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Abstract

In this paper, we show several rigorous results on the phase transition of Finitary
Random Interlacements (FRI). For the high intensity regime, we show the existence
of a critical fiber length, and find its exact asymptotic as intensity goes to infinity. At
the same time, our result for the low intensity regime proves the global existence of a
non-trivial phase transition with respect to the system intensity.
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1 Introduction

The model of finitary random interlacements (FRI) was first introduced by Bowen [1]
to solve a special case of the Gaboriau-Lyons problem. Intuitively speaking, FRI (denoted
by FIu,T ) can be seen as a “cloud of twisted yarn” composed of finite “fibers” on Zd.
The fibers within this system each forms a geometrically killed simple random walk with
an expected length T . Meanwhile, the starting point of which is sampled according to
a Poisson point process with intensity measure proportional to system intensity u and
inversely proportional to T + 1 [1, 2, 3, 8]. See Section 2 for precise definitions.

In [1], Bowen proved that as T → +∞, FIu,T converges under weak ∗− topology to
the celebrated random interlacements (RI) Iu introduced by Sznitman [10]. At the same
time, FRI can also be seen as a finitary version of RI, as it can be defined as massive
interlacements on a graph equipped with killing measure (see Chapter V of [7]).

On the other hand, unlike the classic system of random interlacements, whose
trajectories always form an a.s. connected network [4, 10], the collection of edges
traversed by FRI on Zd, d ≥ 3 has exhibited a non-trivial percolative phase transition
[8]. And since there are now two parameters to play with, one may characterize such
transition on phase space {(u, T ) :, u > 0, T > 0} from either of the following aspects:

(1) One may first fix the intensity u and examine the evolution of FRI with respect
to T . This is also the problem Bowen studied in his first paper [1]. In addition to the
local convergence as T →∞, Bowen also proved that the FRI on non-amenable graphs
will a.s. have infinite connected cluster(s) for all sufficiently large T . He proposed a
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Rigorous results on the phase transition of FRI

parallel question for FRI on Zd, which was affirmatively answered in [8], where the
existence of the following phase transition with respect to T was proved: For any
d ≥ 3 and u > 0, there are T0, T1 ∈ (0,∞), such that FIu,T a.s. has no infinite cluster
for all T < T0, and a.s. has a unique infinite cluster for all T > T1 (see Theorem 1,
2 in [8] for details). The geometric properties of this infinite cluster, such as local
uniqueness and order of chemical distance, for sufficiently large T , was later obtained in
[2]. However, as mentioned in Section 1.1 of [8], the uniqueness of phase transition and
the existence/uniqueness of a critical fiber length Tc remain open. Unlike the case of RI,
this turns out to be a highly non-trivial problem, since it was recently proved that there
is no global stochastic monotonicity with respect to T for FIu,T . See Theorem 1, [3] for
details. On the other hand, numerical simulations in Section 5 of [3] provided evidences
on the existence and uniqueness of Tc. It was further conjectured in Conjecture 5 [3]
that Tc is asymptotically an inverse linear function with respect to u.

(2) As in [7], one may also fix T and examine the evolution of FRI with respect to its
intensity u. Note that FRI is by definition monotone with respect to u. So the question of
interest here is whether there is always a non-trivial phase transition. I.e., for a fixed
T , we want to show FRI does not percolate for all sufficiently small u and percolate for
all sufficiently large u. [7] proved this for all T small enough, and conjectured it can be
extended to all T ∈ (0,∞).

In this paper, we prove that, despite lacking global monotonicity, FRI is stochastically
increasing with respect to T for all T ∈ (0, 1), which implies the existence and uniqueness
of Tc for all sufficiently large u. Meanwhile, we also show that the upper bound of Tc
found by [3, 7] in the high intensity regime is actually sharp in the limit, and give an
exact asymptotic of Tc as u → ∞. Moreover, for the low intensity regime, we prove
a polynomial lower bound for the phase diagram, which at the same time proves the
conjecture on the global existence of a non-trivial phase transition with respect to u. Our
proofs are largely based on the “decoupling” methods first invented in [11].

This paper is organized as follows: In Section 2 we introduce precise definitions of
FRI together with necessary notations and preliminaries. We state our main results
in Section 3. Local monotonicity is shown in Section 4. And at last we estimate the
asymptotic of critical values in Section 5.

2 Notations and preliminaries

Some basic notations: In this paper, we denote the l∞ distance and Euclidean
distance by | · | and | · |2 respectively. The undirected edge set of Zd is denoted by Ld

(i.e. Ld :=
{
{x, y} : x, y ∈ Zd, |x− y|2 = 1

}
). For any subsets A,B ⊂ Zd, the l∞ distance

between them is defined as d(A,B) := min{|x − y| : x ∈ A, y ∈ B}. For finite subset
D ⊂ Zd, let ∂D := {x ∈ D : ∃y ∈ Zd \D such that {x, y} ∈ Ld} be its inner boundary and
|D| be the cardinality of D, without causing further confusion.

Connection between two sets: For sets A,B ⊂ Zd and a collection of edges in Ld

denoted by E, we say A and B are connected by E (written by A
E←→ B) iff there exists a

sequence of vertices (x0, ..., xn) such that x0 ∈ A, xn ∈ B and that for any 0 ≤ i ≤ n− 1,
{xi, xi+1} ∈ E.

Statements on constants: we will use c, c1, c2, ... as local constants (“local” means
their values may vary according to contexts) and C,C1, C2, ... as global constants (“global”
means constants will keep their values throughout the whole paper).

Random walks and relative stopping times: We denote the law of simple random
walks starting from x on Zd by Px and the law of geometrically killed simple random
walks starting from x with killing rate 1

T+1 at each step by P (T )
x .

For a random walk {Xi}∞n=0 and A ⊂ Zd, define the corresponding hitting time and
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entrance time as HA = min{k ≥ 0 : Xk ∈ A} and H̄A = min{k ≥ 1 : Xk ∈ A}. Here we
use the convention that min ∅ =∞.

Capacity with killing measure: For any K ⊂ Zd, the escaping probability is
defined as Es(T )

K (x) := P
(T )
x

(
H̄K =∞

)
. Then the capacity of K with killing measure 1

T+1

is defined by

cap(T ) (K) := 2d ∗
∑
x∈K

Es
(T )
K (x).

In particular, we note the following trivial upper bound

cap(T ) (K) ≤ 2d ∗ |K|. (2.1)

Definitions of FRI: According to [8], FRI has two equivalent definitions. Denote the
set of all finite nearest-neighbor paths on Zd by W [0,∞). Then v(T ) :=

∑
x∈Zd

2d
T+1P

(T )
x is

a σ−finite measure on W [0,∞).

Definition 2.1. For 0 < u, T <∞, finitary random interlacements FIu,T is the Poisson
point process with intensity measure u ∗ v(T ). We denote the law of FIu,T by Pu,T .

Definition 2.2. Let {Nx}x∈Zd
i.i.d.∼ Pois( 2du

T+1 ). For each site x ∈ Zd, start Nx indepen-

dent geometrically killed simple random walks with law P
(T )
x . Let FIu,T be the point

measure on W [0,∞) composed of all the trajectories above starting from all x ∈ Zd.
With a slight abuse of notations, for η ∈W [0,∞), we may write η ∈ FIu,T if FIu,T (η) =

1. In this paper, FIu,T is also regarded as a bond percolation model on Ld. I.e. we
say an edge e ∈ Ld is open in the FRI iff there exists a path in FIu,T containing e,
denoted by FIu,T (e) = 1 (otherwise, FIu,T (e) = 0). For the simplicity of notations, for
any A,B ⊂ Zd, we denote

A
FIu,T

←−−−→ B := A
{e∈Ld:FIu,T (e)=1}
←−−−−−−−−−−−−→ B. (2.2)

We say FIu,T percolates iff there exists an infinite connected cluster composed of
open edges. It has been proved in Theorem 2, [3] that FIu,T contains at most one open
infinite connected cluster.

FRI on a finite set: Let K be a finite subset of Zd. For each path ηi in FIu,T , we
denote the part of ηi after intersecting K by η̂Ki . Precisely, for path ηi = (ηi(0), ..., ηi(li)),
define η̂Ki := (ηi(HK), ..., ηi(li)) if HK < ∞ and η̂Ki := ∅ if HK = ∞. By Lemma 2.1
of [8],

∑
i δη̂Ki has the same law as a Poisson point process with intensity measure

u ∗
∑
x∈K Es

(T )
K (x)P

(T )
x . As a direct corollary, the number of paths intersecting K in

FIu,T is a Poisson random variable with parameter u ∗ cap(T ) (K).
Independence in FRI: For disjoint sets A1, A2, ..., Am ⊂ Zd, consider an arbitrary

sequence of events E1, E2, ..., Em satisfying that for all 1 ≤ i ≤ m, Ei depends only
on the paths in FIu,T starting from Ai. By Definition 2.2, E1, E2, ..., Em are mutually
independent.

Critical values of FRI:

Definition 2.3. For u > 0, d ≥ 3, we define that

T−c (u, d) := sup{T0 > 0 : ∀0 < T < T0,FIu,T does not percolate}

and

T+
c (u, d) := inf{T0 > 0 : ∀T > T0,FIu,T percolates}.

Remark 2.4. By Theorem 1 and 2 of [8], it has been proved that for all d ≥ 3 and u > 0,
0 < T−c (u, d) ≤ T+

c (u, d) <∞.
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3 Main results

In this paper, we first show that for all d ≥ 3 and u > 0, FIu,T is stochastically
increasing with respect to T for all T ∈ (0, 1]. It is worth noting that FIu,T has been
proved not enjoying monotonicity for larger T ’s (see Theorem 1, [3]).

Theorem 3.1. For any u > 0, 0 < T1 < T2 < ∞ such that T1 ∗ T2 ≤ 1, then FIu,T2

stochasitcally dominates FIu,T1 . I.e. there is a coupling between FIu,T1 and FIu,T2

such that almost surely for any edge e ∈ Ld, FIu,T1(e) ≤ FIu,T2(e).

By Theorem 3.1, we know that for any d ≥ 3 and u > 0, if 0 < T−c ≤ T+
c < 1, then

there must exist a unique critical fiber length between 0 and 1. In fact, according to the
upper bound of T+

c and the lower bound of T−c given in Theorem 3 (iv) and Proposition 2,
[3], 0 < T−c ≤ T+

c < 1 holds for all sufficiently large u. Therefore, we have the following
corollary:

Corollary 3.2. For all d ≥ 3, there is a Ud <∞ such that for all u ≥ Ud,

T+
c (u, d) = T−c (u, d) := Tc(u, d).

I.e., FIu,T percolates a.s. for all T > Tc, and does not percolates a.s. for all T < Tc.

Our next result provides the exact asymptotic of Tc as u → ∞, which gives an
affirmative answer to Part 2, Conjecture 5, [3].

Theorem 3.3. For all d ≥ 3,

lim
u→∞

u ∗ Tc(u, d) =
− log(1− pcd)

2
, (3.1)

where pcd is the critical value of Bernoulli bond percolation on Ld.

Remark 3.4. In Theorem 4.2 [3] and on Page 263 [7], it has been shown that

lim sup
u→∞

u ∗ T+
c ≤

− log(1− pcd)
2

. (3.2)

So here we only need to prove an asymptotically sharp lower bound for the subcritical
phase (a partial result on the asymptotic order was given in Proposition 2, [3]).

For the low intensity regime (i.e. u � 1), we obtain the following estimate on the
subcritical phase:

Theorem 3.5. For any d ≥ 3 and δ > 0, there exist constants 0 < U0(d, δ) < 1 and
C1(d, δ) > 0 such that for any 0 < u ≤ U0,

T−c ≥ C1u
− 1

d−1 +δ. (3.3)

Combining Theorem 3.5 and the supercritical estimates obtained in (v) of Theorem 3,
[3],

Corollary 3.6. When d = 3,

0.5 ≤ lim inf
u→0

log(T−c )

− log(u)
≤ lim sup

u→0

log(T+
c )

− log(u)
≤ 2; (3.4)

When d ≥ 4,
1

d− 1
≤ lim inf

u→0

log(T−c )

− log(u)
≤ lim sup

u→0

log(T+
c )

− log(u)
≤ 1. (3.5)

At the same time, Theorem 3.3 together with Theorem 3.5 also give an affirmative
answer to the conjecture proposed on Page 263, [7] which predicted the global existence
of a non-trivial phase transition with respect to u:

Theorem 3.7. For all d ≥ 3 and T ∈ (0,∞), there is a uc = uc(d, T ) ∈ (0,∞) such that
FIu,T percolates a.s. for all u ∈ (uc,∞), and does not percolate a.s. for all u ∈ (0, uc).
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4 Local stochastic monotoncity

In order to prove Theorem 3.1, we introduce a new mechanism to construct FIu,T . De-
note the collection of all directed nearest-neighbor edges by L̂d :=

{
x→ y : {x, y} ∈ Ld

}
.

Let {Nx→y}x→y∈L̂d

i.i.d.∼ Pois
(

uT
(T+1)2

)
, {Yk}∞k=1

i.i.d.∼ Geo
(

T
T+1

)
and

{
Xy,k
·

}
k∈N+,y∈Zd

be

a sequence of independent random walks with law P
(T )
0 . For u ≥ 0, we have the following

equivalence in distribution:

Lemma 4.1.⋃
x→y∈L̂d

⋃
1≤k≤Nx→y,Yk≥1

{
{x, y}, {Xy,k

i , Xy,k
i+1}, 0 ≤ i ≤ Yk − 1

}
d
= FIu,T .

Proof. For any x ∈ Zd and x→ y ∈ L̂d, by Definition 2.2 and property of Poisson point
process, we note that the number of paths starting from x with length ≥ 1 and the first
step x→ y is a Poisson variable with parameter T

T+1 ∗
1
2d ∗

2du
T+1 = uT

(T+1)2 . In addition, by
the memoryless property of geometric distribution, the remaining part of each path after
the first step removed is still a geometrically killed random walk with killing rate 1

T+1 .
Then Lemma 4.1 follows.

Now Theorem 3.1 can be proved as follows:

Proof of Theorem 3.1: When T1 < T2, 0 < T1 ∗ T2 < 1, we define three independent
sequences of random variables:{

N (1)
x→y

}
i.i.d.∼ Pois

(
uT1

(T1 + 1)(T2 + 1)

)
,

{
N (2)
x→y

}
i.i.d.∼ Pois

(
uT1(T2 − T1)

(T1 + 1)2(T2 + 1)

)
and {

N (3)
x→y

}
i.i.d.∼ Pois

(
u(T2 − T1)(1− T1T2)

(T1 + 1)2(T2 + 1)2

)
.

Meanwhile, one may construct{(
Y

(T1)
k , Y

(T2)
k

)}∞
k=1

i.i.d.∼
(
Geo

(
T1

T1 + 1

)
, Geo

(
T2

T2 + 1

))
such that for any k ≥ 1, P

(
Y

(T1)
k ≤ Y (T2)

k

)
= 1.

Note that for any x→ y, N (1)
x→y +N

(2)
x→y ∼ Pois

(
uT1

(T1+1)2

)
and N (1)

x→y +N
(2)
x→y +N

(3)
x→y ∼

Pois
(

uT2

(T2+1)2

)
. By Lemma 4.1, we have

⋃
x→y∈L̂d

⋃
1≤k≤N(1)

x→y+N
(2)
x→y,Y

(T1)

k ≥1

{
{x, y}, {Xy,k

i , Xy,k
i+1}, 0 ≤ i ≤ Y

(T1)
k − 1

}
d
= FIu,T1 . (4.1)

Note that for any k ≥ 1, if Y (T1)
k ≥ 1, then Y (T2)

k ≥ 1. Use Lemma 4.1 again,⋃
x→y∈L̂d

⋃
1≤k≤N(1)

x→y+N
(2)
x→y+N

(3)
x→y,Y

(T2)

k ≥1

{
{x, y}, {Xy,k

i , Xy,k
i+1}, 0 ≤ i ≤ Y

(T2)
k − 1

}
d
= FIu,T2 .

(4.2)
Finally, by comparing the LHS’s of (4.1) and (4.2), we get the stochastic domination

in Theorem 3.1.
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5 Asymptotic of critical values

In this section, we prove Theorem 3.3 and Theorem 3.5. We begin the proof with
inducing notations according to [9] necessary for renormalization argument.

1. Let L0 and l0 be positive integers to be determined later. For n ≥ 1, let Ln = ln0 ∗L0

and Ln = Ln ∗Zd.
2. Set Bn,x := x+ ([0, Ln) ∩Z)

d and B̃n,x =
⋃

y∈Ln:d(Bn,y,Bn,x)≤1

Bn,y.

3. Let In = {n} × Ln. For any (n, x) ∈ In, write

H1(n, x) = {(n− 1, y) ∈ In−1 : Bn−1,y ⊂ Bn,x, Bn−1,y ∩ ∂Bn,x 6= ∅} ,

H2(n, x) =

{
(n− 1, y) ∈ In−1 : Bn−1,y ∩ {z ∈ Zd : d(z,Bn,x) = bLn

2
c} 6= ∅

}
.

Recall that d(·, ·) is the metric on Zd (see Section 2 for precise definition).

4. For x ∈ Ld, n ≥ 0, let

Λn,x = {T ⊂
n⋃
k=0

Ik :T ∩ In = (n, x) and ∀(k, y) ∈ T ∩ Ik, 0 < k ≤ n, has two

descendants (k − 1, yi(k, y)) ∈ Hi(k, y), i = 1, 2 such that

T ∩ Ik−1 =
⋃

(k,y)∈T ∩Ik−1

{(k − 1, y1(k, y)), (k − 1, y2(k, y))}}.

(5.1)

By (2.8) of [9], one has

|Λn,x| ≤ (c0(d) ∗ l2(d−1)
0 )2n

. (5.2)

Based on the settings above, we can decompose events of interests and estimate their
probabilities by choosing proper values of L0 and l0. Roughly speaking, we need to select
L0 to control the 0−level event and select l0 to guarantee the “almost independence”
between trajectories in different boxes, according to u and T . See Figure 1 for an
illustration of this renormalization scheme:

Now we give the proof of Theorem 3.3.

5.1 Proof of Theorem 3.3

Recall that in Theorem 3.(iii) of [3] and on Page 263 of [7], it has been shown that

lim sup
u→∞

u ∗ T+
c ≤

− log(1− pcd)
2

. (5.3)

Thus it is now sufficient to prove that: for any ε > 0, there exists U ′(d, ε) > 0 such that
for any u > U ′ and T > 0 satisfying

u ∗ T ≤ − log(1− pcd)
2

− ε, (5.4)

FIu,T does not percolate. I.e.,

lim inf
u→∞

u ∗ T−c ≥
− log(1− pcd)

2
. (5.5)
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Figure 1: An illustration of the renormalization scheme

Assume that u is sufficiently large while T satisfies (5.4). Take L0 = bu 1
2d c > 10 and

l0 = 10. Let B∗0,0 = {y ∈ Zd : d({y}, B̃0,0) ≤ 1} and recall the notation η̂K from Section 2.
By (5.4), we have

Pu,T
(
∃η ∈ FIu,T such that {η(i), η(i+ 1)} ⊂ B̃0,0 for some i ≥ 1

)
≤Pu,T

(
∃η ∈ FIu,T such that the length of η̂B

∗
0,0 ≥ 2

)
=1− exp(−u ∗ cap(T )(B∗0,0) ∗

(
T

T + 1

)2

)

≤u ∗ cap(T )(B∗0,0) ∗
(

T

T + 1

)2

≤c ∗ u1.5 ∗ T 2 ≤ c′ ∗ u−0.5.

(5.6)

Let F̂I
u,T

:=
{
e ∈ Ld : e = {η(0), η(1)}, η ∈ FIu,T

}
. By Definition 2.2, one may see

that F̂I
u,T

has the same distribution as the collection of open edges of a Bernoulli bond
percolation with parmeter 1− exp(− uT

(T+1)2 ) < pcd.
By Theorem 6.1 of [5], we have

Pu,T
(
B0,0

F̂Iu,T

←−−−→ ∂B̃0,0

)
≤ (2L0+1)d∗Pu,T

(
0
F̂Iu,T

←−−−→ ∂B0,0

)
≤ (2L0+1)d∗e−cL0 . (5.7)

Note that when the event in the LHS of (5.6) does not occur,

{
B0,0

FIu,T

←−−−→ ∂B̃0,0

}
is

equivalent to

{
B0,0

F̂Iu,T

←−−−→ ∂B̃0,0

}
. By (5.6) and (5.7),

Pu,T
(
B0,0

FIu,T

←−−−→ ∂B̃0,0

)
≤ c′ ∗ u−0.5 + (2L0 + 1)d ∗ e−cL0 . (5.8)
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For any n ≥ 0 and x ∈ Ln, we write that

An,x :=

{
Bn,x

FIu,T

←−−−→ ∂B̃n,x

}
. (5.9)

Recall the notation Λn,x in (5.1). For any T ∈ Λn,x, like Equation (2.13) of [9], we write

AT :=
⋂

(0,y)∈T ∩I0

A0,y. (5.10)

Similar to (2.14) of [9], we have

An,x ⊂
⋃

T ∈Λn,x

AT . (5.11)

Here we need a decoupling inequality, which is parallel to Lemma 5.4, [2]. Let
B̂n,x = {y : d({y}, B̃n,x) ≤ Ln+1} and Fn,x :=

⋂
η∈FIu,T ,η(0)∈(B̂n,x)

c

{η ∩ B̃n,x = ∅}.

Given event F cn,x, there must exist a path η ∈ FIu,T such that η ∩ ∂B̂n,x 6= ∅ and

η ∩ ∂B̃n,x 6= ∅. Recalling the construction of FRI on a finite set in Section 2 (here we

take K = ∂B̂n,x ∪ ∂B̃n,x), the number of such paths is a Poisson random variable with
parameter

u ∗

 ∑
y∈∂B̂n,x

Es
(T )
K (y) ∗ P (T )

y

(
HB̃n,x

<∞
)

+
∑

y∈∂B̃n,x

Es
(T )
K (y) ∗ P (T )

y

(
H∂B̂n,x

<∞
)

≤c ∗ u ∗ (Ln+1)d ∗
(

1− 1

T + 1

)Ln+1

≤ c1u1.510nde−c2Ln+1 .

(5.12)

Recalling that l0 = 10 and (5.12), when u is sufficiently large, we have: for any n ≥ 0,

Pu,T (Fn,x) ≥ exp(−c1u1.510nde−c2Ln+1) ≥ 1− e−c3∗L0∗2n

. (5.13)

Suppose that T ∩ In−1 = {(n − 1, y1), (n − 1, y2)}, where y1, y2 ∈ Ln−1. Since L0 > 10,
B̂n−1,y1 ∩ B̂n−1,y2 = ∅. We denote that Ti = {(m, y) ∈ T : y ∈ B̃n−1,yi}, i ∈ {1, 2}, and that

ATi =
⋂

(0,y)∈Ti∩I0

A0,y and ÂTi =
⋂

(0,y)∈Ti∩I0

{
B0,y

{η∈FIu,T :η(0)∈B̂n−1,yi
}

←−−−−−−−−−−−−−−−→ ∂B̃0,y

}
. (5.14)

Note that ÂT1 and ÂT2 are independent and for i ∈ {1, 2}, ÂTi ⊂ ATi . In addition, if
Fn−1,y1 and Fn−1,y2 both happen, the events ÂT and ÂT1 ∩ ÂT2 will then be equivalent.

By induction and (5.13), and similar to (5.26) of [2], we have

Pu,T (AT ) + 2e−c3∗L0∗2n

≤Pu,T (AT ∩ Fn−1,y1 ∩ Fn−1,y2) + 4e−c3∗L0∗2n

≤Pu,T
(
ÂT1 ∩ ÂT2

)
+ 4e−c3∗L0∗2n

≤
(
Pu,T (AT1) + 2e−c3∗L0∗2n−1

)
∗
(
Pu,T (AT2) + 2e−c3∗L0∗2n−1

)
≤... ≤

(
Pu,T (A0,0) + 2e−c3∗L0

)2n

.

(5.15)

Combining (5.2), (5.8), (5.11) and (5.15),

Pu,T (An,0) ≤
(
c0 ∗ l2(d−1)

0

)2n

∗
(
c′ ∗ u−0.5 + (2L0 + 1)d ∗ e−cL0 + 2e−c3∗L0

)2n

. (5.16)
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Since L0 = bu 1
2d c and l0 = 10, the sufficiently large u will also guarantee that

c0 ∗ l2(d−1)
0 ∗

(
c′ ∗ u−0.5 + (2L0 + 1)d ∗ e−cL0 + 2e−c3∗L0

)
< 0.5. (5.17)

Therefore, as n → ∞, Pu,T (An,0) converges to 0 and so does Pu,T
(

0
FIu,T

←−−−→ ∂B̃n,0

)
since Pu,T

(
0
FIu,T

←−−−→ ∂B̃n,0

)
≤ Pu,T (An,0). So FIu,T fails to percolate.

In conclusion,

− log(1− pcd)
2

≤ lim inf
u→∞

u ∗ T−c ≤ lim sup
u→∞

u ∗ T+
c ≤

− log(1− pcd)
2

. (5.18)

By (5.18) and Corollary 3.2, we conclude the proof of Theorem 3.3

5.2 Proof of Theorem 3.5

Before we give the proof of Theorem 3.5, we need an estimate on the diameter of the
range of geometrically killed random walks.

Lemma 5.1. Let {X(T )
n } be a geometrically killed random walk with law P

(T )
0 . Then

there exist c1, c2 > 0 such that for all L > 0,

P
(T )
0

[
max

0≤i≤∞
|X(T )

i | ≥ L
]
≤ c1e−c2∗T

− 1
3 ∗L

2
3 . (5.19)

Proof. By Theorem 1.5.1 of [6], for any positive integer m, we have

P
(T )
0

[
max

0≤i≤∞
|X(T )

i | ≥ L
]
≤(1− 1

T + 1
)m + P0

[
max

0≤i≤m
|Xi| ≥ L

]
≤ exp(−c ∗ T−1m) + c′ ∗ exp(− L√

m
).

(5.20)

Taking m = b(TL)
2
3 c in (5.20) finishes the proof.

By Theorem 3.1, for any fixed u > 0, FIu,T is stochastically increasing on T ∈ (0, 1].
Thus, it’s sufficient to show that for d ≥ 3 and ε > 0, there exist c̄(d, ε) > 0 and U ′′(d, ε) > 0

such that for any u < U ′′ and T ≥ 1 satisfying

u ≤ c̄(T ∗ (log(T + 1))
3+ε

)−(d−1), (5.21)

FIu,T does not percolate. In fact, the result proved here is sightly stronger than the
statement of Theorem 3.5 and the RHS of (5.21) can be replaced by a polynomial of T to
make the proof a little shorter.

We use the same approach as in the proof of Theorem 3.3 but with different choices
of L0 and l0. To be precise, we set L0 = 10, l0 = b

(
c′T ∗ (log(T + 1))3+ε

)0.5c, where c′ is

to be determined later. Note that the number of paths intersecting B0,0 in FIu,T is a
Poisson random variable with parameter u ∗ cap(T )(B0,0). Therefore,

Pu,T
(

0
FIu,T

←−−−→ ∂B0,0

)
≤Pu,T (there exists at least one path intersecting B0,0)

≤1− exp(−u ∗ cap(T )(B0,0)) ≤ c′′ ∗ u.
(5.22)

For any k ∈ N+, 0 ≤ r < Ln+1 and L = k ∗ Ln+1 + r, by Lemma 5.1, we have

P
(T )
0

(
max

0≤i≤∞
|X(T )

i | ≥ L
)
≤c1 exp(−c′2(d)k

2
3 (c′)

1
3 (n+1)T

1
3n (log(T + 1))

1
3 (3+ε)(n+1)

).

(5.23)
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Recall the notation Fn,x in the proof of Theorem 3.3. By (5.23), when the constant c′(d, ε)
is sufficiently large, for u > 0 and T ≥ 1 satisfying (5.21),

Pu,T ((Fn,x)c) ≤
∑

y∈(B̂n,0)c

Pu,T
(
there is no path starting from y and intersecting B̃n,x

)
≤

∑
L≥Ln+1

c ∗ Ld−1 ∗
[
1− exp(− 2du

T + 1
∗ P (T )

0

(
max

0≤i≤∞
|X(T )

i | ≥ L
)

)

]

≤
∞∑
k=1

c [(k + 1)Ln+1]
d−1 ∗ 2du

T + 1
∗ Ln+1

∗ exp(−c′2k
2
3 (c′)

1
3 (n+1)T

1
3n (log(T + 1))

1
3 (3+ε)(n+1)

)

≤c ∗ u ∗ (Ln+1)d ∗ exp(−c′′2(d) ∗ (c′)n+1 ∗ T 1
3n ∗ (log(T + 1))

1
3 (3+ε)(n+1)

)

≤ exp(−c′′′2 (d) ∗ c′ ∗ (log(T + 1))
1
3 (3+ε) ∗ 2n).

(5.24)

Similar to (5.16), by (5.22) and (5.24), we have

Pu,T
(

0
FIu,T

←−−−→ ∂B̃n,0

)
≤
[
c0l

2(d−1)
0 ∗

(
2 exp(−c′′′2 ∗ c′ ∗ (log(T + 1))

1
3 (3+ε)

) + c′′ ∗ u
)]2n

.

(5.25)

Taking c̄ = (4c0c
′′)−1 and c′(d, ε) > 0 large enough such that for any T ≥ 1,

c0l
2(d−1)
0 ∗ 2 exp(−c′′′2 ∗ c′ ∗ (log(T + 1))

1
3 (3+ε)

) < 0.25. (5.26)

Therefore, when u is sufficiently small and T ≥ 1 satisfies (5.21),

lim
n→∞

Pu,T
(

0
FIu,T

←−−−→ ∂B̃n,0

)
= 0

and thus FIu,T does not percolate.
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