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Abstract

We consider one infinite path of a Random Walk in Random Environment (RWRE, for
short) in an unknown environment. This environment consists of either i.i.d. site
or bond randomness. At each position the random walker stops and tells us the
environment it sees at the point where it is, without telling us, where it is. These
observations χ′ are spoiled by reading errors that occur with probability p < 1. We
show: If the RWRE is recurrent and satisfies the standard assumptions on such RWREs,
then with probability one in the environment, the errors, and the random walk we are
able reconstruct the law of the environment. For most situations this result is even
independent of the value of p. If the distribution of the environment has a non-atomic
part, we can even reconstruct the environment itself, up to translation.
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1 Introduction

Random walks in a random environment have been an extremely active and chal-
lenging field of research over the past decades. We refer the interested reader to
[Zei04, BS02a, Bis11] for surveys of classic results. In this note we will consider two
settings of the RWRE: The first is Sinai’s walk (cf. [Sol75], [Sin82]), a situation with
site randomness. We will refer to is as situation i). To define it, let ω : Z → (0, 1) be
a doubly infinite sequence of random variables. The random walk X : N0 → Z in the
environment ω is a Markov chain. It starts in 0 and its distribution Pω is given by the
transition probabilities in z ∈ Z and at time n ∈ N0

Pω(Xn+1 = z + 1|Xn = z) = 1− Pω(Xn+1 = z − 1|Xn = z) = ω(z).

ω is randomly chosen according to some probability measure P and in this situation we
will assume the following:
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Reconstructing the environment seen by RWRE with errors

1. P is a product measure, i.e. for some probability measure % on (0, 1) (equipped
with the Borel σ-field) we have P = %Z and we call Pω the quenched law of the
process.

2. There exists κ such that 0 < κ < ω(0) < 1− κ %-almost surely.

3.

0 < σ2 := E

(
log

ω(0)

1− ω(0)

)2

<∞ (1.1)

4.

E

(
log

ω(0)

1− ω(0)

)
= 0. (1.2)

It is well-known and was already shown by Solomon that this RWRE is recurrent, if and
only if (1.2) holds. Hence we will require that our RWRE is recurrent.

The second situation is a random conductivity model as in [Bis11], we will refer to it
as ii). Again, we take a doubly infinite sequence of random variables ω = (ω(z))z∈Z of
i.i.d. random variables with values in (0,∞), where ω(z) denotes the conductance of the
edge (z, z + 1). The random walk X : N0 → Z in the environment ω again is a Markov
chain that starts in 0 and its distribution Pω is given by the transition probabilities

Pω(Xn+1 = z + 1|Xn = z) = 1− Pω(Xn+1 = z − 1|Xn = z) =
ω(z)

ω(z − 1) + ω(z)

for position z ∈ Z and at time n ∈ N0. In this situation we will assume the following for
the distribution P of the environment ω:

1. P is a product measure of a probability measure % on R+ with the Borel σ- field.
Thus P = %Z and again we call Pω the quenched law of the process.

2. There exists D ∈ (0, 1) such that 0 < D < ω(0) < 1/D %-almost surely. This
condition is also called uniform ellipticity.

It is known that under these conditions the RWRE is recurrent, see [Bis11, p.305].
Furthermore, we assume that ω is truly random and not deterministic, i.e. % 6= δα.

The question we want to consider in the current note is inspired by two sources.
In [GN14] the authors ask, whether one can almost surely reconstruct the law of
a random environment in Sinai’s walk from the observations of one trajectory and
answer this question in the affirmative. A related question for RWRE was studied by
Adelman and Enriquez in [AE04]. The work in [GN14], in turn, is inspired by the scenery
reconstruction problem formulated by den Hollander and Keane [KdH86]. Here Z is
endowed with a random coloring (the scenery), which is only observed from the unknown
positions of a random walker. The question is whether this coloring can be reconstructed
almost surely. Significant progress in this problem was made by Matzinger and co-
authors, see e.g. [Mat99, LM02, LM03, MR03b, MR03a, LMM04, Mat05, MR06, ML06,
LM08] or the survey papers [dHS06], [L0̈1]. In particular, in [MR03b] the authors show
that reconstruction is still possible, if we have noisy observations with a very small
percentage of errors. A new, but related question was investigated by Lakrec, who
considers a scenario where entries may be systematically changed [Lak19]. Similar
problems in the area of coin tossing were studied in [HK97] and [LPP01]. In this note
we will investigate the same problem of noisy observations for the question studied by
Gantert and Nagel [GN14] and the same problem for RWRE with bond disorder.

To be more precise, assume that the environment situation i) or in situation ii) cannot
be observed directly. However we know that the above assumptions on ω are fulfilled.
Let (Xn)n∈N0

be one infinite path of random walk in the random environment ω which
cannot be observed directly, either. Denote by χ′(n) the environment seen by the walker
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Reconstructing the environment seen by RWRE with errors

at time n. This means in situation i) we let χ′(n) = ω(Xn) observe the probability for a
jump to the right of the vertex that Xn is currently at and in situation ii) the walker Xn

tells the conductance of the edge it crosses, hence χ′(n) = ω(min(Xn−1, Xn)). Assume
moreover that we are given a corrupted version χ = (χ(n))n∈N0

of χ′ = (χ′(n))n∈N0
given

by

χ(n) =

{
χ′(n) with probability 1− p
Y (n) with probability p.

Here, the (Y (n))n are some i.i.d. random variables with values in (0, 1) in situation i)
and with values in (D, 1/D) in situation ii). They are independent of everything else.
Moreover, p ∈ [0, 1), and also for each n we decide whether we take χ′(n) or Y (n)

independently of everything else. In other words

χ(n) = χ′(n)(1− ξ(n)) + Y (n)ξ(n) (1.3)

and the ξ := (ξ(n))n are i.i.d. Bernoulli random variables with values in {0, 1} and
parameter p, independent of everything else. We denote by ν the distribution of Y (0)

and by νa and νna its atomic and non-atomic part, respectively. In a similar fashion
we decompose % = %a + %na into an atomic part %a and a non-atomic part %na and our
techniques will rely on the assumption that νa and %a have disjoint support. The question
is: Can we reconstruct the law of ω or even ω by just knowing χ?

The proofs will be easier, when the distribution of ω has a non-atomic part than in the
situations where there are only atoms in the distribution of the environment. However,
in both cases we will be able to reconstruct the environment almost surely and we will
have no restrictions on p < 1 whatsoever, if the distribution of the environment has a
non-atomic part or if we are in situation ii). Note that this is way less restrictive than the
assumption on the error probability in [MR03b] and that even for the problem of guessing
a number with errors (or lies), the error probability needs to be smaller than 1/2, see
[SW92]. In situation i), however, we will have a condition on p when the distribution of %
is purely atomic. Denoting byM :=M1((0, 1)) andM′ :=M1((D, 1/D)), respectively,
the set of probability measures on the open unit interval and on the interval (D, 1/D),
respectively, our result reads as follows:

Theorem 1.1. Let %a and νa have disjoint support, p ∈ (0, 1) be arbitrary and consider
either situation i) or situation ii). In situation i), when % = %a is purely atomic, we
additionally assume that 0 < p < κ

κ+1 is known. Then, almost surely in the environment,
the errors, and the realization of the RWRE, we can reconstruct % from χ.

This means there is a measurable mapping A : (0, 1)N0 →M (or A : (0, 1)N0 →M′
in situation ii)), such that for almost all realizations of ξ, νN0 -almost all realizations of
(Y (n))n, P-almost all ω, and Pω-all realizations of X we have

Pω(A(χ) = %) = 1. (1.4)

As we will see in the proof for situation i) and % = %a, the result continues to hold for
unknown 0 < p < κ

κ+1 , if instead either the number of atoms of %a or of νa is finite and
known. In the non-atomic case, even the environment itself can be reconstructed.

Theorem 1.2. If %a and νa have disjoint support, % 6= %a and p is arbitrary, the envi-
ronment can be reconstructed almost surely in the environment, the errors, and the
realization of the RWRE up to translation in both, situations i) and ii). This means there is
a measurable mapping A′ : (0, 1)N0 → (0, 1)Z (or A′ : (0, 1)N0 → (D, 1/D)Z in situation ii))
such that for almost all realizations of ξ, νN0 -almost all realizations of (Y (n))n, P-almost
all ω, and Pω-almost all X

Pω(A′(χ) ∼ ω) = 1. (1.5)
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Reconstructing the environment seen by RWRE with errors

Here for any two environments ω, ω′ the symbol ω ∼ ω′ indicates that ω and ω′ agree up
to translation.

Remark 1.3. Situation i) with p = 0 is treated in [GN14]. However, their proof does not
carry over to situation ii). In particular, Theorem 1.1 with p = 0 thus gives the result of
Gantert and Nagel in situation ii).

2 Proofs

Proof of Theorem 1.1 situation i). We divide the proof into case (a) %a 6= % and case (b)
of a purely atomic % = %a.

Case (a): We will adapt the strategy from [GN14] to our setting of corrupted observa-
tions. The set of all possible atoms of %+ ν is given by the set

A%+ν = {α : ∃n with χ(n) = χ(n+ 1) = α}

because only atoms of % + ν can appear directly one after the other in χ (and they
will). First of all notice, that, if α /∈ A%+ν appears in χ, we can tell with probability one,
whether it is a realization of % or whether it is a reading error created by Y . Indeed, if α
is a realization of %, it will occur in χ infinitely often, because we assume that RWRE is
recurrent. On the other hand, non-atoms of ν will occur only once in χ (if at all). The
issue is now to determine whether a point α ∈ A%+ν is an atom of % or of ν.

Lemma 2.1. In the above situation there is a test that decides with probability one
correctly, whether a point α ∈ A%+ν is an atom of % or of ν.

Note that in the case of purely non-atomic % = %na, the test is not necessary and the
reconstruction mechanism becomes more simple.

Proof. Since %a 6= %, there are realizations of % that are not atoms of %. Now let us take
α ∈ A%+ν . Then, with probability one, in the observations χ, there are α0 6= α1 6= α2

created by %na such that (χ(n), χ(n+ 1), χ(n+ 2), χ(n+ 3)) = (α0, α1, α, α2) for infinitely
many n ∈ N. The advantage is: Whenever we read the sequence (α0, α1, α, α2) in χ,
we know exactly where the RWRE is, because the positions of the αj in Z are unique.
Therefore (exploiting recurrence of our RWRE) we can conclude, that α is an atom of ν,
if and only if there is also m ∈ N such that (χ(m), χ(m+ 1), χ(m+ 2)) = (α1, α, α). Hence
we can tell the atoms of % from the atoms of ν.

From now on we will discard the atoms of ν in χ. To reconstruct %, we use a similar
strategy as proposed in [GN14]. To make sure to just consider new observations at
points we have not seen before, we want to use pieces of the environment that are not
atoms of % as “markers” to detect that we are in a new point. Let us thus consider the set

T := {n ∈ N : χ(n− 2), χ(n− 1) /∈ A%+ν ,∀m < n− 2 : χ(m) /∈ {χ(n− 2), χ(n− 1)},
∃m > n : χ(m) = χ(n− 2) and χ(m+ 1) = χ(n− 1)}. (2.1)

T consists of all the time points n, where we have been passing a “marker” previously,
which has not been seen before. The last condition ensures that they are really part of
the true environment and not of the noise Y . To filter out the elements that appear due
to a reading error, we introduce the set of observations made right after these markers,
conditioned on that (Xn) has not stepped back

O := {χ(n) /∈ Aν : n ∈ T , χ(n) 6= χ(n− 2),∃m > n : χ(m) = χ(n)}.

Due to recurrence and the fact that χ(n) is not an atom the set O indeed consists of
observations from the environment ω distributed according to %. Indeed, notice that
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in O we rule out those elements at times T that are either realizations of one of the
random variables Y (n) or that are observations χ′(n) of (Xn) at points to which (Xn)

never returns again. However, since we assumed that (Xn) is recurrent the latter case
will almost surely not happen. For P-almost all ω, O is infinite Pω-almost surely by
Borel-Cantelli and the elements of O are realizations of independent random variables
(ηk)k∈N. Then by the law of large numbers for empirical measures

1

N

N∑
k=1

δηk → % Pωalmost surely

(convergence is understood in the sense of the weak topology of measures).
Case (b): Now we assume that % = %a. In situation i) we can use the results of [GN14],

while in situation ii) to follow we will make use of the environment from the particle’s
point of view, which provides much more details than in situation i).

The central element of the proof is again a version of Lemma 2.1.

Lemma 2.2. If % = %a in situation i), there is a test that decides with probability one
(in the errors, in the environment ω, and for Pω-almost every realization of the walk)
correctly, whether a point α ∈ A%+ν is an atom of % or of ν.

The idea of the proof is simply that, if α ∈ A%, given that we saw an α two steps ago
we should have a larger probability to see an α again, while for β ∈ Aν this probability
should stay independent of previous observations.

Proof. Consider the asymptotic relative frequency of observing a “double α”

h(αα) := lim
n→∞

1

n

n∑
k=1

1(α,α)

(
χ(k − 1), χ(k)

)
. (2.2)

Note that the above limit need not exists and if it exists it could equal 0.1 However, in
both these cases we can almost surely conclude that α ∈ A%, because for α ∈ Aν the
limit exists almost surely and equals p2ν2(α) > 0 by the law of large numbers.

Fix ω ∈ Ω and define the hitting times of reading double α’s as σ1 = infk∈N{Xk−1,

Xk ∈ ω−1(α)} and σj = infk>σj−1{Xk−1, Xk ∈ ω−1(α)} for j > 1. If for α ∈ A% the
limit (2.2) exists and is positive, we can relate it to the relative frequency of stopping
times Jn := |{j : σj ≤ n}| via

h(αα)

(1− p)2
= lim
n→∞

1

n

n∑
k=1

1(0,0)(ξ(k − 1), ξ(k))

(1− p)2
1(α,α)

(
ω(Xk−1), ω(Xk))

)
= lim
n→∞

Jn
n
· lim
n→∞

1

Jn

Jn∑
j=1

1(0,0)(ξ(σj − 1), ξ(σj))

(1− p)2
= lim
n→∞

Jn
n
> 0

by the law of large numbers for the independent sequence ξ(σj) ∼ Ber(p) (separately for
even and odd indices).

Let us now distinguish these stopping times depending on the direction of the step by

σ±j = inf
k>σ±

j−1

{Xk−1, Xk ∈ ω−1(α) and Xk −Xk−1 = ±1}.

Then, by the strong markov property the sequence 1+1(Xσ−
j +1−Xσ−

j
) ∼ Ber(α) for j ∈ N

is iid (and similarly for σ+
j ). Moreover for J±n := |{j : σ±j ≤ n}| we have J+

n + J−n = Jn.

1We expect this not to be the case since a constant fraction ≈ %(α)2 > 0 of the environment has a bounded
value α ∈ A% and (Xk)k is recurrent, but a proof would need ergodicity, which is unknown.
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Next consider

h(ααα)

(1− p)3
:= lim

n→∞

1

n(1− p)3

n∑
k=1

1(α,α,α)

(
χ(k − 1), χ(k), χ(k + 1)

)
.

Again if the limit does not exists, we conclude that α ∈ A%. Otherwise, for α ∈ A%, by the

law of large numbers and abbreviating ξ̃(k) =
1(0,0,0)(ξ(k−1),ξ(k),ξ(k+1))

(1−p)3 , we have

1

n

n∑
k=1

ξ̃(k)1(α,α,α)

(
ω(Xk−1), ω(Xk), ω(Xk+1)

)
≥ 1

n

n∑
k=1

ξ̃(k)1ω−1(α)

(
Xk−1

)
1ω−1(α)

(
Xk)1Xk−1

(
Xk+1

)
=
Jn
n
· 1

Jn

Jn∑
j=1

ξ̃(σj)1±(1,−1)

(
Xσj −Xσj−1, Xσj+1 −Xσj

)
(2.3)

∼ h(αα)

(1− p)2

J+
n

Jn

1

J+
n

J+
n∑

j=1

ξ̃(σ+
j )1−1

(
Xσ+

j +1 −Xσ+
j

)
+
J−n
Jn

1

J−n

J−
n∑

j=1

ξ̃(σ−j )1+1

(
Xσ−

j +1 −Xσ−
j

)
∼ h(αα)

(1− p)2

[
J+
n

Jn
(1− α) +

J−n
Jn

α

]
≥ κ h(αα)

(1− p)2

even though we cannot control any of J±n /Jn separately. Now set h(α | αα) := h(ααα)
h(αα) ≥

(1− p)κ. Then, since we assume p < κ
κ+1 , we have

h(α | αα) ≥ (1− p)κ > p ≥ pν(β) = h(β | ββ)

for all β ∈ Aν . Therefore we decide that α ∈ A%, iff h(α | αα) > p. If instead the number
M of atoms of %a (or of νa) is known, we decide that the M largest occurrences h(α | αα)

to correspond to α ∈ A% (or the M smallest values to belong to Aν respectively).

Let us now prove Theorem 1.1 for the purely atomic case (b) in situation i). We will do
so by combining Lemma 2.2 with the techniques presented in [GN14]. Gantert and Nagel
show in [GN14], p. 6-7, that for each piece of uncorrupted observations (i.e. from χ′)
one can build an empirical measure that converges to % almost surely, when the length
of the piece of uncorrupted observations converges to infinity. To this end they use the
idea of representing the environment as a random walk on a tree: If % has N ∈ [2,∞]

many atoms, the consider the N -regular tree TN with root o. The vertices of TN are
colored by a mapping ψ with the atoms of % in such a way, that o gets the color ω(0) and
that every vertex has exactly one neighbor of every color. Then the environment can be
represented as a doubly infinite nearest neighbor path R in TN by requiring that we start
in o and ψ(R(z)) = ω(z) for all z ∈ Z. This path can be constructed by first following the
environment in the direction of the non-negative integers step by step: We start in o,
the next point R(1) of the path is the (unique) neighbor of o with color ω(1), the point
R(2) is the unique neighbor of R(1) with color ω(2), etc. Then we do the same with the
negative integers, starting in o again. For fixed ω the observations χ′ can be mapped to
a path U on TN by requiring that U(0) = o and that U is a nearest neighbor path on TN
with ψ(Un) = χ′(n) for all n ∈ N. The advantage of this construction is that we are able
tell, when the RWRE enters a fresh piece of the environment. Indeed, whenever R is at
a “new” point in TN , also Xn is at a new point in Z.

The key idea in [GN14] is to consider straight, first crossings of certain segments
in the image of R by U , i.e. first crossings in the shortest possible time. This is best
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illustrated in the case that |A%| = 2 (the general case is being reduced to this case).
Then A% = {α1, α2} with %(αi) = βi, i = 1, 2, TN = Z and, without loss of generality the
coloring of Z is such that ψ(0) = ψ(1) = α1 and hence ψ(4m) = ψ(4m + 1) = α1, and
ψ(4m+ 2) = ψ(4m+ 3) = α2,m ∈ Z. Consider the intervals Im = [4m+ 1, 4m+ 4] in Z.
The probability of a straight crossing of Im when hit for the first time by U is given by
(1− α2(1− α2))(1− β2

2) (cf. [GN14]) and the events that a straight crossing of Im occurs,
when U hits Im for the first time are independent (since hitting a new interval with U
tells that RWRE is at a “new” place in Z). Thus, β2 can be estimated by applying the
law of large numbers to (a suitably rescaled version of) the number of direct crossings
of the Im when U hits it for the first time: If we take a time interval [1, T ] and consider
the M intervals Im, which are hit for the first time in [1, T ] and focus on the subset of
size M ′ of these intervals, for which there is a straight crossing when the interval is hit
for the first time. Then M ′/M is an estimator for (1 − α2(1 − α2))(1 − β2

2) from which
we can deduce an estimator for β2. When M and thus M ′ become large we have that
M ′/M → (1−α2(1−α2))(1−β2

2) for almost all ω and almost all realizations of the RWRE.
As T →∞ we also have that M →∞ for almost all ω and almost all realizations of the
RWRE (the reader is referred to [GN14], p. 6-7 for more details). Finally, note that
the same applies, if we consider a time interval [t, t + T − 1] instead of [1, T ] since the
distribution of the environment is shift-invariant. Of course, in this case we just consider
Im’s that are hit for the first time within [t, t+ T − 1].

Note that we are almost surely able to detect a sequence of pieces of uncorrupted
observations of increasing lengths. We are also almost surely able to find a subsequence
of this sequence in which we hit a strictly increasing number of Im’s for the first time (rel-
ative to this sequence, i.e. not taking into account previous observations). Applying the
reconstruction mechanism from [GN14] to the time intervals in this subsequence, with-
out taking into account previous observations, yields a sequence of empirical measures
that almost surely converges to %.

Proof of Theorem 1.1 situation ii). Now the walker tells us the conductance of the pre-
viously passed edge, which could be crossed again backwards in the next step and
hence we cannot define the set of atoms A%+ν as before. Still, we need to distinguish
observations of the environment distribution % from those of the error distribution ν.

To this end introduce the so-called “environment viewed from the particle” (cf.
[BS02a, Chapter 1]). Let Ω = (D, 1/D)Z and let τx, x ∈ Z be the canonical shift by x on
Ω. For ω ∈ Ω consider the process

ω := (ωn)n∈N0 := (τXnω)n∈N0 .

Then, (ωn)n∈N0
is a Markov chain on the state space Ω with transition probabilities

R(ω, ω′) :=
ω(0)

ω(0) + ω(−1)
δτ1ω(ω′) +

ω(−1)

ω(0) + ω(−1)
δτ−1ω(ω′)

(see [BS02a, Proposition 1.1] or [Bis11, Lemma2.1]). Its invariant measure is absolutely
continuous with respect to P with Radon-Nikodym derivative

dQ

dP
(ω) =

ω(−1) + ω(0)

Z
, (2.4)

where Z is given by Z :=
∫

(ω(−1) + ω(0))dP(ω) = 2E(ω(0)) < ∞ due to the uniform
ellipticity condition. Moreover, the Markov shift is ergodic for Q (see [Bis11, Lemma 2.1
and Propositon 2.3]).

Lemma 2.3. In situation ii) there is a test that decides with probability one (in the
errors, in the environment ω, and for Pω-almost every realization of the walk) correctly,
whether an observation α is a realization of %na, %a, νna or νa.
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Proof. First, note that non-atoms of ν are the only observations that almost surely occur
only once in χ, hence we discard them immediately.

The idea of the proof is similar to the proof of Lemma 2.2, but now we will be able to
make exact calculations. Among all the occurrences of an atom α ∈ A%+ν (to be defined
in (2.8) below) in the observations, determine the empirical occurrence of another
subsequent α by

h(α | α) =
limn→∞

1
n−1

∑n−1
k=1 1(α,α)(χ(k), χ(k + 1))

limn→∞
1

n−1

∑n−1
k=1 1α(χ(k))

. (2.5)

If α ∈ Aν , the existence and positivity of the limits is, a.s. ensured by the law of large
numbers. An error atom α ∈ Aν appears independently of the previous observation with
probability h(α | α) = pν(α).

On the other hand for an atom α ∈ A% of %, the existence of h will follow from an
ergodicity argument. Intuitively we should expect h(α | α) > h(α), i.e. the empirical
occurrence should be larger if we condition on the previously passed edge having
conductance α, due to the opportunity to jump back along the same edge. In particular
we claim to decide α ∈ Aν iff h(α | α) = h(α).

To make this rigorous, recall that by ergodicity, see [Bis11, Equation (2.20)], for
any f = f(ω, ω̃) with EQEω|f(ω, τX1ω)| < ∞ we have limn→∞

1
n

∑n−1
k=0 f(ω̄k, ω̄k+1) =

EQEωf(ω, τX1
ω) for P almost all ω and Pω almost all paths (Xk)k. If we include another

independent ergodic sequence of random variables, e.g. ξ̃(k) = 1−ξ(k)
1−p as below, then

the tuple (ξ̃, ω̄) is ergodic since the Bernoulli process ξ̃ is mixing, see [BS02b, Theorem
4.10.6. (7)]. Therefore we have the ergodic theorem

lim
n→∞

1

n

n−1∑
k=0

ξ̃(k + 1)f(ω̄k, ω̄k+1) = Eξ(ξ̃(0))EQEωf(ω, τX1
ω) (2.6)

almost surely in Pξ,P,Pω. Hence by choosing a particular f , the conditioned empirical
frequencies can be computed explicitly in terms of Q, p, and ν. For any realization α of %
(both atoms and non atoms), we calculate

h(α)

(1− p)
= lim
n→∞

1

(n− 1)(1− p)

n−2∑
k=0

1α
(
χ(k + 1)

)
= lim
n→∞

1

n− 1

n−2∑
k=0

ξ̃(k + 1)1α
(
χ′(k + 1)

)
= lim
n→∞

1

n− 1

n−2∑
k=0

ξ̃(k + 1)
[
1α
(
ω̄k(0)

)
1τ1ω̄k

(
ω̄k+1

)
+ 1α

(
ω̄k(−1)

)
1τ−1ω̄k

(
ω̄k+1

)]
=

∫ ∫ [
1α
(
ω(0)

)
11(X1) + 1α

(
ω(−1)

)
1−1(X1)

]
dPω(X)dQ(ω)

=

∫
1α
(
ω(0)

)
Pω(X1 = 1)dQ(ω) +

∫
1α
(
ω(−1)

)
Pω(X1 = −1)dQ(ω)

=

∫
1α
(
ω(0)

) ω(0)

ω(0) + ω(−1)

ω(0) + ω(−1)

Z
dP(ω)

+

∫
1α
(
ω(−1)

) ω(−1)

ω(−1) + ω(0)

ω(0) + ω(−1)

Z
dP(ω) = 2%(α)

α

Z
(2.7)

for any α ∈ A%. In the second line we split the event into α arising from a step to the
right or left, then we apply ergodicity (2.6). Accordingly, we decide α to be a realization
of the non-atomic part of % iff it occurs more than once in χ but h(α) = 0 and we define
the atoms by

A%+ν := {α : h(α) > 0}. (2.8)
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Reconstructing the environment seen by RWRE with errors

Analogously, choosing f(ω, ω̃) = 1(α,α)(ω(0), ω̃(0)) and ξ̃(k) =
1(0,0)(ξ(k),ξ(k+1))

(1−p)2 yields

h(αα)

(1− p)2
:= lim

n→∞

1

(n− 1)(1− p)2

n−2∑
k=0

1αα
(
χ(k + 1), χ(k + 2)

)
=

∫
1α,α

(
ω(0), ω(1)

)
Pω(X1 = 1, X2 = 2) + 1α,α

(
ω(−1), ω(−2)

)
Pω(X1 = −1, X2 = −2)

+ 1α
(
ω(0)

)
Pω(X1 = 1, X2 = 0) + 1α

(
ω(−1)

)
Pω(X1 = −1, X2 = 0)dQ(ω)

= 2%(α)2 α

2α

α

Z
+ 2%(α)

α

Z
E
( α

α+ ω(0)

)
.

Therefore we end up with

h(α | α) = (1− p)
[
%(α)

1

2
+ E

( α

α+ ω(0)

)]
= (1− p)

[
%(α) + E

( α

α+ ω(0)
1αc(ω(0))

)]
for α ∈ A% and h(α) = (1− p)%(α) α

E(ω(0)) .2 In particular their difference is given by

E(ω(0))

1− p
(h(α|α)− h(α)) = %(α)

(
α%(α) +

∫
αc

xd%(x)
)

+

∫
αc

α%(α)

α+ x

E(ω(0))

%(α)
d%(x)− α%(α)

=− α%(αc)%(α) +

∫
αc

α%(α)

α+ x

[
x+

x2

α
+ α+

E(ω(0)1αc(ω(0)))

%(α)

]
d%(x)

=

∫
αc

1

α+ x

[
x2%(α) + αE(ω(0)1αc(ω(0)))

]
d%(x) > 0

iff % 6= δα is not singular. Then, we decide α ∈ A% iff h(α|α) > h(α).

In order to reconstruct the distribution %, we will again consider the cases (a) % 6= %a
and (b) % = %a separately, similar to situtaion i). Case (a): Define the set

T ′ := {n ∈ N : χ(n− 1) /∈ A%+ν , χ(m) 6= χ(n− 1)∀m < n− 1,∃m > n : χ(m) = χ(n− 1)}

consisting of times n at which we read a part of the environment that have never been
seen before. Again, we consider the set of observations made right after these markers,
conditioned on that (Xn) has not stepped back:

O′ := {χ(n) /∈ Aν : n ∈ T ′, χ(n) 6= χ(n− 1),∃m > n : χ(m) = χ(n)}

consisting of independent new conductances. Hence analogously to situation i), we
enumerate O′ by η1, η2, . . . and by the law of large numbers for the empirical measure
we obtain 1

N

∑N
k=1 δηk → %, Pω-almost surely.

Case (b): The reconstruction mechanism from situation i) case (b) cannot be applied
in situation ii) (at least not without adapting the techniques of [GN14] to this setting,
which seems difficult). Instead, we will use the technique of the “environment viewed
from the particle” again. Using what we observed in (2.7), we can reconstruct the law of
the environment via h(α) = 2(1− p)%(α) αZ for any α ∈ A%. Thus, we may reconstruct the

the atomic part %a of the distribution of the environment by %(α) = Zh(α)
2α(1−p) . Note that

p as well as the normalization Z in general will not be known, however it is finite and
simply ignoring it gives us % up to proportionality factor and this can be easily overcome
by knowing

∑
α∈A%

%(α) = 1 in case (b).

2Note that such terms all have an obvious interpretation: h(α) is proportional to its conductance α and to the
probability %(α) of creating exactly this conductance in ω and h(α | β) = (1− p)%(α) α

α+β
if α, β ∈ A%, α 6= β

describes the probability of creating an α-edge, then crossing it and reading it.
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Reconstructing the environment seen by RWRE with errors

Remark 2.4. The previous case distinction is not necessary and was made in order
to recycle objects and ideas from before. Alternatively, it is possible to reconstruct %
directly via the distribution function of ω(0) under P, i.e. using functions of the form
Z
2x1(−∞,α](x) in (2.7). It is then obvious that the same approach and result holds true on
the random conductance model in Zd for any dimension d ∈ N as long as the ellipticity
condition is satisfied so that ω̄ is ergodic with invariant distribution Q. Note that the
RWRE is not recurrent anymore for d ≥ 3, but we only used recurrence to identify the
non-atoms of ν, hence for d ≥ 3 we would need the additional assumption νna = 0. In
particular for p = 0, this answers Question 4 in [GN14] for a related model. However, in
this note we decided to only present d = 1 for simplicity and comparison to situation i),
where higher dimensions are out of reach.

Proof of Theorem 1.2. Recall that we showed that in the proof of Theorem 1.1 in both
situations i) and ii) we are able to detect whether an element in our record χ(n) was
produced by an observation from χ′(n) or by a random variable Y (n).

Once we have distinguished the elements of χ′ from the elements produced by Y in
χ we can basically follow the recipe described in [GN14]: Take two observations ω(1)

and ω(2) in χ that are realizations of %na. By recurrence and p < 1 these will occur
infinitely often in χ. We will take all “shortest crossing” (a common concept in scenery
reconstruction) between ω(1) and ω(2), i.e. we consider the following set

Sω(1),ω(2) := {(χ(m), . . . , χ(m+ l)) : χ(m) = ω(1), χ(m+ l) = ω(2)

and l = min{l′ : ∃n such that χ(n) = ω(1), χ(n+ l′) = ω(2)}}.

Then, by Borel-Cantelli, for almost all environments ω such that (Xn) is recurrent on ω
we have that Pω-almost surely l corresponds to direct crossings from the (unique) point
z ∈ Z with ω(z) = ω(1) to the (unique) point z′ ∈ Z with ω(z′) = ω(2), i.e. l is the distance
between z and z′. Depending on the size of l and the value of p, many of the strings
(χ(m), . . . , χ(m+ l)) ∈ Sω(1),ω(2) may have values χ(n),m < n < m+ l that are corrupted,
i.e. χ(n) was produced by Y (n) rather than by χ′(n). However, we know which values
in χ are produced by ν and %, respectively. Discarding those strings from Sω(1),ω(2) that
contain corrupted elements, we are almost surely still left with a non-empty (actually
even infinite) set, that contains a piece of the random environment. We proceed by
taking a new point ω(3) ∈ χ that is a realization of %na such that ω(3) is not in the already
reconstructed piece of environment. We construct the corresponding set Sω(2),ω(3) and
the resulting piece of the random environment. If ω(1) is contained in this piece, we
discard this reconstruction step and take a new ω(3). Otherwise we assemble the pieces
together, etc. This gives a reconstruction of the environment to one side of ω(1). For
the other side we do the same thing with points ω(0), ω(−1), . . . ∈ χ such that ω(0), ω(−1)

are not in the already reconstructed piece of environment. (The sense of this two-sided
procedure is to avoid a description of doing a jigsaw puzzle with the reconstructed pieces
of environment we would need to do, otherwise).

Finally we can decide about the orientation of the environment: By the assumption on
the distribution of ω(0), for P-almost all ω we will eventually have reconstructed a point
in the environment ω(z) 6= 1

2 in situation i) or ω(z) 6= ω(z − 1) in situation ii) (otherwise
the proofs of these two cases coincide). From here the majority of the observations
(adjusted by removing corrupted observation) will walk to the right if ω(z) > 1

2 and to
the left, otherwise. This finishes the proof of Theorem 1.2.

3 Concluding remarks

Remark 3.1. 1. Of course Theorem 1.2 implies Theorem 1.1 under the corresponding
conditions. However, the proof of Theorem 1.2 requires the same techniques (plus
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additional work) as the first.

2. Note that for the situations that p = 0 Gantert and Nagel in [GN14] proved that
the law of the environment can be reconstructed almost surely, even if RWRE is
transient.

3. In situation i), similar to the observation in [GN14], if %na 6= 0, we can detect from
χ whether (Xn) is recurrent in ω or not: No matter, whether (Xn) is recurrent or
not, for almost all ω, Y , and ξ there is an α in the support of %na + νna such that
there are n 6= m ∈ N with χ(n) = α as well as χ(m) = α, because there is a positive
probability of jumping backwards. This tells us that α is created from %. Hence, if
α occurs in χ infinitely often, (Xn) is recurrent in ω, otherwise it is not.

However, it seems hard to find a way to test whether RWRE is recurrent in the
general setup. Indeed, in the situation of Theorem 1.1, we could detect whether
RWRE is recurrent, if we knew which realizations of the non-atomic parts belong
to % and which of them belong to ν. However, to find this out we strongly use the
knowledge that RWRE is recurrent. Of course, this entire point just applies in
situation i).

4. In situation ii), the assumption that the environment should be non-deterministic
(% 6= δα) is necessary for the reconstruction. If all conductances are equal, then it
is impossible to distinguish A% and Aν as long as p is unknown.

5. At first sight it might be reasonable to expect a proof for situation i) in the same
way as for situation ii): The empirical occurrences of an α after we have already
seen some α’s should be bigger due to the opportunity to jump back. As we saw
in the proof of Lemma 2.3 however, this is given by a conditioned probability
under the equivalent invariant measure Q, which is not known to exist in situation
i). Molchanov [Mol94, p.273-280] presents two models of environment with site
randomness, whereQ is known: Either E( 1−ω(0)

ω(0) ) < 1, which excludes the necessary
recurrence assumption, or in a non-i.i.d. environment, where adjacent values
depend in exactly the way handled by our situation ii). From this point of view, it is
very natural to consider situation ii).
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