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Abstract

We consider two independent stationary random walks on large random regular graphs
of degree k ≥ 3 with N vertices. On these graphs, the exponential approximations
of the meeting times are known to follow from existing methods and form a basis for
the voter model’s diffusion approximations. The main result of this note improves
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asymptotically equivalent to N(k − 1)/[2(k − 2)].
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1 Introduction

This note is concerned with the meeting time M = inf{t ≥ 0;Xt = Yt} of i.i.d.
continuous-time, rate-1 irreducible Markov chains X and Y defined on a large finite set;
the chains are subject to the stationary initial conditions. These basic stopping times
M ’s arise in a series of studies of diffusion approximations of the voter model and some
closely related interacting particle systems [15, 21, 11, 12, 13]. In this context, the first
moments of the meeting times are the time changes for diffusion approximations of the
particle systems, but they encode the underlying Markov transition kernels implicitly.
Due to this connection, various non-rigorous, explicit approximations from the physics
literature (cf. [23, 26]) for the particle systems may be translated to precise asymptotics
of the meeting times or related objects, but very few are mathematically proven.

Our primary interest in this note is to establish a new example for the precise
asymptotics of the first moments of the meeting times. We consider the meeting times
of random walks on large random regular k-graphs, for any fixed degree k ≥ 3. (See
Section 3 for the definition of these graphs.) The possibility of proving the precise
asymptotics is suggested by a result in [20] for an evolutionary game model that can
be identified as a weak perturbation of the voter model. In terms of time changes for
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Meeting times in large random regular graphs

diffusion approximations, a comparison of [20] with the established mathematical result
[see also Remark 3.1 (2)] shows that the following limit should hold:

EG[M ] ∼ N(k − 1)

2(k − 2)
as N →∞. (1.1)

Here, EG[M ] is defined on the random k-regular graph G with N vertices, and aN ∼ bN
if aN/bN → 1. See [13], especially Section 4.3 there, for the background of (1.1).

Relative to the precise asymptotics of EG[M ], the convergence of the normalized
times M/EG[M ] is known. It is one particular case of the exponential approximations
of hitting times of small sets by stationary Markov chains which are valid under mild
conditions [2, 3, 4]. (Bounds of the expected hitting times are also obtained there.)
Specialized to the meeting times on large random regular graphs, the conditions in
[2, 3, 4] essentially require that the first moments EG[M ] grow more rapidly than the
times for the associated bivariate Markov chains (Xt, Yt) to mix. Then the limit of
M/EG[M ] is the exponential random variable with a mean one. See the proofs in [11,
Section 6] and [13, Section 4.3] for verifications of these conditions in general.

In the different direction of representing distributions explicitly on finite sets other
than random regular graphs, the meeting times are reducible to hitting times of points.
The weakest exact symmetry known to us for this reduction is P(Xt = x|X0 = x)

independent of x for all t [4, Section 14.2]. In this case, the first moments of the
meeting times (again by stationary chains) can also be expressed explicitly as sums of
elementary functions of all the eigenvalues, known as Kemeny’s constant. See Section 2
and the eigentime identity in [4]. Hence, the exact symmetry gives details of the meeting
time distributions much more than those from the exponential approximations by quite
different methods. In particular, it allows for explicit formulas of the first moments.

In terms of this background, it is unclear whether the general methods in [2, 3, 4] for
exponential approximations are enough to obtain the explicit asymptotics in (1.1). See
also the end of Section 3. By extending the method for proving Kemeny’s constant, the
main result establishes (1.1) and improves the exponential approximations accordingly.

Main Result (Informal statement of Theorem 3.2). Given a fixed integer k ≥ 3,
let G be the k-random regular graphs on N vertices and M the meeting time of two
independent stationary random walks on G. Then, in the sense of convergence in
distribution and convergence of all moments, M/N → (k − 1)e/[2(k − 2)] as N → ∞,
where e denotes an exponential random variable with E[e] = 1.

The proof of this result begins with the well-known property that the infinite k-regular
tree is the limit of large random k-regular graphs [19, 6]. The symmetry of this infinite
graph is applied in several crucial ways to extend by approximations a spectral method
in the spirit of proving Kemeny’s constant. After all, although the exact symmetry
leading to Kemeny’s constant is violated on random regular graphs, the asymmetry is
mild, and an analog of the reduction to hitting times of points mentioned above still
applies to the infinite tree. This property suggests that the tree is a reference geometry
for approximations. Nevertheless, the critical issue is whether the mild asymmetry
breaking the exact relation to Kemeny’s constant also has comparable mild effects on
the meeting time distributions. A key step of the proof verifies this relation in general by
showing that the stationary distributions dominate the meeting location distributions.
See Proposition 4.1. The precise limit in (1.1) is then determined by applying the Kesten–
McKay law for the spectral measure of the k-regular tree. Here, we consider an analog
of the eigentime identity to extend Kemeny’s constant to the infinite tree.

Organization of this note. The proof of the main theorem is given in Section 3.
Sections 2, 4 and 5 present some auxiliary results for general finite Markov chains.
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Meeting times in large random regular graphs

2 Spectral representation

We begin with the basic setup of Markov chains. Let Q be an irreducible, reversible
transition kernel defined on a finite set E with #E = N . Assume that Q has a zero trace:∑
xQ(x, x) = 0. Let {Xx, Y x;x ∈ E} be a family of independent (rate-1) (E,Q)-Markov

chains with Xx
0 = Y x0 = x. By functional calculus (Section 5), P(Xx

t = z) = et(Q−1)(x, z)

for all x, z. Since E is finite and the irreducibility of Q implies the irreducibility of a
product of two Q-chains, a standard result of Markov chains ensures that (Xx, Y y) hits
the diagonal {(z, z); z ∈ E} a.s., that is, Xx and Y y meet a.s. Hence, Mx,y = inf{t ≥
0;Xx

t = Y yt } is finite a.s. With π denoting by the unique stationary distribution of Q, we
write M = MU,U ′ for (U,U ′) distributed as π ⊗ π and independent of all Xx and Y y.

The following lemma is the starting point of this note to study the distribution of M .
It is followed by a classical connection to the spectrum of Q [see (2.5)] which the method
in the next section aims to extend.

Lemma 2.1. For all λ ∈ (0,∞),

1

λ

∑
z∈E

π(z)2 = E
[
e−λMGλ

(
XU
M , X

U
M

)]
, (2.1)

where Gλ is the Green function defined by

Gλ(x, y)
def
=

∫ ∞
0

e−λtP(Xx
t = Y yt )dt, x, y ∈ E, λ ∈ (0,∞). (2.2)

Proof. We have

E
[∫ ∞

0

e−λt1{XUt =Y U
′

t }
dt

]
= E

[∫ ∞
M

e−λt1{XUt =Y U
′

t }
dt

]
= E

[
e−λMGλ

(
XU
M , X

U
M

)]
by the strong Markov property of (XU , Y U

′
) at M . Also, independence and stationarity

imply that the right-hand is reduced to λ−1
∑
z∈E π(z)2. We have proved (2.1). �

Define an inner product for functions on E by

〈f, g〉 def=
∑
y∈E

f(y)g(y), (2.3)

and denote by δx the delta function at x ∈ E: δx(y) is 1 if y = x and is zero otherwise.
In the case that Q is symmetric, the stationary distribution π is uniform on E, and
et(Q−1)(y, z) = et(Q−1)(z, y) so that

Gλ(x, y) =
∑
z∈E

∫ ∞
0

e−λtet(Q−1)(x, z)et(Q−1)(z, y)dt

=

∫ ∞
0

e−λt
〈
δx, e

2t(Q−1)δy

〉
dt (summing over z)

=

〈
δx,

1

λ+ 2(1−Q)
δy

〉
(functional calculus). (2.4)

If, moreover, Gλ(x, x) is independent of x, then it equals N−1
∑
y∈E Gλ(y, y). In this case,

a division of both sides of (2.1) by this normalized sum yields

E
[
e−λM

]
=

(λN)−1

N−1
∑
x∈E Gλ(x, x)

=
(λN)−1

N−1tr
(

1
λ+2(1−Q)

) (2.5)

by (2.4). In other words, the distribution of M can be represented explicitly by the
normalized spectral measure B 7→ N−1tr

(
1B(Q)

)
.
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Example 2.1. On a discrete torus of dimension d ≥ 3, (2.5) applies since Q is symmetric
and the constancy of Q`(x, x) in x for all ` ∈ Z+ holds. Indeed, this constancy is
equivalent to the constancy of Gλ(x, x) in x for all λ ∈ (0,∞) since Gλ(x, x) is the Laplace
transform of t 7→ Qt(x, x) and etQt(x, x) is the generating function of ` 7→ Q`(x, x)/`!

in t [see (5.4)]. In this case, explicit asymptotic results of the Laplace transforms
can be obtained from the known eigenvalues of the discrete-time random walks (cf.
[18, Section 12.3.1 and Lemma 12.11]). The scaling of λ for the asymptotics is the
straightforward 1/N . Observe that this spectral method can be seen as a different facet
of the proof of [15, Theorem 7], although that proof originally uses the characteristic
functions of the random walks to represent Gλ(x, y). See also [17, Section 6]. �

We turn to the case of large random regular graphs in the next section and resume
the setup of general Markov chains afterward.

3 Asymptotics on large random regular graphs

In this section, we derive the asymptotic distribution of the meeting time M on a
large random regular graph. For the basic terminology of graph theory used below, we
refer the reader to [7] for the details.

The random regular graphs are defined as follows. For a fixed integer k ≥ 3, we
choose a sequence {Nn} of positive integers such that Nn → ∞ and k-regular graphs
(without loops and multiple edges) on Nn vertices exist. The choice of these integers
Nn follows from an application of the Erdős–Gallai necessary and sufficient condition
(cf. [24]), which requires that kNn be even and k ≤ Nn − 1 in the present case. Then
the random regular graph on Nn vertices is the graph Gn uniformly chosen from the
set of k-regular graphs with Nn vertices. We assume that the randomness defining the
graphs is collectively subject to the probability P and expectation E, as opposed to the
quenched probability P(n) and quenched expectation E(n) for random walks on Gn’s.

The random walk on Gn has a symmetric transition kernel Q(n) such that Q(n)(x, y) =

1/k whenever there is an edge between x and y, and Q(n)(x, y) = 0 otherwise. One
stationary distribution π(n) of Q(n) is given by the uniform distribution.

(P1) π(n)(x) ≡ 1/Nn.

On these graphs, the expression (2.4) for Gλ(x, y) remains valid since Q is symmetric.
We do not know if the trace formula in (2.5) still applies since the P-probability that
Q(n),`(x, x) is independent of x for any ` ≥ 1 does not tend to one as n→∞, and so, by
the argument in Example 2.1, the constancy of Gλ(x, x) in x for all λ breaks down.

This lack of constancy of Q(n),`(x, x) can be seen as follows. Recall that a cycle is a
sequence of edges (x0, x1), (x1, x2), · · · , (xr−1, xr) defined by vertices x0, x1, · · · , xr such
that x0 = xr and x0, x2, · · · , xr−1 are distinct. It is known that the number Cn(r) of cycles
of length r in Gn converges in distribution to a Poisson random variable with mean
(k − 1)r/(2r) for every r ≥ 3. See [8, Section 2.4]. Hence, for example, the P-probability
to find two distinct vertices xn, yn with Q(n),3(xn, xn) = 0 and Q(n),3(yn, yn) > 0 tends
to one. (Here, Q(n),` is the `-th step transition probability of Q(n).) In the rest of this
section, we show an extension of (2.4), using the additional properties (P2) and (P3) of
the random regular graphs introduced below.

First, the order-1 limiting law of Cn(r) implies a locally tree-like property: As n→∞,
rCn(r)/Nn converges to zero in probability for every fixed r, whereas rCn(r) is an easy
bound for the number of vertices which can be passed through by an r-cycle. Hence,

(P1) implies the following property. Here,
P−−−−→

n→∞
denotes convergence in P-probability

as n→∞.
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(P2) For every ` ∈ Z+, we can find a constant Q(∞),` such that

π(n)
{
x ∈ En;Q(n),`(x, x) 6= Q(∞),`

} P−−−−→
n→∞

0, (3.1)

where π(n) is given by (P1).

The transition probability Q(n) on Gn is the k−1 multiple of the adjacency matrix.
Hence, by the locally tree-like property mentioned above and the spatial homogeneity of
the infinite tree, Q(∞),` = k−` ·#{x-x walks of length `} for any vertex x. (As above, see
[7] for the precise definition of the terminology from graph theory.) McKay [19] shows

k`Q(∞),` =

∫
R
q`µk(dq), (3.2)

where the measure µk is now often known as the Kesten–McKay law:

µk(dq) = 1(−2
√
k−1,2

√
k−1)(q)

k
√

4(k − 1)− q2
2π(k2 − q2)

dq, q ∈ R.

By (3.2), µk is the spectral measure of the adjacency matrix of the infinite tree.
For the following proof, we only need the explicit form of

∑∞
`=0Q

(∞),`. As a particular
case of [1, (16.20) and (16.21)] where the adjacency matrix is viewed as an operator
acting on square-summable functions, we have

∫
R

1

k − q
µk(dq) =

1

k − kΓ
for Γ satisfying

√
k − 1Γ =

k

2
√
k − 1

−

√
k2

4(k − 1)
− 1.

It follows that

∞∑
`=0

Q(∞),` =

∞∑
`=0

∫
R

( q
k

)`
µk(dq) =

∫
R

1

1− q/k
µk(dq) =

k − 1

k − 2
. (3.3)

Since µk is the spectral measure of the adjacency matrix of the k-regular tree, the
integral

∫
1/(1−q/k)µk(dq) is an extension of the spectral formula for Kemeny’s constant

[4, Proposition 3.13]. For this reason, the main theorem below may be seen as an
extension of a basic identity between hitting times and meeting times on graphs with
good symmetry as mentioned in the introduction (cf. [4, Proposition 14.5]).

The last property is for the spectral gaps of the random regular graphs. See [16, 9].

(P3) Write λ(n)Nn
≤ λ(n)Nn−1 ≤ · · · ≤ λ

(n)
1 = 1 for the eigenvalues of Q(n). For some g ∈ (0, 1),

the events Λn
def
=
{
λ
(n)
r ⊆ [−1 + g, 1− g], ∀ 2 ≤ r ≤ Nn

}
satisfy P(Λn)→ 1.

On Λn, there is only one connected component of Gn since λ(n)2 < 1 and kQ(n) is the
adjacency matrix of Gn [14, Lemma 1.7 (iv)], and so Q(n) is irreducible. The uniform dis-
tribution in (P1) is thus the unique stationary distribution of Q(n) [18, Proposition 1.14].

Remark 3.1. (1) (P3) is equivalent to the property that every subsequence of {Gni}
contains a further subsequence {Gnij } such that P-a.s., for some random integer j0 ≥ 1,
all the eigenvalues but the first one of the random walk on Gnij are contained in
[−1 + g, 1− g] for all j ≥ j0.

To see this connection, note that by the Borel–Cantelli lemma, P(Λ{
n) → 0 im-

plies that every subsequence {Gni} contains a further subsequence {Gnij } such that

P
(

lim supj→∞ Λ{
nij

)
= 0, or equivalently P

(
lim infj→∞ Λnij

)
= 1. The converse is im-

plied by Fatou’s lemma since P
(

lim infj→∞ Λnij
)

= 1 gives limj→∞P(Λnij ) = 1.
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(2) In [13, Section 4.3], the convergence of some weak perturbation of the voter model
based on the random regular graphs is obtained. The proof applies the property that
P-a.s., the second eigenvalue λ(n)2 is bounded away from 1 for all large n.

This property of the second eigenvalues is not the same as the property in (1). We do
not know if the former holds or not. Hence, to be precise, given this fact for the context
of P-a.s. convergence, the statement of the convergence result in [13, Section 4.3]
should be changed to the one that passes the limit along an appropriate subsequence of
any given subsequence of {Gn}. See also the first statement of Theorem 3.2 below. �

Equipped with (P1)–(P3) specified above, we proceed to the proof of the explicit
asymptotics of the meeting times M and their first moments. On Λn, Q(n) satisfies
the assumptions at the beginning of Section 2. Also, note that M = +∞ with positive
probability if the underlying graph is not connected, although what happens on Λ{

n is
not important in the limit. Considering (2.4), we extend the nontrivial contribution in
Gλ(x, y) under Q(n) to the case λ = 0 by setting

G<λ (x, y)
def
=

〈
δx,

1

λ+ 2(1−Q(n))
1[−1,1)(Q

(n))δy

〉
, λ ∈ [0,∞), on Λn. (3.4)

For convenience, we set G<λ (x, y) ≡
∑∞
`=0 2`Q(∞),`/(λ+ 2)`+1 on Λ{

n.

Lemma 3.1. For every λ ∈ (0,∞),

E(n)
[
e−λM/NnG<λ/Nn

(
XU
M , X

U
M

)]
− E(n)

[
e−λM/Nn

] ∞∑
`=0

2`Q(∞),`

(λ/Nn + 2)`+1

P−−−−→
n→∞

0. (3.5)

Proof. Write E(n)
[
e−λM/Nn ;XU

M = x
]

for E(n)
[
e−λM/Nn1{XUM=x}

]
. Here and in (3.5), we

use the convention that e−∞ = 0 when M = +∞.
For every fixed n ∈ N, the difference in (3.5) is zero on Λ{

n. On Λn, for arbitrary odd
integer L ≥ 1, it holds that

E(n)
[
e−λM/NnG<λ/Nn

(
XU
M , X

U
M

)]
=
∑
x∈En

E(n)
[
e−λM/Nn ;XU

M = x
]〈

δx,
1

λ/Nn + 2(1−Q(n))
1[−1,1)(Q

(n))δx

〉

=
∑
x∈En

E(n)
[
e−λM/Nn ;XU

M = x
]〈

δx,

∞∑
`=0

2`(Q(n))`

(λ/Nn + 2)`+1
1[−1,1)(Q

(n))δx

〉

=
∑
x∈En

E(n)
[
e−λM/Nn ;XU

M = x
] L∑
`=0

2`〈δx, (Q(n))`δx〉
(λ/Nn + 2)`+1

−
∑
x∈En

E(n)
[
e−λM/Nn ;XU

M = x
] L∑
`=0

2`〈δx,1{1}(Q(n))δx〉
(λ/Nn + 2)`+1

+
∑
x∈En

E(n)
[
e−λM/Nn ;XU

M = x
] ∞∑
`=L+1

2`〈δx, (Q(n))`1[−1,1)(Q
(n))δx〉

(λ/Nn + 2)`+1

= I− II + III. (3.6)

Note that III is nonnegative by (5.2) and the nonnegativity of
∑∞
`=L+1

2`q`

(λ/Nn+2)`+1 on

q ∈ [−1, 1), since L+ 1 is even by the choice of L. By (5.2) again, II is plainly nonnegative.
As a counterpart of (3.6), we write

E(n)
[
e−λM/Nn

] ∞∑
`=0

2`Q(∞),`

(λ/Nn + 2)`+1
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=
∑
x∈En

E(n)
[
e−λM/Nn ;XU

M = x
] L∑
`=0

2`Q(∞),`

(`/Nn + 2)`+1
+ E(n)

[
e−λM/Nn

] ∞∑
`=L+1

2`Q(∞),`

(λ/Nn + 2)`+1

= I′ + III′, (3.7)

where the trivial sum over x ∈ En is for the convenience of the following argument.
For any arbitrary ε > 0, we can choose L large enough such that

∞∑
`=L+1

(1− g)` ≤ ε

4
&

∞∑
`=L+1

Q(∞),` ≤ ε

4
(3.8)

by (P3) and (3.3). Now, we compare both sides of (3.6) and (3.7). It is enough to show all
of the following equalities:

0 = lim
n→∞

P
(
|I− I′| > ε

4
,Λn

)
= lim
n→∞

P
(

II >
ε

4
,Λn

)
,

0 = P
(

III >
ε

4
,Λn

)
= P

(
III′ >

ε

4
,Λn

)
.

(3.9)

If all of these are proven, then along with the convergence P(Λ{
n) → 0 from (P3), the

probability that the absolute value of the difference in (3.5) is greater than ε tends to
zero as n→∞. The convergence in (3.5) thus follows since ε > 0 is arbitrary.

For I− I′, we write 〈δx, (Q(n))`δx〉 = Q(n),`(x, x) and apply a simple bound proven later
on for E(n)[e−λM ;XU

M = · ] [see (4.1)] along with (P1). These steps give

|I− I′| ≤
L∑
`=0

∑
x∈En

(
2 + λ/Nn
λ/Nn

· 1

N2
n

)
· 2`|Q(n),`(x, x)−Q(∞),`|

(λ/Nn + 2)`+1
(3.10)

≤ 1

λ

L∑
`=0

∫
En

|Q(n),`(x, x)−Q(∞),`|π(n)(dx)

by (P1) again. Since Q(n),`(x, x) and Q(∞),` are all bounded by 1, it follows from (P2) that
the required convergence for I− I′ in (3.9) holds. To see the convergence in (3.9) for II,
we simply use the fact that by (P1) and the definition of 1{1}(Q

(n)),

〈δx,1{1}(Q(n))δx〉 ≡ 1/Nn on Λn (3.11)

[see (2.3) and Section 5]. For III, it follows from functional calculus and (P3) that on the
event Λn,

III ≤
∑
x∈En

E(n)
[
e−λM/Nn ;XU

M = x
] ∞∑
`=L+1

2`〈δx, (1− g)`Idδx〉
(λ/Nn + 2)`+1

≤
∞∑

`=L+1

(1− g)`

so that P(III > ε/4,Γn) = 0 by the first inequality in (3.8). The second inequality in
(3.8) gives P(III′ > ε/4,Γn) = 0. We have proved all the equalities in (3.9). The proof is
complete. �

The main result of this note is the following theorem. For its statement, we write L (ξ)

for the law of a random variable ξ, and the convergence in (3.12) refers to convergence
in distribution as j → ∞. Recall that e denotes an exponential random variable with
E[e] = 1.

Theorem 3.2 (Main result). Fix an integer k ≥ 3, and consider the random walks on
random regular k-graphs {Gn}, where the graphs are subject to probability P. Every
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Meeting times in large random regular graphs

subsequence {Gni} contains a further subsequence {Gnij } such that

L

(
M

Nnij

)
(d)−−−→
j→∞

L

(
1

2

(
k − 1

k − 2

)
e

)
P-a.s., (3.12)

where the law of M/Nn is understood to be under P(n) for every n. Also,

E(n)

[(
M

Nn

)`]
P−−−−→

n→∞
`!

[
1

2

(
k − 1

k − 2

)]`
, ∀ ` ∈ N. (3.13)

Proof. It follows from (2.1) that on Λn,

∀ λ0 ∈ (0,∞),
∑
x∈En

π(n)(x)2 = λ0E(n)[e−λ0MGλ0(XU
M , X

U
M )] (3.14)

=
1

Nn
E(n)[e−λ0M ] + λ0E(n)[e−λ0MG<λ0

(XU
M , X

U
M )]. (3.15)

Here, the second equality follows from (2.4), the definition of G<λ0
in (3.4), and (3.11)

since 〈
δx,

1{1}(Q
(n))

λ0 + 2(1−Q(n))
δx

〉
=

1

λ0

〈
δx,1{1}(Q

(n))δx
〉

=
1

λ0Nn
, ∀ x ∈ En.

The sum of squares on the left-hand side of (3.14) is equal to 1/Nn by (P1). Therefore,
for all λ ∈ (0,∞), applying Lemma 3.1 and (3.3) to (3.15) with λ0 = λ/Nn leads to

E(n)[e−λM/Nn ]
P−−−−→

n→∞

1

1 + λ
2

∑∞
`=0Q

(∞),`
=

1

1 + λ
2

(
k−1
k−2

) = E
[
e−

λ
2 ( k−1

k−2 )e].
By monotonicity and Cantor’s diagonalization, we can find a subsequence {Gnij } such
that the foregoing convergences hold for all λ ∈ [0,∞) P-a.s. This proves (3.12). For the
proof of (3.13), we further require that P(lim inf Λnij ) = 1. See Remark 3.1 (1).

To obtain (3.13), we first note that E(n)[M `] <∞ on Λn for all ` ∈ N since the finite
chain (X,Y ) is irreducible so that X and Y meet at an exponential rate [5, Proposition 6.3
in Chapter I]. Now, we differentiate both sides of (3.15) at λ0 = 0 ` times and get

0 =
(−1)`

Nn
E(n)[M `] +

`−1∑
r=0

(
`− 1

r

)
E(n)

[
(−M0)`−1−r

dr

dλr0
G<λ0

(XU
M , X

U
M )
∣∣
λ0=0

]
. (3.16)

Given dr

dλr0

1
(λ0+A) = (−1)rr!

(λ0+A)r+1 , it follows from (P3) and functional calculus that the r-th

derivatives of G<λ0
(x, x)’s are bounded by r!/(2g)r+1 on Λn. Hence, for {Gnij } chosen

above, (3.16) and induction imply that for any `, {M `/N `
nij
} is uniformly integrable on

lim inf Λnij . We deduce the limits in (3.13) from the standard formulas of moments of e. �

Remark 3.2. (1) Thanks to dominated convergence and the uniform integrability ob-
served in the proof, the mode of convergence in (3.12) can be reinforced to convergence
in the L1-Wasserstein metric for probability measures. Indeed, on the real line, it is
known [25] that the metric can be represented as the L1-norm of the differences of tail
distributions.

(2) See [22] for results that obtain the explicit limit of hitting times of certain Markov
chains on infinite sets. �
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Meeting times in large random regular graphs

As pointed out in Section 1, Theorem 3.2 obtains the explicit asymptotics of the
meeting times. We stress again that it is not a convergence implied by an exponential
approximation of the normalized times M/E[M ] as in [2, Theorem 1.4], [3, Theorem 1]
and [4, Proposition 3.23]. The methods of proof are also different. After all, our interest
is focused on proving (1.1) and the possible extensions.

To see the differences in the proofs, recall that the present method extends the Green
function expansion (2.5). The approximations aim to use only the spectra of the Markov
chains (rather than the product chains). In contrast, the method in [2] considers a
perturbation-type extension of the following identity, among other things: The hitting
time of a set by an irreducible finite Markov chain (subject to mild conditions) is precisely
exponential if the chain starts from the quasi-stationary limit distribution for the first hit.
This exponential distribution has an implicit parameter given by the first moment of the
hitting time; this moment can be characterized analytically by a variational problem [4,
Section 3.6.5].

The methods in [3] and [4, Sections 3.5] are also different from the present method.
They apply the following inequality due to Brown [10]: If the tail distribution of a
nonnegative random variable T is completely monotone, that is, if the tail distribution is
the Laplace transform of a measure, then

sup
t≥0
|P(T > t)− e−t/E[T ]| ≤ E[T 2]

2E[T ]2
− 1. (3.17)

For hitting times of sets, the proofs in [3, 4] apply (3.17) by working with the reduced
transition kernels that collapse the sets to be hit to singletons. Spectral representations
in the eigenvalues and eigenfunctions of the reduced kernels are derived for comparing
the first two moments as those in the bound of (3.17). Moreover, these methods yield
bounds for the expected hitting times [3, Lemma 2] and [4, Section 3.5.3]. These
bounds are elementary expressions in the spectral gaps, stationary distributions and
transition kernels in one step. Nevertheless, Theorem 3.2 calls for the use of eigenvalue
distributions, hence almost most of the eigenvalues, of the transition kernels.

4 Probability distributions at meeting times

In the rest of this note, we resume the general setup that Q is irreducible and
reversible and is defined on a finite nonempty set E.

The following proposition shows the domination E[e−λM ;XU
M = x] ≤ cnst(λ) · π(x)2

that is used in (3.10). The proof naturally extends to a linear equation (4.3) satisfied by
x 7→ π(x)−1E[e−λM ;XU

M = x]; whether it already appears in the literature is not known
to us.

Proposition 4.1. For any λ ∈ (0,∞), we have

E
[
e−λM ;XU

M = x
]
≤ 2 + λ

λ
π(x)2, ∀ x ∈ E. (4.1)

Moreover, the function

Fλ(x) = π(x)−1E
[
e−λM ;XU

M = x
]
, x ∈ E, (4.2)

solves the following linear equation:

(Id +Rλ)Fλ =
2 + λ

λ
π, (4.3)

where Rλ is a symmetric matrix with nonnegative entries defined by

Rλ(x, y) = 2
π(y)

π(x)

∫ ∞
0

e−λtQt(y, x)QQt(y, x)dt, x, y ∈ E. (4.4)
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Proof. Write Ft = σ(Xs, Ys; s ≤ t) and M + J for the first update time of (XU , Y U
′
) after

M . Since X and Y are independent rate-1 chains, P(J > t|FM ) = P(e1 ∧ e2 > t) = e−2t

for independent exponential variables e1 and e2 with mean 1. Here, e1 ∧ e2 denotes the
minimum of e1 and e2.

Now, by stationarity and the independence of XU and Y U
′
, we have: for all x ∈ E,

π(x)2 =

∫ ∞
0

λe−λtP(XU
t = x, Y U

′

t = x)dt

= E

[∫ M+J

M

λe−λt1{XUt =x,Y U
′

t =x}dt

]
+ E

[∫ ∞
M+J

λe−λt1{XUt =x,Y U
′

t =x}dt

]
. (4.5)

We compute the two terms in the last equality separately. First, since XU
t = Y U

′

t over
t ∈ [M,M + J), the first term in (4.5) satisfies

E

[∫ M+J

M

λe−λt1{XUt =x,Y U
′

t =x}dt

]
= E

[
e−λM − e−λ(M+J);XU

M = x
]

= E
[
e−λM1{XUM=x}E

[
1− e−λ(e1∧e2)

]]
= E

[
e−λM ;XU

M = x
] λ

2 + λ
. (4.6)

Here, the second equality follows from the strong Markov property at M and the above
mentioned conditional distribution of J . The last equality and (4.5) prove (4.1).

To obtain (4.3), we compute the second term in (4.5). The strong Markov property at
time M + J and the independence of X and Y give

E
[∫ ∞

M+J

λe−λt1{XUt =x,Y U
′

t =x}dt

]
=
∑
a,b∈E

E
[
λe−λ(M+J);XU

M+J = a, Y U
′

M+J = b
] ∫ ∞

0

e−λtQt(a, x)Qt(b, x)dt.

For any a, b ∈ E, we apply the strong Markov property of (XU , Y U
′
) at M to the last

expectation. Then to evaluate E[e−λJ ;XU
M+J = a, Y U

′

M+J = b|FM ], note that conditioned

on FM , one of the two coordinates of (XU
M+t, Y

U ′

M+t; t ≥ 0) jumps at time J according to
Q(XU

M , · ) with equal probability. Also, as a basic property of Markov chains, the jump is
conditionally independent of J , while J is conditionally distributed as e1 ∧ e2. We get

E
[
λe−λ(M+J);XU

M+J = a, Y U
′

M+J = b
]

= E
[
e−λME

[
λe−λ(e1∧e2)

]
;XU

M = a
] 1

2
Q(a, b) + E

[
e−λME

[
λe−λ(e1∧e2)

]
;Y U

′

M = b
] 1

2
Q(b, a)

= E
[
e−λM

(
2λ

2 + λ

)
;XU

M = a

]
1

2
Q(a, b) + E

[
e−λM

(
2λ

2 + λ

)
;XU

M = b

]
1

2
Q(b, a),

where we use XU
M = Y U

′

M . Putting the last two displays together, we get

E
[∫ ∞

M+J

λe−λt1{XUt =x,Y U
′

t =x}dt

]
=

2λ

2 + λ

∑
a,b∈E

E
[
e−λM ;XU

M = a
]
Q(a, b)

∫ ∞
0

e−λtQt(a, x)Qt(b, x)dt

=
2λ

2 + λ

∑
a∈E

E
[
e−λM ;XU

M = a
] ∫ ∞

0

e−λtQt(a, x)QQt(a, x)dt. (4.7)
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Finally, we apply (4.6) and (4.7) to (4.5) and get

π(x)2 = E
[
e−λM ;XU

M = x
] λ

2 + λ

+
2λ

2 + λ

∑
a∈E

E
[
e−λM ;XU

M = a
] ∫ ∞

0

e−λtQt(a, x)QQt(a, x)dt.
(4.8)

The required equality in (4.3) now follows by dividing both sides of the last equality by
λπ(x)
2+λ and applying the definitions (4.2) and (4.4) of Fλ and Rλ. (The entries π(x)’s are

strictly positive by the irreducibility ofQ [18, Proposition 1.14].) The proof is complete. �

5 Appendix: Functional calculus for transition kernels

In this section, we recall the functional calculus for transition kernels Q subject to
the general assumptions at the beginning of Section 4.

The functional calculus is based on the following transform of Q:

S(x, y)
def
= π(x)1/2Q(x, y)π(y)−1/2, x, y ∈ E. (5.1)

This matrix S is symmetric and its spectrum σ(S) is the same as the spectrum σ(Q) of Q.
Our notation here is that an eigenvalue q of multiplicity m appears m times in σ(S) and
in σ(Q). In particular, 1 is an eigenvalue and has multiplicity 1. In addition, S admits
a set {ϕq; q ∈ σ(S)} of real-valued eigenvectors, orthonormal with respect to the inner
product defined in (2.3), such that π1/2 is the eigenvector associated with the eigenvalue
1. See [18, Section 12.1] for details of these properties of S.

Given the above setup, the matrices f(S) for functions f : [−1, 1]→ C are defined by

f(S)(x, y)
def
=

∑
q∈σ(S)

f(q)ϕq(x)ϕq(y). (5.2)

This class of matrices is an extension of {S`; ` ∈ Z+} so that for all fn, f : [−1, 1] → C
and a, b ∈ C, (i) fn → f pointwise implies fn(S) → f(S) entrywise, (ii) (af + bg)(S) =

af(S) + bg(S) and fg(S) = f(S)g(S).
With S replaced by Q, the above properties apply to the matrices f(Q) defined by

f(Q)(x, y) = π(x)−1/2f(S)(x, y)π(y)1/2, x, y ∈ E. (5.3)

For example, the transition kernels Qt of the rate-1 Q-Markov chain can be written as

Qt(x, y)
def
=

∞∑
`=0

e−tt`
Q`(x, y)

`!
= π(x)−1/2

∞∑
`=0

e−tt`
S`(x, y)

`!
π(y)1/2

= π(x)−1/2et(S−1)(x, y)π(y)1/2 = et(Q−1)(x, y), (5.4)

where the last three equalities follow from (5.1), (5.2) and (5.3), respectively.
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