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For a family of random-cluster models with cluster weights q ≥ 1, we prove that the
probability that 0 is connected to x is asymptotically equal to 1

q
χ(β)2βJ0,x for β < βc.

The method developed in this article can be applied to any spin model for which there
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1 Introduction

1.1 Definitions and main result

The random cluster-model (also called FK-percolation) was introduced by Fortuin and
Kastelyn in 1969 [5] and has become a fundamental example of dependent percolation,
in particular because of its relation to the Potts model. Indeed, the spin correlations of
Potts models can be linked to the cluster connectivity properties of their random-cluster
representations. This allows the use of geometric techniques developed for percolation
to study the Potts model. We refer to [2, 7] for books on the subject and a recent
discussion of existing results.

The model is defined as follows. For a finite subgraph Λ of Zd, a percolation configu-
ration ω = (ω)x,y∈Λ is an element of {0, 1}P2(Λ), where P2(Λ) = {{x, y} : x, y ∈ Λ, x 6= y}.
A configuration ω can be seen as a subgraph of Λ with vertex-set Λ and edge-set given
by {{x, y} ∈ P2(Λ) : ωx,y = 1}. If ωx,y = 1, we say that {x, y} is open. Let k(ω) be the
number of connected components in ω.

Consider J = (Jx,y)x,y∈Λ non-negative coupling constants. Fix β, q > 0. Let µΛ,β,q be
a measure defined for any ω ∈ {0, 1}P2(Λ) by

µΛ,β,q(ω) =
qk(ω)

Z

∏
{x,y}∈P2(Λ)

(1− e−βJx,y )ωx,y ,
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Asymptotics of correlation function in the long-range random-cluster model

where Z is a normalizing constant introduced in such a way that µΛ,β,q is a probability
measure. The measure µΛ,β,q is called the random-cluster measure on Λ with free
boundary conditions. For q ≥ 1, the measures can be extented to Zd by taking the weak
limit of measures defined in finite volume.

We say that x and y are connected in S ⊆ Zd if there exists a finite sequence of
vertices (vi)

n
i=0 in S such that v0 = x, vn = y and {vi, vi+1} is open for every 0 ≤ i < n.

We denote this event by x
S↔ y. If S = Zd, we drop it from the notation. We write 0↔∞

if for every n ∈ N, there exists x ∈ Zd such that 0↔ x and |x| ≥ n, where | · | denotes a
norm on Zd.

For q ≥ 1, the model undergoes a phase transition: there exists βc ∈ [0,∞] satisfying

µZd,β,q(0↔∞) =

{
= 0 if β < βc,

> 0 if β > βc.

For β < βc, it follows from the definition that µZd,β,q(0 ↔ x) goes to 0 as |x| goes to
infinity. In [3], it was proved that if the coupling constants are finite-range, meaning that
there exists R > 0 such that Jx,y = 0 whenever |x− y| > R, then the probability of two
points being connected decays exponentially fast in distance, i.e. for every β < βc, there
exists c(β) > 0 such that for every x in Zd,

µZd,β,q(0↔ x) ≤ exp(−c|x|). (1.1)

In this article, we consider the random-cluster models with strictly positive infinite-
range coupling constants (Jx,y)x,y∈Zd satisfying for every x, y, z ∈ Zd

H1 There exists c > 0 such that J0,x ≤ cJ0,y if |x| ≥ |y|.
H2 Jx−z,y−z = Jx,y.
H3

∑
y∈Zd

J0,y <∞

H4 For every x ∈ Zd, for every ε > 0, there exists δ > 0 such that for every y ∈ Zd

|x− y| ≤ δ|x| ⇒ |J0,x − J0,y| ≤ εJ0,x.

H5 There exist 0 < γ < 1, 0 < α < 1 and C1 > 0 such that
∑
y∈Zd

(J0,y)α < ∞ and such

that for every x ∈ Zd

log(J0,x)2J0,uJ0,v ≤ C1J0,x(J0,v)
α,

with |u| ≥ |x|/ log(J0,x)2 and |v| ≥ |x|γ/ log(J0,x)2.

Remark 1.1. The hypothesis H5 is a technical one and its meaning will become trans-
parent at the end of the proof of Lemma 2.1.

Remark 1.2. Important examples of coupling constants satisfying H1–H5 are J0,x =

|x|−c with c > d, J0,x = |x|− log |x| or more generally J0,x = e−C log(p(|x|))γ for some
polynomial p ∈ R[x] of degree at least 1 and C, γ > 0 chosen such that H3 holds.

Remark 1.3. The hypothesis H5 rules out the stretched exponential decay, i.e. J0,x =

exp(−|x|η) with η ∈ (0, 1). This implies in particular that

lim
|x|→∞

|x|ξ

− log(J0,x)
=∞

for every ξ ∈ (0, 1).

We write ox(1) for a function that goes to 0 as |x| goes to infinity. The main theorem
of this article is the following one.
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Theorem 1.4. If (Jx,y)x,y∈Zd satifies H1–H5 then for q ≥ 1, β < βc and for every x ∈ Zd,

µZd,β,q(0↔ x) =
βχ(β)2

q
J0,x(1 + ox(1)), (1.2)

where χ(β) :=
∑
x∈Zd

µZd,β,q(0↔ x).

This theorem was already proved for q = 2 (the Ising model) in [11], and a weaker
form of this theorem was proved for q = 1 (Bernoulli percolation) in [1] and for the
one-dimensional O(N) models with 1 ≤ N ≤ 4 in [13]. They all relied on the Simon-Lieb
type inequalities (see [9]). For q /∈ {1, 2}, the Simon-Lieb inequality is not available,
so those approaches cannot be extended. Instead of that, we are going to use the
exponential decay of the size of the connected component of 0 that was recently proved
in [8]. The latter used the so-called OSSS inequality introduced in [3]. This inequality
was already used to prove sharpness in a lot of models (see [3, 4, 10]) for which there
exists a random-cluster type representation which is monotonic (see [7, Chapter 2] for
a definition of a monotonic measure). Therefore, the OSSS inequality coupled with
the approach developed in this article can be applied to study subcritical phases of
long-range spin models for which there exists a random-cluster representation which is
monotonic (for instance the Ashkin-Teller model, see [12]).

1.2 Applications to the ferromagnetic q-state Potts model

The Potts model is one of the fundamental examples of a lattice spin model undergoing
an ordered/disordered phase transition. It generalizes the Ising model by allowing spins
to take one of q values, where q is an integer greater than or equal to 2.

The model on Zd is defined as follows. For a subset Λ of Zd, the probability measure
is defined for any σ = (σx)x∈Λ ∈ {1, . . . , q}Λ by

PΛ,β,q(σ) :=
exp(−βHΛ,q(σ))∑

σ′∈{1,...,q}Λ
exp(−βHΛ,q(σ′))

with HΛ,q(σ) :=
∑
x,y∈Λ

Jxyδσx 6=σy .

The model can be defined on Zd by taking the weak limit of measures in finite volume.
The measure thus obtained is called the measure with free boundary conditions and is
denoted by PZd,β,q. The Potts model undergoes a phase transition between the absence
and the existence of long-range order at the so-called critical inverse temperature βc,
see [7] for details. Our main theorem from the point of view of the Potts model is the
following one.

Theorem 1.5. If (Jx,y)x,y∈Zd satifies H1–H5, then for q ≥ 1, β < βc and x ∈ Zd,

PZd,β,q(σ0 = σx)− 1
q = βχ(β)2qJ0,x(1 + ox(1)), (1.3)

where χ(β) := 1
q−1

∑
x∈Zd

PZd,β,q(σ0 = σx)− 1
q .

Since the Potts model and the random-cluster models can be coupled (see [7]) in such
a way that

PZd,β,q(σx = σy)− 1

q
=
q − 1

q
µZd,β,q(x↔ y),

Theorem 1.3 is a direct consequence of Theorem 1.4 and we will therefore focus on
Theorem 1.4

1.3 Background

The following standard properties will be used in the proof of Theorem 1.4.

ECP 26 (2021), paper 22.
Page 3/9

https://www.imstat.org/ecp

https://doi.org/10.1214/21-ECP390
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Asymptotics of correlation function in the long-range random-cluster model

Finite energy property For every Λ ⊂ Zd, q ≥ 1, ω′ ∈ {0, 1}P2(Λ) and x, y ∈ Λ,

µΛ,β,q(ωx,y = 1|ωa,b = ω′a,b,∀{a, b} ∈ P2(Λ) \ {x, y}) ≤ βJx,y.

We refer to [2] for more details about this property.

Monotonicity of measures The following is a standard consequence of the FKG
inequality: for q ≥ 1, two subsets Λ1 ⊂ Λ2 of Zd and an increasing event A depending
on the edges in Λ1 (see [6] for definition of an increasing event and the proof of this
inequality), we have

µΛ1,β,q(A) ≤ µΛ2,β,q(A). (1.4)

Finally, the following non-trivial input will be a key ingredient of the proof.

Theorem 1.6. For q ≥ 1, β < βc, there exists c1 = c1(β, q) > 0 such that for every n ∈ N

µZd,β,q(|C(0)| ≥ n) ≤ exp(−c1n), (1.5)

where C(0) := {x ∈ Zd : 0↔ x}.
This theorem was proved in [8].

2 Proof of Theorem 1.4

2.1 Upper bound

Fix (Jx,y)x,y∈Zd satisfying H1–H5, β < βc, q ≥ 1 and x ∈ Zd. If 0 is connected to
x, then there are two possibilites: either there is a big number of ‘short’ open edges
(i.e. open edges whose endpoints are close) in C(0) or there is a small number of ‘long’
open edges in C(0). In the first case, this implies that the number of vertices in C(0)

is big, which is unlikely to happen by (1.5). In order to make this idea precise, we
introduce some notation. From now on, we will write µ instead of µZd,β,q. Define
f(x) := −2 log(J0,x)/c1 where c1 is provided by Theorem 1.6. Denote by Dy the event
that the size of the connected component of y is smaller than f(x). We can partition

µ(0↔ x) = µ(0↔ x,D0) + µ(0↔ x,Dc
0).

Using (1.5) we easily get that

µ(Dc
0) = ox(1)J0,x.

This implies that the size of connected component of 0 can be assumed to be smaller
than f(x). In this case, we are going to prove two lemmas. Lemma 2.1 gives terms that
are negligible with respect to J0,x and Lemma 2.2 gives the sharp asymptotics.

If 0 is connected x and the size of the connected component of x is smaller than f(x),
then there must exist an open edge in C(0) whose endpoints are separated by a distance
at least |x|/f(x). This will be an important observation in the proof of the next lemma.
Before stating the lemma, we introduce some notation.

For a configuration ω, define the random variable L0,x(ω) := sup{|y1 − y2|: {y1, y2}
is open, 0 is connected to y1 and x to y2 without using {y1, y2}}. For y ∈ {0, x} and
Λ ⊂ Zd, define Ry(Λ) := sup{|z − y| : z ∈ Λ ∩ C(y)}. If Λ = C(y), we simply write Ry. If
L0,x < ∞, then there exists an open edge {y1, y2} ∈ P2(Zd) such that |y1 − y2| = L0,x

and 0 is connected to y1 and x to y2 without using {y1, y2}. If there are several such
edges, take the one that maximizes Ry(C(y) \ {y1, y2}). Then, if there are several such
edges, define an order ≺ on P2(Zd) and choose the one minimal for ≺. In this case, we
call {y1, y2} the maximal edge with respect to y and we define Ry := Ry(C̃(y)), where
C̃(y) := {z ∈ Zd : z is connected to y without using the edge {y1, y2}}.
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Lemma 2.1. For β < βc, 0 < γ < 1 given by H5 and x ∈ Zd

µ(0↔ x,D0, R0 ≥ |x|γ) = ox(1)J0,x. (2.1)

Proof. Let {y, z} be the maximal edge with respect to 0. Recall that the edge {y, z}
is open by definition. If 0 is connected to x, by symmetry, one can assume that 0

is connected to y and z to x without using the edge {y, z}. If |C(0)| ≤ f(x), then
|y− z| ≥ |x|/f(x). Set k(x) := b|x|/f(x)c and Ey1,y2

= P2(Zd) \ {y1, y2}. Finally, for n ∈ N,
we set Λn(y) := {x ∈ Zd : |x− y| < n}. Using the union bound, we get

µ(0↔ x,D0, R0 ≥ |x|γ) ≤
∑
y∈Zd

∑
z∈Λck(y)

µ(0
Ey,z←→ y, ωy,z = 1, z

Ey,z←→ x,D0, R0 ≥ |x|γ)

=
∑
y∈Zd

∑
z∈Λck(y)

µ(0
Ey,z←→ y, ωy,z = 1, z

Ey,z←→ x,D0, Dx, R0 ≥ |x|γ),

where the last equality follows from the fact that if 0 is connected to x, then C(0) = C(x).
For y ∈ Zd, let D̃y := {|C̃(y)| ≤ f(x)} where C̃(y) is defined above. Notice that the
event Dy is included in the event D̃y. Using the inclusion of events, conditioning on

{0 Ey,z←→ y} ∩ {z Ey,z←→ x} ∩ D̃0 ∩ D̃x ∩ {R0 ≥ |x|γ} and using the finite energy property, we
get

µ(0
Ey,z←→ y, z

Ey,z←→ x,D0, Dx, R0 ≥ |x|γ , ωy,z = 1) ≤

≤ βJy,zµ(0
Ey,z←→ y, z

Ey,z←→ x, D̃0, D̃x, R0 ≥ |x|γ)

≤ cβJ0,k(x)e1µ(0
Ey,z←→ y, z

Ey,z←→ x, D̃0, D̃x, R0 ≥ |x|γ),

with c given by H1. Plugging this into the inequality above gives

µ(0↔ x,D0, R0 ≥ |x|γ) ≤ cβJ0,k(x)e1

∑
y∈Zd

∑
z∈Λck(y)

µ(0
Ey,z←→ y, z

Ey,z←→ x, D̃0, D̃x, R0 ≥ |x|γ)

≤ cβJ0,k(x)e1

∑
y∈Zd

∑
z∈Zd

µ(0
Ey,z←→ y, z

Ey,z←→ x, D̃0, D̃x, R0 ≥ |x|γ)

= cβJ0,k(x)e1E(|C̃(0)||C̃(x)|1{D̃0,D̃x,R0≥|x|γ)

≤ cβf(x)2J0,k(x)e1µ(D̃0, R0 ≥ |x|γ).

In the last line, we used that |C̃(0)| ≤ f(x) on D̃0 and |C̃(x)| ≤ f(x) on D̃x. Observe that
if |C̃(0)| ≤ f(x) and R0 ≥ |x|γ , then there exists a, b ∈ Zd such that

• 0 is connected to a in P2(Zd) \ {a, b},
• |a− b| ≥ |x|γ/f(x),
• {a, b} is open.

Using the union bound, we get

µ(D̃0, R0 ≥ |x|γ) ≤
∑
a∈Zd

∑
b∈Zd

|b−a|≥|x|γ/f(x)

µ(0
Ea,b←→ a, ωa,b = 1).

As before, the conditioning and the finite energy property give

µ(0
Ea,b←→ a, ωa,b = 1) ≤ βJa,bµ(0

Ea,b←→ a).
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Plugging this into the previous inequality gives

µ(D0, R0 ≥ |x|γ) ≤
∑
a∈Zd

∑
b∈Zd

|b−a|≥|x|γ/f(x)

βJa,bµ(0
Ea,b←→ a)

≤ βχ(β)
∑
b∈Zd

|b|≥|x|γ/f(x)

J0,b.

In the second line, we used that (Jx,y)x,y∈Zd is invariant under translations. Therefore,
combining all the inequalities we get

µ(0↔ x,D0, Dx, R0 ≥ |x|γ) ≤ cχ(β)(βf(x))2J0,k(x)e1

∑
b∈Zd

|b|≥|x|γ/f(x)

J0,b

≤ c2J0,x

∑
b∈Zd

|b|≥|x|γ/f(x)

(J0,b)
α = ox(1)J0,x

with c2 = 4C1c
2χ(β)β2/c1 where C1 is given by H5. The second inequality follows from

the definition of f(x), H1 and H5. The last equality follows from
∑
w∈Zd(J0,w)α <∞ and

Remark 1.3. This finishes the proof of Lemma 2.1.

Lemma 2.1 implies by symmetry that

µ(0↔ x,D0, Rx ≥ |x|γ) = ox(1)J0,x. (2.2)

We can then focus on the next lemma, which gives the sharp asymptotics of the probability
of 0 being connected to x.

Lemma 2.2. For β < βc, 0 < γ < 1 given by H5 and x ∈ Zd

lim sup
|x|→∞

µ(0↔ x,R0 ≤ |x|γ , Rx ≤ |x|γ)

J0,x
≤ χ(β)2β

q
. (2.3)

The upper bound follows by combining (2.1), (2.2) and (2.3).

Proof. Set Λ = Λ|x|γ (0),Λ′ = Λ|x|γ (x) and P0,x := {R0 ≤ |x|γ} ∩ {Rx ≤ |x|γ}. Let Λn be
such that Λ,Λ′ ⊂ Λn. Let {y, z} be the maximal edge with respect to 0. If 0 is connected
to x and Rx ≤ |x|γ , then {y, z} is also maximal with respect to x. By symmetry, one can
assume that 0 is connected to y in Λ and z is connected to x in Λ′. The union bound gives

µΛn(0↔ x, P0,x) ≤
∑
y∈Λ

∑
z∈Λ′

µΛn(0
Λ↔ y, ωy,z = 1, z

Λ′

↔ x, P0,x)

=
∑
y∈Λ

∑
z∈Λ′

1

q
(1− exp(−βJy,z))µΛn(0

Λ↔ y, z
Λ′

↔ x,R0 ≤ |x|γ , Rx ≤ |x|γ)

≤ β

q

∑
y∈Λ

∑
z∈Λ′

Jy,zµΛn(0
Λ↔ y, z

Λ′

↔ x,R0 ≤ |x|γ , Rx ≤ |x|γ).

In the second line, we used the fact that on P0,x, the number of connected components
increases by 1 when ωy,z goes from 1 to 0. In the third line, we used that 1−exp(−βJy,z) ≤
βJy,z. Fix ε > 0. It follows from H4 and the translational invariance that

Jy,z ≤ (1 + ε)J0,x,
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since |z − y − x| ≤ δ|x| for |x| big enough. Therefore

µΛn(0↔ x, P0,x) ≤ (1 + ε)J0,x

∑
y∈Λ

∑
z∈Λ′

µΛn(0
Λ↔ y, ωy1,y2

= 0, z
Λ′

↔ x,R0 ≤ |x|γ , Rx ≤ |x|γ).

Now, we can partition with respect to the possible connected components of x to get

µΛn(0
Λ↔ y, z

Λ′

↔ x,R0 ≤ |x|γ , Rx ≤ |x|γ) =
∑
S

µΛn(0
Λ↔ y,R0 ≤ |x|γ , C(x) = S),

where the summation is over S containing x and z such that Rx(S) ≤ |x|γ . Then
conditioning on {C(x) = S} gives∑
S

µΛn(0
Λ↔ y,R0 ≤ |x|γ , C(x) = S) =

∑
S

µΛn(0
Λ↔ y,R0 ≤ |x|γ |C(x) = S)µΛn(C(x) = S)

=
∑
S

µΛn\S(0
Λ↔ y,R0 ≤ |x|γ)µΛn(C(x) = S)

≤
∑
S

µΛn(0
Λ↔ y)µΛn(C(x) = S)

= µΛn(0
Λ↔ y)µΛn(z

Λ′

↔ x,Rx ≤ |x|γ).

In the second line, we used the spatial Markov property (see [6, Chapter 3]) as well as
the fact that if w ∈ S and z /∈ S, then {w, z} is closed. In the third line, we used the
inclusion of events and (1.4). Plugging this into the inequality above and taking the limit
as n goes to infinity, we get

µ(0↔ x, P0,x) ≤ (1 + ε)
β

q
J0,x

∑
y∈Λ

∑
z∈Λ′

µ(0
Λ↔ y)µ(z

Λ′

↔ x,Rx ≤ |x|γ)

≤ (1 + ε)
β

q
χ(β)2J0,x,

for |x| big enough. We used the translational invariance in the second inequality. This
finishes the proof of Lemma 2.2.

2.2 Lower bound

We will use the same argument as in [11]. In this part, we don’t use H5. Set
δ ∈ (0, 1/2],∆1 = Λ|x|δ(0),∆2 = Λ|x|δ(x) and ∆ = ∆1 ∪ ∆2. As we work on Zd, we can
take δ = 1/2, but a smaller value may be needed to extend the proof to a different graph
and to more general coupling constants. Let N be the number of open edges from ∆1

to ∆2. Then the inclusion of events and the monotonicity of the measure (1.4) give

µ∆(0↔ x,N = 1) ≤ µ∆(0↔ x) ≤ µ(0↔ x).

For y ∈ ∆1, z ∈ ∆2, let Gy,z be the event that there exists an unique edge {y, z} such that

• 0
∆1↔ y,

• {y, z} is open,

• z
∆2↔ x.

In this case, 0 is connected to x and N = 1. Therefore∑
y∈∆1

∑
z∈∆2

µ∆(0
∆1↔ y, ωy,z = 1, z

∆2↔ x,N = 1) = µ∆(
⊔
y∈∆1
z∈∆2

Gy,z) ≤ µ∆(0↔ x,N = 1).
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In the first equality, we used the fact that the events Gy,z are disjoint for different edges.
Using the fact that on the event N = 1, the number of connected components increases
by 1 when ωy,z goes from 1 to 0, we get that

µ∆(0
∆1↔ y, ωy,z = 1, z

∆2↔ x,N = 1) =
1

q
(1− exp(−βJy,z))µ∆(0

∆1↔ y, z
∆2↔ x,N = 0).

Finally, on N = 0, all the edges between ∆1 and ∆2 are closed, and therefore we can
factorize the measure as

µ∆(0
∆1↔ y, z

∆2↔ x|N = 0) = µ∆1
(0↔ y)µ∆2

(z ↔ x).

Combining all the inequalities we get

µ(0↔ x) ≥
∑
y∈∆1

∑
z∈∆2

1

q
(1− exp(−βJy,z))µ∆1(0↔ y)µΛ′(z ↔ x)µ∆(N = 0). (2.4)

Fix ε > 0. It follows from H4 and the translational invariance that

Jy,z ≥ (1− ε)J0,x,

since |z − y − x| ≤ δ|x| for |x| big enough. Therefore, using (2.4), we get

µ(0↔ x) ≥ (1− exp(−β(1− ε)J0,x))
∑
y∈∆1

∑
z∈∆2

1

q
µ∆1(0↔ y)µ∆2(z ↔ x)µ∆(N = 0). (2.5)

By the translational invariance and the monotonicity (1.4), we get

lim
|x|→∞

∑
y∈∆1

∑
z∈∆2

µ∆1(0↔ y)µ∆2(z ↔ x) = χ(β)2.

Now, let us prove that µ∆(N = 0) goes to 1 as |x| goes to infinity. If N ≥ 1, then there
exist y, z in Zd such that

• y ∈ ∆1, z ∈ ∆2,
• {y, z} is open.

Therefore, the union bound gives

µ∆(N ≥ 1) ≤
∑
y∈∆1

∑
z∈∆2

µ∆(ωy,z = 1) ≤ β
∑
y∈∆1

∑
z∈∆2

Jy,z ≤ (1 + ε)J0,x|∆1|2.

The second inequality follows from the finite energy property and the third inequality
from H4. Since δ ≤ 1/2 and

∑
w∈Zd J0,w <∞ by H3, it follows that

J0,x|∆1|2 = ox(1)

and therefore lim|x|→∞ µ∆(N = 0) = 1. The lower bound then follows from (2.5) com-
bined with the fact that

lim
|x|→∞

1− exp(−βJ0,x)

βJ0,x
= 1.

References

[1] A.G. Braga, L.M. Ciolleti, and R. Sanchis. Decay properties of the connectivity for mixed
long range percolation models on Zd, Journal of Statistical Physics, 129:587–591, 2007.
MR-2351419

ECP 26 (2021), paper 22.
Page 8/9

https://www.imstat.org/ecp

https://mathscinet.ams.org/mathscinet-getitem?mr=2351419
https://doi.org/10.1214/21-ECP390
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Asymptotics of correlation function in the long-range random-cluster model

[2] H. Duminil-Copin. Lectures on the Ising and Potts models on the hypercubic lattice, 2017.
arXiv:1707.00520. MR-4043224

[3] H. Duminil-Copin, A. Raoufi, and V. Tassion. Sharp phase transition for the random-cluster
and Potts models via decision trees. Annals of Mathematics, 189(1):75–99, 2019. MR-3898174

[4] H. Duminil-Copin, A. Raoufi, and V. Tassion. Subcritical phase of d-dimensional Poisson-
Boolean percolation and its vacant set, 2018. arXiv:1805.00695. MR-4149823

[5] C.M. Fortuin and P.W. Kastelyn. On the random-cluster model. I. Introduction and relation to
other models. Physica, 57(4):536–564, 1972. MR-0359655

[6] S. Friedli and Y. Velenik. Statistical Mechanics of Lattice Systems: a Concrete Mathematical
Introduction. Cambridge University Press, 2017. MR-3752129

[7] G. Grimmett. The Random-Cluster Model. Springer-Verlag, 2006. MR-2243761

[8] T. Hutchcroft. New critical exponent inequalities for percolation and the random cluster
model, 2019. arXiv:1901.10363.

[9] E. Lieb. A refinement of Simon’s correlation inequality. Communications in Mathematical
Physics, 77(2):127–135, 1980. MR-0589427

[10] S. Muirhead and H. Vanneuville. The sharp phase transition for level set percolation of
smooth planar Gaussian fields. Ann. Inst. H. Poincare Probab. Statist., 56:1358–1390, 2020.
MR-4076787

[11] C. Newman and H. Spohn. The Shiba relation for the spin-boson model and asymptotic decay
in ferromagnetic Ising models. Unpublished, 1998.

[12] C.-E. Pfister and Y. Velenik. Random-cluster representation of the Ashkin-Teller model. Journal
of Statistical Physics, 88:1295–1331, 1997. MR-1478070

[13] H. Spohn and W. Zwerger. Decay of the two-point function in one-dimensional O(N) spin
models with long-range interactions. Journal of Statistical Physics 94:1037–1043, 1999.
MR-1694115

Acknowledgments. The author would like to warmly thank Hugo Duminil-Copin for
his guidance and help through the master thesis as well as reading and pointing out
mistakes in the previous versions of the present article. The author would also like
to thank Yvan Velenik, Maëllie Godard and two anonymous referees for many helpful
comments.

ECP 26 (2021), paper 22.
Page 9/9

https://www.imstat.org/ecp

https://arXiv.org/abs/1707.00520
https://mathscinet.ams.org/mathscinet-getitem?mr=4043224
https://mathscinet.ams.org/mathscinet-getitem?mr=3898174
https://arXiv.org/abs/1805.00695
https://mathscinet.ams.org/mathscinet-getitem?mr=4149823
https://mathscinet.ams.org/mathscinet-getitem?mr=0359655
https://mathscinet.ams.org/mathscinet-getitem?mr=3752129
https://mathscinet.ams.org/mathscinet-getitem?mr=2243761
https://arXiv.org/abs/1901.10363
https://mathscinet.ams.org/mathscinet-getitem?mr=0589427
https://mathscinet.ams.org/mathscinet-getitem?mr=4076787
https://mathscinet.ams.org/mathscinet-getitem?mr=1478070
https://mathscinet.ams.org/mathscinet-getitem?mr=1694115
https://doi.org/10.1214/21-ECP390
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Electronic Journal of Probability
Electronic Communications in Probability

Advantages of publishing in EJP-ECP

• Very high standards

• Free for authors, free for readers

• Quick publication (no backlog)

• Secure publication (LOCKSS1)

• Easy interface (EJMS2)

Economical model of EJP-ECP

• Non profit, sponsored by IMS3, BS4 , ProjectEuclid5

• Purely electronic

Help keep the journal free and vigorous

• Donate to the IMS open access fund6 (click here to donate!)

• Submit your best articles to EJP-ECP

• Choose EJP-ECP over for-profit journals

1LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
2EJMS: Electronic Journal Management System http://www.vtex.lt/en/ejms.html
3IMS: Institute of Mathematical Statistics http://www.imstat.org/
4BS: Bernoulli Society http://www.bernoulli-society.org/
5Project Euclid: https://projecteuclid.org/
6IMS Open Access Fund: http://www.imstat.org/publications/open.htm

http://en.wikipedia.org/wiki/LOCKSS
http://www.vtex.lt/en/ejms.html
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
https://projecteuclid.org/
https://secure.imstat.org/secure/orders/donations.asp
http://www.lockss.org/
http://www.vtex.lt/en/ejms.html
http://www.imstat.org/
http://www.bernoulli-society.org/
https://projecteuclid.org/
http://www.imstat.org/publications/open.htm

	Introduction
	Definitions and main result
	Applications to the ferromagnetic q-state Potts model
	Background

	Proof of Theorem 1.4
	Upper bound
	Lower bound

	References

