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An information-theoretic proof of a finite de Finetti theorem™
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Abstract

A finite form of de Finetti’s representation theorem is established using elementary
information-theoretic tools: The distribution of the first £ random variables in an
exchangeable binary vector of length n > k is close to a mixture of product distribu-
tions. Closeness is measured in terms of the relative entropy and an explicit bound is
provided.
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1 Introduction

A finite sequence of random variables (X1, Xs, ..., X,,) is exchangeable if it has the
same distribution as (X, (1), Xr(2), - -, Xx(n)) for every permutation 7 of {1,2,...,n}. An
infinite sequence { Xy ;k > 1} is exchangeable if (X1, X5, ..., X,,) is exchangeable for all
n. The celebrated representation theorem of de Finetti [8, 9] states that the distribution
of any infinite exchangeable sequence of binary random variables can be expressed as a
mixture of the distributions corresponding to independent and identically distributed
(i.i.d.) Bernoulli trials. For discussions of the role of de Finetti’s theorem in connection
with the foundations of Bayesian statistics and subjective probability see, e.g, [10, 5]
and the references therein.

Although it is easy to see via simple examples that de Finetti’s theorem may fail for
finite binary exchangeable sequences, for large but finite n the distribution of the first &
random variables of an exchangeable vector of length n admits an approximate de Finetti-
style representation. Quantitative versions of this statement have been established by
Diaconis [10] and Diaconis and Freedman [13]. The approach of Diaconis’ proof in [10]
is based on a geometric interpretation of the set of exchangeable measures as a convex
subset of the probability simplex.
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Information-theoretic proof of a finite de Finetti

The purpose of this note is to provide a new information-theoretic proof of a re-
lated finite version of de Finetti’s theorem. For each p € [0,1], let P, denote the
Bernoulli probability mass function with parameter p, P,(1) = 1 — P,(0) = p, and write
D(P||Q) = >_,cp P(z)log[P(x)/Q(z)] for the relative entropy (or Kullback-Leibler di-
vergence) between two probability mass functions P, () on the same discrete set B;
throughout, ‘log’ denotes the natural logarithm to base e.

Theorem. Letn > 2. If the binary random variables (X1, X», ..., X,,) are exchangeable,
then there is a probability measure u on [0, 1], such that, for every 1 < k < n, the relative
entropy between the probability mass function Q. of (X1, X, ..., X}) and the mixture

My, = [ PFdu(p) satisfies:

5k logn
—k

< 2D(P||Q), the theorem also implies that,

D(Qr || My,,) < (1.1)

By Pinsker’s inequality [7, 19],

1010gn)%

— (1.2)

1@k = Ml <
where ||P — Q| := 2supg |P(B) — Q(B)| denotes the total variation distance between P
and . This bound is suboptimal in that, as shown by Diaconis and Freedman [13], the
correct rate with respect to the total variation distance in (1.2) is O(k/n). On the other
hand, (1.1) gives an explicit bound for the stronger notion of relative entropy ‘distance.’

Rather than to obtain optimal rates, our primary motivation is to illustrate how
elementary information-theoretic ideas can be used to provide an alternative proof
strategy for de Finetti’s theorem, following a long series of works developing this point
of view, including information-theoretic proofs of Markov chain convergence [21, 16],
the central limit theorem [4, 2], Poisson and compound Poisson approximation [18, 3],
and the Hewitt-Savage 0-1 law [20].

Before turning to the proof, we mention that there are numerous generalisations and
extensions of de Finetti’s classical theorem and its finite version along different direc-
tions; see, e.g., [11] and the references therein. The classical de Finetti representation
theorem has been shown to hold for exchangeable processes with values in much more
general spaces than {0, 1} [15], and for mixtures of Markov chains [12]. Recently, an
elementary proof of de Finetti’s theorem for the binary case was given in [17], a more
analytic proof appeared in [1], and connections with category theory were drawn in [14].

2 Proof of the finite de Finetti theorem

We first need to introduce some notation. Let n > 2 be fixed. Forany 1 <: < j < mn,
write XJ for the block of random variables Xj = (Xi, Xit1,--- ,X;). Denote by N, ; the
number of 1s in Xf, so that N; ; = Zk:l X4, and for every 0 < ¢ < n write A, for the
event {Ny , = (}.

The main step of the proof is the estimate in the lemma below, which gives a bound
on the degree of dependence between X; and X/ ,, conditional on A,. This bound
is expressed in terms of the mutual information. Let (X,Y) be two discrete random
variables with joint probability mass function (p.m.f.) Pxy and marginal p.m.f.s Px and
Py, respectively. Recall that the entropy H(X) of X, often viewed as a measure of the
inherent “randomness” of X [6], is defined as, H(X) = H(Px) = —)_, Px(x)log Px(x),
where the sum is over all possible values of X with nonzero probability. Similarly, the
conditional entropy of Y given X is,

H(Y|X) = ZPX ZPY|X (ylz) log Py |x (ylz),
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where Py |x(y|z) = Pxy(z,y)/Px(x).
The mutual information between X and YV is I(X;Y) = H(Y) — H(Y|X), and it can
also be expressed as:

I(X;Y) = H(X) — H(X|Y) = H(X) + H(Y) - H(X,Y) = D(Pxy| PxPy).

For any event A, we write I(X;Y|A) for the mutual information between X and Y when
all relevant p.m.f.s are conditioned on A.

From the definition, an obvious interpretation of I(X;Y’) is as a measure of the
amount of “common randomness” in X and Y. Additionally, since I(X;Y) is always
nonnegative and equal to zero iff X and Y are independent, the mutual information can
be viewed as a universal, nonlinear measure of dependence between X and Y. See [6]
for standard properties of the entropy, relative entropy and mutual information.

Finally, we record an elementary bound that will be used in the proof of the lemma.
Write h(p) = —plogp — (1 — p)log(1 — p), p € [0, 1], for the binary entropy function. Then
a simple Taylor expansion gives:

le—h@n<m—ﬂxmw{p%(l)

’bgC; N}, pac(0,1). (2.1

Lemma. Forall1 <k<n,all1<i<k-1,andany 0 < /¢ < n:

5klogn

k-
Proof. We assume without loss of generality that & < n/2, for otherwise the result is
trivially true since the mutual information in the statement is always no greater than 1.
Also, if £ = 0 or n the conditional mutual information is zero and the result is again
trivially true. Let @),, denote the p.m.f. of X{'. By exchangeability, conditional on A,
all sequences in {0,1}" with exactly ¢ 1s have the same probability under @Q,, so X}
conditional on A, is uniformly distributed among all such sequences. This implies that
foralll1<k<n/2,1<i<k—1,and1</¢{<n-1,

I(Xi; X1 A) <

(i) I N

Py = (k=)

P(X; =1|Niy =4, Nij1 1) =

For the mutual information we have:

I(X; X5 A = E(h(i)—h(% ‘Nln:£>

B () (5 oo 0
Y4

4 )
+ h(ﬁ)]P(NiJrl’k = £|A4) + h(ﬁ)P(NiJrLk < / +k—i— n‘Az)(ZZ)

IN

If the probability in the third term above is nonzero, then necessarily / > n — k + 1 and
thus, using n > 2k, h(€/n) < 2" —i—n+1< Nipip <4,
then both ¢/n and (¢ — N;y1%)/(n — (k —i)) are between 1/n and (n — 1)/n, so from (2.1)
the first term in (2.2) is bounded above by,

E(k — ’L) + n]E(Ni+17k|N1,n = E) 26(/4 - Z)
: logn = —————
n(n — (k—1)) n(n — (k—1i))
Finally, by Markov’s inequality, the probability in the second term is no more than k/n,

while the binary entropy is always bounded above by 1. Combining these three estimates
yields,

log n.

20(k — i)
n(n — (k —1))

k k
(X3 X ] Ag) < logn + — +2-——logn.
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The result follows. O

We are now ready to prove the theorem. By the bound in the lemma,

5k2logn
ZI X“X,L_’_1|A€) S ﬁ

Also, by definition of the mutual information, using the obvious notation H(X|A) for the
entropy of the conditional p.m.f. of X given A,

N

—1 k—1
I(Xi; XF A =Y [H(Xi|Ag) + H(XF A — H(XF|A)]

1 =1
k
[ZH (Xi]Ap)
=1

D QXflAzHQXﬂAz Koo X QX,C|A@)7

)

— H(X7|Aq)

where we write QX?lAg for the conditional p.m.f. of Xf given A,. Since Qx, 14, = FPi/n,
we have, ' )
5k logn
D(QXf\AgHPZk/n) < n—k .

Finally, writing p for the distribution of ¢/n = (1/n) ;" , X; on {0,1/n,2/n...,1}, av-
eraging both sides with respect to ¢, and using the joint convexity of relative entropy,
yields the claimed result. g

Remarks. The mixing measure p = p, in the theorem is completely characterised in
the proof as the distribution of (1/n) ", X;, and it is the same for all k. Moreover, if
{X, ; n > 1} is an infinite exchangeable sequence then it is also stationary, so by the
ergodic theorem (1/n) )" | X; converges a.s. to some X, and the yx, converge weakly
to the law, say u, of X. For fixed k, since Pf is a bounded and continuous function of
p € [0, 1], we have for any z¥ € {0,1}%,

My, (2%) = / PR dpn(p) — My u(ak) = / PE () dpu(p),

and by our theorem,

M, k|| = O(y/(logn)/n). Therefore, we can conclude that,

Qi = / Pldu(p)

for each k£ > 1, and thus recover de Finetti’s classical representation theorem.

Finally we note that the argument used in the proof of the lemma as well as the proof
of our theorem can easily be extended to provide corresponding results for exchangeable
vectors taking values in any finite set. But as the the constants involved become quite
cumbersome and our main motivation is to illustrate the connection with information-
theoretic ideas (rather to obtain the most general possible results), we have chosen to
restrict attention to the binary case.
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