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Abstract

We show that the multi–species higher spin stochastic vertex model, also called
the Uq(A

(1)
n ) vertex model, satisfies a duality where the indicator function has the

form {ηx[i,n] ≥ ξx[i,n]}. In other words, for every particle in the ξ configuration of
species i at vertex x, there must be a particle of species j ≥ i at vertex x in the η
configuration. For these duality functions, the dual process has fewer particles than
the original process, making it suitable for applications. The proof follows by applying
charge reversal to previously discovered duality functions, which also results in open
boundary conditions. As a special case, we recover the duality for the stochastic six
vertex model recently found by Y. Lin.
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1 Introduction

In [KMMO16], the authors construct stochastic S–matrices arising from the affine
quantum group Uq(A

(1)
n ). In [Kua18], it is shown that the corresponding stochastic

vertex model satisfies a Markov duality with its space reversal. The duality function had
previously occurred as the duality function between multi–species ASEP(q,m/2) and its
space reversal [Kua17], where the function is only non–zero if

ηx0 + . . .+ ηxn−i ≥ ξxi + . . .+ ξxn

for all lattice site x and species number i ∈ {1, 2, . . . , n}. Here, ηxi ∈ {0, 1, . . . ,m} denotes
the number of particles of species i at the lattice site x in a configuration denoted by η,
and ηx0 denotes the number of holes at lattice site x.

On the other hand, the duality function between multi–species ASEP(q,m/2) and
itself (non space–reversed) is non–zero if

ηxi + . . .+ ηxn ≥ ξxi + . . .+ ξxn.

These types are duality functions are more suitable for applications of Markov duality,
so it is natural to try to find these types of dualities for the stochastic Uq(A

(1)
n ) vertex

models. However, for totally asymmetric models such as the stochastic vertex models, it
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is necessary to apply a space reversal (see the Remark after Theorem 2.5 of [Kua17]). In
this paper, we show that the simultaneous inversions in the asymmetry parameter q and
spectral parameter z will play the same role as a space reversal. This results in a new
duality function for the stochastic Uq(A

(1)
n ) vertex model with open boundary conditions.

For the case of the multi–species stochastic six vertex model, it generalizes the duality
found in [Lin19] for the single–species stochastic six vertex model.

We note that there are duality functions for stochastic vertex models which do not
have any indicator functions [CP16], [Lin20], but we will not discuss these here.

2 Main results

2.1 Stochastic S–matrices

First let us define some notation. Fix positive integers l,m and n. Let Hl and V
denote the sets

Hl = {(α0, . . . , αn) : α0 + . . .+ αn = l}, Vm = {(β0, . . . , βn) : β0 + . . .+ βn = m}.

The Hl and Vm correspond to the horizontal and vertical lines of vertices, respectively.
The l and m are the spins of the lines, that is, the level of the symmetric tensor represen-
tation.

For i < j, let α[i,j] = αi+. . .+αj , and similarly for β. The paper [KMMO16] introduces
a two–parameter family of stochastic1 matrices S(q, z) whose rows and columns are
indexed by Hl ×Vm. We let S(q, z)γδαβ denote the matrix entry with row (α, β) and column
(γ, δ). The matrix S(q, z) satisfies the conservation property that S(q, z) is only nonzero if
α+ β = γ + δ. There are some explicit formulas for the matrix entries of S(q, z) [BM16],
but we will not use them here. See the end of this paper for a few examples.

We can represent S(q, z) as vertex weights. Associate to each subscript i ∈ {0, . . . , n}
a color. For i < j, we can consider particles of color i to be lighter than particles of color
j. In the example below, we have l = 1,m = 2, α = (0, 1, 0), β = (1, 0, 1), γ = (0, 0, 1), δ =

(1, 1, 0); black is lighter than red which is lighter than green.

γ

β

δ

α

2.2 Transfer matrices

The stochastic S matrices can be used to define an interacting particle system. Let
S̄(q, z) denote the V ×Hl by Hl × V matrix, where the entries are defined by

S̄(q, z)γδβα = S(q, z)γδαβ .

Given a positive integer L and spectral parameters ~z = (z1, . . . , zL), define the transfer
matrix TL to be the Vm1

× · · · × VmL
×Hl by Hl × Vm1

× · · · × VmL
matrix, given by the

composition
TL(q, ~z) = S̄L−1,L(q, zL) · · · S̄12(q, z2)S̄01(q, z1)

1In this paper, we follow the common convention among mathematical physicists that a matrix is stochastic
if its columns, rather than its rows, sum to 1.
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Figure 1: This example shows an update of the transfer matrix when l = m = 1. This
update has probability z(q2 − 1)(1− z)(q2 − z)−2; also see the examples in Section 3.

where
S̄j,j+1(q, z) := Id⊗j ⊗ S̄(q, z)⊗ Id⊗L−1−j

is a (Vm1 × · · · Vmj+1 ×Hl×Vmj+2 × · · · × VmL
)× (Vm1 × · · · Vmj ×Hl×Vmj+1 × · · · × VmL

)

matrix. Here, mx is the maximum number of particles that may occupy lattice site x.
These transfer matrices can be viewed as the transition probabilities for a discrete–

time totally asymmetric particle system, either on the infinite line or on a finite lattice.
See Figure 1 for an example. We use the bold greek symbols η, ξ to denote elements of
Vm1
× · · · × VmL

, where ηx ∈ Vmx
for 1 ≤ x ≤ L. By a slight abuse of notation, we allow

L to equal infinity, so that x can take values in Z or Z>0. Let

|ξ| =
∑
x

n∑
i=1

ξxi ,

and if |ξ| <∞ then we say that ξ has finitely many particles.
The stochastic matrix of transition probabilities for the discrete–time totally asym-

metric particle system is then denoted P(η,η′), and is defined by

P(η,η′) =
∑
γ∈Hl

TL ((η, γ), (0,η′)) ,

where the notation in q, ~z has been suppressed. The sum over ξ is a sum over all possible
sets of particles that exit the lattice {1, . . . , L}.

We also let Prev denote the space–reversed version of P. In P, the particles jump to
the right, whereas in Prev, the particles jump to the left. More formally, let S̃(q, z) denote
the Hl × V by V ×Hl matrix, where the entries are defined by

S̃(q, z)δγαβ = S(q, z)γδαβ .

Define the transfer matrix T̃L to be the Hl × Vm1
× · · · × VmL

by Vm1
× · · · × VmL

×Hl
matrix, given by the composition

T̃L(q, ~z) = S̃01(q, zL) · · · S̃L−1,L−2(q, z2)S̃L−1,L(q, z1)
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where as before
S̃j,j+1(q, z) := Id⊗j ⊗ S̃(q, z)⊗ Id⊗L−1−j

is a (Vm1 × · · · Vmj+1 ×Hl×Vmj+2 × · · · × VmL
)× (Vm1 × · · · Vmj ×Hl×Vmj+1 × · · · × VmL

)

matrix. Then Prev is defined by

Prev(η,η′) =
∑
γ∈Hl

T̃L ((γ,η), (η′,0)) .

We also let
◦
Prev denote the process Prev where l particles of color n enter from the

right boundary at every time step. In other words,
◦
Prev(η,η′) =

∑
γ∈Hl

T̃L (γ,η), (η′, l)) ,

where l consists of l particles of color n. Such boundary conditions had appeared
previously in [Bor17], in the single–species case. See also [BW] for the multi–species
case.

If the dependence on the asymmetry parameter q and the spectral parameter z needs
to be specified, write P(q, ~z) or Prev(q, ~z) or

◦
Prev(q, ~z).

Let D be the duality function

D(ξ, η) =
∏
x

[ηx0 ]!q · · · [ηxn]!q

n∏
i=1

(
ηx[i−1,n] − ξ

x
[i,n]

ηxi−1

)
q

· q−ξ
x
i (ηx[0,i−1]+

∑
z>x 2ηz[0,i−1]),

where [k]q is the q–deformed integer

[k]q =
qk − q−k

q − q−1
,

[k]!q is the q–deformed factorial [1]q[2]q · · · [k]q, and(
n

k

)
q

=
[n]!q

[k]!q[n− k]!q

is the q–deformed binomial. If n < k we set
(
n
k

)
q

= 0. In particular, D(ξ, η) is only nonzero
if ηx[j,n] ≥ ξ

x
[j,n] for all x and j. Note that when all mx = m, then D can also be written as

D(ξ, η) = const ·
∏
x

[ηx0 ]!q · · · [ηxn]!q

n∏
i=1

(
ηx[i−1,n] − ξ

x
[i,n]

ηxi−1

)
q

· q2mxξ
x
i +ξ

x
i (ηx[i,n]+

∑
z>x 2ηz[i,n]),

where const is a constant that does not change under the dynamics. To see this, write

ηy[0,i−1] = m− ηy[i,n]
for all y and i. Plugging this into the original definition of D and setting const to be

const = q2(L+1)m|ξ|

shows the alternative form of D.
Similarly, define

D̃(ξ, η) =
∏
x

[ηx0 ]!q · · · [ηxn]!q

n∏
i=1

(
ηx[i−1,n] − ξ

x
[i,n]

ηxi−1

)
q

· qξ
x
i (ηx[i,n]+

∑
z>x 2ηz[i,n]).

The duality result is stated below as an intertwining; this intertwining is the definition
of Markov duality. The ∗ denotes the transposition of the matrix, and ~z −1 denotes
(z−11 , . . . , z−1L ).
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Theorem 2.1. For any q and ~z,

P∗(q, ~z)D = D
◦
Prev(q−1, ~z −1).

Proof. We start with an intertwining of the S–matrices, which previously appeared but
had not been applied to duality. Let Π∗ denote the matrix that reverses the order of the
colors. In other words, ΠHl

and ΠV denote the permutation matrices with entries

ΠHl
(α, γ) =

{
1, if αi = γn−i for all i ∈ {0, 1, . . . , n}
0, else

and

ΠV(β, δ) =

{
1, if βi = δn−i for all i ∈ {0, 1, . . . , n}
0, else

.

Proposition 3.7 of [Kua18] implies that

(ΠHl
⊗ΠV) ◦ S(q, z) ◦ (ΠHl

⊗ΠV) = S(q−1, z−1). (2.1)

Alternatively, one can check directly when l = m = 1, and then use the fusion relation in
Theorem 3.4 of [Kua18].

One consequence of (2.1) is that

(ΠV ⊗ΠHl
) ◦ S̄(q, z) ◦ (ΠHl

⊗ΠV) = S̄(q−1, z−1).

Letting Π̄(L) denote ΠHl
⊗ΠVm1

⊗ · · · ⊗ΠVmL
and Π(L) denote ΠVm1

⊗ · · · ⊗ΠVmL
⊗ΠHl

,
the previous equation implies

T̃L(q−1, ~z−1) ◦Π(L) = Π̄(L) ◦ T̃L(q, ~z ). (2.2)

Letting Π is defined on Vm1
× · · · × VmL

, we have that

(
◦
Prev(q−1, ~z−1) ◦Π)(η,η′) =

∑
γ∈Hl

(
T̃L(q−1, ~z−1)

)
((γ,η), (ΠHl

η′, l))

=
∑
γ∈Hl

(T̃L(q−1, ~z−1) ◦Π(L)) ((γ,η), (η′,0))

(2.2)
=

∑
γ∈Hl

(
Π̄(L) ◦ T̃L(q, ~z)

)
((γ,η), (η′,0))

=
∑
γ∈Hl

(
T̃L(q, ~z)

)
((ΠHl

γ,Πη), (η′,0))

= (Π ◦ Prev(q, ~z)) (η,η′).

Thus, the conclusion is that

◦
Prev(q−1, ~z −1) ◦Π = Π ◦ Prev(q, ~z). (2.3)

For the single–species (n = 1) case, (2.3) reduces to Proposition 5.1 of [CP16].
The previous duality result (Theorem 4.102 of [Kua18]) says that

P∗(q, ~z) ◦DΠ = DΠ ◦ Prev(q, ~z). (2.4)

2There is a typo in the paper [Kua18]. Equations (16) and (17) of [Kua18], which define DΠ, cite [Kua17]
but switch the η and the ξ. This can also be corrected by reversing the direction of the jumps in η and ξ (which
corresponds to switching η and ξ), as noted by [Lin19]. In any case, we will not use the explicit expression of
DΠ here.
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To see why (2.4) follows from Theorem 4.10, start with the duality function in Theorem
4.10. The paper [Kua18] uses different notation than here, which amounts to substituting
i 7→ n+ 1− i. Next, substitute mx − ηx[i+1,n] = η[0,i]. Next, the application of Π replaces
every ηi with ηn−i. Finally, make the substitution i 7→ n+ 1− i in the index of the product.

As noted in Remark 5 of [Kua], intertwinings of the form (2.3) can be used to produce
new dualities from old ones. Because Π = Π∗ and Π2 = id, plugging (2.3) into (2.4)
implies that

P∗(q, ~z)DΠ = D
◦
Prev(q−1, ~z −1)Π.

Multiplying by Π on both sides shows the theorem.

Remark 2.2. If the lattice is the infinite line Z and all mx are equal to 1, then the
theorem can be written as

P∗(q, ~z)D = q2l|ξ|DPrev(q−1, ~z −1).

This is because the l particles entering from the right still contribute to the duality, even
as the lattice size grows to infinity. In other words, the full–line duality is obtained by
considering a finite lattice {−L, . . . , L} and then taking L → ∞. For large values of L,
the l particles that enter the lattice will not interact with the particles in ξ. However,
they contribute a factor of q2l to the duality, which remains even in the limit. See the
first example in section 3 for an illustrative example.

If, on the other hand, the lattice is {. . . ,−2,−1}, then we have a duality between a
stochastic vertex model with particles jumping to the left and allowed to enter at −1, and
a stochastic vertex model with particles jumping to the right and allowed to exit from
−1. Similar types of boundary conditions have occurred in duality results; see [GKRV09],
[CGR19], [Kua]. The second example in section 3 also illustrates a special case of this
type of boundary condition.

Remark 2.3. In the notation of [CP16], the duality function is

D(ξ, η) = const·
∏
x

[ηx0 ]!q1/2 · · · [η
x
n]!q1/2

n∏
i=1

(
ηx[i−1,n] − ξ

x
[i,n]

ηxi−1

)
q1/2

·qmxξ
x
i +ξ

x
i

(
1
2η

x
[i,n]+

∑
z>x η

z
[i,n]

)
.

Note that the duality function does not depend on z or l. If the size of the lattice is taken
to infinity, then the term const needs to be scaled with the size of the lattice to ensure
that the duality function is nonzero and finite. If all mx equal 1, as is the case in the
following theorem, no scaling is needed as the size of the lattice is taken to infinity.

Theorem 2.4. Suppose that the lattice is the infinite line Z, and all mx and l equal 1.
Then

P∗(q−1, ~z−1)D̃ = D̃Prev(q−1, ~z−1).

Proof. Now assume the conditions in the second duality result. Let S denote the shift
operator defined by

S(η, ξ) =

{
1, if ηx = ξx+1 for all x,

0, else.

We have that S−1 = S∗, and the translation invariance says that

S−1PS = P, S−1PrevS = Prev.

Additionally, from the expressions for D̃ it is immediate that

S−1D̃S = D̃.
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Furthermore,
S−1DS = q−2|ξ|D

due to the
∏
x

∏
i q

2mxξix term. Let G be the diagonal matrix with entries

G(ξ, ξ) =
∏
x∈Z

n∏
i=1

q−2mxξ
x
i .

From the definitions of D and D̃, the matrix G relates D and D̃ via

D̃ = const ·GD.

Once we show
SGS∗P∗(q, ~z )G−1 = P∗(q−1, ~z −1), (2.5)

this proves the result. Indeed, assuming (2.5),

P∗(q, ~z )D = D
◦
Prev(q−1, ~z −1)

=⇒ SGS∗P∗(q, ~z )G−1GD = SGS∗D
◦
Prev(q−1, ~z −1)

=⇒ P∗(q−1, ~z −1)D̃ = q−2|ξ|SD̃S∗
◦
Prev(q−1, ~z −1).

The transition matrix
◦
P has a particle entering the lattice at each update, which produces

a term q2|ξ| (cf. Remark 1), thus finally yielding P∗(q−1, ~z −1)D̃ = D̃Prev(q−1, ~z −1).
To show (2.5), first write it in the form

P(q−1, ~z −1) = G−1P(q, ~z)SGS∗.

Set

b1 =
q2(1− z)
q2 − z

, b2 =
1− z
q2 − z

and note that b1/b2 = q2, and the simultaneous inversions q 7→ q−1, z 7→ z−1 switches
b1 and b2. After this inversion, the weight b1 is the “west–east” weight and b2 is the
“north–south” weight; initially b1 is the “north–south” weight and b2 is the “west–east”
weight. Every matrix entry of P(q−1, ~z −1) is of the form

bA1
2 bA2

1 ((1− b1)(1− b2))A3

for some non–negative integers A1, A2, A3. Proceed by induction on the value of A2.
Suppose A2 = 0. Define a block in the configuration ξ to be an interval {x, x+1, . . . , y}

where ξx−1 6= ξx = ξx+1 = · · · = ξy 6= ξy+1. The condition that A2 = 0 means that every
particle either stayed put, or was part of a block that jumped one step to the right (i.e.,
if a particle jumps two steps to the right, then there is at least one b1 vertex, so A2 > 0).
The number of particles that stayed put is A1, and the number of jumping blocks is A3.
Thus, the corresponding matrix entry of G−1P(q, ~z)SGS∗ is

bA1
1 ((1− b2)(1− b1))A3 ·

(
b2
b1

)A1

1A3 ,

which equals bA1
2 ((1− b1)(1− b2))A3 .

Now suppose we know (2.5) for every matrix entry satisfying A2 = r. Let η, ξ be
particle configurations such that the (η, ξ) entry of P(q−1, ~z −1) equals

bA1
2 br+1

1 ((1− b1)(1− b2))A3 .
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Then there exists a ζ such that the (ζ, ξ) entry of P(q−1, ~z −1) equals

bC1
2 br1((1− b1)(1− b2))C3

for some C1, C3. The configuration ζ can be constructed from η by taking a particle at
lattice site y and moving it to lattice site x− 1 (where x ≤ y), and {x, x + 1, . . . , y} is a
block in η. Then C1 −A1 = y − x. The (ζ, ξ) entry of G−1P(q, ~z)SGS∗ is, by definition,

[P(q, ~z)](ζ, ξ)
G(ξ+, ξ+)

G(ζ, ζ)
,

where the superscript + denotes the particle configuration obtained by shifting every
particle one lattice site to the right. By the induction hypothesis,

[P(q, ~z)](ζ, ξ)
G(ξ+, ξ+)

G(ζ, ζ)
= [P(q−1, ~z −1)](ζ, ξ).

By construction,

G(ζ, ζ) = G(η,η)q2(y−x+1) = G(η,η)

(
b1
b2

)C1−A1+1

.

So by translation invariance,

bC1
1 br2((1− b2)(1− b1))C3

G(ξ+, ξ+)

G(η,η)

(
b2
b1

)C1−A1+1

= bC1
2 br1((1− b1)(1− b2))C3 ,

which simplifies to

bA1
1 br+1

2 ((1− b2)(1− b1))C3
G(ξ+, ξ+)

G(η,η)
= bA1

2 br+1
1 ((1− b1)(1− b2))C3 ,

Multiplying both sides by ((1− b1)(1− b2))A3−C3 , we arrive at

[P(q, ~z)](η, ξ)
G(ξ+, ξ+)

G(η,η)
= [P(q−1, ~z −1)](η, ξ),

as needed.

Remark 2.5. In the single–species (n = 1) case of Theorem 2.4, the stochastic vertex
model reduces to the stochastic six vertex model. After replacing q by q1/2 and swapping
the roles of left and right jumps, the duality reduces to the duality in [Lin19].

Remark 2.6. In the degeneration of the stochastic six vertex model to ASEP, we recover
a duality for ASEP. Heuristically, as z → 1,

P(q, z) ≈ S − LASEP(q2,1)S(z − 1) +O((z − 1)2),

P(q−1, z−1) ≈ S∗ − LASEP(1,q2)S
∗(z − 1) +O((z − 1)2).

Here, LASEP(l,r) is the generator of ASEP with left jump rates l and right jump rates r.
The two dualities in this paper then become the Schütz ASEP duality [Sch97] and the
ASEP duality in Corollary 4.7(c) from [Kua]. Note that the latter duality function had
already occurred in [Sch97], using time reversal rather than space reversal. The relation
(2.5) then reduces to the intertwining in the proof of Theorem 4.6(b) of [Kua].

Remark 2.7. As mentioned in the appendix of [CP16], the degeneration of the stochastic
six vertex model to ASEP does not work for higher spin (m > 1) models, because non–
negativity fails to hold. Thus, the m = 1 case can be regarded as a unique case; (2.5)
does not hold in general, for example.
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3 Examples

When l = 1, there is a simple expression for S(z) from (25) of [Kua18]. Note that in
the notation of [Kua18], particle colors are written as (η1, . . . , ηn+1), where ηn+1 are the
holes. The notation can be matched with the replacement ηi 7→ n+ 1− ηi.

For 0 ≤ j ≤ n, let εj ∈ Hl denote the vector (0, . . . , 0, 1, 0, . . . , 0), where the 1 is located
the jth index. For any 0 ≤ i ≤ j ≤ n, let α[i,j] = αi + αi+1 + · · ·+ αj .

(qm+1 − z)S(z)εk,δεj ,β
= 1{εj+β=εk+δ} ×


q2β[k,n]−m+1(1− q−2βk+m−1z), if k = j,

−q2β[k+1,n]−m+1(1− q2βk), if k < j,

−q2β[k+1,n]z(1− q2βk), if k > j.

(3.1)

The stochastic matrices from Definition 2.1 of [CP16] uses the notations α, q, I, which are
related to the notations here by the substitutions m→ I, q → q1/2, z → −αqµ−1, where
µ = q−m; see also Proposition 3.10 and Appendix A.2 of [Kua18] for a matching of the
notations when l > 1.

Below are the four nontrivial vertex weights for l = m = 1 and n = 1; the number of
arrows coming in from the southern direction is equal to β1:

z(q2−1)
q2−z

q2(1−z)
q2−z

q2−1
q2−z

1−z
q2−z

In the image below, the image shows T rev
L , which has weight (q2 − z)−3(−z(1− q2)) · (1−

z) · (−(1− q2)).

Below are the eight nontrivial vertex weights when l = 1,m = 2 and n = 1; again the
number of arrows coming in from the southern direction is equal to β1:
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z(q4−1)
q3−z

q3(1−qz)
q3−z

z(q2−1)
q3−z

q3(1−q−1z)
q3−z

q−1(1−qz)
q3−z

q−1(q4−1)
q3−z

q(1−q−1z)
q3−z

q(q2−1)
q3−z

We work out some examples; assume below that n = 1:

• Let us verify that on the infinite line,

[P∗(q, ~z)D](ξ,η) = [D
◦
Prev(q−1, ~z −1)](ξ,η)

when ξ consists solely of one particle at lattice site 0 and η consists of k particles
at lattice site 0, and m0 = m. The left–hand–side simplifies as

[P∗(q, ~z )](ξ, ξ)D(ξ,η) =
qm+1(1− q−(m−1)z)

qm+1 − z
· q

k − q−k

q − q−1
qk.

The right–hand–side has two terms, one corresponding to when all particles in η

stay still, and the other corresponding to when one particle jumps:

[D
◦
Prev(q−1, ~z −1)](ξ,η)

=

(
q−(m+1)(1− qm−2k+1z−1)

q−(m+1) − z−1
qk − q−k

q − q−1
qk +

z−1(q−2k − 1)

q−(m+1) − z−1
qk−1 − q−k+1

q − q−1
qk−1

)
q2.

The factor of q2 comes from the particle entering from the right. From a direct
calculation, both sides equal

−
qk+1

(
qk − q−k

)
(−qm + qz)

(q − q−1) (q1+m − z)
.

• Let us verify that on {. . . ,−3,−2,−1},

[P∗(q, ~z)D](ξ,η) = [D
◦
Prev(q−1, ~z −1)](ξ,η)

where ξ consists solely of one particle at lattice site −r and η is empty. The
left–hand–side is

z(q2 − 1)

(qm−r+1 − z)
· q
−m−r+1+1 − z
qm−r+1+1 − z

· · · · q
−m−1+1 − z
qm−1+1 − z

,
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where the right–hand–side is

q−m−1+1 − z
qm−1+1 − z

· · · · q
−m−r+1+1 − z
qm−r+1+1 − z

· q
−m−r+1(q2m−r − 1)

qm−r+1 − z

∣∣∣
z 7→z−1,q 7→q−1

·D(ξ, ξ)

=
q2m−1(q−m−1+1 − z)

qm−1+1 − z
· · · · q

2m−r+1(q−m−r+1+1 − z)
qm−r+1+1 − z

· zq
m−r−1 · q−m−r+1(q2m−r − 1)

qm−r+1 − z

× 1

[m−r]q
q−(m−r−1)−

∑−1
s=−r+1 2ms ,

which equals the left–hand–side.
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