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1 Introduction and main results

The local time of super-Brownian motion (SBM) has been well studied by many
authors, e.g., Adler and Lewin [1], Barlow, Evans and Perkins [2], Krone [9], Sugitani [14],
etc. It may be formally defined as the density function of the occupation measure of super-
Brownian motion. Let MF = MF (Rd) be the space of finite measures on (Rd,B(Rd))

equipped with the topology of weak convergence of measures. A super-Brownian
motion X = (Xt, t ≥ 0) starting at µ ∈ MF is a continuous MF -valued strong Markov
process defined on some filtered probability space (Ω,F ,Ft, P ) with X0 = µ a.s. Write
µ(φ) =

∫
φ(x)µ(dx) for any measure µ. It is well known that super-Brownian motion is

the solution to the following martingale problem (see [13], II.5): For any φ ∈ C2
b (Rd),

Xt(φ) = X0(φ) +Mt(φ) +

∫ t

0

Xs(
∆

2
φ)ds, (1.1)

where (Mt(φ))t≥0 is a continuous Ft-martingale such that M0(φ) = 0 and the quadratic
variation of M(φ) is

[M(φ)]t =

∫ t

0

Xs(φ
2)ds.

Here C2
b (Rd) is the space of bounded functions which are twice continuously differ-

entiable. The above martingale problem uniquely characterizes the law PX0 of super-
Brownian motion X, starting from X0 ∈MF , on C([0,∞),MF ), the space of continuous
functions from [0,∞) to MF furnished with the compact-open topology.
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Exit measure construction of the local time

For any 0 ≤ t ≤ ∞, the occupation measure of super-Brownian motion X up to time t
is the random measure defined by

It(A) =

∫ t

0

Xs(A)ds. (1.2)

In dimensions d ≤ 3, the occupation measure It has a density, Lxt , called the local time of
X, which satisfies

It(f) =

∫ t

0

Xs(f) ds =

∫
Rd

f(x)Lxt dx for all continuous f with compact support. (1.3)

Moreover, Theorems 2 and 3 of Sugitani [14] imply that (t, x) 7→ Lxt is continuous on
[0,∞)× S(X0)c, where S(µ) = Supp(µ) denotes the closed support of a measure µ. The
extinction time of X is a.s. finite (see, e.g., Chp II.5 in [13]) and so we set Lx = Lx∞ to be
the (total) local time of X. We define the range, R, of X to be R = Supp(I∞).

Now consider SBM under the canonical measure Nx0 , which is a σ-finite measure on
C([0,∞),MF ). If Ξ =

∑
i∈I δνi is a Poisson point process on C([0,∞),MF ) with intensity

NX0
(dν) =

∫
Nx(dν)X0(dx), then

Xt =
∑
i∈I

νit =

∫
νt Ξ(dν), t > 0, (1.4)

has the law, PX0 , of a super-Brownian motion X starting from X0. We refer the readers
to Theorem II.7.3(c) of [13] for more details. The global continuity of the total local time
Lx under Nx0 is given in [6] (see, e.g., Theorem 1.2 of the same reference). By (1.4) we
may decompose the total local time Lx under PX0

as

Lx =
∑
i∈I

Lx(νi) =

∫
Lx(ν)Ξ(dν). (1.5)

Intuitively the total local time Lx measures the amount of mass distributed by super-
Brownian motion on the singleton x. This mechanism is pretty similar to the exit measure
from the complement of a small ball centered at x. To define the exit measure in an
appropriate way, we first recall Le Gall’s Brownian snake.

Let W = ∪s≥0C([0, s],Rd) be equipped with the natural metric (see, e.g., Chp. IV.1
of Le Gall [11]). For any w ∈ W, we write ζ(w) = s if w ∈ C([0, s],Rd). We call ζ(w) the
lifetime of w. The Brownian snake W = (Wt, t ≥ 0) is a W-valued continuous strong
Markov process. Let ζt = ζ(Wt) and use Ŵ (t) = Wt(ζt) to denote the tip of the snake
at time t. Recall the canonical measure Nx of super-Brownian motion from above. By
slightly abusing the notation, we let Nx denote the excursion measure of the snake, on
C([0,∞),W), starting from the trivial path at x ∈ Rd with zero lifetime. Then we may use
the Brownian snake W to construct a measure-valued process X(W ) = (Xt(W ), t ≥ 0)

under Nx such that the law of X(W ) under Nx is equal to that of a super-Brownian
motion under the canonical measure Nx, thus justifying our abusive notation. We use
Xt(W ) to denote the super-Brownian motion associated with the snake W instead of the
integral with respect to Xt. This should be clear if one recalls that W is not a function
on Rd but the snake. The construction of the super-Brownian motion X(W ) by the snake
W is not important for our discussion here, and so we refer the interested readers to
Theorem IV.4 of [11] for more information. If Ξ =

∑
j∈J δWj

is a Poisson point process on
W with intensity NX0

(dW ) =
∫
Nx(dW )X0(dx), then it follows from (1.4) that

Xt =
∑
j∈J

Xt(Wj) =

∫
Xt(W )Ξ(dW ) for t > 0 (1.6)
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Exit measure construction of the local time

has the law, PX0
, of a super-Brownian motion X starting from X0. It also follows from

(1.5) that the total local time Lx under PX0
may be decomposed as

Lx =
∑
j∈J

Lx(Wj) =

∫
Lx(W )Ξ(dW ). (1.7)

Now we turn to the exit measure. The exit measure from an open set G, under PX0 or
NX0 , is a random finite measure supported on ∂G and is denoted by XG (see Chp. V of
[11] for the construction of the exit measure). Intuitively XG represents the mass started
at X0 which is stopped at the instant it leaves G. We note [11] also suffices as a reference
for the properties of XG described below. Let B(x0, ε) = Bε(x0) = {x : |x − x0| < ε}
denote an open ball centered at x0 ∈ Rd with radius ε > 0. Define the complement of a
closed ball centered at x0 with radius ε > 0 to be

Gx0
ε = Gε(x0) = {x : |x− x0| > ε} and let Gε = Gε(0). (1.8)

For any K1,K2 non-empty, set

d(K1,K2) = inf{|x− y| : x ∈ K1, y ∈ K2}.

We assume that x0 ∈ Rd and ε > 0 satisfy d(Bε(x0), S(X0)) > 0. In what follows we
will only be considering exit measures XG for G = Gx0

ε with x0 ∈ Rd and ε > 0 as
above. Under Nx we have the range R of super-Brownian motion X = X(W ), defined
by R = S(I∞) with I∞ as in (1.2), may also be written as (see, e.g., equation (8) in the
proof of Theorem IV.7(iii) of [11])

R = {Ŵ (s) : s ∈ [0, σ]}, (1.9)

where σ = σ(W ) = inf{t > 0 : ζt = 0} > 0 is the length of the excursion path. For any
x ∈ G, under Nx we may use the definition of exit measure in Chp. V of [11] to get (see
also (2.3) of [8])

XG is a finite random measure supported on ∂G ∩R a.e. (1.10)

The extension of (1.10) to NX0
is immediate as NX0

(dW ) =
∫
Nx(dW )X0(dx). It also

works under PX0
as we may, equivalently, set (see, e.g., (2.23) of [12])

XG =
∑
j∈J

XG(Wj) =

∫
XG(W )Ξ(dW ), (1.11)

where Ξ is a Poisson point process onW with intensity NX0
.

Let d(x,K) = inf{|x − y| : y ∈ K}. It has been shown in Proposition 6.2(b) of [8]
that for any x ∈ S(X0)c, under NX0

or PX0
, the family {XGx

r0−r
(1), 0 ≤ r < r0} with

r0 = d(x, S(X0))/2 has a càdlàg version which is a supermartingale if d = 3; a martingale
if d = 2. Throughout the rest of the paper, we will always work with this càdlàg version.
For any ε > 0, set

ψ0(ε) =

{
1
π log+(1/ε), in d = 2,
1
2π

1
ε , in d = 3.

(1.12)

The following result gives a new construction of the total local time Lx in terms of the
local asymptotic behavior of the exit measures at x. This result is also useful in the
construction of a boundary local time measure whose support is the topological boundary
of the range of super-Brownian motion in d = 2 and d = 3 (see [7]).

Notation. For a collection of random variables {ξt, t ∈ T}, we say ξt converges in
measure to ξt0 under NX0

as t → t0 if for any η > 0, NX0
(|ξt − ξt0 | > η) → 0 as t → t0.

The same definition applies under PX0
.
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Exit measure construction of the local time

Theorem 1.1. Let d = 2 or d = 3 and X0 ∈MF (Rd). For any x ∈ S(X0)c, we have

XGx
ε
(1)ψ0(ε) converges in measure to Lx under NX0 or PX0 as ε ↓ 0, (1.13)

where ψ0 is as in (1.12). Moreover, in d = 3 the convergence holds NX0
-a.e. or PX0

-a.s.

Remark 1.2. In d = 3, the family A := {XGx
r0−r

(1)ψ0(r0 − r), 0 ≤ r < r0} with

r0 = d(x, S(X0))/2 is indeed a martingale (see the proof of the above theorem in Sec-
tion 3). This allows us to use martingale convergence to conclude a.s. convergence
in d = 3. In d = 2, we already know from Proposition 6.2(b) of [8] that the family
{XGx

r0−r
(1), 0 ≤ r < r0} is a martingale, and so one can check that A will be a submartin-

gale in d = 2. Whether or not a.s. convergence holds in d = 2 remains unresolved.

2 The special Markov property

We will state the special Markov property for the Brownian snake from [10] that plays
an essential role in our proof. We first deal with NX0

. Recall that we are working with
exit measures XG for G = Gx0

ε with x0 ∈ Rd and ε > 0 satisfying d(Bε(x0), S(X0)) > 0.
Define

SG(Wu) = inf{t ≤ ζu : Wu(t) /∈ G} (inf ∅ =∞),

ηGs (W ) = inf{t :

∫ t

0

1(ζu ≤ SG(Wu)) du > s},

EG = σ(WηGs
, s ≥ 0) ∨ {NX0

− null sets}, (2.1)

where s→WηGs
is continuous (see p. 401 of [10]). Intuitively one may think of EG as the

σ-field generated by the excursions of W inside G. Write the open set {u : SG(Wu) < ζu}
as countable union of disjoint open intervals, ∪i∈I(ai, bi). Then for all u ∈ [ai, bi], one
notices SG(Wu) = SiG <∞ where SiG = SG(Wai) > 0, and we may define

W i
s(t) = W(ai+s)∧bi(S

i
G + t) for 0 ≤ t ≤ ζ(ai+s)∧bi − S

i
G.

In this way, we have W i are the excursions of W outside G for each i ∈ I. Proposition
2.3 of [10] implies that XG is EG-measurable and Corollary 2.8 of the same reference
gives the following special Markov property:{

Conditional on EG, the point measure
∑
i∈I δW i is a Poisson

point measure with intensity NXG
.

(2.2)

Here NXG
(dW ) =

∫
Nx(dW )XG(dx) is a (random) intensity measure on the space of

the snake, i.e. C([0,∞),W). Consider G = Gxε1 and D = Gxε2 with ε1 > ε2 > 0. We can
define the exit measure XD(W i) for each W i following the construction of exit measure
in Chapter V.1 of [11]. As in (2.6) of [8], one may conclude

XD =
∑
i∈I

XD(W i). (2.3)

If U is an open subset of S(X0)c, then LU , the restriction of the total local time
Lx to U , is in C(U,R) which is the set of continuous functions on U . Here are some
consequences of (2.2) that are already proved in Proposition 2.2(a) of [8].

Proposition 2.1. For any X0 ∈ MF (Rd), fix some x ∈ S(X0)c. Define G1 = Gxε1 and
G2 = Gxε2 with 0 < ε2 < ε1 < d(x, S(X0)).

(i) If ψ1 : C(G1
c
,R)→ [0,∞) is Borel measurable, then

NX0
(ψ1(LG1

c)|EG1
) = EXG1

(ψ1(LG1
c)).
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Exit measure construction of the local time

(ii) If ψ2 : MF (Rd)→ [0,∞) is Borel measurable, then

NX0(ψ2(XG2)|EG1) = EXG1
(ψ2(XG2)).

The σ-finiteness of NX0 is not an issue here as we may define the above conditional
expectation by, e.g., using Radon-Nikodym derivative.

We will need a version of the above under PX0 as well, which follows immediately
from Proposition 2.3 of [8].

Proposition 2.2. For any X0 ∈ MF (Rd), fix some x ∈ S(X0)c. Define G1 = Gxε1 and
G2 = Gxε2 with 0 < ε2 < ε1 < d(x, S(X0)).

(i) If φ1 : C(G1
c
,R)→ [0,∞) is Borel measurable, then

EX0
(φ1(LG1

c)) = EX0

(
EXG1

(φ1(LG1
c))
)
.

(ii) If φ2 : MF (Rd)→ [0,∞) is Borel measurable, then

EX0(φ2(XG2)) = EX0

(
EXG1

(φ2(XG2))
)
.

3 Construction of the total local time by exit measure

In this section we will give the proof of Theorem 1.1. We assume throughout this
section that d = 2 or d = 3. The Laplace transform of Lx derived in Lemma 2.2 of [12] is
given by

EX0

(
exp(−λLx)

)
= exp

(
−
∫
Rd

V λ(x− y)X0(dy)

)
, (3.1)

where V λ is the unique solution to

∆V λ

2
=

(V λ)2

2
− λδ0, V λ > 0 on Rd. (3.2)

Here δ0 is the Dirac delta function and the above differential equation is interpreted in
a distributional sense. One can check that V λ is radially symmetric and we may write
V λ(|x|) for V λ(x). Recall ψ0 from (1.12). It is known that (see, e.g., p. 187 of [4]) V λ is
smooth in Rd\{0}, and near the origin, Lemma 8 of [3] gives that

lim
x→0

V λ(x)

ψ0(|x|)
= λ. (3.3)

Proof of Theorem 1.1. The outline for the proof is as follows: First we get some L2

convergence, associated with XGx
ε

and Lx, using the Laplace transforms. Then we show
that this implies the convergence in measure. When d = 3, we prove there is an a.s. limit
by the martingale arguments. It is then immediate that Lx, as the limit of convergence
in measure, is in fact the a.s. limit, thus completing the proof.

We first consider the NX0
case. Fix any x ∈ S(X0)c and let δ := d(x, S(X0)) > 0. For

any λ > 0 and 0 < ε < δ/2, we have

I :=NX0

((
exp(−λXGx

ε
(1)ψ0(ε))− exp(−λLx)

)2)
=NX0

(
exp(−2λXGx

ε
(1)ψ0(ε)) + exp(−2λLx)− 2 exp(−λXGx

ε
(1)ψ0(ε)) exp(−λLx)

)
=NX0

(
exp(−2λXGx

ε
(1)ψ0(ε)) + EXGx

ε

(
exp(−2λLx)

)
− 2 exp(−λXGx

ε
(1)ψ0(ε))EXGx

ε

(
exp(−λLx)

))
, (3.4)
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Exit measure construction of the local time

where we have used Proposition 2.1 (i) in the last equality. Apply (3.1) with X0 = XGx
ε

to
get

EXGx
ε

(
exp(−λLx)

)
= exp

(
−
∫
Rd

V λ(x− y)XGx
ε
(dy)

)
= exp

(
−
∫
Rd

V λ(ε)XGx
ε
(dy)

)
= exp(−XGx

ε
(1)V λ(ε)). (3.5)

In the second equality we have used the fact that the exit measure XGx
ε

is supported on
∂Gxε by (1.10) and then apply the radial symmetry of V λ to get V λ(x− y) = V λ(|x− y|) =

V λ(ε) for any y ∈ ∂Gxε . The above still holds true if we replace λ with 2λ in (3.5). Use
the above in (3.4) to arrive at

I =NX0

(
exp(−2λXGx

ε
(1)ψ0(ε)) + exp(−XGx

ε
(1)V 2λ(ε))

− 2 exp(−λXGx
ε
(1)ψ0(ε)) exp(−XGx

ε
(1)V λ(ε))

)
(3.6)

=NX0

(
exp(−2λXGx

ε
(1)ψ0(ε))− exp(−λXGx

ε
(1)ψ0(ε)) exp(−XGx

ε
(1)V λ(ε))

)
+NX0

(
exp(−XGx

ε
(1)V 2λ(ε))− exp(−λXGx

ε
(1)ψ0(ε)) exp(−XGx

ε
(1)V λ(ε))

)
:=I1 + I2.

We first deal with I1.

|I1| ≤NX0

(∣∣∣ exp
(
− 2λXGx

ε
(1)ψ0(ε)

)
− exp

(
− (λ+

V λ(ε)

ψ0(ε)
)XGx

ε
(1)ψ0(ε)

)∣∣∣)
=NX0

(∣∣∣XGx
ε
(1)ψ0(ε) exp

(
− λ′(ε)XGx

ε
(1)ψ0(ε)

)(
2λ− (λ+

V λ(ε)

ψ0(ε)
)
)∣∣∣)

≤
∣∣λ− V λ(ε)

ψ0(ε)

∣∣ ·NX0

(
XGx

ε
(1)ψ0(ε) exp

(
− λ′(ε)XGx

ε
(1)ψ0(ε)

))
, (3.7)

where the second line is by the mean value theorem with λ′(ε)(ω) chosen between 2λ and
λ+ V λ(ε)/ψ0(ε). When ε > 0 is small, (3.3) implies V λ(ε)/ψ0(ε) > λ/2, and so NX0 -a.e.
we have λ′(ε) ≥ min{2λ, λ+ V λ(ε)/ψ0(ε)} > 3λ/2 > λ. Hence (3.7) becomes

|I1| ≤
∣∣λ− V λ(ε)

ψ0(ε)

∣∣ ·NX0

(
XGx

ε
(1)ψ0(ε) exp

(
− λXGx

ε
(1)ψ0(ε)

))
. (3.8)

Recall δ = d(x, S(X0)). Define S(X0)>δ/4 = {y : d(y, S(X0)) > δ/4} so that for any
0 < ε < δ/2, we have ∂Gxε ⊂ S(X0)>δ/4. Recall R from (1.9). Apply (1.10) to see for all
0 < ε < δ/2, we have

R∩ S(X0)>δ/4 = ∅ implies XGx
ε
(1) = 0, NX0

-a.e. (3.9)

Use the above to get

NX0

(
XGx

ε
(1)ψ0(ε) exp

(
− λXGx

ε
(1)ψ0(ε)

))
=NX0

(
XGx

ε
(1)ψ0(ε) exp

(
− λXGx

ε
(1)ψ0(ε)

)
1(R∩ S(X0)>δ/4 6= ∅)

)
≤λ−1e−1NX0

(R∩ S(X0)>δ/4 6= ∅) := λ−1e−1C(X0, δ) <∞, (3.10)

where the first inequality is by xe−λx ≤ λ−1e−1,∀x ≥ 0. The finiteness of C(X0, δ) follows
from Proposition VI.2 of [11]. Hence (3.8) becomes

|I1| ≤
∣∣λ− V λ(ε)

ψ0(ε)

∣∣ · λ−1e−1C(X0, δ)→ 0 as ε ↓ 0, (3.11)
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where the convergence to 0 follows from (3.3).
Turning to I2, we have

|I2| ≤NX0

(∣∣∣ exp
(
− V 2λ(ε)

ψ0(ε)
XGx

ε
(1)ψ0(ε)

)
− exp

(
− (λ+

V λ(ε)

ψ0(ε)
)XGx

ε
(1)ψ0(ε)

)∣∣∣)
=NX0

(∣∣∣XGx
ε
(1)ψ0(ε) exp

(
− λ̂(ε)XGx

ε
(1)ψ0(ε)

)(V 2λ(ε)

ψ0(ε)
− (λ+

V λ(ε)

ψ0(ε)
)
)∣∣∣)

≤
∣∣∣V 2λ(ε)

ψ0(ε)
− λ− V λ(ε)

ψ0(ε)

∣∣∣ ·NX0

(
XGx

ε
(1)ψ0(ε) exp

(
− λ̂(ε)XGx

ε
(1)ψ0(ε)

))
, (3.12)

where in the second line we have used the mean value theorem with λ̂(ε)(ω) cho-
sen between V 2λ(ε)/ψ0(ε) and λ + V λ(ε)/ψ0(ε). When ε > 0 is small, (3.3) implies
V 2λ(ε)/ψ0(ε) > 3λ/2 and V λ(ε)/ψ0(ε) > λ/2. So NX0

-a.e. we have

λ̂(ε) ≥ min
{V 2λ(ε)

ψ0(ε)
, λ+

V λ(ε)

ψ0(ε)

}
>

3λ

2
> λ. (3.13)

Use the above to see that (3.12) becomes

|I2| ≤
∣∣∣V 2λ(ε)

ψ0(ε)
− λ− V λ(ε)

ψ0(ε)

∣∣∣ ·NX0

(
XGx

ε
(1)ψ0(ε) exp

(
− λXGx

ε
(1)ψ0(ε)

))
.

Apply (3.10) to see that

|I2| ≤
∣∣∣V 2λ(ε)

ψ0(ε)
− λ− V λ(ε)

ψ0(ε)

∣∣∣ · λ−1e−1C(X0, δ)

≤
(∣∣∣V 2λ(ε)

ψ0(ε)
− 2λ

∣∣∣+
∣∣∣λ− V λ(ε)

ψ0(ε)

∣∣∣) · λ−1e−1C(X0, δ)→ 0 as ε ↓ 0, (3.14)

where the convergence to 0 follows from (3.3).
Recall I from (3.4). We may conclude from (3.11) and (3.14) that I → 0 as ε ↓ 0, thus

giving the L2 convergence of exp(−λXGx
ε
(1)ψ0(ε)) to exp(−λLx) underNX0

. By Corollary
2.32 of Folland [5], for any sequence εn ↓ 0, we may pick a subsequence εnk

↓ 0 so that

lim
εnk
↓0

exp(−λXGx
εnk

(1)ψ0(εnk
)) = exp(−λLx), NX0

-a.e. (3.15)

We note the arguments in Folland [5] remain valid for our setting with the L2 convergence
under the σ-finite measure NX0 . It is immediate from (3.15) that

lim
εnk
↓0
XGx

εnk
(1)ψ0(εnk

) = Lx, NX0
-a.e. (3.16)

At this stage, we may not conclude the convergence in measure due to the σ-finiteness
of NX0

. This issue could be solved by noticing that the event {XGx
ε
6= 0 or Lx 6= 0} has

only finite measure under NX0
. By using Proposition 2.1 (i), we get for any 0 < ε < δ/2,

NX0({Lx > 0} ∩ {XGx
ε
(1) = 0}) = NX0(1{XGx

ε
(1)=0}NX0(1{Lx>0}|EGx

ε
))

= NX0
(1{XGx

ε
(1)=0}EXGx

ε
(Lx > 0)) = 0,

thus giving NX0
-a.e. XGx

ε
(1) = 0 implies Lx = 0. Together with (3.9), we get for any

0 < ε < δ/2,

R∩ S(X0)>δ/4 = ∅ implies Lx = 0 and XGx
ε
(1) = 0, NX0

-a.e. (3.17)
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Therefore it follows that for any η > 0,

NX0

(
|XGx

ε
(1)ψ0(ε)− Lx| > η

)
= NX0

(
{|XGx

ε
(1)ψ0(ε)− Lx| > η} ∩ {R ∩ S(X0)>δ/4 6= ∅}

)
, (3.18)

and so we may work with the finite measure NX0
(· ∩ {R ∩ S(X0)>δ/4 6= ∅}) when

considering the convergence in measure under NX0
. Apply Dominated Convergence

Theorem with (3.16) and (3.18) to get

lim
εnk
↓0
NX0

(
|XGx

εnk
(1)ψ0(εnk

)− Lx| > η
)

= 0. (3.19)

Hence for any sequence εn ↓ 0, there is a subsequence εnk
↓ 0 such that (3.19) holds,

thus completing the proof of convergence in measure under NX0
. For the PX0

case, the
above arguments work in a similar and even easier way, and so we omit the details.

Now we turn to the a.s. convergence in d = 3. For any x ∈ S(X0)c, set r0 = δ/2 where
δ = d(x, S(X0)) > 0. In d = 3, by (6.10) of [8], for any 0 < ε < r0 we have

EX0
(XGx

ε
(1)) = NX0

(XGx
ε
(1)) =

∫
ε

|x− x0|
dX0(x0). (3.20)

Hence for 0 < ε2 < ε1 < r0, we may apply Proposition 2.1(ii) to get

NX0

(XGx
ε2

(1)

ε2

∣∣∣EGx
ε1

)
= EXGx

ε1

(XGx
ε2

(1)

ε2

)
=
XGx

ε1
(1)

ε1
, (3.21)

where the last equality follows by applying (3.20) with X0 = XGx
ε1

and by using the fact
that the exit measure XGx

ε1
is supported on ∂Gxε1 by (1.10). Recall that in d = 3 we have

ψ0(ε) = 1/(2πε). Use (3.21) to conclude

NX0

(
XGx

ε2
(1)ψ0(ε2)

∣∣∣EGx
ε1

)
= XGx

ε1
(1)ψ0(ε1), (3.22)

which implies {XGx
r0−r

(1)ψ0(r0 − r), 0 ≤ r < r0} is a nonnegative martingale. Note that

we always work with the càdlàg version of XGx
r0−r

(1) on 0 ≤ r < r0. Now we may apply

the martingale convergence theorem to get NX0
-a.e. limr→r0 XGx

r0−r
(1)ψ0(r0 − r) exists.

Since we already have XGx
ε
(1)ψ0(ε) converges to Lx in measure under NX0 (see also

(3.16)), we conclude that NX0 -a.e. limε↓0XGx
ε
(1)ψ0(ε) = Lx. The case for PX0 follows in

a similar way. �
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