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Abstract

Using Foster-Lyapunov techniques we establish new conditions on non-extinction,
non-explosion, coming down from infinity and staying infinite, respectively, for the
general continuous-state nonlinear branching processes introduced in Li et al. (2019).
These results can be applied to identify boundary behaviors for the critical cases of the
above nonlinear branching processes with power rate functions driven by Brownian
motion and (or) stable Poisson random measure, which was left open in Li et al. (2019).
In particular, we show that even in the critical cases, a phase transition happens
between coming down from infinity and staying infinite.
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1 Introduction

Continuous-state branching processes (CSBPs for short) are nonnegative-valued
Markov processes satisfying the additive branching processes. They often arise as time-
population scaling limits of discrete-state branching processes, and can also be obtained
from spectrally positive Lévy processes via the Lamperti transform. The introduction
of CSBP allows the applications of stochastic analysis, Lévy processes and stochastic
differential equations (SDEs for short) techniques to its study. We refer to Li [12], Li [13]
and Kyprianou [4] and references therein for comprehensive reviews on CSBPs.

Generalized versions of the CSBP have been proposed in recent years to incorporate
interactions between individuals and (or) between individuals and the population. A
class of CSBPs with nonlinear branching mechanism, obtained by generalized Lamperti
transform, is introduced in Li [9]. In Li et al. [11], a more general version of the nonlinear
CSBP is proposed as the solution to SDE

Xt = x+

∫ t

0

a0(Xs)ds+

∫ t

0

∫ a1(Xs)

0

W (ds,du)+

∫ t

0

∫
(0,∞)

∫ a2(Xs−)

0

zM̃(ds,dz,du), (1.1)
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Boundary behaviors for nonlinear branching processes

where x > 0, a0 and a1, a2 ≥ 0 are Borel functions on [0,∞), W (ds,du) and M̃(ds,dz,du)

denote a Gaussian white noise and an independent compensated Poisson random mea-
sure, respectively. The model of Li [9] corresponds to solution (Xt)t≥0 to SDE (1.1) with
power rate functions a1, a2 and a3 of identical power; i.e. ai(x) = cix

r for r > 0 and
ci ≥ 0, i = 0, 1, 2.

These nonlinear CSBPs allow richer behaviors such as coming down from infinity.
Some extinction, extinguishing, explosion and coming down from infinity properties are
proved in Li [9]. By analyzing weighted occupation times for spectrally positive Lévy
process, asymptotic results on the speeds of coming down from infinity and explosion
are obtained in Foucart et al. [2] and in Li and Zhou [8], respectively, for nonlinear CSBP
corresponding to solution to SDE (1.1) with rate functions that are mulitplcations of the
same nonnegative function a; i.e. ai(x) = cia(x), i = 0, 1, 2. Exponential ergodicity for
the general continuous-state nonlinear branching processes in Li et al. [11] is studied
by Li and Wang [10] using coupling techniques. Long time behaviour of the general
continuous-state nonlinear branching processes with catastrophes is studied by Marguet
and Smadi [14].

A version of SDE (1.1) with a1 ≡ 0 and power functions a0 and a2 is considered earlier
in Berestycki et al. [1] where using the Lamperti transform, a necessary and sufficient
condition for extinction is obtained and the pathwise uniqueness of solution is studied.
Work on the continuous-state logistic branching process can be found in Lambert [5], Le
et al. [7] and Le [6].

Using a martingale approach, the extinction, explosion and coming down from infinity
behaviors are further discussed in Li et al. [11] and some rather sharp criteria in terms
of functions a0, a1, a2 and the Poisson random measure are obtained on characterization
of different kinds of boundary behaviors for the nonlinear CSBPs as a Markov process.
In Example 2.18 of Li et al. [11] where a0, a1 and a2 are taken to be power functions and
M̃ is taken to be an α-stable Poison random measure with index α ∈ (1, 2). The above
criteria are further expressed in terms of the coefficients and the powers of functions
ai and the stable index α. But for the critical cases, where the coefficients, the powers
and the index α satisfy certain linear equations, the martingale approach fails and the
corresponding boundary classification remains an open problem (see Remark 2.3).

The main goal of this paper is to identify the exact boundary behaviors in the above
mentioned critical cases for the solution (Xt)t≥0 to (1.1). For this purpose, we adapt the
Foster-Lyapunov approach and select logarithm type test functions to obtain two new
conditions under which the nonlinear CSBP never becomes extinct and never explodes,
respectively. Similarly, for the boundary at infinity, we also find a Foster-Lyapunov
condition with which we can show that an interesting phase transition occurs between
coming down from infinity and staying infinite for different choices of coefficients and
powers of the power functions and differential values of the stable index α.

The rest of the paper is arranged as follows. We introduce the generalized CSBPs
with nonlinear branching in more details and present the main theorem in Section 2.
The proofs of preliminary results on Foster-Lyapunov criteria and the main theorem are
deferred to Section 3.

2 Main results

Let U be a Borel set on (0,∞). Given σ-finite measure µ on (0,∞) such that

(z∧z2)µ(dz) and (1∨ln(1+z))µ(dz) are finite measures on U and (0,∞) \ U , respectively,
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Boundary behaviors for nonlinear branching processes

we consider the following SDE that is a modification of (1.1):

Xt = x+

∫ t

0

a0(Xs)ds+

∫ t

0

∫ a1(Xs)

0

W (ds,du)

+

∫ t

0

∫
U

∫ a2(Xs−)

0

zM̃(ds,dz,du) +

∫ t

0

∫
(0,∞)\U

∫ a3(Xs−)

0

zM(ds,dz,du),(2.1)

where x > 0, a0 and a1, a2, a3 ≥ 0 are Borel functions on [0,∞), W (ds,du) is a Gaussian
white noise with density dsdu and M(ds,dz,du) denotes a Poisson random measure on
(0,∞)3 with density dsµ(dz)du. Let M̃(ds,dz,du) be the compensated Poisson random
measure of M(ds,dz,du). We assume that W (ds,du) and M̃(ds,dz,du) are independent
of each other. A similar SDE (2.1) is considered in Li et al. [11] under the assumption
that U = (0,∞).

We only consider the solution of (2.1) before the minimum of their first times of
hitting zero and reaching infinity (that is minimum of τ−0 and τ+∞, which will be given
in the following), respectively, i.e. both zero and infinity are absorbing states for the
solution. See Section 2 of Li et al. [11] for more details. By the same argument as
Theorem 3.1 in Li et al. [11], we can show that SDE (2.1) has a pathwise unique solution
if functions a0, a1, a2, a3 are locally Lipschitz on (0,∞). The main purpose of this paper is
to investigate the extinction, explosion and coming down from infinity behaviors, and
the uniqueness of solution to SDE (2.1) is not required.

Throughout this paper we always assume that a0, a1, a2, a3 are bounded on any
bounded interval of [0,∞) and that process (Xt)t≥0 is defined on filtered probability
space (Ω,F ,Ft,P) which satisfies the usual hypotheses. We use Px to denote the law
of a process started at x, and denote by Ex the associated expectation. For a, b > 0 we
define the first passage times

τ−a := inf{t > 0 : Xt ≤ a}, τ+b := inf{t > 0 : Xt ≥ b}

and

τ−0 := inf{t > 0 : Xt = 0}, τ+∞ := lim
n→∞

τ+n

with the convention inf ∅ = ∞. Let C2((0,∞)) denote the space of twice continuously
differentiable functions on (0,∞).

We next introduce several auxiliary functions. For u > 0 let

φ(u) := −a0(u)u−1 +
1

2
a1(u)u−2 + a2(u)

∫
U

z2µ(dz)

∫ 1

0

(u+ vz)−2(1− v)dv

−a3(u)

∫
(0,∞)\U

zµ(dz)

∫ 1

0

(u+ vz)−1dv.

For ρ, z > 0 and u > 3 let

Kρ(u, z) :=
( ln(u+ z)

lnu

)−ρ
+ ρ

ln(u+ z)

lnu
− (ρ+ 1) > 0

and

Hρ(u) :=
1

2
a1(u)u−2 + a2(u)

∫
U

Kρ(u, z)µ(dz) + a3(u)

∫
(0,∞)\U

Kρ(u, z)µ(dz),

which will be used in the proofs for Theorem 2.1 (iii) and (iv).
Process (Xt)t≥0 becomes extinct if τ−0 < ∞; it explodes if τ+∞ < ∞; it stays infinite

if limx→∞Px{τ−a < t} = 0 for all t > 0 and all large a; it comes down from infinity if
lima→∞ limx→∞Px{τ−a < t} = 1 for all t > 0.

The following main result provides new criteria on non-extinction, non-explosion,
coming down from infinity and staying infinite for the solution to SDE (1.1).
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Boundary behaviors for nonlinear branching processes

Theorem 2.1. For the solution (Xt)t≥0 to (2.1) we have

(i) if φ(u) ≤ 0 for all small enough u > 0, then Px{τ−0 =∞} = 1 for all x > 0, i.e. there
is no extinction;

(ii) if φ(u) ≥ 0 for all large enough u > 0, then Px{τ+∞ =∞} = 1 for all x > 0, i.e. there
is no explosion;

(iii) if φ(u) ≤ 0 for all large enough u > 0 and

lim sup
u→∞

Hρ(u) <∞

for some constant ρ > 0, then the process (Xt)t≥0 stays infinite;

(iv) if φ(u) ≥ 0 for all large enough u > 0 and

lim
u→∞

(lnu)−ρ−2Hρ(u) =∞

for some constant ρ > 0, then the process (Xt)t≥0 does not explode and it comes
down from infinity.

Remark 2.2. Since the process (Xt)t≥0 does not explode and comes down from infinity
under the assumptions of Theorem 2.1 (iv), it can be extended to a Feller process defined
on state space [0,∞] with∞ as its entrance boundary given that it is Feller on [0,∞); see
Theorem 2.2 of Foucart et al. [2]. If (Xt)t≥0 further solves SDE (1.1), then the conditions
on functions a0, a1, a2 for process (Xt)t≥0 to be Feller on [0,∞) can also be found in
Foucart et al. [2].

Until the end of this section we focus on the special case that U = (0,∞), a0, a1, a2
are power functions and µ(dz) is an α-stable measure, that is

ai(u) = biu
ri for i = 0, 1, 2 with r0, r1, r2 ≥ 0, b1, b2 ≥ 0, b0 > 0 (2.2)

and

µ(dz) =
α(α− 1)

Γ(2− α)
1{z>0}z

−1−αdz for Gamma function Γ and 1 < α < 2. (2.3)

By the properties of Gamma function we have∫ ∞
0

z2µ(dz)

∫ 1

0

(u+ vz)−2(1− v)dv = Γ(α)u−α

and then

φ(u) = −b0ur0−1 +
1

2
b1u

r1−2 + Γ(α)b2u
r2−α, u > 0.

We further estimate

Hρ(u) =
1

2
a1(u)u−2 + a2(u)

∫ ∞
0

Kρ(u, z)µ(dz)

for which we first estimate
∫∞
0
Kρ(u, z)µ(dz). Note that for y > 0 and f(y) := y−ρ + ρy −

(ρ+ 1), by Taylor’s formula we have

f(y) = f(1 + y − 1) = f(1 + y − 1)− f(1)− (y − 1)f ′(1)

= (y − 1)2
∫ 1

0

f ′′(1 + v(y − 1))(1− v)dv.

Then by a change of variable,∫ ∞
0

Kρ(u, z)µ(dz)
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Boundary behaviors for nonlinear branching processes

= ρ(ρ+ 1)

∫ ∞
0

µ(dz)

∫ 1

0

( ln(u+ vz)

lnu
− 1
)2(

1 +
v ln(u+ vz)

lnu
− v
)−ρ−2

(1− v)dv

= ρ(ρ+ 1)u−α
∫ ∞
0

µ(dz)

∫ 1

0

( ln(1 + vz)

lnu

)2(
1 +

v ln(1 + vz)

lnu

)−ρ−2
(1− v)dv.

Observe that ln(1 + z) ≤ C(z ∧
√
z) for all z > 0 and some constant C > 0, which implies

that for u > 3,∫ ∞
0

Kρ(u, z)µ(dz) ≤ ρ(ρ+ 1)u−α(lnu)−2
∫ ∞
0

(ln(1 + z))2µ(dz)

≤ C2ρ(ρ+ 1)u−α(lnu)−2
∫ ∞
0

(z ∧ z2)µ(dz). (2.4)

Moreover, it is elementary to see that∫ ∞
0

Kρ(u, z)µ(dz)

≥ ρ(ρ+ 1)u−α(lnu)−2
(

1 +
ln 3

lnu

)−ρ−2 ∫ 2

1

(ln(3/2))2µ(dz)

∫ 1

1/2

(1− v)dv. (2.5)

Remark 2.3. In Section 2.5 of Li et al. [11], the exact conditions are found for the above
mentioned model with polynomial rate functions to exhibit extinction/non-extinction,
explosion/non-explosion and coming-down-from-infinity/staying-infinite behaviors, re-
spectively, except for the critical case that

b0 =
b1
2

+ Γ(α)b2 > 0, r1 = r0 + 1 when b1 > 0 and r2 = r0 + α− 1 when b2 > 0.

Observe that in this critical case φ(u) = L(ln)(u) = 0, where the operator L, to be defined
in (3.2), denotes the generator of process X. This inspires us to choose logarithm type
test functions for the main proofs.

As the main goal of this paper, applying Theorem 2.1 together with (2.4)–(2.5), we
provide an answer to this open problem.

Corollary 2.4. Suppose that (2.2) and (2.3) hold with b0 = b1
2 + Γ(α)b2 > 0, r1 = r0 + 1

when b1 > 0 and r2 = r0 + α− 1 when b2 > 0. Then φ(u) = 0 for all u > 0, and we have
for all x > 0,

Px{τ−0 =∞} = 1 and Px{τ+∞ =∞} = 1.

Moreover, process (Xt)t≥0 stays infinite if both r1 ≤ 2 (when b1 > 0) and r2 ≤ α (when
b2 > 0), and it comes down from infinity if either r1 > 2 (when b1 > 0) or r2 > α (when
b2 > 0).

Remark 2.5. Note that in the critical cases, there is an interesting phase transition
between coming down from infinity and staying infinite. Intuitively, in these cases the
process comes down from infinity if the fluctuations caused by the Brownian motion and
the Poisson random measure are relatively large and stays infinite otherwise.

Combining Corollary 2.4 and Example 2.18 of Subsection 2.5 in Li et al. [11], we
recover the necessary and sufficient condition on the extinction of solution to the SDE of
Berestycki et al. [1]; see Theorem 1.1 there.

3 Proofs

Before presenting the proof of Theorem 2.1 we first prove some preliminary Foster-
Lyapunov criteria. Suppose that g ∈ C2((0,∞)) satisfies

sup
z≥1,u≥v

[
|g′(u)|+ |g′′(u)|+ |g(u+ z)− g(u)|/ ln(1 + z)

]
<∞ (3.1)
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Boundary behaviors for nonlinear branching processes

for all v > 0. For u > 0, put

Lg(u) := a0(u)g′(u) +
1

2
a1(u)g′′(u) + a2(u)

∫
U

[g(u+ z)− g(u)− zg′(u)]µ(dz)

+a3(u)

∫
(0,∞)\U

[g(u+ z)− g(u)]µ(dz)

= a0(u)g′(u) +
1

2
a1(u)g′′(u) + a2(u)

∫
U

z2µ(dz)

∫ 1

0

g′′(u+ zv)(1− v)dv

+a3(u)

∫
(0,∞)\U

zµ(dz)

∫ 1

0

g′(u+ zv)dv (3.2)

by Taylor’s formula. By Itô’s formula,

g(Xt) = g(x) +

∫ t

0

Lg(Xs)ds+

∫ t

0

∫
U

∫ a2(Xs−)

0

[g(Xs− + z)− g(Xs−)]M̃(ds,dz,du)

+

∫ t

0

∫
(0,∞)\U

∫ a3(Xs−)

0

[g(Xs− + z)− g(Xs−)]M̃(ds,dz,du)

For b > a > 0 let γa,b := τ−a ∧ τ+b and

Mg
t := g(Xt)− g(x)−

∫ t

0

Lg(Xs)ds.

Then under condition (3.1),

t 7→Mg
t∧γa,b

is a martingale (3.3)

for all b > a > 0.

Lemma 3.1. Given 0 < a < x < b < ∞, for any function g ∈ C2((a, b)) satisfying (3.1)
and constant da,b > 0 satisfying

Lg(u) ≤ da,bg(u), u ∈ (a, b),

we have

Ex
[
g(Xt∧γa,b

)
]
≤ g(x)eda,bt, t ≥ 0. (3.4)

Proof. It follows from (3.3) that

Ex
[
g(Xt∧γa,b

)
]

= g(x) + Ex

[ ∫ t∧γa,b

0

Lg(Xs)ds
]
≤ g(x) + da,b

∫ t

0

Ex
[
g(Xs∧γa,b

)
]
ds.

By Gronwall’s lemma,

Ex
[
g(Xt∧γa,b

)
]
≤ g(x)eda,bt,

which ends the proof.

Lemma 3.2. Let (Xt)t≥0 be the solution to SDE (2.1).

(i) For any fixed b > 0, if there exists a function g ∈ C2((0,∞)) strictly positive on (0, b]

satisfying (3.1) and limu→0 g(u) = ∞, and there is a constant d(b) > 0 such that
Lg(u) ≤ d(b)g(u) for all 0 < u < b, then Px{τ−0 ≥ τ

+
b } = 1 for all 0 < x < b.

(ii) For any fixed a > 0, if there exists a function g ∈ C2((0,∞)) strictly positive on
[a,∞) satisfying (3.1) and limu→∞ g(u) =∞, and there is a constant d(a) > 0 such
that Lg(u) ≤ d(a)g(u) for all u > a, then Px{τ+∞ ≥ τ−a } = 1 for all x > a.
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Boundary behaviors for nonlinear branching processes

(iii) If there exists a function g ∈ C2((0,∞)) strictly positive on [u,∞) for all large u
satisfying (3.1) and limu→∞ g(u) = 0, and for any large a > 0, there is a constant
d(a) > 0 such that Lg(u) ≤ d(a)g(u) for all u > a, then (Xt)t≥0 stays infinite.

Proof. We apply Lemma 3.1 for the proofs.
For part (i), (3.4) holds for all 0 < a < b and with da,b replaced by d(b). Then using

Fatou’s lemma we have

Ex
[

lim inf
a→0

g(Xt∧τ−a ∧τ+
b

)
]
≤ lim inf

a→0
Ex
[
g(Xt∧γa,b

)
]
≤ g(x)ed(b)t.

Since limu→0 g(u) = ∞, then Px{τ−0 > t ∧ τ+b } = 1 for all t, b > 0. Letting t → ∞ we
obtain Px{τ−0 ≥ τ

+
b } = 1, which gives the first assertion.

For part (ii), (3.4) holds for all b > a and with da,b replaced by d(a). Then using
Fatou’s lemma again we obtain

Ex
[

lim inf
b→∞

g(Xt∧τ−a ∧τ+
b

)
]
≤ lim inf

b→∞
Ex
[
g(Xt∧γa,b

)
]
≤ g(x)ed(a)t.

Since limu→∞ g(u) = ∞, then Px{τ+∞ > t ∧ τ−a } = 1 for all t > 0. Letting t → ∞ we get
Px{τ+∞ ≥ τ−a } = 1, which implies the second assertion.

For part (iii), given any large a > 0, (3.4) holds for all b > a and with da,b replaced by
d(a) again. We can also get

Ex
[
g(Xτ−a

)1{τ−a <t∧τ+
∞}
]
≤ lim inf

b→∞
Ex
[
g(Xτ−a

)1{τ−a <t∧τ+
b }
]

≤ lim inf
b→∞

Ex
[
g(Xt∧γa,b

)
]
≤ g(x)ed(a)t,

which implies

g(a)Px{τ−a < t ∧ τ+∞} ≤ g(x)ed(a)t.

Since limu→∞ g(u) = 0, then for all t, a > 0,

lim
x→∞

Px{τ−a < t ∧ τ+∞} = 0. (3.5)

Observe that {τ−a ≥ τ+∞} ⊂ {τ−a =∞}. Then combining (3.5) we have

lim
x→∞

Px{τ−a < t} ≤ lim
x→∞

Px{τ−a < t ∧ τ+∞}+ lim
x→∞

Px{τ−a < t, τ+∞ ≤ τ−a } = 0

for all t > 0. Then the process stays infinite.
The next lemma provides a condition that associates the probability of coming

down from infinity with the probability of non-explosion. Its proof is a modification of
Proposition 2.2 in Ren et al. [15].

Lemma 3.3. Suppose that there exist a function g(u) ∈ C2((0,∞)) bounded and strictly
positive for all large u, satisfying (3.1) and lim supu→∞ g(u) > 0, and a strictly positive
function d on (0,∞) such that

Lg(u) ≥ d(a)g(u) for all u ≥ a and lim
a→∞

d(a) =∞.

Then for any t > 0

lim
a→∞

lim
x→∞

Px{τ−a < t} ≥ lim inf
x→∞

Px{τ+∞ =∞}.

Consequently, process (Xt)t≥0 comes down from infinity if there is no explosion.
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Proof. The proof is a modification of that of Proposition 2.2 in Ren et al. [15]. We present
the details for completeness. By (3.3), for all large a < b

Ex
[
g(Xt∧γa,b

)
]

= g(x) + Ex

[ ∫ t∧γa,b

0

Lg(Xs)ds
]

= g(x) +

∫ t

0

Ex

[
Lg(Xs)1{s≤γa,b}

]
ds

and then by integration by parts,

Ex
[
g(Xt∧γa,b

)
]
e−d(a)t

= g(x) +

∫ t

0

Ex
[
g(Xs∧γa,b

)
]
d(e−d(a)s) +

∫ t

0

e−d(a)sd
(
Ex
[
g(Xs∧γa,b

)
])

= g(x)− d(a)

∫ t

0

Ex
[
g(Xs∧γa,b

)e−d(a)s
]
ds+

∫ t

0

e−d(a)sEx
[
Lg(Xs)1{s≤γa,b}

]
ds

≥ g(x)− d(a)

∫ t

0

Ex
[
g(Xs∧γa,b

)
]
e−d(a)sds+ d(a)

∫ t

0

e−d(a)sEx
[
g(Xs)1{s≤γa,b}

]
ds,

which implies that

g(x) ≤ Ex
[
g(Xt∧γa,b

)e−d(a)t
]

+ d(a)Ex

[ ∫ t

0

g(Xγa,b
)e−d(a)s1{s>γa,b}ds

]
.

Letting t→∞ in the above inequality and using the dominated convergence we obtain

g(x) ≤ d(a)Ex

[
g(Xγa,b

)

∫ ∞
γa,b

e−d(a)sds
]

= Ex
[
g(Xγa,b

)e−d(a)γa,b
]
.

It follows that

g(x) ≤ Ex

[
lim
b→∞

g(Xγa,b
)e−(τ

−
a ∧τ

+
∞)d(a)

(
1{τ+
∞<τ

−
a } + 1{τ−a <t,τ−a ≤τ+

∞} + 1{t≤τ−a ≤τ+
∞}
)]

≤ lim sup
u→∞

g(u)Px{τ+∞ <∞}+ g(a)Px{τ−a < t, τ−a ≤ τ+∞}+ g(a)e−d(a)t

≤ lim sup
u→∞

g(u)(1−Px{τ+∞ =∞}) + g(a)Px{τ−a < t}+ g(a)e−d(a)t.

Letting x→∞ first,

lim sup
x→∞

g(x) ≤ lim sup
u→∞

g(u) lim sup
x→∞

(1−Px{τ+∞ =∞})

+g(a) lim
x→∞

Px{τ−a < t}+ g(a)e−d(a)t.

Then letting a→∞, by the conditions in the lemma we have

lim sup
x→∞

g(x) ≤ lim sup
u→∞

g(u)
(

1− lim inf
x→∞

Px{τ+∞ =∞}
)

+ lim sup
a→∞

g(a) lim sup
a→∞

lim
x→∞

Px{τ−a < t}.

Observing that limx→∞Px{τ−a < t} is increasing in a, the desired inequality then follows
from the above inequality.

We are now ready to show the proofs of the main results.
Proof of Theorem 2.1. (i) Suppose that there is a constant 0 < c1 < 1 so that φ(u) ≤ 0 for
all 0 < u < c1. For n ≥ 1 let gn(u) = 1 + lnn+ lnu−1. Then gn(u) > 0 for 0 < u ≤ n and
Lgn(u) = φ(u) by (3.2). Thus Lgn(u) ≤ 0 for 0 < u < c1. Since a0, a1, a2, a3 are bounded
on [c1, n], Lgn is bounded on [c1, n]. Now using Lemma 3.2(i) we obtain Px{τ−0 ≥ τ+n } = 1

for all 0 < x < n. Since the process is defined before the first time of hitting zero or
explosion, Px{τ−0 =∞ or τ+∞ =∞} = 1. Letting n→∞ we prove the assertion.

(ii) Suppose that there is a constant c2 > 1 so that φ(u) ≥ 0 for all u > c2. Let
gn(u) = lnu + lnn + 1 for n ≥ 1. Then gn(u) ≥ 1 for u ≥ n−1. It follows from (3.2) that
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Lgn(u) = −φ(u) for all u ≥ n−1. Then for all n ≥ 1, Lgn(u) ≤ 0 for all u ≥ c2 and Lgn is
bounded on [n−1, c2], which gives Px{τ+∞ > τ−1/n} = 1 for all x > n−1 by Lemma 3.2(ii).

Letting n→∞ we have Px{τ+∞ > τ−0 } = 1 for all x > 0. The assertion for (ii) then follows
from the definition of the solution to SDE (2.1).

(iii) Suppose that there exist constants c3 > 3 and c4 > 0 so that φ(u) ≤ 0 and
Hρ(u) ≤ c4 for all u > c3. Let g ∈ C2((0,∞)) be a strictly positive function with
g(u) = (lnu)−ρ for ρ > 0 and u > 3.

Then for u > 3,

g(u+ z)− g(u) = −ρ(lnu)−ρ−1[ln(u+ z)− lnu] + (lnu)−ρKρ(u, z)

= −ρ(lnu)−ρ−1z

∫ 1

0

(u+ vz)−1dv + (lnu)−ρKρ(u, z)

and

g′(u) = −ρ(lnu)−ρ−1u−1, g′′(u) = ρ(lnu)−ρ−1u−2 + ρ(ρ+ 1)(lnu)−ρ−2u−2.

Consequently, for all u > 3 and z > 0,

g(u+ z)− g(u)− zg′(u) = −ρ(lnu)−ρ−1
[

ln(u+ z)− lnu− zu−1
]

+ (lnu)−ρKρ(u, z)

= ρ(lnu)−ρ−1z2
∫ 1

0

(u+ zv)−2(1− v)dv + (lnu)−ρKρ(u, z).

It follows that

Lg(u) = ρ(lnu)−ρ−1φ(u) +
1

2
ρ(ρ+ 1)(lnu)−2a1(u)u−2g(u)

+g(u)a2(u)

∫
U

Kρ(u, z)µ(dz) + g(u)a3(u)

∫
(0,∞)\U

Kρ(u, z)µ(dz)

≤ ρ(lnu)−ρ−1φ(u) + [ρ(ρ+ 1) + 1]g(u)Hρ(u), u > 3.

Then Lg(u) ≤ c4[ρ(ρ+ 1) + 1]g(u) for all u > c3. Thus, (Xt)t≥0 stays infinite for all x > 0

by Lemma 3.2(iii).
(iv) Let g ∈ C2((0,∞)) be a bounded and strictly positive function with g(u) =

1 + (lnu)−ρ for ρ > 0 and u > 3. It follows from the argument in (iii) that for u > 3,

Lg(u) = ρ(lnu)−ρ−1φ(u) +
1

2
ρ(ρ+ 1)(lnu)−ρ−2a1(u)u−2

+(lnu)−ρa2(u)

∫
U

Kρ(u, z)µ(dz) + (lnu)−ρa3(u)

∫
(0,∞)\U

Kρ(u, z)µ(dz)

≥ ρ(lnu)−ρ−1φ(u) + (ρ ∧ 1)(lnu)−ρ−2Hρ(u).

Then we can conclude the proof by the assumptions for this part together with Theorem
2.1(ii) and Lemma 3.3.
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