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Abstract

We consider the endpoint large deviation for a continuous-time directed polymer in
a Lévy-type random environment. When the space dimension is at least three, it
is known that the so-called weak disorder phase exists, where the quenched and
annealed free energies coincide. We prove that the rate function agrees with that of
the underlying random walk near the origin in the whole interior of the weak disorder
phase.
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1 Introduction

In this article, we study a continuous-time directed polymer model in a Lévy-type
random environment. This type of model is known to exhibit a phase transition when
space dimension is greater than or equal to three. More precisely, the polymer behaves
like simple random walk when the disorder is weak, whereas it tends to localize when the
disorder is strong; see a recent survey [7] for more detail. While most of the research has
been devoted to typical behaviors of the polymer, it is also shown in [18, Theorem 6.1]
and [7, Exercise 9.1] that deeply inside the weak disorder phase, even the rate function of
the large deviation principle for the polymer endpoint coincides with that for the simple
random walk near the origin. The aim of this paper is to present a simple argument
that extends this result to the whole interior of weak disorder phase for continuous-time
directed polymer model in a Lévy-type random environment.

Let (ω = (ωx)x∈Zd ,P) be an independent and identically distributed (i.i.d.) collection
of real-valued Lévy processes with characteristic triple (0, σ2, ρ). We assume that the
Lévy measure ρ has finite mass, is supported on [−1,∞) and satisfies∫

[−1,∞)

rρ(dr) <∞.
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Rate function for continuous-time directed polymer

The assumption that ρ has finite mass is not essential, but leads to a simpler presentation.
In particular, it implies that the Lévy processes are of pure jump type and we can
therefore write

ωx(t) = σ2Bx(t) +

∫
[0,t]×[−1,∞)

rNx(dsdr), (1.1)

where (Bx)x∈Zd is an i.i.d. collection of Brownian motions and (Nx)x∈Zd is an i.i.d. collec-
tion of Poisson point processes on R+ × [−1,∞), which is independent of (Bx)x∈Zd , with
intensity measure ds ρ(dr). Given ω, we define a new process (Lx)x∈Zd by

Lx(t) = σ2Bx(t) +

∫
[0,t]×[−1,∞)

log(1 + r)Nx(dsdr) (1.2)

with the convention log 0 = −∞, and −∞ being an absorbing state for this process. For
a path x : R+ → Zd that is right-continuous and has left limits everywhere (cádlág), we
define the Hamiltonian by

Ht(ω, x) =

∫
[0,t]

dLx(s)(s) =
∑
y∈Zd

∫
[0,t]

1{x(s)=y} dLy(s).

Let (X = (Xt)t≥0, P
κ) denote the random walk which starts at the origin and jumps

to a site chosen uniformly from the nearest neighbor sites at rate κ > 0. The polymer
measure of Pκ is the random probability measure µκω,t defined by

µκω,t(dX) =
1

Zκω,t
eHt(ω,X)Pκ(dX),

with the convention e−∞ = 0, where the normalizing constant is given by Zκω,t =

Eκ[eHt(ω,X)]. This probability measure gives more weight to paths along which the
environment is increasing, and discourages paths that observe a decreasing environ-
ment. In particular, we interpret the set {(t, x) : ωx(t) = ωx(t−)− 1} as hard obstacles in
space-time and note that the polymer is conditioned to avoid this set.

One may wonder why we introduce the process ω in (1.1) first and transform it to L
in (1.2). This is mostly due to historical reasons. We regard Zω,t as the “partition function”
of Gibbs measure µκω,t, but in most of the earlier studies [1, 17, 21, 12, 10, 16, 13], it is
regarded as the solution of a stochastic partial differential equation called the parabolic
Anderson model. More precisely, the point-to-point partition function

Zκω,t,x := Eκ
[
eHt(ω,X)1{X(t)=x}

]
(1.3)

is equal to u(t, x), where u denotes the solution to the following initial value problem for
a stochastic heat equation with Lévy noise,

∂
∂su(s, x) = κ

2d (∆u)(s, x) + u(s, x)dωx(s),

u(0, ·) = 1{0}(·),
(1.4)

where ∆ denotes the discrete Laplacian.

Remark 1.1. In the literature on random media, it is customary to distinguish the
quenched (fixed media) and annealed (averaged media) models. For instance, the above
Zκω,t is the quenched partition function whereas the annealed partition function is E[Zκω,t].
However, the annealed model in our setting turns out to be too simple to be interesting.
For this reason, we concentrate on the quenched model and do not make this distinction
throughout this article.
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Rate function for continuous-time directed polymer

Before reviewing some known results, we introduce more general notation that will
be useful later. We use bold symbols to highlight multi-dimensional parameters. Let
κ = (κe)|e|1=1 ∈ (0,∞)2d, and write Pκ for the law of the random walk with generator

(Lκf)(x) =
∑
|e|1=1

κe
2d

(
f(x+ e)− f(x)

)
.

We write Zκ
ω,t (resp. Zκ

ω,t,x) for the corresponding partition function (resp. point-to-point
partition function). Note that Pκ = Pκ1, where 1 = (1, . . . , 1). Let us first list the known
properties of the partition functions:

Theorem A. (i) For every κ ∈ (0,∞)2d and x ∈ Rd, there exist p(κ), p(κ, x) ∈ R such
that almost surely,

lim
t→∞

1

t
logZκ

ω,t = lim
t→∞

1

t
E
[

logZκ
ω,t

]
= p(κ), (1.5)

lim
t→∞,t∈N

1

t
logZκ

ω,t,[tx] = lim
t→∞

1

t
E
[

logZκ
ω,t,[tx]

]
= p(κ, x). (1.6)

Moreover, the function κ 7→ p(κ1) is continuous.

(ii) Let a := σ2

2 +
∫

[−1,∞)
rρ(dr). The process (Wκ

t )t≥0 defined by Wκ
t := Zκ

t e
−at is a

non-negative martingale, and its almost sure limit Wκ
∞ := limt→∞Wκ

t satisfies a
zero-one law,

P(Wκ
∞ = 0) ∈ {0, 1}.

The two cases are referred to as strong disorder (Wκ
∞ = 0) and weak disorder

(Wκ
∞ > 0).

(iii) There exist critical values 0 < κcr(d) ≤ κcr(d) ≤ κL2

cr (d) ≤ ∞ such that

• p(κ1) < a for κ < κcr, and p(κ1) = a for κ ≥ κcr.
• Wκ1

∞ = 0 for κ < κcr, and Wκ1
∞ > 0 for κ > κcr.

• (Wκ1
t )t≥0 is L2-bounded if and only if κ > κL

2

cr .

(iv) In dimension d ≥ 3, all critical values are finite and κcr(d) < κL
2

cr (d).

Remark 1.2. 1. The functions p(κ) and p(κ, x) are called the free energy and point-
to-point free energy, respectively. From (ii), it in particular follows that p(κ) ≤ a

for any κ ∈ (0,∞)2d. This is called the annealed bound (cf. [7, (2.1.3)]).

2. When d ≤ 2, we believe κcr(d) = κcr =∞ since the corresponding result is proved
in [15] for the discrete-time model.

In this article, we study the large deviation principle (LDP) for the endpoint distribu-
tion under µκω,t. The following abstract existence result holds:

Theorem B. For every κ > 0 and every d ≥ 1, the sequence (µκω,t(Xt/t ∈ ·))t>0 satisfies
an LDP with deterministic, good, convex rate function Jκ(x) := p(κ1)−p(κ1, x), P-almost
surely.

Theorems A and B are well-known, at least for the related discrete-time polymer
model. In the appendix, we briefly outline how to prove them in our continuous-time
setting by providing some references. Our main result compares Jκ for κ ≥ κcr with
the large deviation rate function Iκ of (Pκ(Xt/t ∈ ·))t>0 which has the following explicit
form:

Iκ(x1, ..., xd) =

d∑
i=1

{
xi sinh−1

(
dxi
κ

)
−
√
x2
i +

κ2

d2
+
κ

d

}
. (1.7)
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Rate function for continuous-time directed polymer

Theorem 1.3. Let d ≥ 3. Then the following hold:

(i) If κ > κcr, then Jκ and Iκ coincide in a neighborhood of the origin.

(ii) If κ ≥ κcr, then Jκ(x) ≥ Iκ(x) for all x.

The same conclusion has been proved in [18, Theorem 6.1] and [7, Exercise 9.1]
for the discrete-time directed polymer model under the stronger assumption of L2-
boundedness, which would correspond to κ > κL

2

cr in our notation. The continuous-time
model has the advantage that the parameter of the model changes from the “inverse
temperature” β to the jump rate κ, so that we can use a convolution property of the
continuous-time random walk, which allows us to compare the partition functions for
different jump rates; see Theorem C below.

Remark 1.4. The coincidence and difference of the quenched and annealed rate func-
tions are studied also in the setting of random walk in random environment: [22, 24, 23,
19, 3].

It is an important open problem (see, e.g., [7, Open Problem 9.3]) to prove that the
rate function for the directed polymer model is strictly convex near the origin. One of the
major reasons is that it is a key to prove the so-called scaling relation, as is proved in [2].
Although Theorem 1.3 gives an affirmative answer, we think it is of limited interest in this
aspect (except possibly for κ = κcr) since the scaling exponents are known in the weak
disorder phase. Apart from the results in weak disorder, the strict convexity is known
only for (i) certain exactly solvable models [20] for which the rate function is explicitly
known, and (ii) the Brownian polymer model in continuous space [8] for which the rate
function agrees with that of the Brownian motion in both strong and weak disorder. The
last result is due to a special translation invariance property of the Brownian bridge and
the Poisson point process.

For the simple random walk model, the bridge loses entropy as the endpoint moves
away from the origin, and we expect that the polymer rate function is strictly larger
than that of simple random walk in strong disorder. Moreover, it is conjectured that
strong disorder holds at the critical value κ = κcr, so we expect that the conclusion of
Theorem 1.3 (i) does not extend to κ ≤ κcr.

2 Proof of the main result

The proof of Theorem 1.3 relies on the comparison result from [14]. If (X =

(Xt)t≥0, Q) and (X ′ = (X ′t)t≥0, Q
′) are two independent processes on the space of cádlág

paths on Zd, we write Q ∗Q′ for the law of (Xt +X ′t)t≥0. We write P �∗ Q if there exists
a probability measure Q′ such that P = Q ∗Q′. Note that

Pκ1+κ2 = Pκ1 ∗ Pκ2

for all κ1,κ2 ∈ (0,∞)2d, and therefore both Pκ1+κ2 �∗ Pκ1 and Pκ1+κ2 �∗ Pκ2 hold.

Theorem C ([14, Theorem 1]). Let P and Q be two probability measures on cádlág
paths on Zd, and write

ZPω,t := EP [eHt(ω,X)] and ZQω,t := EQ[eHt(ω,X)]

for the associated partition functions. Then P �∗ Q implies that for any f : [0,∞) →
[−∞,∞) concave,

E
[
f(ZQt )

]
≤ E

[
f(ZPt )

]
.
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Rate function for continuous-time directed polymer

The maximal elements with respect to �∗ are the Dirac measures on a deterministic
path. Intuitively, the partition function is smaller (in the concave stochastic order) if
there is “less randomness” in the underlying random walk, in the sense that its law is
large with respect to �∗. We sketch the proof of Theorem C for the readers’ convenience.
Following the above notation and using Jensen’s inequality, we have

E
[
f(ZPt )

]
= E

[
f(EQ ⊗ EQ′ [eHt(ω,X+X′)])

]
≥ EQ′

[
E
[
f(EQ[eHt(ωX′ ,X)])

]]
,

where ωX′ is the environment seen from X ′. But for any fixed X ′, the law of ωX′ is the
same as that of ω and hence we can get rid of EQ′ and X ′ from the last line.

Next, we compute the Cramér transform of Pκ:

Lemma 2.1. Let λ ∈ Rd and define a probability measure Q by

Q(dXt) =
e〈λ,Xt〉

Eκ[e〈λ,Xt〉]
Pκ(dXt).

Then ((Xs)s∈[0,t], Q) has law Pκ(λ), where κ(λ) = {κe〈λ,e〉}|e|=1 ∈ (0,∞)2d.

Proof. It is easy to see that ((Xs)s∈[0,t], Q) is a Markov process. Thus it suffices to identify
its generator:

(LQf)(x) = lim
t↓0

1

t

(
Eκx [f(Xt)e

〈λ,Xt〉]

Eκx [e〈λ,Xt〉]
− f(x)

)
= e−〈λ,x〉

(
(Lκfe〈λ,·〉)(x)− f(x)(Lκe〈λ,·〉)(x)

)
=

κ

2d

∑
|e|=1

(
e〈λ,e〉f(x+ e)− f(x)− f(x)(e〈λ,e〉 − 1)

)
= (Lκ(λ)f)(x).

We now prove the main result:

Proof of Theorem 1.3. Let λ ∈ Rd. By Lemma 2.1, we have

µκω,t[e
〈λ,Xt〉] =

Z
κ(λ)
ω,t

Zκω,t
etΛ

κ(λ),

where Λκ(λ) := logEκ[e〈λ,X1〉]. Theorem A (i) shows that almost surely

Λ̂κ(λ) := lim
t→∞

1

t
logµκω,t[e

〈λ,Xt〉] = p(κ(λ))− p(κ1) + Λκ(λ).

We will show that for all λ small enough,

Λ̂κ(λ) = Λκ(λ). (2.1)

Once we have this identification of the cumulant generating function, we can apply
the Gärtner–Ellis theorem [11, Theorem 2.3.6 (c)] to conclude that (µκω,t(Xt/t ∈ ·))t>0

satisfies an LDP near the origin with the rate function Iκ. In order to prove (2.1), we
introduce

κ(λ) := κ min
|e|=1

e〈λ,e〉, δ1(λ) := κ(λ)− κ(λ)1, (2.2)

κ(λ) := κmax
|e|=1

e〈λ,e〉, δ2(λ) := κ(λ)1− κ(λ), (2.3)
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Rate function for continuous-time directed polymer

so that

Pκ(λ) = Pκ(λ)1 ∗ P δ1(λ),

Pκ(λ) ∗ P δ2(λ) = Pκ(λ)1.

Applying Theorem C with f(x) = log x, we get

E
[

logZ
κ(λ)
ω,t

]
≤ E

[
logZ

κ(λ)
ω,t

]
≤ E

[
logZ

κ(λ)
ω,t

]
,

and Theorem A (i) implies that

p(κ(λ)1) ≤ p(κ(λ)) ≤ p(κ(λ)1).

Since κ > κcr and lim|λ|→0 κ(λ) = lim|λ|→0 κ(λ) = κ, we have for all sufficiently small λ,

p(κ(λ)1) = p(κ(λ)) = p(κ(λ)1) = p(κ1) = a

and (2.1) follows.
Finally, for part (ii), we have p(κcr1) = a by Theorem A (ii), while p(κ) ≤ a holds for

any κ ∈ (0,∞)2d by the annealed bound. Thus, instead of (2.1), we have for any λ ∈ Rd
and κ ≥ κcr,

Λ̂κ(λ) ≤ Λκ(λ)

and Theorem 1.3 (ii) follows from this.

Remark 2.2. This argument does not extend to the regime κ < κcr. Suppose we want to
prove that the graph of Jκ around zero has a curvature bonded away from zero, which is
weaker than Theorem 1.3 (ii). For this purpose, it suffices to prove instead of (2.1) that

p(κ(λ)) ≤ p(κ1) + c|λ|2 (2.4)

for some c > 0 and all sufficiently small λ. Our method above is to replace p(κ(λ)) by
p(κ(λ)1), but in strong disorder this should introduce an error-term that is much larger
than the quadratic term. More precisely, we expect that κ 7→ p(κ1) is strictly increasing
for κ ∈ (0, κcr), so that p(κ(λ)1) ≈ p(κ1) + c′|δ2(λ)| for λ → 0. However, |δ2(λ)| decays
only linearly as λ→ 0.

Appendix: Known results

Results similar to Theorem A are well-known for directed polymers in discrete time,
see [7]. If we assume that the killing rate is not too singular, e.g., ρ([−1,−1 + ε]) = 0 for
some ε > 0, all claims can be obtained using the same arguments as in discrete time.

Proof of Theorem A. The existence of p(κ1) as an L1-limit has been shown in [21, Theo-
rem 1.2] and [12, Theorem 3.1], while the existence of the almost sure limit is shown
in [10, Theorem 1.1] (under the assumption ρ({−1}) = 0). The existence of the almost
sure limit in the hard obstacle case, σ2 = 0 and ρ = δ{−1}, is presumably well-known, as
it is used in [16]. A proof for the existence of p(κ1) and p(κ1, x) as almost sure limits
in the hard obstacle case, as well as the continuity of κ 7→ p(κ1), can be found in [13,
Propositions 5.5 and 5.6]. Those arguments also apply to general environments and with
κ1 replaced by a general κ ∈ (0,∞)2d.

That Wκ
t is a martingale follows by a standard argument (cf. [7, Section 3.1]) once

we show E[Zκ
t ] = eat. To this end, note that since (Lx)x∈Zd in (1.2) is an independent
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Rate function for continuous-time directed polymer

family of Lévy processes, for any fixed cádlág path on Zd that jumps at times 0 = t0 <

t1 < t2 < · · · < tn < t, the Hamiltonian

Ht(ω, x) =

n∑
k=0

(Lx(tk−1)(tk)− Lx(tk−1)(tk−1)) + (Lx(tn)(t)− Lx(tn)(tn))

has the same law as L0(t). This together with Fubini’s theorem and the fact that a is the
Laplace exponent for L0(t) imply

E[Zκ
ω,t] = Eκ

[
E
[
eHt(ω,X)

]]
= E [exp{L0(t)}]
= eat.

as desired. The zero-one law from part (ii) has been shown in [21, Theorem 1.1] in the
case σ2 = 0, ρ = δ{−1}, and the same argument also applies to general environments.

The existence of κcr is shown in [21, Theorem 1.3] for σ2 = 0, ρ = δ{−1}, while for
general environments it follows from the fact that κ 7→ p(κ1) is increasing, which was
shown in [14, (4.15)]. To show the existence of κcr, one first follows the arguments from
[9, Proposition 3.1] to show that Wκ1

∞ > 0 is equivalent to L1-convergence of (Wκ1
t )t≥0,

and then applies the same argument as in [14, (4.8)]. The relation κcr ≤ κcr ≤ κL
2

cr is
obvious.

Finally, in dimension d ≥ 3, the same argument as in the discrete-time case shows
κL

2

cr (d) <∞, see [7, Theorem 3.3]. The second statement in part (iv) has been shown for
the discrete-time model in [5], and the generalization to continuous time follows along
the same lines, using [4, Theorem 7].

The LDP for a discrete-time polymer model is established in [6], but to the best of our
knowledge, it is not available for continuous time random walk models in the literature.

Proof of Theorem B. We start by considering integer times, i.e., the sequence
(µκω,t(Xt/t ∈ ·))t∈N. Here the existence of an LDP with some rate function J ′ follows
from the argument of [6, Theorem 1.1]. A concentration inequality corresponding to [6,
Proposition 2.3] has been proven for σ = 0, ρ = δ{−1} in [13, Proposition 5.3]. A similar
proof applies to the general case, and can also be used to obtain the display following
(3.2) in [6]. To identify J ′ with Jκ one can follow the arguments from [7, Theorem 9.1].
The convexity of x 7→ Jκ(x) can be shown in the same way as in [13, Proposition 5.6].
Finally, to show that Jκ is good, it is enough to observe Jκ(x) ≥ Iκ(x)−(a∨0)−p(κ)→∞
for x→∞.

Next, we prove that the LDP also holds for general t ∈ R+. Here one has to be
somewhat careful, because the point-to-point partition function does not necessarily
have an almost sure limit. That is, if ρ({−1}) > 0 then it is proved in [13, Proposition
5.6](i) that almost surely,

−∞ = lim inf
t→∞

1

t
logZκ1ω,t,[tx] < lim

t→∞,t∈N

1

t
logZκ1ω,t,[tx] = p(κ, x). (2.5)

This is why the restriction to t ∈ N appears in (1.6). It in particular follows that

lim inf
t→∞

1

t
logµω,t(Xt = [tx]) = −∞.

But of course this does not contradict the LDP since we need lower bounds only for open
sets. On the technical level, the divergence in (2.5) is caused by the situation that (t, [tx])

is close behind a hard obstacle. Such a situation happens for a single point but should
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Rate function for continuous-time directed polymer

not happen for many points simultaneously. We show below that two points are enough
to avoid this singularity.

Now we start with the large deviation lower bound,

lim inf
t→∞

1

t
logµω,t(Xt/t ∈ G) ≥ − inf

x∈G
Jκ(x) for all G ⊆ Rd open. (2.6)

Let x ∈ G and let t be large enough that both btxc ∈ btcG and btcx+ e1 ∈ btcG. Then

µt,ω(Xt/t ∈ G) ≥ (Zκω,t)
−1Eκ

[
eHt(ω,X)1{Xbtc=btxc,Xs∈{btxc,btxc+e1} for all s∈[btc,t]}

]
=:

Zκω,btc,btxc

Zκω,t
A(ω, t, btxc).

By (1.6), almost surely,

lim inf
t→∞

1

t
logµt,ω(Xt/t ∈ G) ≥ −Jκ(x) + lim inf

t→∞

1

t
logA(ω, t, btxc). (2.7)

Note that the law of A(t, ω, x) does not depend on x or on the integer part of t. In the
case σ2 = 0 and ρ = δ{−1}, it is shown in [13, Lemma 6.4 (iii)] that there exists δ > 0

such that

sup
t∈[0,1]

E
[
A(t, ω, 0)−δ

]
<∞,

and the general case can be proved in the same way. The Borel-Cantelli lemma then
shows that the second term in (2.7) equals zero almost surely, and since x ∈ G is arbitrary
we obtain (2.6). For the large deviation upper bound, let ∅ 6= F ⊆ Rd be closed and let
Fε denote the closure of the ε-neighborhood of F . By the LDP for integer times,

lim sup
t→∞

1

t
logµω,t(Xt ∈ tF ) = lim sup

t→∞

1

t
logµω,t(Xt ∈ tF,Xbtc ∈ btcFε)

≤ lim sup
t→∞

1

t
logµω,t(Xbtc ∈ btcFε)

≤ − inf
x∈Fε

Jκ(x) + lim sup
t→∞

1

t
log Ã(ω, t), (2.8)

where

Ã(ω, t) :=
∑

x∈btcFε

µω,btc(Xbtc = x)

µω,btc(Xbtc ∈ btcFε)
Zκθbtc,xω,t−btc

and θt,xω denotes the space-time shift of the environment. It is easy to see that log Ã(t, ω)

has finite exponential moments, uniformly in t, so that the second term in (2.8) is
zero almost surely by the Borel-Cantelli lemma. Since Jκ is continuous, the first term
converges to − infx∈F J

κ(x) for ε ↓ 0 as desired.
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