for all x, y ∈ D and 0 ≤ s < t ≤ T . This is called Gaussian estimate, which can be easily
proved by the maximum principle.

Remark 2.11. Lemma 2.10 is proved in [18, Chapter IV], of which the original version
assumes the coefficients aij and bi to be defined on [0, T ]×Rd and satisfy Assumptions 2.3
and 2.4. Although the coefficients in this paper are defined on [0, T ]×D, they can easily
be extended to the whole space Rd and still satisfy the same assumptions.

3 Proof of Theorem 2.8

To prove the Hölder continuity of the mild solution, we need the following three
lemmas, of which the first one is a property of the path in the bounded domain D. Given
x, z ∈ D, we define P x,z as the set, which consists of all continuous paths satisfying the
following two conditions:

(i) the endpoints of the path are x and z;
(ii) each point on the path belongs to D.

Lemma 3.1. For any bounded domain D ⊂ Rd with C1+β boundary, there exists a
constant KD > 1 depending only on the shape of D such that for any two points x, z ∈ D,
we can find a path in P x,z, and the length of this path is bounded by KD|x− z|.

We postpone the proof of this lemma to the end of this section. Now we aim to
treat the solution u as a random field with parameter (t, x), and apply the Kolmogorov’s
continuity criterion which is shown in [17, Lemma 1.4.1] to prove the continuity of
solution u up to a modification.

Lemma 3.2. Let {X(t)}t∈T be a stochastic process indexed by t = (t1, t2, . . . , tN ) ∈ T
where T is a domain in RN . Suppose that there exist constants C > 0, p > 0, and
αi > 0, i = 1, . . . , N with

∑N
i=1 α

−1
i < 1 such that uniformly for all s, t ∈ T,

E[|X(t)−X(s)|p] ≤ C

(
N∑
i=1

|ti − si|αi
)
,

then X has a continuous modification X̄. Moreover, define α0 := d/(
∑N
i=1 α

−1
i ) and let

ᾱi, i = 1, . . . , N be positive constants less than αi(α0−d)/(α0p), i = 1, . . . , N respectively,
then we have

E

[(
sup
s 6=t

|X(t)−X(s)|(∑N
i=1 |ti − si|ᾱi

))p] <∞.
The following lemma gives the crucial estimates. The idea for the proof of this lemma

is derived from the proof of Theorem 7 of Chapter 1 in [9], which proves the estimates
for the fundamental solution in Rd.

Lemma 3.3. Under Assumptions 2.3 and 2.4, for any θ ∈ [0, 1], we have:
(i) for all 0 ≤ s < t ≤ T and x1, x2, y ∈ D,

|G(t, x1; s, y)−G(t, x2; s, y)|

≤ C(t− s)− θ2 |x1 − x2|θ(Γk2/2(t, x1; s, y) + Γk2/2(t, x2; s, y)), (3.1)

where C is independent of θ, s, t, x1, x2, and y.
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The Dirichlet problem for SPDEs

(ii) for all 0 ≤ s < t2 < t1 ≤ T and x, y ∈ D,

|G(t1, x; s, y)−G(t2, x; s, y)|

≤ C(t1 − t2)
θ
2 (t2 − s)−

θ
2 (Γk2/2(t1, x; s, y) + Γk2/2(t2, x; s, y)), (3.2)

where C is independent of θ, s, t1, t2, x, and y. The constant k2 is taken from Lemma 2.10.

Proof. The results for θ = 0 or 1 are direct consequences of Lemma 2.10. Therefore,
we only consider the case θ ∈ (0, 1). For any x1, x2 ∈ D and 0 ≤ s < t ≤ T , when
t− s ≤ |x1 − x2|2, the Gaussian estimate (2.4) indicates that

|G(t, x1; s, y)| ≤ k1(t− s)− d2 exp

(
− k2

|x1 − y|2

t− s

)
,

and

|G(t, x2; s, y)| ≤ k1(t− s)− d2 exp

(
− k2

|x2 − y|2

t− s

)
.

So we have

|G(t, x1; s, y)−G(t, x2; s, y)|

≤ k1(t− s) θ2 (t− s)−
d+θ
2

[
exp

(
− k2

|x1 − y|2

t− s

)
+ exp

(
− k2

|x2 − y|2

t− s

)]

≤ k1|x1 − x2|θ(t− s)−
d+θ
2

[
exp

(
− k2

|x1 − y|2

t− s

)
+ exp

(
− k2

|x2 − y|2

t− s

)]
.

Then we focus on the case t− s > |x1 − x2|2. Based on Lemma 3.1, there exist a constant
KD and a path Px1,x2 ∈ P x1,x2 , such that the length of Px1,x2 is bounded by KD|x1 − x2|.
Then we use (2.5) to obtain

|G(t, x1; s, y)−G(t, x2; s, y)| ≤ sup
ξ∈Px1x2

|∇xG(t, ξ; s, y)| ·KD|x1 − x2|

≤ sup
ξ∈Px1x2

C(t− s)−
d+1
2 exp

(
− k2

|y − ξ|2

t− s

)
|x1 − x2|.

Due to ξ ∈ Px1x2
, we have

2|y − ξ|2 ≥ |x1 − y|2 − 2|x1 − ξ|2 ≥ |x1 − y|2 − 2K2
D|x1 − x2|2.

Therefore, one has

|G(t, x1; s, y)−G(t, x2; s, y)|

≤ C(t− s)−
d+1
2 |x1 − x2|θ|x1 − x2|1−θ exp

(
k2K

2
D

|x1 − x2|2

t− s
− k2

2

|x1 − y|2

t− s

)

≤ C(t− s)−
d+θ
2 |x1 − x2|θ exp

(
− k2

2

|x1 − y|2

t− s

)
.

Hence, for all 0 ≤ s < t ≤ T and x1, x2, y ∈ D, we have

|G(t, x1; s, y)−G(t, x2; s, y)|

≤ C(t− s)−
d+θ
2 |x1 − x2|θ

[
exp

(
− k2

2

|x1 − y|2

t− s

)
+ exp

(
− k2

2

|x2 − y|2

t− s

)]
,
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The Dirichlet problem for SPDEs

which completes the proof of (i) in Lemma 3.3. As for the second estimate (3.2) in
Lemma 3.3, we adopt a similar method as in the proof of (i). We first consider the case
t2 − s < t1 − t2. It is easy to see that t1 − s < 2(t1 − t2), and we combine this estimate
with the Gaussian estimate (2.4) to obtain that

|G(τ, x; s, y)| ≤ 2k1(τ − s)−
d+θ
2 (t1 − t2)

θ
2 exp

(
− k2

|x− y|2

τ − s

)
,

for τ ∈ {t1, t2}, then we can get that

|G(t1, x; s, y)−G(t2, x; s, y)|

≤ 2k1(t1 − t2)
θ
2

[
(t1 − s)−

d+θ
2 exp

(
− k2

|x− y|2

t1 − s

)
+ (t2 − s)−

d+θ
2 exp

(
− k2

|x− y|2

t2 − s

)]
.

On the other hand, if t2 − s ≥ t1 − t2, we have

(t2 − s)−1 = (t1 − s)−1 + (t1 − t2)(t1 − s)−1(t2 − s)−1 ≤ 2(t1 − s)−1.

Combining this estimate with (2.6) and applying the mean value theorem, one can get
that there exists t̄ ∈ [t2, t1] such that

|G(t1, x; s, y)−G(t2, x; s, y)| ≤ C(t̄− s)−
d+2
2 (t1 − t2)

θ
2 (t1 − t2)1− θ2 exp

(
− k2

|x− y|2

t̄− s

)

≤ C(t2 − s)−
d+θ
2 (t1 − t2)

θ
2 exp

(
− k2

|x− y|2

t1 − s

)

≤ C(t1 − s)−
d
2 (t2 − s)−

θ
2 (t1 − t2)

θ
2 exp

(
− k2

|x− y|2

t1 − s

)
.

Therefore, for all 0 ≤ s < t2 < t1 ≤ T and x, y ∈ D, we have

|G(t1, x; s, y)−G(t2, x; s, y)| ≤ C(t1 − t2)
θ
2 (t2 − s)−

θ
2 (Γk2/2(t1, x; s, y) + Γk2/2(t2, x; s, y)).

Then Lemma 3.3 is proved.

We now start to prove Theorem 2.8.

Proof of Theorem 2.8. Based on Definition 2.2, we only need to prove the Hölder continu-
ity of each terms in the right hand side of (2.1). For non-zero ψ ∈ C2(D)∩C0(D), one can
take a simple transformation to reduce the problem to the case with ψ = 0; for example,
consider the equation of v = u−ψ. Besides, the proof of the term consisting g(t, x, u(t, x))

can be easily proved with Lemma 2.7 and 3.3, Hölder inequality, Assumptions 2.5 and 2.6.
Therefore, we pay more attention to the term

U(t, x) :=

∫ t

0

∫
D

G(t, x; s, y)σ(s, y, u(s, y))W (ds, dy).

We divide the proof into two steps, which prove the continuity for space and time
separately.
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Step 1: Let x1 and x2 be two different points in D. By the Burkholder’s inequality
(see the proof of [4, Theorem 5]) and f ≥ 0, for all t ∈ (0, T ] and p ≥ 2, we have

E[|U(t, x1)− U(t, x2)|p]

≤ CE

[(∫ t

0

∫
D

∫
D

|G(t, x1; s, y)−G(t, x2; s, y)| · |σ(s, y, u(s, y))| · f(y − z)

· |σ(s, z, u(s, z))| · |G(t, x1; s, z)−G(t, x2; s, z)|dydzds
) p

2

]
.

Similar to the proof of [4, Theorem 13], we use the Hölder inequality, stochastic Fubini
theorem, Assumptions 2.5 and 2.6, and Lemma 2.7 to acquire that

E[|U(t, x1)− U(t, x2)|p] (3.3)

≤ C
(

1 + sup
(s,x)∈[0,t]×D

E[|u(s, x)|p]
)(∫ t

0

∫
D

∫
D

|G(t, x1; s, y)−G(t, x2; s, y)|

· f(y − z) · |G(t, x1; s, z)−G(t, x2; s, z)|dydzds
) p

2

.

Set θ ∈ (0, 1) a constant to be determined. Combine (3.3) with (3.1) to acquire

E[|U(t, x1)− U(t, x2)|p]

≤ C|x1 − x2|θp
[ ∫ t

0

(t− s)−θ
∫
Rd

∫
Rd

(Γk2/2(t, x1; s, y) + Γk2/2(t, x2; s, y))

· f(y − z) · (Γk2/2(t, x1; s, z) + Γk2/2(t, x2; s, z))dydzds

] p
2

.

Define

F (x, ς) :=

∫
Rd

∫
Rd

Γk2/2(t, x; s, y)f(y − z)Γk2/2(t, ς; s, z)dydz

for any x, ς ∈ {x1, x2}. Then we have

E[|U(t, x1)− U(t, x2)|p] (3.4)

≤ C|x1 − x2|θp
[ ∫ t

0

(t− s)−θ(F (x1, x1) + F (x1, x2) + F (x2, x1) + F (x2, x2))ds

] p
2

.

When x = ς, we use the Fourier’s transform to obtain

F (x, x) =

∫
Rd

∫
Rd

Γk2/2(t,0; s, y)f(y − z)Γk2/2(t,0; s, z)dydz

=

∫
Rd

exp

(
− 4π2(t− s)|ξ|2

k2

)
µf (dξ),

where 0 is the origin in d-dimensional space. Applying the fact that (recalling η ∈ (0, 1))

sup
(t−s)|ξ|2∈R+

{
(T + (t− s)|ξ|2)1−η exp

(
− 4π2(t− s)|ξ|2

k2

)}
<∞, (3.5)

we have

F (x, x) ≤ C(t− s)η−1

∫
Rd

(1 + |ξ|2)η−1µf (dξ) ≤ C(t− s)η−1,
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where C is a constant independent of x. For the case x 6= ς, we apply the definition of
the non-negative tempered measure µf to obtain that

F (x, ς) =

∫
Rd

∫
Rd

Γk2/2(t,0; s, y + ς − x− (−z))f(y)Γk2/2(t,0; s,−z)dydz

=

∫
Rd
f(y)(Γk2/2(t,0; s, ·) ∗ Γk2/2(t,0; s, ·))(y + ς − x)dy

=

∫
Rd

exp
(
ξ · (ς − x)2πi

)
exp

(
− 4π2(t− s)|ξ|2

k2

)
µf (dξ).

Note that the integration is a real number, we have∫
Rd

sin(2πξ · (ς − x)) exp

(
− 4π2(t− s)|ξ|2

k2

)
µf (dξ) = 0,

then we apply (3.5) and the nonnegativity of µf to get that

F (x, ς) ≤
∫
Rd

exp

(
− 4π2(t− s)|ξ|2

k2

)
µf (dξ) ≤ C(t− s)η−1,

where C is a constant independent of t, s, x, and ς. Combine these estimates with (3.4),
one has

E[|U(t, x1)− U(t, x2)|p] ≤ C|x1 − x2|θp
(∫ t

0

(t− s)η−θ−1ds

) p
2

. (3.6)

To make the integral in the right side of (3.6) finite, we need θ ∈ (0, η). For any ε > 0

small enough, we take θ = η − ε. Then we have

E[|U(t, x1)− U(t, x2)|p] ≤ C|x1 − x2|(η−ε)p,

where C is a constant independent of t, x1, and x2. Applying Lemma 3.2 to obtain that
for any ε > 0, the function U has a modification, of which the trajectories are Hölder
continuous in x ∈ D with the exponent η − ε.

Step 2: To prove the continuity of U in t, we set 0 ≤ t2 < t1 ≤ T . Following the proof
in Step 1, we have that for almost all x ∈ D,

E[|U(t1, x)− U(t2, x)|p] ≤ CE

(∫ t1

t2

∫
D

∫
D

G(t1, x; s, y) · |σ(s, y, u(s, y))|

· f(y − z) · |σ(s, z, u(s, z))| ·G(t1, x; s, z)dydzds

) p
2

+ CE

(∫ t2

0

∫
D

∫
D

|G(t1, x; s, y)−G(t2, x; s, y)| · |σ(s, y, u(s, y))|

· f(y − z)|σ(s, z, u(s, z))| · |G(t1, x; s, z)−G(t2, x; s, z)|dydzds

) p
2

=: I1 + I2.

Gaussian estimate (2.7), Assumption 2.5 and 2.6 yield

I1 ≤
(∫ t1

t2

∫
Rd

∫
Rd

Γk2(t1, x; s, y)f(y − z)Γk2(t1, x; s, z)dydzds

) p
2

≤ C
(∫ t1

t2

(t1 − s)η−1ds

) p
2

≤ C(t1 − t2)
ηp
2 .

ECP 26 (2021), paper 61.
Page 9/13

https://www.imstat.org/ecp

https://doi.org/10.1214/21-ECP433
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


The Dirichlet problem for SPDEs

On the other hand, for any τ, t ∈ {t1, t2}, define

B(τ, t) :=

∫
Rd

∫
Rd

Γk2(τ, x; s, y)f(y − z)Γk2(t, x; s, z)dydz,

Set θ ∈ (0, 1) a constant to be determined, then (3.2) indicates

I2 ≤ C(t1 − t2)
θp
2

[∫ t2

0

(t2 − s)−θ
∫
Rd

∫
Rd

(Γk2(t1, x; s, y) + Γk2(t2, x; s, y))

· f(y − z) · (Γk2(t1, x; s, z) + Γk2(t2, x; s, z))dydzds

] p
2

(3.7)

= C(t1 − t2)
θp
2

[ ∫ t2

0

(t2 − s)−θ(B(t1, t1) +B(t1, t2) +B(t2, t1) +B(t2, t2))ds

] p
2

.

When τ = t, we apply (1.5) and (3.5) to obtain

B(τ, t) =

∫
Rd

∫
Rd

Γk2(τ, x; s, y)f(y − z)Γk2(τ, x; s, z)dydz

=

∫
Rd

exp

(
− 4π2(τ − s)|ξ|2

k2

)
µf (dξ) ≤ C(τ − s)η−1,

where the constant C is independent of τ , s, and x. For the case τ 6= t, we also have

B(τ, t) =

∫
Rd

∫
Rd

Γk2(τ, x; s, y)f(y − z)Γk2(t, x; s, z)dydz

=

∫
Rd

exp

(
− 2π2(τ − s)|ξ|2

k2

)
exp

(
− 2π2(t− s)|ξ|2

k2

)
µf (dξ)

≤ C max{(τ − s)η−1, (t− s)η−1}.

where C is a constant independent of τ , s, and x. Therefore, the estimate (3.7) shows

I2 ≤ C(t1 − t2)
θp
2

(∫ t2

0

(t2 − s)η−θ−1ds
) p

2

,

where C is a constant independent of t1, t2, and x. For any ε > 0 small enough, we
take the constant θ = η − 2ε. Similar to the proof in Step 1, we get that for any ε > 0,
the function U has a modification, of which the trajectories are Hölder continuous in
t ∈ [0, T ] with the exponent η/2− ε.

For the joint space-time Hölder regularity, note that the following estimate

E[|u(t1, x1)− u(t2, x2)|p] ≤ CE[|u(t1, x1)− u(t1, x2)|p] + CE[|u(t1, x2)− u(t2, x2)|p]

≤ C(|x1 − x2|ηp−ε + |t1 − t2|ηp/2−ε),

holds for all t1, t2 ∈ [0, T ], x1, x2 ∈ D, and ε > 0 small enough, where C is a constant
independent of t1, t2, x1, and x2. Then we can apply Lemma 3.2 to complete the proof.

We conclude this paper with the proof of Lemma 3.1.

Proof of Lemma 3.1. For any x, z ∈ D, define the infimum length of paths in P x,z as
dD(x, z). Obviously, for a fixed bounded domain D with C1+β boundary, the function
dD(x, z) is uniformly bounded (the upper bound is independent of the choice of points
x and z). Moreover, there exists a continuous path with the endpoints x and z, which
satisfies that each point on path is in D, and the length of this path is dD(x, z).
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Suppose the constant KD does not exist, then there exist two sequences of points
{xn}n∈N and {zn}n∈N such that xn, zn ∈ D for all n ∈ N and

lim
n→∞

dD(xn, zn)

|xn − zn|
=∞, (3.8)

which gives |xn − zn|
n→∞−→ 0. Since the domain D is bounded, we can take the sub-

sequences of {xn}n∈N and {zn}n∈N, which also denote as {xn}n∈N and {zn}n∈N for
convenience, such that xn and zn converge to the same point e as n→∞. When e in the
interior of D, there exists a constant ρ1 > 0 such that Bρ1(e) ⊂ D. Take N large enough
such that xn, zn ∈ Bρ1(e) for any n > N . Then it is easy to find dD(xn, zn) = |xn − zn|,
which is contrary to (3.8).

For the case that e ∈ ∂D, define ρ0 as the constant in Definition 2.1. Based on
Definition 2.1, we can find a local coordinate system (y1, . . . , yd) such that the intersection
of Bρ0(e) with ∂D has the form y1 = Ψ(y2, . . . , yd). Without loss of generality, we assume
that the origin of local coordinate system is e, and the set {y1 ∈ Bρ0(e)|y1 ≤ Ψ(y2, . . . , yd)}
is in D (otherwise we use a new local coordinate system (ȳ1, . . . , ȳd) and a new function
Ψ̄ such that ȳ1 = −y1, Ψ̄ = −Ψ, and ȳi = yi for i = 2, . . . , d). Take N large enough such
that xn, zn ∈ Bρ0(e) for all n > N . Now we fix n > N , and only consider the situation that
the line segment xnzn has the intersection with ∂D (xnzn denotes the line segment with
the endpoints x and z). Define the points x̄n and z̄n in the set xnzn ∩ ∂D as the closest
points to x and z, respectively. Then the line segment x̄nz̄n has the representation

ȳn(s) = (ȳ1
n(s), ȳ2

n(s), . . . , ȳdn(s)) := x̄n + s(z̄n − x̄n), s ∈ [0, 1]

in the local coordinate system. Define a curve segment

Cx̄nz̄n := (Ψ(ȳ2
n(s), . . . , ȳdn(s)), ȳ2

n(s), . . . , ȳdn(s)), s ∈ [0, 1],

then the curve segment Cx̄nz̄n has the following properties:

(i) each point of Cx̄nz̄n is on the boundary ∂D;

(ii) the endpoints of Cx̄nz̄n are x̄n and z̄n;

(iii) the projection of Cx̄nz̄n on the surface y1 = 0 is the same as the one of x̄nz̄n.

We claim that for a fixed point e, there exists a constant K1 > 1, which is independent
of n, such that the length of Cx̄nz̄n is bounded by K1|x̄n − z̄n|. This fact can be proved by
the definition of integrating along curves and the boundedness of the first derivatives of
Ψ. Therefore, the continuous path xnx̄n−Cx̄nz̄n − z̄nzn is in D and the length is bounded
by K1|xn − zn|. This property contradicts to (3.8), which proves Lemma 3.1.

References

[1] Le Chen and Jingyu Huang, Comparison principle for stochastic heat equation on Rd, Ann.
Probab. 47 (2019), no. 2, 989–1035. MR3916940

[2] Le Chen, Jingyu Huang, Davar Khoshnevisan, and Kunwoo Kim, Dense blowup for parabolic
SPDEs, Electron. J. Probab. 24 (2019), Paper No. 118, 33. MR4029421

[3] Giuseppe Da Prato and Jerzy Zabczyk, Stochastic equations in infinite dimensions, second
ed., Encyclopedia of Mathematics and its Applications, vol. 152, Cambridge University Press,
Cambridge, 2014. MR3236753

[4] Robert C. Dalang, Extending the martingale measure stochastic integral with applications to
spatially homogeneous s.p.d.e.’s, Electron. J. Probab. 4 (1999), no. 6, 29. MR1684157

[5] Robert C. Dalang and N. E. Frangos, The stochastic wave equation in two spatial dimensions,
Ann. Probab. 26 (1998), no. 1, 187–212. MR1617046

ECP 26 (2021), paper 61.
Page 11/13

https://www.imstat.org/ecp

https://mathscinet.ams.org/mathscinet-getitem?mr=3916940
https://mathscinet.ams.org/mathscinet-getitem?mr=4029421
https://mathscinet.ams.org/mathscinet-getitem?mr=3236753
https://mathscinet.ams.org/mathscinet-getitem?mr=1684157
https://mathscinet.ams.org/mathscinet-getitem?mr=1617046
https://doi.org/10.1214/21-ECP433
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


The Dirichlet problem for SPDEs

[6] Robert C. Dalang, Davar Khoshnevisan, Carl Mueller, David Nualart, and Yimin Xiao, A
minicourse on stochastic partial differential equations, Lecture Notes in Mathematics, vol.
1962, Springer-Verlag, Berlin, 2009, Held at the University of Utah, Salt Lake City, UT, May
8–19, 2006, Edited by Khoshnevisan and Firas Rassoul-Agha. MR1500166

[7] Mohammud Foondun and Eulalia Nualart, On the behaviour of stochastic heat equations
on bounded domains, ALEA Lat. Am. J. Probab. Math. Stat. 12 (2015), no. 2, 551–571.
MR3382572

[8] N. Franzova, Long time existence for the heat equation with a spatially correlated noise term,
Stochastic Anal. Appl. 17 (1999), no. 2, 169–190. MR1679747

[9] Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Engle-
wood Cliffs, N.J., 1964. MR0181836

[10] I. Gyöngy and É. Pardoux, On quasi-linear stochastic partial differential equations, Probab.
Theory Related Fields 94 (1993), no. 4, 413–425. MR1201552

[11] István Gyöngy and É. Pardoux, On the regularization effect of space-time white noise on
quasi-linear parabolic partial differential equations, Probab. Theory Related Fields 97 (1993),
no. 1-2, 211–229. MR1240724

[12] István Gyöngy and Carles Rovira, On Lp-solutions of semilinear stochastic partial differential
equations, Stochastic Process. Appl. 90 (2000), no. 1, 83–108. MR1787126

[13] Anna Karczewska and Jerzy Zabczyk, Stochastic PDE’s with function-valued solutions, Infinite
dimensional stochastic analysis (Amsterdam, 1999), Verh. Afd. Natuurkd. 1. Reeks. K. Ned.
Akad. Wet., vol. 52, R. Neth. Acad. Arts Sci., Amsterdam, 2000, pp. 197–216. MR1832378

[14] Kyeong-Hun Kim, On stochastic partial differential equations with variable coefficients in C1

domains, Stochastic Process. Appl. 112 (2004), no. 2, 261–283. MR2073414

[15] Kyeong-Hun Kim and N. V. Krylov, On the Sobolev space theory of parabolic and elliptic
equations in C1 domains, SIAM J. Math. Anal. 36 (2004), no. 2, 618–642. MR2111792

[16] N. V. Krylov, An analytic approach to SPDEs, Stochastic partial differential equations: six
perspectives, Math. Surveys Monogr., vol. 64, Amer. Math. Soc., Providence, RI, 1999,
pp. 185–242. MR1661766

[17] Hiroshi Kunita, Stochastic flows and stochastic differential equations, Cambridge Studies in
Advanced Mathematics, vol. 24, Cambridge University Press, Cambridge, 1997, Reprint of
the 1990 original. MR1472487

[18] O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural’ceva, Linear and quasilinear equations of
parabolic type, Translations of Mathematical Monographs, Vol. 23, American Mathematical
Society, Providence, R.I., 1968, Translated from the Russian by S. Smith. MR0241822

[19] David Márquez-Carreras and Mònica Sarrà, Large deviation principle for a stochastic heat
equation with spatially correlated noise, Electron. J. Probab. 8 (2003), no. 12, 39. MR1998765

[20] David Nualart and Lluís Quer-Sardanyons, Existence and smoothness of the density for
spatially homogeneous SPDEs, Potential Anal. 27 (2007), no. 3, 281–299. MR2336301

[21] Eulalia Nualart, Moment bounds for some fractional stochastic heat equations on the ball,
Electron. Commun. Probab. 23 (2018), Paper No. 41, 12. MR3841402

[22] Eulalia Nualart and Lluís Quer-Sardanyons, Gaussian estimates for the density of the non-
linear stochastic heat equation in any space dimension, Stochastic Process. Appl. 122 (2012),
no. 1, 418–447. MR2860455

[23] M. Sanz-Solé and Mònica Sarrà, Hölder continuity for the stochastic heat equation with
spatially correlated noise, Seminar on Stochastic Analysis, Random Fields and Applications,
III (Ascona, 1999), Progr. Probab., vol. 52, Birkhäuser, Basel, 2002, pp. 259–268. MR1958822

[24] Marta Sanz-Solé and Mònica Sarrà, Path properties of a class of Gaussian processes with
applications to spde’s, Stochastic processes, physics and geometry: new interplays, I (Leipzig,
1999), CMS Conf. Proc., vol. 28, Amer. Math. Soc., Providence, RI, 2000, pp. 303–316.
MR1803395

[25] Marta Sanz-Solé and Pierre-A. Vuillermot, Equivalence and Hölder-Sobolev regularity of
solutions for a class of non-autonomous stochastic partial differential equations, Ann. Inst. H.
Poincaré Probab. Statist. 39 (2003), no. 4, 703–742. MR1983176

ECP 26 (2021), paper 61.
Page 12/13

https://www.imstat.org/ecp

https://mathscinet.ams.org/mathscinet-getitem?mr=1500166
https://mathscinet.ams.org/mathscinet-getitem?mr=3382572
https://mathscinet.ams.org/mathscinet-getitem?mr=1679747
https://mathscinet.ams.org/mathscinet-getitem?mr=0181836
https://mathscinet.ams.org/mathscinet-getitem?mr=1201552
https://mathscinet.ams.org/mathscinet-getitem?mr=1240724
https://mathscinet.ams.org/mathscinet-getitem?mr=1787126
https://mathscinet.ams.org/mathscinet-getitem?mr=1832378
https://mathscinet.ams.org/mathscinet-getitem?mr=2073414
https://mathscinet.ams.org/mathscinet-getitem?mr=2111792
https://mathscinet.ams.org/mathscinet-getitem?mr=1661766
https://mathscinet.ams.org/mathscinet-getitem?mr=1472487
https://mathscinet.ams.org/mathscinet-getitem?mr=0241822
https://mathscinet.ams.org/mathscinet-getitem?mr=1998765
https://mathscinet.ams.org/mathscinet-getitem?mr=2336301
https://mathscinet.ams.org/mathscinet-getitem?mr=3841402
https://mathscinet.ams.org/mathscinet-getitem?mr=2860455
https://mathscinet.ams.org/mathscinet-getitem?mr=1958822
https://mathscinet.ams.org/mathscinet-getitem?mr=1803395
https://mathscinet.ams.org/mathscinet-getitem?mr=1983176
https://doi.org/10.1214/21-ECP433
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


The Dirichlet problem for SPDEs

[26] Shijie Shang and Ran Wang, Transportation inequalities under uniform metric for a stochastic
heat equation driven by time-white and space-colored noise, Acta Appl. Math. 170 (2020),
81–97. MR4163229

[27] John B. Walsh, An introduction to stochastic partial differential equations, École d’été de
probabilités de Saint-Flour, XIV—1984, Lecture Notes in Math., vol. 1180, Springer, Berlin,
1986, pp. 265–439. MR0876085

ECP 26 (2021), paper 61.
Page 13/13

https://www.imstat.org/ecp

https://mathscinet.ams.org/mathscinet-getitem?mr=4163229
https://mathscinet.ams.org/mathscinet-getitem?mr=0876085
https://doi.org/10.1214/21-ECP433
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Electronic Journal of Probability
Electronic Communications in Probability

Advantages of publishing in EJP-ECP

• Very high standards

• Free for authors, free for readers

• Quick publication (no backlog)

• Secure publication (LOCKSS1)

• Easy interface (EJMS2)

Economical model of EJP-ECP

• Non profit, sponsored by IMS3, BS4 , ProjectEuclid5

• Purely electronic

Help keep the journal free and vigorous

• Donate to the IMS open access fund6 (click here to donate!)

• Submit your best articles to EJP-ECP

• Choose EJP-ECP over for-profit journals

1LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
2EJMS: Electronic Journal Management System http://www.vtex.lt/en/ejms.html
3IMS: Institute of Mathematical Statistics http://www.imstat.org/
4BS: Bernoulli Society http://www.bernoulli-society.org/
5Project Euclid: https://projecteuclid.org/
6IMS Open Access Fund: http://www.imstat.org/publications/open.htm

http://en.wikipedia.org/wiki/LOCKSS
http://www.vtex.lt/en/ejms.html
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
https://projecteuclid.org/
https://secure.imstat.org/secure/orders/donations.asp
http://www.lockss.org/
http://www.vtex.lt/en/ejms.html
http://www.imstat.org/
http://www.bernoulli-society.org/
https://projecteuclid.org/
http://www.imstat.org/publications/open.htm

	Introduction
	Notation and main results
	Proof of Theorem 2.8
	References

