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An exit measure construction of the total local time of
super-Brownian motion
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Abstract

We use a renormalization of the total mass of the exit measure from the complement
of a small ball centered at z € R® for d < 3 to give a new construction of the total
local time L” of super-Brownian motion at x.
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1 Introduction and main results

The local time of super-Brownian motion (SBM) has been well studied by many
authors, e.g., Adler and Lewin [1], Barlow, Evans and Perkins [2], Krone [9], Sugitani [14],
etc. It may be formally defined as the density function of the occupation measure of super-
Brownian motion. Let My = Mp(R?) be the space of finite measures on (R<, B(R%))
equipped with the topology of weak convergence of measures. A super-Brownian
motion X = (X;,t > 0) starting at © € M is a continuous Mp-valued strong Markov
process defined on some filtered probability space (2, F, 7, P) with Xy = p a.s. Write
w(¢) = [ ¢(x)p(dz) for any measure p. It is well known that super-Brownian motion is
the solution to the following martingale problem (see [13], I1.5): For any ¢ € CZ(R%),

Xil6) = Xo(o) + Mi(0) + [ X.(G 0. .

where (M(¢))i>0 is a continuous F;-martingale such that My(¢) = 0 and the quadratic
variation of M (¢) is

M ()], = / X, (¢)ds.

Here CZ(RY) is the space of bounded functions which are twice continuously differ-
entiable. The above martingale problem uniquely characterizes the law P x, of super-
Brownian motion X, starting from X, € My, on C([0, o), Mf), the space of continuous
functions from [0, c0) to M furnished with the compact-open topology.
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Exit measure construction of the local time

For any 0 < ¢ < oo, the occupation measure of super-Brownian motion X up to time ¢
is the random measure defined by

I,(A) = /Ot X, (A)ds. (1.2)

In dimensions d < 3, the occupation measure I; has a density, L7, called the local time of
X, which satisfies

t
I(f) = / Xs(f)ds = , f(x)L? dx for all continuous f with compact support. (1.3)
0 R

Moreover, Theorems 2 and 3 of Sugitani [14] imply that (¢,2) — L7 is continuous on
[0,00) x S(Xp)¢, where S(u) = Supp(p) denotes the closed support of a measure p. The
extinction time of X is a.s. finite (see, e.g., Chp II.5 in [13]) and so we set L* = LZ_ to be
the (total) local time of X. We define the range, R, of X to be R = Supp(/w).

Now consider SBM under the canonical measure IN,,, which is a o-finite measure on
C([0,00), Mp). If =2 = %", ., d,: is a Poisson point process on C([0, c0), M) with intensity
Ny, (dv) = [ IN,(dv)Xo(dz), then

thzu,f:/yt =(dv), t > 0, (1.4)

icl

has the law, P x,, of a super-Brownian motion X starting from X,. We refer the readers
to Theorem II.7.3(c) of [13] for more details. The global continuity of the total local time
L* under IN,, is given in [6] (see, e.g., Theorem 1.2 of the same reference). By (1.4) we
may decompose the total local time L” under P, as

Lr=> L*(V') = /L“"(u)E(du). (1.5)

el

Intuitively the total local time L” measures the amount of mass distributed by super-
Brownian motion on the singleton x. This mechanism is pretty similar to the exit measure
from the complement of a small ball centered at x. To define the exit measure in an
appropriate way, we first recall Le Gall’s Brownian snake.

Let W = Us>0C([0, s], RY) be equipped with the natural metric (see, e.g., Chp. IV.1
of Le Gall [11]). For any w € W, we write ((w) = s if w € C([0, 5], RY). We call ((w) the
lifetime of w. The Brownian snake W = (W,,t > 0) is a W-valued continuous strong
Markov process. Let ¢; = ¢(W,;) and use W (t) = W;(¢;) to denote the tip of the snake
at time ¢. Recall the canonical measure IN, of super-Brownian motion from above. By
slightly abusing the notation, we let IN, denote the excursion measure of the snake, on
C(]0,00), W), starting from the trivial path at 2 € R? with zero lifetime. Then we may use
the Brownian snake W to construct a measure-valued process X (W) = (X (W), ¢ > 0)
under N, such that the law of X (W) under IN, is equal to that of a super-Brownian
motion under the canonical measure IN,, thus justifying our abusive notation. We use
X:(W) to denote the super-Brownian motion associated with the snake W instead of the
integral with respect to X;. This should be clear if one recalls that W is not a function
on R? but the snake. The construction of the super-Brownian motion X (W) by the snake
W is not important for our discussion here, and so we refer the interested readers to
Theorem IV.4 of [11] for more information. If = = Zj cJ 6Wj is a Poisson point process on
W with intensity N x, (dW) = [ N, (dW)X,(dz), then it follows from (1.4) that

Xp = X;(W;) = /Xt(W)E(dW) fort > 0 (1.6)

jeJ
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has the law, Px,, of a super-Brownian motion X starting from Xj. It also follows from
(1.5) that the total local time L* under P x, may be decomposed as

L* =Y "L*(W;) = /Lx(W)E(dW). (1.7)
jeJ

Now we turn to the exit measure. The exit measure from an open set GG, under Px, or
INx,, is a random finite measure supported on G and is denoted by X (see Chp. V of
[11] for the construction of the exit measure). Intuitively X represents the mass started
at X, which is stopped at the instant it leaves G. We note [11] also suffices as a reference
for the properties of X described below. Let B(xg,e) = B:(z9) = {z : | — x| < &}
denote an open ball centered at zy € R? with radius € > 0. Define the complement of a

closed ball centered at xy with radius € > 0 to be

G2 = G.(xg) = {z : |x — x| > ¢} and let G. = G(0). (1.8)
For any K, K> non-empty, set
d(K1,Ky) =inf{|z —y| : x € K1,y € Ka}.

We assume that 7o € R? and ¢ > 0 satisfy d(B.(z¢),S(Xo)) > 0. In what follows we
will only be considering exit measures X for G = GZ° with zy € R? and ¢ > 0 as
above. Under IN,, we have the range R of super-Brownian motion X = X (W), defined
by R = S(I.) with I, as in (1.2), may also be written as (see, e.g., equation (8) in the
proof of Theorem IV.7(iii) of [11])

R ={W(s):sel0,0]} (1.9)

where 0 = o(W) = inf{t > 0 : (; = 0} > 0 is the length of the excursion path. For any
x € G, under IN, we may use the definition of exit measure in Chp. V of [11] to get (see
also (2.3) of [8])

X is a finite random measure supported on G NR a.e. (1.10)

The extension of (1.10) to Ny, is immediate as Nx,(dW) = [ IN,(dW)X,(dz). It also
works under P x, as we may, equivalently, set (see, e.g., (2.23) of [12])

Xo =Y Xa(W;) = /XG(W)E(dW), (1.11)
jeJ
where = is a Poisson point process on YV with intensity Nx,.

Let d(z,K) = inf{Jx — y| : y € K}. It has been shown in Proposition 6.2(b) of [8]
that for any = € S(Xy)¢, under Nx, or Py,, the family {ngo (1),0 < r < ro} with
ro = d(z, S(Xo))/2 has a cadlag version which is a supermartingale if d = 3; a martingale
if d = 2. Throughout the rest of the paper, we will always work with this cadlag version.
For any € > 0, set

—r

Po(e) = (1.12)

{i logt(1/¢), ind=2,
L1 ind = 3.
The following result gives a new construction of the total local time L* in terms of the
local asymptotic behavior of the exit measures at x. This result is also useful in the
construction of a boundary local time measure whose support is the topological boundary

of the range of super-Brownian motion in d = 2 and d = 3 (see [7]).

Notation. For a collection of random variables {{;,t € T}, we say & converges in
measure to &, under Nx, as ¢t — ¢ if for any n > 0, Nx, (|&: — &,| > n) — 0 as ¢t — to.
The same definition applies under Px,.
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Theorem 1.1. Letd = 2 ord = 3 and Xy € Mp(R?). For any = € S(X,)¢, we have
Xg:(1)1o(e) converges in measure to L* under Nx, or Px, ase | 0, (1.13)

where 1) is as in (1.12). Moreover, in d = 3 the convergence holds Nx, -a.e. or Px,-a.s.
Remark 1.2.In d = 3, the family A := {ngoﬂ(l)q/)o(ro —7),0 < r < ro} with
ro = d(z,5(Xp))/2 is indeed a martingale (see the proof of the above theorem in Sec-
tion 3). This allows us to use martingale convergence to conclude a.s. convergence
ind = 3. Ind = 2, we already know from Proposition 6.2(b) of [8] that the family
{ngoﬂ.(l), 0 <r < ro} is a martingale, and so one can check that .A will be a submartin-
gale in d = 2. Whether or not a.s. convergence holds in d = 2 remains unresolved.

2 The special Markov property

We will state the special Markov property for the Brownian snake from [10] that plays
an essential role in our proof. We first deal with INx,. Recall that we are working with
exit measures X for G = G%° with 2o € R¢ and ¢ > 0 satisfying d(B.(z0), S(Xo)) > 0.
Define

Se(W,) = inf{t < Cu: Wu(t) ¢ G} (inf 0 = o0),

t
nC (W) = inf{t : / 1(Cu < Sa(Wo)) du > s},
0
&g =0(W,a,s >0) Vv {Nx, — null sets}, (2.1)

where s — W, ¢ is continuous (see p. 401 of [10]). Intuitively one may think of &c as the
o-field generated by the excursions of W inside G. Write the open set {u : S¢(W,) < (.}
as countable union of disjoint open intervals, U;cr(a;,b;). Then for all u € [a;, b;], one
notices Sg(W,,) = S < oo where S, = Sg(W,,) > 0, and we may define

Wsl(t) = W(ai"l's)/\bi (SlG + t) for0<t¢< C(ai+5)/\bi - SlG

In this way, we have W' are the excursions of W outside G for each i € I. Proposition
2.3 of [10] implies that X is £g-measurable and Corollary 2.8 of the same reference
gives the following special Markov property:

(2.2)

Conditional on &g, the point measure ) ;_; dy: is a Poisson
point measure with intensity Nx,,.

Here Ny (dW) = [IN,(dW)X¢(dz) is a (random) intensity measure on the space of
the snake, i.e. C([0,00),W). Consider G = GZ and D = GZ, with £; > €3 > 0. We can
define the exit measure X p(W?) for each W' following the construction of exit measure
in Chapter V.1 of [11]. As in (2.6) of [8], one may conclude

Xp=>_ Xp(W". (2.3)
il

If U is an open subset of S(X()¢ then Ly, the restriction of the total local time
L® to U, is in C(U,R) which is the set of continuous functions on U. Here are some
consequences of (2.2) that are already proved in Proposition 2.2(a) of [8].
Proposition 2.1. For any X, € Mp(R?), fix some x € S(X,)°. Define G; = GZ and
Gy = G?Q with0 < g9 <1 < d(l‘,S(Xo))
(i) If 1 : C(G1°,R) — [0, 0) is Borel measurable, then

WNx, (¥1(Lge)l€a,) = Exq, (¥1(Lgye))-
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(ii) If o : Mp(RY) — [0, 00) is Borel measurable, then

Nx, (¢2(XG2)‘8G1) = IE)XG1 (¢2(XG2))

The o-finiteness of INx, is not an issue here as we may define the above conditional
expectation by, e.g., using Radon-Nikodym derivative.

We will need a version of the above under P x, as well, which follows immediately
from Proposition 2.3 of [8].

Proposition 2.2. For any X, € Mp(R?), fix some z € S(Xo)°. Define G, = G¥ and
Gy = GZ with 0 < g5 < &1 < d(z, 5(X0)).
) If ¢y : C(G716, R) — [0, 00) is Borel measurable, then

Ex, (61(Lgr)) = Ex, (Bxe, (01(Lg0)) )
(ii) If 3 : Mp(R?) — [0, 00) is Borel measurable, then
Ex,(02(Xa,)) = Ex, (Exq, (62(Xc.))).

3 Construction of the total local time by exit measure

In this section we will give the proof of Theorem 1.1. We assume throughout this
section that d = 2 or d = 3. The Laplace transform of L* derived in Lemma 2.2 of [12] is
given by

Ex, (exp(—AL’”)) = exp (— VA(x — y)Xo(dy)) , (3.1)
Rd
where V* is the unique solution to
AVA V)2
5 _ | 2> — Mo, V*>0onR" (3.2)

Here 4y is the Dirac delta function and the above differential equation is interpreted in
a distributional sense. One can check that V* is radially symmetric and we may write
VA(|z|) for VA(x). Recall vy from (1.12). It is known that (see, e.g., p. 187 of [4]) V* is
smooth in R%\{0}, and near the origin, Lemma 8 of [3] gives that

V@)
lim ——=%
220 o (|])

Proof of Theorem 1.1. The outline for the proof is as follows: First we get some L?
convergence, associated with Xg- and L”, using the Laplace transforms. Then we show
that this implies the convergence in measure. When d = 3, we prove there is an a.s. limit
by the martingale arguments. It is then immediate that L*, as the limit of convergence
in measure, is in fact the a.s. limit, thus completing the proof.

We first consider the Ny, case. Fix any = € S(Xy)° and let 6 := d(z, S(Xo)) > 0. For
any A > 0and 0 < £ < §/2, we have

=\ (3.3)

1=, ((exp(-AXe: (100(2) — exp(-AL7)) )
—INox, ((exp(~2XXas (1) (2)) + exp(~2AL*) = 2exp(~AXaz (1)o(e)) exp(~AL?) )
~Ny, (eXp(—Q)\XG;c (1)vo(e)) + Exg, (exp(_QALf))
— 2exp(~AXaz (190 () Exy ((exp(-AL9)) ). (3.4)
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where we have used Proposition 2.1 (i) in the last equality. Apply (3.1) with X, = Xg= to
get

Exg, (exp(—AL‘”)) = exp (— VMa —y)Xa: (dy))

Rd
=exp <— VA(e)ng (dy)> = exp(—XG?(l)VA(e)). (3.5)

In the second equality we have used the fact that the exit measure X is supported on
OG?® by (1.10) and then apply the radial symmetry of V* to get V*(z —y) = VM (Jz —y|) =
V(e) for any y € O0G?. The above still holds true if we replace A with 2 in (3.5). Use
the above in (3.4) to arrive at

I =Ny, (exp(—QAXGg (1)to(€)) + exp(— Xz (1)V2(e))
— 2exp(~AXaz (1) (0)) exp(— Xaz (NVA(e)) ) (3.6)
—INox, ((exp(~2X Xz (1)0(2)) — exp(~AXaz (1o ()) exp(~Xa: (V) )

+ Ny, (exp(—Xa: ()V2(£)) = exp(~AXaz (1)o(e)) exp(—Xaz (1)V(£)))
2211 + 12.

We first deal with ;.

|11] S]NXO(

exp ( - 2/\XG§(1)w0(5)> —exp ( — (A +

N, (| ez (10(e) exp = V(o) X (D(e)) (20— 3+ D)) )

V()
o(e)
where the second line is by the mean value theorem with A (¢)(w) chosen between 2 and

A+ VA(e)/1po(e). When € > 0 is small, (3.3) implies V() /1o(c) > A\/2, and so Ny, -a.e.
we have \'(g) > min{2\, X\ + V*(g)/1o(¢)} > 3)/2 > \. Hence (3.7) becomes

VX (e)
Yo(e)

Recall § = d(x,S(Xp)). Define S(Xo)>%* = {y : d(y,S(Xy)) > 6/4} so that for any
0 < e < §/2, we have IG C S(X;)>%/4. Recall R from (1.9). Apply (1.10) to see for all
0 <e < 4/2, we have

<A = 25 | N, (X (Wioe) exp (= N () Xz (Do()) ). (3.7)

L) < [A— |- Ny, (XGg(mwo(g) exp ( - Axggu)wo(s))). (3.8)

RN S(Xo)>*/* = 0 implies X« (1) =0, Ny,-a.e. (3.9)
Use the above to get
Nx, (Xoz (1)vo(e) exp (= AXa: (Do) ) )
=W, (Xa (1)o(e) exp (= AXaz (1)10(2) LR N S(X0)>/* #0))
<Ae Ny, (RN S(X0)™%* £ 0) := A te 1 C (X0, ) < oo, (3.10)

where the first inequality is by ze=** < A\~le~!,Va > 0. The finiteness of C'(Xj, §) follows
from Proposition VI.2 of [11]. Hence (3.8) becomes

V2(e)
Yo(e)

I <A — |- Ate7'C(Xo,0) = Oase |0, (3.11)
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where the convergence to 0 follows from (3.3).
Turning to I», we have

1l <0, ([ op (= 2 X 00le)) — o0 (= 0+ 1) X (o))
=, ([ X (D@ e (= 30Xz (@) (- - o D))
< ZA(S) - Z;((;) ‘ Ny, (Xg.;(l)z/)o(a) exp ( - X(E)nga)zpo(g))), (3.12)

where in the second line we have used the mean value theorem with A(¢)(w) cho-
sen between V2*(e)/1p(e) and A + V*(e)/o(¢). When & > 0 is small, (3.3) implies
V22 (e) /1o(e) > 3X/2 and V() /bo(g) > A/2. So Ny, -a.e. we have

. 2) (¢ Ae
Ae) > min{zo((g)>,)\+ ‘;0((6))} > 3 > A (3.13)

2
Use the above to see that (3.12) becomes

L <[ Y20 VA(g)‘.

1 9o(e) Yo(e)
Apply (3.10) to see that

Xo (ng (1) (&) exp ( _ Axgga)%(g))).

VRE) Ve

Il <[ - *wo(g)’%*le’lC(Xo,d)
VZAE) VAN 1 -
< Yo(e) _ZA’JF‘)‘_ bo(2) ) AT C(X0,0) > 0as e L0, (3.14)

where the convergence to 0 follows from (3.3).

Recall I from (3.4). We may conclude from (3.11) and (3.14) that I — 0 as € | 0, thus
giving the L? convergence of exp(—AX ¢z (1)1b0(¢)) to exp(—AL®) under Ny,. By Corollary
2.32 of Folland [5], for any sequence ¢,, | 0, we may pick a subsequence ¢, | 0 so that

lim exp(—=AXg: (1)Yo(en,)) = exp(=AL"), Nx,-a.e. (3.15)
ng

enkio

We note the arguments in Folland [5] remain valid for our setting with the L? convergence
under the o-finite measure Ny, . It is immediate from (3.15) that

lim )(G
Eny

(D)tpo(en,) = L*, NWNx,-a.e. (3.16)

x
Eny

At this stage, we may not conclude the convergence in measure due to the o-finiteness
of INx,. This issue could be solved by noticing that the event { X¢g= # 0 or L* # 0} has
only finite measure under Nx,. By using Proposition 2.1 (i), we get for any 0 < € < §/2,

INx,({L" > 0} N {Xaz (1) = 0}) = Nx, (L{xge (1)=0}Nx, (L{ze 501 €c2))
= Nx, (Lxge (1)=01Exg: (L7 > 0)) =0,

thus giving Ny,-a.e. Xg:«(1) = 0 implies L* = 0. Together with (3.9), we get for any
0<e<d/2,

RN S(Xo)>*/* = implies L” = 0 and X¢:(1) =0, Ny,-a.e. (3.17)
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Therefore it follows that for any n > 0,

Nx, (1Xe: (1)o(e) = L7 > n)

= Nx, ({1 X6z (Do) - L7 > m} N {R N S(Xa)>"/* 2 0}), (3.18)
and so we may work with the finite measure Nx,(- N {R N S(X)>%/* # 0}) when

considering the convergence in measure under INx,. Apply Dominated Convergence
Theorem with (3.16) and (3.18) to get

lim N, (|XG§ (Wo(en,) — L7 > n) = 0. (3.19)
Enk ni.

Hence for any sequence ¢, | 0, there is a subsequence ¢, | 0 such that (3.19) holds,
thus completing the proof of convergence in measure under INx,. For the Px, case, the

above arguments work in a similar and even easier way, and so we omit the details.

Now we turn to the a.s. convergence in d = 3. For any = € S(X))¢, set ro = §/2 where
0 =d(z,5(Xp)) >0.Ind=3, by (6.10) of [8], for any 0 < £ < ryp we have

€
Hence for 0 < €5 < €1 < rg, we may apply Proposition 2.1(ii) to get

Xg= (1) Xg= (1) Xg= (1)
_cf2 " C » — c2 — €1
]NXO< 150} ‘gael) EXG?l ( £9 ) €1 ’ (3.21)

where the last equality follows by applying (3.20) with X, = XG?l and by using the fact
that the exit measure XGET1 is supported on 8G'§1 by (1.10). Recall that in d = 3 we have
o(e) = 1/(2me). Use (3.21) to conclude

Nx, (Xaz, (Dto(e2)[€az, ) = Xoz, (D¥o(1), (3.22)

which implies {Xcgoﬂ,(l)?ﬁo(ro —1),0 <r <y} is a nonnegative martingale. Note that
we always work with the cadlag version of XGfO_T(l) on 0 < r < ryo. Now we may apply
the martingale convergence theorem to get N, -a.e. lim,_,,, XG:O_T(l)@/Jo(To — ) exists.
Since we already have X¢=(1)1o(¢) converges to L* in measure under INx, (see also
(3.16)), we conclude that INx,-a.e. lim. o Xg=(1)10(¢) = L. The case for PPy, follows in
a similar way. |
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