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Reproducible Model Selection Using Bagged
Posteriors∗

Jonathan H. Huggins† and Jeffrey W. Miller‡

Abstract. Bayesian model selection is premised on the assumption that the data
are generated from one of the postulated models. However, in many applications,
all of these models are incorrect (that is, there is misspecification). When the
models are misspecified, two or more models can provide a nearly equally good
fit to the data, in which case Bayesian model selection can be highly unstable,
potentially leading to self-contradictory findings. To remedy this instability, we
propose to use bagging on the posterior distribution (“BayesBag”) – that is, to
average the posterior model probabilities over many bootstrapped datasets. We
provide theoretical results characterizing the asymptotic behavior of the posterior
and the bagged posterior in the (misspecified) model selection setting. We empiri-
cally assess the BayesBag approach on synthetic and real-world data in (i) feature
selection for linear regression and (ii) phylogenetic tree reconstruction. Our the-
ory and experiments show that, when all models are misspecified, BayesBag (a)
provides greater reproducibility and (b) places posterior mass on optimal models
more reliably, compared to the usual Bayesian posterior; on the other hand, un-
der correct specification, BayesBag is slightly more conservative than the usual
posterior, in the sense that BayesBag posterior probabilities tend to be slightly
farther from the extremes of zero and one. Overall, our results demonstrate that
BayesBag provides an easy-to-use and widely applicable approach that improves
upon Bayesian model selection by making it more stable and reproducible.

Keywords: asymptotics, bagging, Bayesian model averaging, bootstrap, model
misspecification, stability.

1 Introduction

In Bayesian statistics, the usual method of quantifying uncertainty in the choice of model
is simply to use the posterior distribution over models. An implicit assumption of this
approach is that one of the assumed models is exactly correct. But it is widely recognized
that in practice, this assumption is typically unrealistic. When all of the models are
incorrect (that is, they are misspecified), the posterior concentrates on the model that
provides the best fit in terms of Kullback-Leibler divergence (Berk, 1966). However,
when two or more models can explain the data almost equally well, the posterior becomes
unstable and can yield contradictory results when seemingly inconsequential changes are
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made to the models or to the data (Meng and Dunson, 2020; Oelrich et al., 2020; Yang
and Zhu, 2018). For instance, as the size of the data set grows, the posterior probability
of a given model may oscillate between values very close to 1 and very close to 0, ad
infinitum. In short, Bayesian model selection can be unreliable and non-reproducible.

This article develops the theory and practice of BayesBag, a simple and widely appli-
cable approach to stabilizing Bayesian model selection. Originally suggested by Waddell,
Kishino and Ota (2002) and Douady et al. (2003) in the context of phylogenetic infer-
ence and then independently proposed by Bühlmann (2014) (who coined the name), the
idea of BayesBag is to apply bagging (Breiman, 1996) to the Bayesian posterior. Let
Q(m |x) ∝ p(x |m)Q0(m) denote the posterior probability of model m ∈ M given data
x, where M is a finite or countably infinite set of models, p(x |m) is the marginal like-
lihood, and Q0(m) is the prior probability. We define the bagged posterior Q∗(m |x) by
taking bootstrapped copies x∗ := (x∗

1, . . . , x
∗
M ) of the original dataset x := (x1, . . . , xN )

and averaging over the posteriors obtained by treating each bootstrap dataset as the
observed data – that is,

Q∗(m |x) := 1

NM

∑
x∗

Q(m |x∗), (1)

where the sum is over all possible NM bootstrap datasets of M samples drawn with
replacement from the original dataset. The BayesBag approach is to use Q∗(m |x) to
quantify uncertainty in the model m. In practice, we can approximate Q∗(m |x) by
generating B bootstrap datasets x∗

(1), . . . , x
∗
(B), where each x∗

(b) consists of M samples
drawn with replacement from x, yielding the approximation

Q∗(m |x) ≈ 1

B

B∑
b=1

Q(m |x∗
(b)). (2)

Hence, BayesBag is easy to use since the bagged posterior model probability is sim-
ply an average over Bayesian model probabilities. No additional algorithmic tools are
needed beyond what a data analyst would normally use for posterior inference. Imple-
menting BayesBag via (2) does require more computation since one must approximate
B posteriors (one for each bootstrap dataset), where typically B ≈ 100. However, this
drawback is minimized by the fact that each posterior can be approximated in parallel,
which is ideal for modern cluster-based high-performance computing environments.

Despite its attractive features, there has been limited methodological or theoreti-
cal work on BayesBag prior to the present paper. Bühlmann (2014) and Huggins and
Miller (2019) consider BayesBag in the parameter inference and prediction setting. In
this paper, we focus on the use of BayesBag for model selection, which has been ex-
plored empirically in an application to phylogenetic tree reconstruction (Douady et al.,
2003; Waddell, Kishino and Ota, 2002). Building off this previous work, our primary
contributions are:

1. We develop a rigorous asymptotic theory showing that, when all models are mis-
specified and two or more models have similar predictive accuracy, Bayesian model
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selection is unstable, while BayesBag model selection remains stable. Our analysis
quantifies the effects of the relevant factors such as the mean and variance of the
log-likelihood ratios and the correlation structure of the log-likelihoods.

2. We provide concrete guidance on selecting the bootstrap dataset size M and, via
our theory, we clarify the effect of M on the stability of BayesBag model selection.

3. We verify through numerical experiments on synthetic and real data that, when
all of the models are misspecified, BayesBag model selection leads to more stable
inferences across datasets and small model changes, while Bayesian model selection
is unstable. When one of the models is correctly specified, BayesBag is slightly
more conservative than Bayesian model selection, in the sense that the bagged
posterior probabilities tend to be slightly farther from zero and one.

In short, we find that in the presence of misspecification, model selection with the
bagged posterior has appealing statistical properties while also being easy to use and
computationally tractable on practical problems.

The paper is organized as follows. Section 2 provides an overview of our theory,
methodology, and experiments, and how they relate to previous work. In Section 3,
we present our theoretical results, illustrate the theory graphically, discuss the use of
BayesBag for model criticism, and outline our recommended workflow. Section 4 con-
tains a simulation study using BayesBag for feature selection in linear regression. In
Section 5, we evaluate BayesBag on real-world data in applications involving (i) feature
selection for linear regression and (ii) phylogenetic tree reconstruction. We conclude in
Section 6 with a discussion of current limitations and future directions. All data and
code for the results in this paper are available at https://github.com/TARPS-group/
bayesbag-model-selection-code.

2 Summary of results

2.1 Theory

It has long been known that when the best fit to the data distribution is attained
by more than one model, the posterior typically does not converge on a single model
(Berk, 1966). In Theorems 3.1 and 3.2, we characterize the asymptotic distribution of
the posterior on models in this setting, for both the usual posterior (“Bayes”) and the
bagged posterior (“BayesBag”). More generally, our theory covers the case of multiple
misspecified models with approximately equally good fit.

Suppose the observed data x1, . . . , xN are realizations of independent and identically
distributed (i.i.d.) random variablesX1, . . . , XN ∈ X, and denote X1:N = (X1, . . . , XN ).
First, consider the special case of two distinct models, M = {m1,m2}. Assume these
models are asymptotically equally misspecified in the sense that

lim
N→∞

N−1/2
E{log p(X1:N |m1)− log p(X1:N |m2)} = 0.

https://github.com/TARPS-group/bayesbag-model-selection-code
https://github.com/TARPS-group/bayesbag-model-selection-code
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Then under mild conditions, Theorem 3.1 (part 1) shows that the Bayes posterior mass
on model m1 converges in distribution to a Bern(1/2) random variable:

Q(m1 |X1:N )
D−−−−→

N→∞
Bern(1/2). (3)

In other words, when N is large, with probability 1/2 model m1 has posterior probability
≈ 1 and otherwise it has posterior probability ≈ 0. Since, asymptotically, both models
provide equally good fit to the true data-generating distribution, one might hope that
Q(m1 |X1:N ) → 1/2. However, (3) describes the opposite behavior: a single arbitrary
model has posterior probability 1.

We show that BayesBag model selection does not suffer from this pathological be-
havior (Theorem 3.1, part 2). In the special case above (two models with asymptotically
equally good fit), when M = N , the bagged posterior probability of model m1 converges
in distribution to a uniform random variable on the interval from 0 to 1:

Q∗(m1 |X1:N )
D−−−−→

N→∞
Unif(0, 1).

Alternatively, if we choose M such that M/N → 0 and M/N1/2 → ∞, then the bagged
posterior mass on model m1 has the appealing behavior of converging to 1/2:

Q∗(m1 |X1:N )
P−−−−→

N→∞
1/2.

This is not simply due to the bagged posterior reverting to the prior; this result holds
for any prior giving positive mass to both models. Theorem 3.2 extends Theorem 3.1 to
the case of more than two models, in which case the asymptotic distribution depends
on the covariance structure of the log marginal likelihoods of the models. Corollary 3.3
extends Theorem 3.1 to the case of models with non-trivial parameter spaces.

In practice, it is unlikely that two models would fit the true data-generating distribu-
tion exactly equally well. However, even if, say, model m1 has posterior probability tend-
ing to 1 asymptotically, for a finite sample size it may be that N−1/2

E{log p(X1:N |m1)−
log p(X1:N |m2)} ≈ 0, such that with probability ≈ 1/2, model m2 has posterior prob-
ability near 1. Indeed, the analysis of Yang and Zhu (2018) was motivated by observa-
tions of this phenomenon in Bayesian phylogenetic tree reconstruction (Alfaro, Zoller
and Lutzoni, 2003; Douady et al., 2003; Wilcox et al., 2002), though it occurs more
generally (Meng and Dunson, 2020), such as in neuroscience and economic modeling
(Oelrich et al., 2020).

To understand this kind of finite-sample behavior via an asymptotic analysis, The-
orems 3.1 and 3.2 are formulated for sequences of models for N = 1, 2, . . . that are not
exactly equally good, but are asymptotically comparable in the sense that the expected
log-likelihood ratios between models are O(N1/2). In this way, our results provide in-
sight into cases where the models are not dependent on N but the sample size is not
yet large enough for the posterior to concentrate at the best fitting model(s).
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2.2 Methodology

BayesBag requires the choice of a bootstrap dataset size M and the number of bootstrap
datasets B. The choice of B controls the accuracy of the Monte Carlo approximation
to the bagged posterior; see (1) and (2). It is straightforward to empirically estimate
the error using the standard formula for the variance of a Monte Carlo approximation
(Huggins and Miller, 2019). If M = N , we have found B = 100 to be sufficient in all of
the applications we have considered. For M < N , the following result provides a natural
lower bound on B to ensure all available data are used with high probability.

Proposition 2.1. For N > 1, if B ≥ (N − 1/2) log(N/δ)/M then the probability that
all observations are included in at least one bootstrap sample is greater than 1− δ.

While Proposition 2.1 offers a minimum value for B, we still recommend checking
that the Monte Carlo standard error is sufficiently small for the application at hand.

For the choice of M , our theoretical and empirical results indicate that M = N0.95

is a good default choice that will behave fairly well for model selection, both in cases
where one model is correctly specified and, at the opposite extreme, when multiple
misspecified models explain the data-generating distribution equally well. If significant
misspecification is likely and there is a sufficient amount of data, a more aggressive choice
such as M = N0.75 could be appropriate. A recommended workflow is in Section 3.3.

2.3 Experiments

We validate our theory and proposed methods through simulations on feature selection
for linear regression, and we evaluate the performance of BayesBag on real-data ap-
plications involving feature selection and phylogenetic tree reconstruction. Overall, our
empirical results demonstrate that in the presence of significant misspecification, the
bagged posterior produces more stable inferences and puts significant mass on optimal
models more reliably than the usual Bayes posterior; on the other hand, when one of the
models is correctly specified, the bagged posterior with N0.95 ≤ M ≤ N is slightly more
conservative than the posterior. Thus, BayesBag leads to more stable model selection
results that are robust to minor changes in the model or representation of the data.

2.4 Related work

First, we discuss previous work in the parameter inference and prediction setting, with a
model smoothly parameterized by θ ∈ Θ ⊆ R

D. In a short discussion paper, Bühlmann
(2014) introduced the name “BayesBag” to refer to bagging the posterior, and he pre-
sented a few simulation results in a simple Gaussian location model. However, Bühlmann
(2014) employed a parametric bootstrap, which does not provide much benefit in a mis-
specified setting. In contrast, in recent work (Huggins and Miller, 2019), we found that
using the nonparametric bootstrap to implement BayesBag yielded significant benefits
for parameter inference and prediction under misspecification. In that work, we devel-
oped asymptotic theory for uncertainty quantification of the Kullback-Leibler optimal
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parameter, providing insight into how to choose the bootstrap dataset size (M = 2N
if the model is correctly specified, and M = N if the model is misspecified). Neither
paper considers model selection, which raises fundamentally different issues because it
involves a discrete space where smoothness does not play a role. Notably, our recom-
mendation in this paper to take M = o(N) for model selection is very different from
our recommendations for parameter inference and prediction.

The previous work most closely related to the present work is a mix of empirical
investigation (Douady et al., 2003; Oelrich et al., 2020; Waddell, Kishino and Ota,
2002) and theoretical work (Bühlmann and Yu, 2002; Oelrich et al., 2020; Yang and
Zhu, 2018). The purely empirical papers undertake limited investigations in the setting
of phylogenetic tree inference: Waddell, Kishino and Ota (2002) focus primarily on
speeding up model selection and Douady et al. (2003) mainly aim to compare Bayesian
inference to the bootstrap. Our Theorem 3.1 is similar in spirit to the bagging result
of Bühlmann and Yu (2002, Proposition 2.1). However, the Bühlmann and Yu (2002)
result is not applicable in the model selection setting since it would require assigning
probability 1 to whichever model has the larger marginal likelihood—which does not
correspond to Bayesian model selection—and then applying bagging to this selection
procedure. Our other results (Theorem 3.2 and Corollary 3.3) go well beyond the scope
of the Bühlmann and Yu (2002) result, covering three or more models as well as non-
trivial parameter spaces.

Regarding the behavior of Bayesian model selection under the usual posterior, Yang
and Zhu (2018) prove a result similar to (3) but more limited than our general versions
in part 1 of Theorems 3.1 and 3.2. Finally, Oelrich et al. (2020) provide complementary
results to our own: they study additional real-world examples of overconfident model
selection and, in the feature selection setting, analyze the mean and variance of the log
marginal likelihood ratio for a particular type of linear regression model with known
variance, offering a more precise characterization of the posterior in that particular
setting. However, they do not analyze or consider using the bagged posterior.

3 Theory and methodology

In this section, we present our theoretical results, illustrate the theory with plots compar-
ing the asymptotics of BayesBag versus Bayes (Section 3.1), discuss the use of BayesBag
for model criticism (Section 3.2), and provide a recommended workflow (Section 3.3).

3.1 Asymptotic analysis

In Bayesian model selection, we have a countable set of models M. Assume that model
m ∈ M has prior probability Q0(m) > 0 and marginal likelihood

p(X1:N |m) =

∫ {
N∏

n=1

pθm(Xn |m)

}
Π0(dθm |m),

where θm ∈ Θm is an element of a model-specific parameter space with prior distribution
Π0(dθm |m). Assume X1, X2, . . . are i.i.d. from some unknown distribution P◦. Further,
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for each m ∈ M, assume there is a unique parameter

θm◦ := argmin
θm∈Θm

−E{log pθm(X1 |m)}

that minimizes the Kullback-Leibler divergence from P◦ to the model. We say that
model m is misspecified if Pθm◦ �= P◦.

The posterior probability of m ∈ M is Q(m |X1:N ) ∝ p(X1:N |m)Q0(m). Let X∗
1:M

denote a bootstrapped copy of X1:N with M observations; that is, each observation Xn

is replicated Kn times in X∗
1:M , where (K1, . . . ,KN ) ∼ Multi(M, 1/N) is a multinomial-

distributed count vector. The bagged posterior probability of model m ∈ M is then

Q∗(m |X1:N ) := E{Q(m |X∗
1:M ) |X1:N},

which is equivalent to the informal definition in (1).

Two models with degenerate parameter spaces We first state our asymptotic theory
in the case of two misspecified models,M = {m1,m2}, since the results are more intuitive
in this special case. For the moment, we also assume that each model contains a single
parameter value (that is, |Θm| = 1). On the other hand, we allow the observation
model pN (Xn |m) to depend on the number of observations N , so that p(X1:N |m) =∏N

n=1 pN (Xn |m). Let ZN := log p(X1:N |m1) − log p(X1:N |m2) denote the model log-
likelihood ratio and, for n = 1, . . . , N , let ZNn := log pN (Xn |m1) − log pN (Xn |m2)
denote the log-likelihood ratio for each observation.

To perform an asymptotic analysis that captures the behavior of the nonasymptotic
regime in which the mean of ZN is comparable to its standard deviation, we assume
that μ∞ := limN→∞ N1/2

E(ZN1) and σ2
∞ := limN→∞ Var(ZN1) exist. Thus, when N

is large, E(ZN ) ≈ N1/2μ∞ and Std(ZN ) ≈ N1/2σ∞. Consequently, E(ZN ) does not
overwhelm Std(ZN ), even in the asymptotic regime. The asymptotic effect size η∞ :=
μ∞/σ∞ quantifies the amount of evidence in favor of m1 under the true distribution P◦.
If η∞ > 0, then m1 is favored, whereas m2 is favored if η∞ < 0.

Our first result shows that (1) the posterior probability of model m1 converges to
a Bernoulli random variable with parameter depending on η∞, and (2) the bagged
posterior probability of model m1 converges to a continuous random variable on [0, 1]
with a distribution that depends on η∞ and limN→∞ M/N . For μ ∈ R and σ2 > 0,
let N (μ, σ2) denote the normal distribution with mean μ and variance σ2, and let Φ(t)
denote the cumulative distribution function of the standard normal distribution N (0, 1).

Theorem 3.1. Let X1, X2, . . . i.i.d. ∼ P◦ for some distribution P◦ and assume

(i) μ∞ := limN→∞ N1/2
E(ZN1) ∈ R exists,

(ii) σ2
∞ := limN→∞ Var(ZN1) ∈ (0,∞) exists,

(iii) lim supN→∞ E(|ZN1|6) < ∞,

(iv) M = M(N) satisfies limN→∞ M/N1/2 = ∞, and

(v) c := limN→∞ M/N ∈ [0,∞).
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Then

1. for the usual posterior, Q(m1 |X1:N )
D→ U ∼ Bern(Φ(η∞)), where η∞ = μ∞/σ∞;

2. for the bagged posterior, Q∗(m1 |X1:N )
D→ Φ(c1/2W ∗), where W ∗ ∼ N (η∞, 1).

In particular, for the usual posterior, if η∞ = 0 then Q(m1 |X1:N )
D→ Bern(1/2). Mean-

while, for the bagged posterior, if η∞ = 0 then Q∗(m1 |X1:N )
D→ Unif(0, 1) when c = 1

and Q∗(m1 |X1:N )
P→ 1/2 when c = 0.

Theorem 3.1 will follow as an immediate corollary of Theorem 3.2 below. Note that
in part 2, when c > 0, the cumulative distribution function of the random variable
U∗ := Φ(c1/2W∗) is given by u → Φ(c−1/2Φ−1(u) − η∞) for u ∈ (0, 1). Thus, by
differentiating this function, we find that the density of U∗ is, for u ∈ (0, 1),

f(u) = Φ′(c−1/2Φ−1(u)− η∞
)
c−1/2/Φ′(Φ−1(u)).

Figure 1 illustrates how Theorem 3.1 establishes the greater stability of BayesBag
versus Bayes for model selection. Even for effect sizes η∞ > 1, which should strongly
favor model m1, the Bayes posterior overwhelmingly favors model m2 with non-negligible
probability – that is, P{Q(m1 |X1:N ) ≈ 0} �≈ 0. On the other hand, the probability that
the BayesBag posterior strongly favors model m2 goes to zero more rapidly as η∞
increases – that is, P{Q∗(m1 |X1:N ) ≈ 0} → 0 more rapidly as η∞ grows. For example,
when η∞ = 2 and c = 1, P(U = 0) > 0.02 whereas P(U∗ < 0.1) < 7 × 10−5. Thus, in
this example, Bayes will overwhelmingly favor the “wrong” model in approximately 1
out of 50 experiments, whereas BayesBag will strongly favor the wrong model in only
approximately 7 out of 100,000 experiments.

Extension to three or more models In the case of three or more models, the behavior
of the posteriors is more complicated because there is dependence on both the correlation
structure and the relative variances of the log-likelihood ratios between each pair of
models. Consider the case of K < ∞ models and enumerate them from 1 to K, so that
M = {m1, . . . ,mK}. For k = 1, . . . ,K, define the individual model log-likelihood terms
YNn,k := log pN (Xn |mk), and let YNn := (YNn,1, . . . , YNn,K)� ∈ R

K . For t, μ ∈ R
K−1

and Σ ∈ R
(K−1)×(K−1) positive definite, let Φμ,Σ(t) denote the cumulative distribution

function of the (K − 1)-dimensional normal distribution N (μ,Σ).

Theorem 3.2. Let X1, X2, . . . i.i.d. ∼ P◦ for some distribution P◦. Defining μ′
N :=

N1/2
E(YN1) and Σ′

N := Cov(YN1), assume

(i) μ′
∞ := limN→∞ μ′

N ∈ R
K ,

(ii) Σ′
∞ := limN→∞ Σ′

N positive definite,

(iii) lim supN→∞ E(‖YN1‖62) < ∞,
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Figure 1: The bagged posterior (BayesBag) is far less likely than the usual posterior
(Bayes) to strongly favor the wrong model (or an arbitrary equally good model). When
there are two models, the asymptotic posterior probability of model m1 is a random
variable U (for Bayes) or U∗ (for BayesBag), where U ∼ Bern(Φ(η∞)), U∗ = Φ(c1/2W ∗),
W ∗ ∼ N (η∞, 1), and η∞ is the asymptotic effect size in favor of m1 (see Theorem 3.1).
(a) U = 0 represents the event that the Bayes posterior overwhelmingly favors the
wrong model (or equally good model, if η∞ = 0) – that is, the model with lower (or
equal) expected log-likelihood under the true distribution. Likewise, U∗ < 0.1 is the
event that the BayesBag posterior strongly favors the wrong (or equivalent) model.
(b) U∗ is a continuous random variable on [0, 1]. The density of U∗ is shown for a range
of η∞ values, with c = limM/N fixed at c = 1, where N is the dataset size and M
is the bootstrap dataset size (see Theorem 3.1). (c) Densities of U∗ as both η∞ and c
vary.

(iv) M = M(N) satisfies limN→∞ M/N1/2 = ∞, and

(v) c := limN→∞ M/N ∈ [0,∞).

Without loss of generality, consider the probability of m1. Define μ∞,k := μ′
∞,1−μ′

∞,k+1

and Σ∞,k,� := Σ′
∞,1,1 + Σ′

∞,k+1,�+1 − Σ′
∞,1,k+1 − Σ′

∞,1,�+1 for k, � ∈ {1, . . . ,K − 1}.
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Then

1. for the usual posterior, Q(m1 |X1:N )
D→ U ∼ Bern(Φ−μ∞,Σ∞(0));

2. for the bagged posterior, Q∗(m1 |X1:N )
D→ Φ0,Σ∞(c1/2W ∗), where

W ∗ ∼ N (μ∞,Σ∞).

The proof is in Section S.3.2 of the Supplementary Material (Huggins and Miller,
2022). Figure 2 shows how Theorem 3.2 establishes that across a range of mean and
covariance structures of the log-likelihoods, BayesBag is more stable than Bayes. Indeed,
both methods behave fairly consistently as the covariance structure varies.

Extension to non-degenerate parameter spaces We now extend Theorem 3.1 to non-
degenerate parameter spaces Θ1 ⊂ R

D1 and Θ2 ⊂ R
D2 and we integrate over θm ∈ Θm

for each model m. To avoid tedious arguments, we only consider the case where μ∞ = 0.
For m ∈ {m1,m2}, let �m,θm(Xn) := log pθm(Xn |m) and recall that the optimal param-
eter is θm◦ = argminθm∈Θm

−E{�m,θm(X1)}. Let ΛX1:N
:= log p(X1:N |m1)Q0(m1) −

log p(X1:N |m2)Q0(m2), where p(X1:N |m) =
∫ {∏N

n=1 pθm(Xn |m)
}
Π0(dθm |m) denotes

the marginal likelihood. Let X1:∞ denote the infinite sequence (X1, X2, . . . ). We will
assume that conditionally on X1:∞, for almost every X1:∞,

ΛX∗
1:M

=
1

2
(D2 −D1) logN +

M∑
m=1

log
pθ1◦(X

∗
m |m1)

pθ2◦(X
∗
m |m2)

+OP+(1), (4)

where X∗
1:M is bootstrapped from X1:N and OP+(1) denotes a random quantity which

is bounded in (outer) probability. It is well known that (4) holds with X1:N in place
of X∗

1:M , under standard regularity assumptions (Clarke and Barron, 1990). Thus, we
expect (4) to hold under similar but slightly stronger conditions, since we must consider
a triangular array rather than a sequence of random variables.

The posterior distribution given X1:N and m is

Π(dθm |X1:N ,m) :=

∏N
n=1 pθm(Xn |m)

p(X1:N |m)
Π0(dθm |m).

The bagged posterior Π∗(· |X1:N ,m) given X1:N and m is defined such that

Π∗(A |X1:N ,m) := E{Π(A |X∗
1:M ,m) |X1:N}

for all measurable A ⊆ Θ. Let Jθm := −E{∇2
θm

�m,θm(X1)} denote the Fisher information
matrix. Finally, for a measure ν and function f , we use the shorthand notation ν(f) :=∫
fdν.

Corollary 3.3. Let X1, X2, . . . i.i.d. ∼ P◦ and for m ∈ {m1,m2}, assume that

(i) θm → �θm(X1) is differentiable at θm◦ in probability;

(ii) there is an open neighborhood U of θm◦ and a function mθm◦ : X → R such that
P◦(m

3
θm◦

) < ∞ and for all θm, θ
′
m ∈ U , |�θm − �θ′

m
| ≤ mθm◦ ‖θm − θ′m‖2 a.s. [P◦];

(iii) −P◦(�θm − �θm◦) =
1
2 (θm − θm◦)

�Jθm◦(θm − θm◦) + o(‖θm − θm◦‖22) as θm → θm◦;
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(iv) Jθm◦ is an invertible matrix; and

(v) letting ϑ∗
m ∼ Π∗(· |X1:N ,m), it holds that conditionally on X1:∞, for almost every

X1:∞, for every sequence of constants CN → ∞,

E

{
Π(‖ϑ∗

m − θm◦‖2 > CN/M1/2 |X∗
1:M ,m)

∣∣∣ X1:N

}
→ 0.

Further, assume that (4) holds, limN→∞ M/N1/2 = ∞, c := limN→∞ M/N ∈ [0,∞),
E{�m1,θ1◦(X1)− �m2,θ2◦(X1)} = 0, and E[{�m1,θ1◦(X1)− �m2,θ2◦(X1)}3] ∈ (0,∞). Then
the conclusions of Theorem 3.1 apply in the case of η∞ = 0.

The proof is in Section S.3.3 of the Supplementary Material.

Extension to dependent data A further extension, which we will not pursue in de-
tail, is to non-independent data such as those encountered in time-series and spatial
data analysis. In principle the generalization to, for example, time-series using the
block bootstrap (or another nonparametric estimator such as a Gaussian process) is
straightforward. However, the accompanying theory is much less straightforward since
we must (A) determine the asymptotic distribution of rescaled log marginal likeli-
hoods N−κ log p(m |X1:N ) and (B) show that a nonparametric estimator has the same
asymptotic distribution. More concretely, consider the two-model scenario and define
W (X1:N ) := N−κ{log p(m1 |X1:N ) − log p(m2 |X1:N )}. Then we must determine an

appropriate κ such that W (X1:N )
D→ W∞, where W∞ is a non-degenerate distribu-

tion. Moreover, for (A) we must show that limN→∞ dC(L{W (X1:N )},L(W∞)) = 0,
where L(ξ) denotes the law of a random variable ξ and the metric dC is defined in
Section S.3.2 of the Supplementary Material. Then, for (B) we must show that for data
X∗

1:M distributed according to the nonparametric estimator,

dC(L{W (X∗
1:M )− (N/M)κW (X1:N ) | X1:N}, W∞ − E{W∞}) P→ 0.

We leave a thorough investigation of models for dependent data to future work.

3.2 Model criticism with BayesBag

In the setting of parameter inference and prediction, Huggins and Miller (2019) develop
a measure quantifying the amount of misspecification, referred to as the model-data
mismatch index, based on comparing the BayesBag posterior to the Bayes posterior.
To define a mismatch index in the setting of model selection, we perform parameter
inference in a special designated model that we refer to as the reference model. Suppose
f(θ◦) is a selected quantity of inferential interest, where f : Θ → R and Θ is the
parameter space of the reference model. Let vN and v∗M denote, respectively, the Bayes
and BayesBag posterior variances of f(θ) under the reference model. If the reference
model is well-specified, then asymptotically, Mv∗M = 2NvN (Huggins and Miller, 2019).
We define the asymptotic version of the mismatch index as

I(f) :=
{
1− 2NvN/(Mv∗M ) if Mv∗M > NvN ,

NA otherwise,
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Figure 2: When there are more than two models, the bagged posterior (BayesBag) is
far less likely than the usual posterior (Bayes) to strongly favor the wrong model (or an
arbitrary equally good model) for a wide variety of mean and covariance structures of
the asymptotic log-likelihoods. The asymptotic posterior probability of model mk is a
random variable Uk (for Bayes) or U∗

k (for BayesBag), where Uk ∼ Bern(Φ−μ∞,Σ∞(0)),
U∗
k = Φ0,Σ∞(c1/2W ∗), W ∗ ∼ N (μ∞,Σ∞), and μ∞ ∈ R

K−1 and Σ∞ = R
(K−1)×(K−1)

are, respectively, the asymptotic mean and covariance of the log-likelihood ratio of
mk versus each other model (see Theorem 3.2). Uk = 0 represents the event that the
Bayes posterior overwhelmingly rejects model mk, and U∗

k < 0.1 is the event that the
BayesBag posterior strongly rejects model mk. Three scenarios are shown for the case of
K = 3 models, for a range of values of μ′

∞ ∈ R
3 and Σ′

∞ ∈ R
3×3, the asymptotic mean

and covariance of the log-likelihoods. (a) First, we vary μ3, where μ′
∞ = (0, 0, μ3)

�

and the entries of Σ′
∞ are given by Σ′

∞,i,j = 0.51(i 	=j). (b) Second, we vary σ3, where

μ′
∞ = (0, 0, 0)� and Σ′

∞,i,j = 0.51(i 	=j)σ
1(i=3)
3 σ

1(j=3)
3 . (c) Third, we vary ρ, where

μ′
∞ = (0, 0, 0)� and Σ′

∞,i,j = 1(i = j) + ρ1(i = 1, j = 2) + ρ1(i = 2, j = 1).

where NA is short for “not available.” The interpretation is as follows: I(f) ≈ 0 indicates

no evidence of mismatch; I(f) > 0 (respectively, I(f) < 0) indicates the Bayes posterior

is overconfident (respectively, under-confident); I(f) = NA indicates that either there
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is severe model-data mismatch or the required asymptotic assumptions do not hold
(for example, due to multimodality in the posterior or small sample size). We refer the
interested reader to Huggins and Miller (2019) for more justification and description of
a non-asymptotic version of I.

The reference model should be chosen such that if any model m ∈ M is well-specified,
then the reference model is well-specified. One common case is a finite set of models with
partial order ≺ based on inclusion such that there exists a unique maximal model; in this
case, the maximal model can be used as the reference model. More precisely, let Pm :=
{pθm(· |m) : θm ∈ Θm}. Then for models m,m′ ∈ M, m ≺ m′ if and only if Pm ⊆ Pm′ , and
m is the unique maximal model if m′ ≺ m for all m′ ∈ M. Feature selection (Section 4)
is an example of this type, where the maximal model includes all features. Another
common situation is when all models have a set of shared, interpretable parameters,
in which case we can define the reference model to be the disjoint union of all models
m ∈ M. Phylogenetic tree reconstruction (Section 5) is an example of this type.

When there is more than one univariate quantity of inferential interest, we consider
a collection of functions f ∈ F and suggest taking the most pessimistic mismatch value:
I(F) := supf∈F I(f). In general, F can be chosen to reflect the quantities of interest

in the application at hand. When θ ∈ R
D, two natural choices for the collection F are

F1 := {θ → w�θ : ‖w‖2 = 1} and Fproj = {θ → θd : d = 1, . . . , D}. In our experiments,
we use the latter and therefore adopt the shorthand notation I := I(Fproj).

3.3 Recommended workflow

Algorithm 1 outlines our recommended workflow for using BayesBag; here, dim(Θm)
is the dimensionality of the parameter space of model m. In steps 1–3, we suggest
computing the mismatch index with M = N since the definition of the mismatch index
is based on asymptotics, and thus, it is desirable to makeM large in order to improve the
accuracy of this asymptotic approximation. The mismatch index assesses the fit of the
usual posterior, so there is no reason to use the same value of M that is used for robust
inference with BayesBag. For very large datasets, it may be preferable to compute the
mismatch index using M < N in order to reduce the computation required.

Algorithm 1: Recommended workflow for BayesBag model selection.

Input: mismatch cutoff I (default: 0.3),
model size cutoff factor � (default: 1.0).

1 Compute Bayes posterior on Θ under the reference model.
2 Compute BayesBag posterior on Θ under the reference model, using M = N .
3 Compute mismatch index I using the results from steps 1 and 2.

4 if I < I or
∑

m∈M
dim(Θm) > �N0.75 then

5 Compute BayesBag posterior on M using M = N0.95.
6 else
7 Compute BayesBag posterior on M using M = N0.75.
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In steps 4–7, our recommendations for when to use M = Nα with α = 0.95 versus
α = 0.75, and these particular values of α, should be taken as rough guidelines. The
condition

∑
m∈M

dim(Θm) > �N0.75 is meant to capture being in the “small-data”
regime, where using very small bootstrap dataset sizes may result in unsatisfactory
estimation accuracy. However, this precise condition may not always be appropriate;
for example, it could be more appropriate to instead use maxm∈M dim(Θm) > �N0.75

when the models are nested.

4 Simulation study

To validate our theory and assess the performance of BayesBag for model selection, we
carry out a simulation study in the setting of feature selection for linear regression.

Model The data consist of regressors Zn ∈ R
D and observations Yn ∈ R for n =

1, . . . , N , and the goal is to predict Yn given Zn. For each γ ∈ {0, 1}D, define a model
such that the dth regressor is included in the linear regression if and only if γd = 1.
Letting Dγ :=

∑D
d=1 γd denote the number of regressors in model γ and k� ∈ {1, . . . , D}

denote the maximum number of regressors to include, we consider a collection of models
Mk� := {γ ∈ {0, 1}D |Dγ ≤ k�}. Let Z ∈ R

N×D denote the matrix with the nth row
equal to Zn and let Zγ denote the submatrix of Z that includes the dth column if and
only if γd = 1. Conditional on γ ∈ Mk� , the assumed model is

σ2 ∼ Γ−1(a0, b0),

βd |σ2 i.i.d.∼ N (0, σ2/λ), d = 1, . . . , Dγ ,

Yn |Zγ , β, σ
2 indep∼ N (Z�

γ,nβ, σ
2), n = 1, . . . , N.

We parameterize the model as θ = (θ0, . . . , θDγ ) = (log σ2, β1, . . . , βDγ ) ∈ Θγ = R
Dγ+1.

To perform posterior inference for γ, we analytically compute the marginal likelihood
for each γ ∈ Mk� , integrating out σ2 and β; specifically, for Y := (Y1, . . . , YN )�, we use

p(Y |Z, γ) = ba0
0 Γ(a0 +N/2)

(2π)N/2Γ(a0)

λDγ/2

b
a0+N/2
γ |Λγ |1/2

,

where Λγ := Z�
γ Zγ+λI and bγ := b0+Y �(I−ZγΛ

−1
γ Z�

γ )Y/2. For the prior on γ ∈ Mk� ,

we let Q0(γ) ∝ q
Dγ

0 (1− q0)
D−Dγ , where q0 ∈ (0, 1) is the prior inclusion probability of

each component. Thus, the posterior probability of model γ is

Q(γ |Y, Z) =
p(Y |Z, γ)Q0(γ)∑

γ′∈Mk�
p(Y |Z, γ′)Q0(γ′)

and the posterior inclusion probability of the dth regressor is

Q(γd = 1 |Y, Z) :=

∑
γ∈Mk�

γd p(Y |Z, γ)Q0(γ)∑
γ′∈Mk�

p(Y |Z, γ′)Q0(γ′)
. (5)
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Data We simulate data by generating Zn
i.i.d.∼ G, εn

i.i.d.∼ N (0, 1), and

Yn = f(Zn)
�β† + εn (6)

for n = 1, . . . , N , with the regressor distribution G, the regression function f , and the
coefficient vector β† ∈ R

D as described next. Using the linear regression function f(z) =
z results in well-specified data. To generate misspecified data, we use the nonlinear
component-wise cubic function f(z) = (z31 , . . . , z

3
D)�. We choose G and β† in the spirit

of genome-wide association study fine-mapping (Schaid, Chen and Larson, 2018) to
simulate a scenario with many highly correlated regressors, of which only a few regressors
are actually employed in the data-generating process. For k ∈ {1, 2}, we use a k-sparse
vector (that is, a vector with k non-zero components) defined by setting β†d = 1 if
d ∈ {�j(D + 1

2 )/(k + 1)� | j = 1, . . . , k} and β†d = 0 otherwise. For h > 2 and ψ > 0,
Z ∼ G is defined by generating ξ ∼ χ2(h) and then Z | ξ ∼ N (0,Σ), where the (d, d′)
entry of Σ ∈ R

D×D is given by Σdd′ = exp{−(d−d′)2/ψ2}/(ξdξd′), and ξd =
√

ξ/(h− 2)
if d is odd and ξd = 1 otherwise. The motivation for this data simulation procedure is
to generate correlated regressors that have different tail behaviors while still having the
same first two moments, since regressors are typically standardized to have mean 0 and
variance 1. Note that, marginally, Z1, Z3, . . . are each rescaled t-distributed random
variables with h degrees of freedom such that Var(Z1) = 1, and Z2, Z4, . . . are N (0, 1).

Experimental conditions We generate datasets under the k-sparse-linear and k-sparse-
nonlinear settings according to (6) with h = 10, ψ = 8, and either (D, k) = (10, 1) or
(D, k) = (20, 2). We set q0 = k/D and the model hyperparameters to a0 = 2, b0 = 1, and
λ = 16, with the latter setting helping to penalize the addition of extraneous features.
We consider M = Nα for α ∈ {1, 0.95, 0.75, 0.55}. We consider k� ∈ {1, 2} for 1-sparse
data and k� = 2 for 2-sparse data. We then compute the posterior inclusion probabilities
as defined in (5). Each experimental condition is replicated 50 times, resulting in 50
posterior inclusion probabilities for each regressor in each experimental setting.

Results We are interested in verifying the theory of Section 3 in the finite-sample
regime, which suggests that when the model is misspecified, similar models may be
assigned wildly varying probabilities under the usual posterior (Bayes), while the bagged
posterior (BayesBag) probabilities will tend to be more balanced. Figures 3, 4, and S.1
to S.3 in the Supplementary Material show the Bayes and BayesBag posterior inclusion
probabilities for each component, for all 50 replications. First, Figure 3 shows that when
the model is correctly specified, the Bayes and BayesBag posteriors with α ≥ 0.95 behave
similarly. However, BayesBag can be more stable even in this well-specified setting,
exhibiting fewer outlier posterior inclusion probabilities. As α decreases, BayesBag yields
substantially more conservative inferences, in the sense that the posterior inclusion
probabilities tend to shrink toward the prior inclusion probability.

In the misspecified setting, the results are more interesting and subtle (Figures 4,
S.1–S.3 in the Supplementary Material). Due to the misspecification and correlated
regressors, it no longer holds in general that the components that were actually non-
null in the data-generating process will be selected (see Section S.2 of the Supplementary
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Figure 3: Simulation results for feature selection in linear regression with k� = 2 when
the model contains the true distribution. The BayesBag posterior inclusion probabilities
are similar to the Bayes posterior inclusion probabilities, but tend to shrink toward the
prior inclusion probability (lower horizontal dotted line). The data was generated from
the assumed model, Yn = Z�

n β†+εn for n = 1, . . . , N , where εn ∼ N (0, σ2) with σ2 = 1,
Zn ∈ R

D is a vector of covariates, and β† ∈ R
D is a k-sparse vector, that is, β† has k non-

zero components. The prior on inclusion vectors γ ∈ {0, 1}D is proportional to q
∑

γd

0 (1−
q0)

D−
∑

γd , where q0 = k/D, with the constraint that
∑D

d=1 γd ≤ k�. A conjugate prior
is placed on the coefficients and σ2 given γ. The posterior inclusion probabilities were
computed by analytically integrating out the parameters and summing over all binary
inclusion vectors γ. The figure shows results for simulations using (a) D = 10, N = 50,
k = 1, (b) D = 10, N = 5,000, k = 1, (c) D = 20, N = 100, k = 2, and (d) D = 20,
N = 1,000, k = 2. For each of these settings, 50 replicate datasets were generated, and
the resulting posterior inclusion probabilities are shown. Components that were actually
nonzero when generating the data are enclosed by red rectangles.
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Figure 4: Simulation results for feature selection in linear regression with 1-sparse-
nonlinear data (so the model is misspecified) and k� = 2. Everything is the same as
in Figure 3(a, b), except that the data was generated using Yn = f(Zn)

�β† + εn, where
f(z) = (z31 , . . . , z

3
D)�. Results are shown for (a) N = 50, (b) N = 500, (c) N = 5,000,

and (d) N = 50,000. See the caption of Figure 3 for further explanation. The Bayes
posterior inclusion probabilities show considerable instability both (i) across datasets
with N fixed and (ii) as N increases. Meanwhile, the BayesBag probabilities are much
more stable, particularly for M = Nα with α ≤ 0.75. The component that was actu-
ally nonzero when generating the data is enclosed by a red rectangle; see the text for
interpretation.
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Material and Buja et al., 2019a,b). For the 1-sparse-nonlinear data, when k� = 1, the
Bayes and BayesBag posteriors behave quite similarly and concentrate on component 5,
which is asymptotically optimal; see Figure S.1 in the Supplementary Material. However,
when k� = 2, two models are asymptotically optimal and equivalent, namely, the models
with supp(γ) = {2, 3} and supp(γ) = {7, 8}, where supp(γ) := {d : γd �= 0}. Meanwhile,
{4, 5} and {5, 6} are asymptotically equivalent but slightly less-than-optimal. As shown
in Figure 4, in this case the Bayes posterior is unstable and, for large values of N ,
concentrates on {2, 3} or {7, 8} with equal probability. For M ∈ {N,N0.95}, BayesBag
places roughly uniformly distributed mass on the same four components for large values
of N . Meanwhile, for M ∈ {N0.75, N0.55}, BayesBag is much more stable and puts
more mass on component 4, 5, and 6. Thus, we see exactly the behaviors predicted by
the asymptotic analyses in Section 3. We defer discussion of the results for 2-sparse-
nonlinear data (Figures S.2 and S.3 in the Supplementary Material) to Section S.1 of
the Supplementary Material.

Figures 5 and S.4 in the Supplementary Material show model-data mismatch index
values for the reference model with γd = 1 for all d = 1, . . . , D, on a representative
subset of experimental configurations. For the k-sparse-linear data, the overall mismatch
indices were either near zero or were NA, reflecting that the model is correctly specified
but there are some issues with poor identifiability. For the k-sparse-nonlinear data, the
mismatch indices were nearly all NA, reflecting that the model is misspecified and there
may also be identifiability issues.

Summary Overall, the simulation results are in agreement with our asymptotic theory
from Section 3: the behavior of Bayes can vary dramatically with the dataset size and
the degree of misspecification, whereas BayesBag is much more stable. Additionally,
the simulations provide insight into the behavior of the bagged posterior when M is
sublinear in N . Of particular note is that M = N0.95 yields noticeably improved sta-
bility with little loss of statistical efficiency. Meanwhile, for settings with substantial
misspecification, taking M = Nα with α ∈ [0.55, 0.75] may be preferable – with the
caveat that inferences will tend to be more conservative.

5 Applications

5.1 Feature selection for linear regression

We compare Bayesian model selection and BayesBag model selection for linear regression
on four real-world datasets, summarized in Table 1. Based on our findings in Section 4,
for BayesBag we consider M = Nα with α ∈ {1.0, 0.95, 0.75}. We use a prior inclusion
probability of q0 = 3/D and use k� = D for the maximum number of nonzero compo-
nents, except on the residential building dataset, where for computational tractability
we use k� = 3. We set the model hyperparameters to a0 = 2, b0 = 1, and λ = 1.

We expect the parameters to be well-identified for all datasets except the residential
building dataset, since the residential building dataset requires only 58 out of 104 prin-
cipal components to explain 99% of the variance, whereas for the other three datasets,
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Figure 5: Model-data mismatch indices I from the simulations on feature selection in
linear regression. The overall I value and the I for selected parameters are shown in the
case of 2-sparse data (k = 2) with D = 20 regressors. The figure shows histograms of I
over 50 replicate datasets generated using the well-specified linear case of f(z) = z (as
in Figure 3) with (a) N = 100 and (b) N = 10,000, and the misspecified nonlinear case
of f(z) = (z31 , . . . , z

3
D)� (as in Figure 4) with (c) N = 100 and (d) N = 10,000. We only

display two components of β since the I values follow fairly similar distributions for all
components. The results show that in the well-specified setting, when N is sufficiently
large (panel (b)), I tends to be near zero, indicating correct specification as expected.
An exception is that the I value for β11 is closer to −1, indicating that the Bayes
posterior on β11 may be somewhat underconfident. When N is small (panel (a)), I is
often NA in these simulations, reflecting the poor identifiability of the coefficients due to
strong correlation in the regressors. Meanwhile, in the misspecified setting (panels (c)
and (d)), I is typically NA for the coefficients, reflecting that the model is misspecified
and there may also be identifiability issues.

D out of D principal components are needed to explain 99% of the variance. The model
mismatch indices (for the reference model with γd = 1 for all d = 1, . . . , D) are in
agreement with expectations, since only the residential building dataset has a model
mismatch index of NA. For the other datasets, the mismatch indices are 1.00 (Califor-
nia housing), 0.62 (Boston housing), and 0.03 (Diabetes), which suggests that the model
is misspecified for the two housing datasets.

Figure 6 shows the posterior inclusion probabilities for all four datasets. To compare
the reliability of the methods, we also run each method on subsets of the data obtained
by randomly dividing each dataset into roughly equally sized splits (Figure 6). We use
three splits for all datasets except for California housing, for which we use five splits since
N is substantially larger. Generally, across splits, BayesBag produced lower-variance,
more conservative posterior inclusion probabilities that are more consistent with the
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Name Model N D

California housing LR 20,650 8
Boston housing LR 506 13
Diabetes LR 442 10
Residential building LR 371 105
Whale mitochondrial coding DNA PTR 10,605 14
Whale mitochondrial amino acids PTR 3,535 14

Table 1: Real-world datasets used in experiments. LR = linear regression, PTR = phy-
logenetic tree reconstruction. For LR, N = # samples and D = # covariates. For PTR,
N = # features and D = # species.

posterior inclusion probabilities from the full datasets. BayesBag with M = N0.75 is
noticeably more conservative than Bayes and BayesBag with M ∈ {N0.95, N}; for the
two datasets with mismatch indices that suggest significant misspecification (California
housing and residential building), such stability appears particularly desirable. These
results are in agreement with the simulation results in Section 4.

5.2 Phylogenetic tree reconstruction

Finally, we investigate the use of BayesBag for reconstructing the phylogenetic tree of a
collection of species based on their observed characteristics. This is an important model
selection problem due to the widespread use of phylogeny reconstruction algorithms.
Systematists have exhaustively documented that Bayesian model selection of phyloge-
netic trees can behave poorly. In particular, the posterior can provide contradictory
results depending on what characteristics are used (for example, coding deoxyribonu-
cleic acid [DNA] or amino acid sequences), what evolutionary model is used, or which
outgroups are included (Alfaro, Zoller and Lutzoni, 2003; Buckley, 2002; Douady et al.,
2003; Huelsenbeck and Rannala, 2004; Lemmon and Moriarty, 2004; Waddell, Kishino
and Ota, 2002; Wilcox et al., 2002; Yang, 2007). We illustrate how BayesBag model
selection provides reasonable inferences that are significantly more robust to the choice
of data and model.

Models and data We use the whale dataset from Yang (2008), consisting of mito-
chondrial coding DNA from 13 whale species and the hippopotamus (Table 1). The
hippopotamus is included as an “outgroup” species to identify the root of the tree,
because the assumed evolutionary models are time-reversible and hence the trees are
modeled as unrooted. We consider four DNA models (JC, HKY+C+Γ5, GTR+Γ+I, and
mixed+Γ5) and one amino acid model (mtmam+Γ5); see Yang (2008) for more details on
these models and an explanation of the acronyms. For brevity, we refer to the models
as, respectively, JC, HKY, GTR, mixed, and mtmam. To approximate the usual pos-
terior (Bayes) and the bagged posterior (BayesBag), we use MrBayes 3.2 (Ronquist
et al., 2012) with 2 independent runs, each with 4 coupled chains run for 1,000,000
total iterations (discarding the first quarter as burn-in). We confirm acceptable mixing
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Figure 6: Application to feature selection on four real-world datasets; see Table 1 for
dataset details. The assumed model is the same as in Section 4 (see also the caption
of Figure 3), using a prior inclusion probability of q0 = 3/D (lower horizontal dotted
line), where D is the number of regressors. To assess reproducibility, we randomly split
each dataset into roughly equally sized parts, and computed the posterior inclusion
probabilities for each split separately (indicated with a •) as well as for the full dataset
(indicated with a �). As before, the posterior inclusion probabilities are computed by
analytically integrating out the parameters and summing out all possible binary inclu-
sion vectors. For computational tractability, we constrain the model for the residential
building dataset to only allow up to k� = 3 nonzero components. For visual readability,
we only display the components with at least one posterior inclusion probability greater
than min(0.25, 3q0). The BayesBag posterior inclusion probabilities exhibit greater re-
producibility, in that (i) the between-split differences tend to be smaller and (ii) the
differences between the split posterior inclusion probabilities and the full data posterior
inclusion probabilities also tend to be smaller for BayesBag than Bayes.

using the built-in convergence diagnostics for MrBayes. For BayesBag, we take B = 100
in all experiments and, since the number of models is very large, we only consider
M ∈ {N,N0.95}.
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Evaluation Our goal is to investigate whether BayesBag avoids the self-contradictory
inferences that Bayes produces. To this end, we compare the output of different con-
figurations of the data, model, and inference method, as follows. We compute the set
of trees in the 99% highest posterior probability (HPP) regions for each 〈data, model,
inference method〉 configuration. For selected pairs of configurations, we then compute
the overlap of the two 99% HPP regions in terms of (a) probability mass and (b) number
of trees. Since the BayesBag posterior is approximated via Monte Carlo as in (2), we
quantify the uncertainty in each overlap by reporting an 80% confidence interval for the
overlapping mass. We compute these intervals using standard bootstrap methodology
for a Monte Carlo estimate.

Results First, we look at the overlap between pairs of models. As shown in Figure 7(a)
and Table S.1 in the Supplementary Material, there is substantially more overlap when
using BayesBag. The difference is particularly noticeable when comparing JC (the sim-
plest model) or mtmam (the amino acid model) to the other models. When using Bayes,
JC has either 0% or (in one case) 0.2% overlap with the other models while mtmam only
overlaps with HKY. Thus, these pairs of models produce contradictory results when
using Bayesian model selection. On the other hand, when using BayesBag, all pairs of
models have nonzero overlap, with typical amounts ranging from 30% to 50%. Hence,
compared to Bayes, BayesBag provides results that are more consistent across models.

However, the good overlap between BayesBag posteriors does not necessarily mean
that it is performing well, since it could simply be producing posteriors that are too
diffuse, spreading the posterior mass over a very large number of trees. Notably (as
expected), BayesBag with M = N0.95 leads to a more diffuse posterior with 5–15 over-
lapping trees compared to 3–11 trees whenM = N . To further investigate the possibility
of the BayesBag posteriors being too diffuse, we consider the overlap of the BayesBag
posterior for each model and the Bayes posterior for mixed, which is the most complex
of the DNA models. As shown in Figure 7(b) and Table S.2 in the Supplementary Ma-
terial, all of the BayesBag posteriors (with the exception of mtmam) put substantial
posterior probability on the 99% HPP region of the Bayes mixed posterior. Moreover,
all but BayesBag mtmam has two trees in the overlap, which is the maximum possible
since the Bayes mixed 99% HPP region only contains two trees. Finally, using BayesBag
with M = N0.95 results in fairly small decreases (relative to BayesBag with M = N) in
the mass on the two trees in the Bayes mixed 99% HPP region.

Next, we perform intra-model comparisons by considering three datasets: the com-
plete whale dataset (denoted all) and two additional datasets formed by splitting the
genomic data for each species in half (denoted S1 and S2). Ideally, for each model, we
hope to see substantial overlap when comparing the results across these three datasets
(all, S1, and S2). However, when using the Bayes posterior, there is little to no overlap
in many cases, particularly for the simpler JC model and mtmam; see Figure 7(c) and
Table S.3 in the Supplementary Material. Meanwhile, the BayesBag posteriors typically
exhibit overlaps of between 21% and 56%, with less (though still nonzero) overlap with
mtmam. These results suggest that BayesBag exhibits superior reproducibility in terms
of uncertainty quantification.
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Figure 7: Application to phylogenetic tree inference on a whale genetics dataset. To as-
sess reproducibility, we computed the posterior under five different evolutionary models
(JC, HKY, GTR, mixed, mtmam). We quantify the similarity of posteriors by comput-
ing the overlapping probability mass of 99% highest posterior probability regions. To
quantify uncertainty in the overlap due to Monte Carlo error, 80% confidence intervals
are shown for the overlaps involving BayesBag. Panel (a) shows the posterior overlap
for each pair of models. The usual posterior (Bayes) is quite sensitive to the choice of
model, exhibiting ≈ 0% overlap in many cases, for instance, between JC and the other
models. Meanwhile, the bagged posterior (BayesBag) is more robust, exhibiting over-
laps in a reasonable range. Panel (b) shows the overlap between the Bayes posterior
for the mixed model, which is the most flexible of the DNA models, and the Bayes or
BayesBag posterior for each other model. Panel (c) shows the overlap when using the
same model on different subsets of the data — specifically, splitting the genomic data
for each species into two halves (S1, S2) or using the complete data (all).

Finally, we compute the mismatch index for each model on the complete whale
dataset, obtaining 0.23 (JC), NA (HKY), 0.47 (GTR), 0.84 (mixed), and 0.34 (mtmam).
These mismatch indices suggest significant amounts of model misspecification, with the
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simpler JC model likely underestimating the actual degree of misspecification. Thus,
using the BayesBag posterior with M = N0.95 appears to be advisable.

6 Discussion

In this paper, we have developed an approach to overcome the instability of Bayesian
model selection when the models are all misspecified. This type of misspecification is
common in scientific settings where idealized but interpretable models are commonly
used (such as in systematics, population and cancer genetics, and economics). Our
bagged posterior approach is theoretically justified, easy to use, and widely applicable.
However, we see three potential limitations in practice. The first is that bagged posterior
model selection tends to be more conservative, with posterior model probabilities farther
from the extremes of zero and one. The recommended workflow discussed in Section 3.3
is designed to at least partially ameliorate this issue, however, this conservative behavior
may be a necessary price for greater stability and reliability. The second limitation
is the additional computational cost required for the naive estimation of the bagged
model probabilities. The development of more computationally efficient alternatives
is an important direction for future work. A final limitation is that our asymptotic
theory only covers cases where the observations are independent. Extending the theory
to cover important structured models like time-series and spatial models is another
valuable direction for future work.

Supplementary Material

Supplementary Material: Reproducible Model Selection Using Bagged Posteriors (DOI:
10.1214/21-BA1301SUPP; .pdf).
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