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Bayesian Nonparametric Density Autoregression
with Lag Selection∗

Matthew Heiner† and Athanasios Kottas‡

Abstract. We develop a Bayesian nonparametric autoregressive model applied to
flexibly estimate general transition densities exhibiting nonlinear lag dependence.
Our approach is related to Bayesian density regression using Dirichlet process mix-
tures, with the Markovian likelihood defined through the conditional distribution
obtained from the mixture. This results in a Bayesian nonparametric extension of
a mixtures-of-experts model formulation. We address computational challenges to
posterior sampling that arise from the Markovian structure in the likelihood. The
base model is illustrated with synthetic data from a classical model for population
dynamics, as well as a series of waiting times between eruptions of Old Faithful
Geyser. We study inferences available through the base model before extending
the methodology to include automatic relevance detection among a pre-specified
set of lags. Inference for global and local lag selection is explored with additional
simulation studies, and the methods are illustrated through analysis of an annual
time series of pink salmon abundance in a stream in Alaska. We further explore
and compare transition density estimation performance for alternative configura-
tions of the proposed model. Supplementary materials are available online.

Keywords: Dirichlet process mixtures, dynamical system, local regression,
Markov chain Monte Carlo, order selection.

1 Introduction

This article is concerned with flexible transition density estimation for non-stationary,
nonlinear time series. Let {yt : t = 1, . . . , T} denote a univariate series governed by a
time-homogeneous transition density p(yt | yt−1, . . . , y1). While nonlinearity has been
used to describe various qualitative characteristics of time series, we specifically refer
to nonlinear dynamics, or the function mapping past observations to the present. Many
existing methods for nonlinear regression have been applied to autoregressive modeling
within and out of the statistical literature. Density regression has received far less at-
tention, especially in application to transition density estimation, a crucial component
of probabilistic forecasting and decision modeling. We seek to build on recent advances
in transition density estimation by exploring what can be succinctly described as an
extension to Bayesian nonparametric mixtures of autoregressive models. To accommo-
date nonlinear dependence, mixture weights are functions of lagged observations. Thus,
our method is also accurately described as a locally linear autoregressive model.
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Perhaps the most popular mixture modeling application to time series is the class
of hidden Markov models (HMMs), which are capable of capturing nonlinear dynamics
(Frühwirth-Schnatter, 2006, and references therein). Markovian dependence in a latent
process, however, complicates inferences for transition densities and related functionals,
especially when considering multiple lags. The likewise popular classes of threshold
autoregressive models (Tong, 1990), and mixtures-of-experts (MoE) models (Jordan
and Jacobs, 1994; Peng et al., 1996; Carvalho and Tanner, 2005, 2006) alternatively
build dependence into mixture weights through lagged observations directly. We take
the MoE approach, replacing parameterized link functions of lagged observations with
normalized kernels for local weighting (Glasbey, 2001; Kalliovirta et al., 2015).

In contrast with most HMM and MoE methods, our models are based on count-
able mixtures, bypassing the need to fix the number of mixture components. Bayesian
nonparametric (BNP) approaches have expanded the hidden Markov (Beal et al., 2002;
Taddy and Kottas, 2009; Yau et al., 2011) and dynamic linear (Rodŕıguez and Ter Horst,
2008; Caron et al., 2007; Fox et al., 2011) model frameworks. Dirichlet process mixtures
(DPM; Ferguson, 1973; Antoniak, 1974) of linear autoregressive (AR) models (Lau and
So, 2008; Di Lucca et al., 2013), which are closer to our formulation, can be viewed as
nonparametric extensions of the mixture autoregressive model of Wong and Li (2000).
DPM of AR models typically use static weights, restricting transition mean functionals
to be linear. Müller et al. (1997) use normalized weights that employ a finite MoE frame-
work to accommodate nonlinearity. Posterior consistency for BNP transition density
estimation has been explored by Tang and Ghosal (2007a), Tang and Ghosal (2007b),
and Chae and Walker (2019).

Many of the above methods assume first-order time dependence. While convenient
and occasionally justified, this assumption may over-simplify or misspecify the dynam-
ics. Higher-order models can also enable phase-space reconstruction via time-delay em-
bedding. Although applied to deterministic systems, a theorem by Takens (1981) justi-
fies reconstructing multidimensional dynamical systems, up to topological equivalence,
using only lags of a univariate time series. Markovian stochastic models can approxi-
mate this method for applications that exhibit noise (Kantz and Schreiber, 2004, Ch.
10, 12). The practical utility of this result is evident in fields like ecology, where full
observation of all relevant variables is practically impossible.

Motivated by these considerations, we propose to model the transition density for ob-
servation yt, conditional on L lags yt−1:L ≡ (yt−1, . . . , yt−L), as

∑∞
h=1 qh(yt−1:L) ph(yt |

yt−1:L), with component-specific normalized weight functions qh(yt−1:L) and kernel
densities ph(yt | yt−1:L). The model form resembles that of Antoniano-Villalobos and
Walker (2016), who build on Martınez-Ovando and Walker (2011), constructing a tran-
sition density from a mixture model on the stationary joint density of the current
observation and a single lag. Their likelihood is based on the conditional transition den-
sity, which is a nonparametric mixture of kernels with linear autoregressive means and
lag-dependent, normalized weights. Kalli and Griffin (2018) extend this framework to
a stationary multivariate autoregressive model of multiple lags, although the model is
implemented with a single lag. DeYoreo and Kottas (2017) use a similar model construc-
tion, achieving superior flexibility by relaxing the stationarity assumption. The model
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proposed in this article extends that of DeYoreo and Kottas (2017) to accommodate
multiple lags and, crucially, shrink dependence to a minimally sufficient set of lags. The
added modeling and computational complexity associated with high-order dependence
demands that lag selection plays a vital role in this work, as it affords parsimony and
significantly reduces the estimation burden.

The primary contributions of this article are 1) extension of a powerful class of non-
stationary, nonlinear density autoregression models to accommodate dependence on
multiple lags; 2) development of a framework for model-based selection and exploration
of lag dependence; 3) investigation into the proposed model’s fitness for different anal-
ysis scenarios; and 4) demonstration of the need for lag selection in high-order density
autoregression.

The rest of the article is organized as follows. In Section 2, we propose a BNP
time-series model for density autoregression and present details for implementation and
inference. In Section 3, we illustrate the model fit to synthetic and real data. In Section 4,
we extend the model to incorporate inferences about relevant lags and demonstrate
its use on data. Section 5 compares transition density estimation performance under
different model configurations, using simulated nonlinear time series featuring skewness,
heteroscedasticity, and different lag dependence structures. Finally, Section 6 concludes
with discussion. The Supplementary Material (Heiner and Kottas, 2022) contains details
on: model modifications for stationary time series; prior specification; computing time
and sensitivity analysis; the Markov chain Monte Carlo (MCMC) algorithms for the base
model and its extension that incorporates lag selection; and an additional simulation
example.

2 The modeling approach

Our objective is to develop a general-purpose and fully nonparametric, time-homo-
geneous Markovian model that is sufficiently flexible to: 1) estimate possible non-
Gaussian transition densities, dependent on lagged values, 2) capture nonlinear dy-
namics, and 3) select relevant lags among a pre-specified set, up to a maximal order L.
The first two objectives are accomplished through a nonparametric mixture of Gaus-
sian densities, wherein both the mixture weights and kernel means depend on lagged
observations. The general model formulation for the transition density can be written
as

f(yt | yt−1:L) =

∞∑
h=1

qh(yt−1:L)︸ ︷︷ ︸
local weights

N(yt | μh(yt−1:L), σ
2
h)︸ ︷︷ ︸

mixture kernels

, (1)

where N(y | μ, σ2) denotes a Gaussian density with mean μ and variance σ2 evaluated at
y, and with weight function qh(yt−1:L) ≥ 0 for all h ∈ N such that

∑∞
h=1 qh(yt−1:L) = 1

for all yt−1:L ∈ R
L. We utilize kernel mean functions μh(yt−1:L) that are linear in the

lags, yielding a local linear model formulation. The objective of order and lag selection
is accomplished through a stochastic-search prior structure.
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Time homogeneity is a consequence of time invariance in the parameters governing
the mixture weights and kernels. We note that this seemingly restrictive assumption is
at least partially offset by the model’s flexibility with respect to lagged observations.
Apparently time-dependent structural changes can sometimes be attributed to hetero-
geneity of response across the state space. In such cases, a latent first-order Markov
process governing the mixture weights may be less effective than our approach of using
the lagged values directly. Nevertheless, dynamic drift or regime-switching in model
structure may be more appropriate in some scenarios, for which we urge thoughtful
exploration before selecting a model.

We proceed with model specification in Section 2.1, built using a covariance matrix
parameterization that is useful for interpretation and implementation. Section 2.2 dis-
cusses the roles of model parameters and gives recommended prior settings. Section 2.3
briefly outlines the MCMC algorithm used for posterior inferences and addresses imple-
mentation. Finally, Section 2.4 discusses model inferences, including transition density
estimation.

2.1 Model specification

One avenue to arrive at the conditional density form in (1) begins with a prior for
joint density estimation. For clarity in notation, we use y ∈ R to represent the current
observation and x ≡ yt−1:L ∈ R

L to denote the lags. We begin as in Müller et al. (1996),
who in the regression setting consider y and x to arise jointly from a Gaussian DPM.
This implies the stick-breaking representation (Sethuraman, 1994) for joint density,

fY X(y,x | G) =

∞∑
h=1

ωh N((y,x) | μh,Σh) , (2)

where the (μh,Σh) arise i.i.d. from the Dirichlet process (DP) centering distribution
G0, and the mixture weights, ωh, are constructed as

ω1 = v1, ωh = vh

h−1∏
j=1

(1− vj), for h > 2, and vh
iid∼ Beta(1, α) . (3)

Conditioning on x, we obtain the transition density model:

fY |X(y | x, G) =

∑∞
h=1 ωh N(h)(x)N(h)(y | x)∑∞

j=1 ωj N(j)(x)
=

∞∑
h=1

qh(x)N(yt | μh(x), σ
2
h) , (4)

with qh(x) = ωh N(h)(x)/
∑∞

j=1 ωj N(j)(x), where N(h)(·) refers to a Gaussian density
with parameters corresponding to mixture component h, and N(h)(y | x) is the univari-
ate conditional Gaussian density derived from N(h)(y,x). The joint densities in each mix-
ture component of the numerator of (4) have been factored into their respective marginal
L-dimensional Gaussian density for x (with mean μx and covariance Σx) and univariate
conditional Gaussian density for y (with linear mean μ(x) ≡ μy +Σyx(Σx)−1(x− μx)
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and variance σ2 ≡ (σy)2 − Σyx(Σx)−1Σxy). The second line of (4) reveals the local
linear model structure with lag-dependent weights.

This procedure yields a conditional density that satisfies the requirements of the
proposed model (1). Specifically, since

∑∞
h=1 ωh = 1 almost surely, so long as there

exists some positive constant cN < +∞ such that 0 < N(h)(x) < cN for all h ∈ N

and all x ∈ R
L (which is satisfied if there exists another constant cΣ > 0 such that

det(Σx
h) > cΣ for all h ∈ N), the denominator in qh(x) will be positive and finite for all

x ∈ R
L.

Although x (representing yt−1:L) can legitimately be considered random in the time-
series context, the Markovian likelihood requires that the conditional density (4) forms
the basis of the model. Besides creating redundancy in the likelihood, modeling sep-
arate joint distributions for consecutive length-(L + 1) coordinate vectors would not
generally be coherent. To see this, consider yt, which appears in both (yt+1,y(t+1)−1:L)
and (yt,yt−1:L). Modeling each vector with a joint mixture as in (2) would result in
two distinct marginal distributions for yt without additional assumptions, like strong
stationarity. We forego stationarity in favor of flexibility. Consequently, we interpret the
{N(h)(x)} densities in {qh(x)} exclusively as functions that localize the mixture weights,
and not as joint densities of lagged observations. Indeed, localizing the weights is their
only role in a conditional likelihood based on (4). Supplement S1 includes discussion of
possible mixture model formulations for the stationary case.

The model likelihood, based on (4) and conditional on the first L observations, is∏T
t=L+1 fY |X(yt | yt−1:L, G). This is the form adopted in Antoniano-Villalobos and

Walker (2016) and Kalli and Griffin (2018), who assume stationarity, and DeYoreo
and Kottas (2017), who do not assume stationarity. The local re-weighting of {ωh} with
probability density kernels on x distinguishes our model from nonparametric extensions
of MoE for regression, such as dependent Dirichlet process (DDP; MacEachern, 2000)
variants (Chung and Dunson, 2009; Fuentes-Garćıa et al., 2009; Barrientos et al., 2017)
and kernel stick-breaking models (Park and Dunson, 2010; Reich et al., 2012). See Wade
et al. (2014) and DeYoreo and Kottas (2020) for reviews of density regression models
that build on Müller et al. (1996) and do not pre-condition the likelihood.

Covariance factorization

To facilitate interpretation in our factorization of the kernels into response and lag den-
sities, allow flexible and parsimonious covariance modeling, and to provide a vehicle for
variable selection in the mixture weights, we parameterize the Gaussian covariance ma-
trix according to the factorization Σ = B−1Δ(B−1)′. Here, Δ = diag(σ2, δx1 , . . . , δ

x
L)

and B is an upper unit-triangular matrix with first row (1, βy
1 , β

y
2 , . . . , β

y
L−1, β

y
L), second

row (0, 1, βx
1,2, . . . , β

x
1,L−1, β

x
1,L), and so forth until the (L−1)th row (0, . . . , 0, 1, βx

L−1,L).
This factorization is equivalent to the square-root-free Cholesky decomposition em-
ployed by Daniels and Pourahmadi (2002) and Webb and Forster (2008), and in our
setting by DeYoreo and Kottas (2017). This and similar decompositions have also been
used for model selection (Smith and Kohn, 2002; Cai and Dunson, 2006). Our extension
for lag selection in the mixture weights is discussed in Section 4.
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This parameterization also yields a sequential decomposition of a joint Gaussian
density for y and x into L+ 1 univariate Gaussian densities. Specifically,

N
(
(y,x) | μ,B−1Δ(B−1)′

)
=N(xL | μx

L, δ
x
L)×

1∏
�=L−1

N

(
x� | μx

� −
L∑

r=�+1

βx
�,r(xr − μx

r ), δ
x
�

)
×

N

(
y | μy −

L∑
�=1

βy
� (x� − μx

� ), σ
2

)
. (5)

We construct from back (most distant lag) to front (y) so that the response density
depends on the entire x vector while maintaining a consistent order convention. This
fully parameterized representation of the covariance matrix is flexible, as each β param-
eter is unrestricted and δ parameters need only be positive, and admits control over
the marginal weight density of x while preserving positive definiteness. Note also that
the marginal covariance matrix of x can be constructed as Σx = (Bx)−1Δx((Bx)−1)′

where Bx removes the top row and first column of B, and Δx = diag(δx1 , . . . , δ
x
L).

The weight kernels in qh(x) present the most obvious and pressing opportunity to
improve parameter economy in the model. We therefore also consider weight kernels
with local independence between elements of x (e.g., Shahbaba and Neal, 2009). This
reduction is accomplished by setting all βx

�,r, for � �= r, equal to 0, yielding diagonal
Σx = Δx. We note that Gaussian mixtures with diagonal covariance can approximate
general density shapes, at the cost of possibly utilizing additional mixture components
to capture local behavior. The reduction becomes necessary if we include many lags, as
the number of covariance parameters for each component h grows quadratically with L.

The final term in (5) involving μy and the {βy
� } is overparameterized if used as a

stand-alone regression model. However, the {μx
� } parameters become at least partially

identified in our mixture formulation because they serve as location parameters for the
mixture weight kernels in qh(x). It is nevertheless preferable to monitor inferences for

component-specific intercepts μy +
∑L

�=1 β
y
� μ

x
� , which in our experience are far more

stable than either μy or {μx
� } alone.

Hierarchical model formulation

To implement the model, we truncate the infinite summation needed to normalize the
mixture weights {qh(x)}, using blocked Gibbs sampling (Ishwaran and James, 2001).
There are both theoretical and practical considerations when selecting the truncation
level, H. Given the DP concentration parameter α, we can calculate the prior expected
truncation error, E(ωH) = E(

∏H−1
h=1 (1 − vh)) = [α/(1 + α)]H−1. We can also monitor

throughout MCMC sampling the last weight, ωH , to ensure it remains small, as well as
the number of occupied components to ensure that it does not approach H.

As is common with similar models, we break the mixture by introducing latent
variables {st} associated with each time point, such that if st = h, the observation
at time t is assigned to component h. We denote all component-specific parameters as
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{ηh}Hh=1 where η ≡ {μy,μx,βy,βx
1 , . . . ,β

x
L−2, β

x
L−1, σ

2, δx}, with vectors βy and βx
�

(for � = 1, . . . , L− 2), and βx
L−1 ≡ βx

L−1,L taken from the corresponding rows of B, and

δx = (δx1 , . . . , δ
x
L). Again, we use notation N(h)(·) to indicate that all parameters used

to specify the mean and covariance are indexed by h. The hierarchical formulation of

our model is given by

yt | yt−1:L, st = h, {η} ind.∼ N(h)

(
yt | μy −

L∑
�=1

βy
� (yt−� − μx

� ), σ
2

)
,

for t = L+ 1, . . . , T, and h = 1, . . . , H,

Pr(st = h | yt−1:L, {η},ω) =
ωh N(h)(yt−1:L | μx,Σx)∑H
j=1 ωj N(j)(yt−1:L | μx,Σx)

,

ω1 = v1, ωh = vh

h−1∏
j=1

(1− vj), for j = 2, . . . , H − 1, and ωH =

H−1∏
j=1

(1− vj) ,

vj | α iid∼ Beta(1, α), for j = 1, . . . , H − 1,

ηh | G0
iid∼ G0(ηh), for h = 1, . . . , H,

(6)

with G0(η) = N((μy,βy) | σ2) × IG(σ2) × N(μx) ×
∏L−1

r=1 N(βx
r ) ×

∏L
�=1 IG(δx� ), and

ω = (ω1, . . . , ωH). Here N((μy,βy) | σ2) indicates that the prior covariance matrix for

β∗ ≡ (μy,βy) is scaled by σ2, which allows us to analytically integrate all y-indexed

parameters from the full conditional for ηh and improve mixing in MCMC (discussed

in Section 2.3).

We complete the model with a Ga(aα, bα) prior for α, and with conditionally con-

jugate priors on the parameters in G0. Specifically, the (L + 1)-variate Gaussian dis-

tribution for β∗ has mean β∗
0 ∼ N(b∗0,S

∗
0 ) and covariance σ2(Λ∗

0)
−1 with (Λ∗

0)
−1 ∼

IWish(ν∗, ν∗Ψ∗
0) (an inverse-Wishart distribution with ν∗ degrees of freedom and mean

ν∗Ψ∗
0/[ν

∗−(L+1)−1], parameterized so thatΨ∗
0 is the prior harmonic mean of (Λ∗

0)
−1).

The inverse-gamma distribution for σ2 has fixed shape νσ2/2 and scale νσ2 s0/2, yield-

ing for σ2 a prior harmonic mean of s0 ∼ Ga(as0 , bs0) (which itself has mean as0/bs0).

The Gaussian distribution for μx has mean μx
0 ∼ N(mx

0 ,S
μx

0 ) and covariance (Λμx)−1 ∼
IWish(νμx , νμxΨμx

0 ). The Gaussian distribution for each βx
r has mean βx

0,r
ind.∼

N(bβx

0,r,S
βx

0,r) and covariance (Λβx

0,r)
−1 ind.∼ IWish(νβx

r , νβx
r Ψβx

0,r), for r = 1, . . . , L − 1.

The inverse-gamma distribution for each δx� has fixed shape νδ
x

� /2 and scale νδ
x

� sx0,�/2

with sx0,�
ind.∼ Ga(axs0,�, b

x
s0,�

), for � = 1, . . . , L.

Experience with the model suggests it is practical to fix components in G0 associated

with y-indexed parameters rather than use the full prior specification above. Specifically,

we find that fixing β∗
0 at b∗0, Λ

∗
0 at (Ψ∗

0)
−1, and s0 at a prior guess s00 works well in

practice.
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2.2 Prior settings

The priors for the hierarchical model in Section 2.1 are specified in generality so that
the model can be fit with the time series {yt} at any scale and for a variety of func-
tional characteristics. However, one may consider first removing certain known trend
and cyclical behaviors, and basing hyperparameter settings on default values. Here, we
recommend default values derived from marginal summaries of the time series.

We first discuss the function and interpretation of model parameters. A key con-
sideration is that model (4) is a locally weighted mixture of Gaussian linear regression
models. The weight structure depends not only on {ωh}, which is inherited from the
nonparametric prior and (for low values of α) encourages economy in clustering, but also
on the Gaussian kernels for x. One could imagine a normalized weight surface spanning
R

L for each mixture component h that follows the contours of a L-variate Gaussian
density weighted by ωh. The component-specific, x-indexed parameters, μx and Σx =
(Bx)−1Δx((Bx)−1)′, determine the locations and shapes of the weight kernels. The
y-indexed parameters, μy and βy, provide the component-conditional mean as a first-
order linear combination of x, and σ2 provides observation error variance around the
component’s mean.

One primary functional of interest derived from the transition density in (4) is the
conditional expectation E(y | x) =

∑
h qh(x)μh(x), to which we refer as the transition

mean. A modeler can encode beliefs about this functional relationship between y and x
through the priors for α and parameters in the base measures for Σx and σ2. By influ-
encing the number of occupied mixture components in this locally linear model, α assists
in controlling complexity of the global transition mean. To encourage smooth behavior,
one may use a prior favoring relatively large variances in Σx, most directly through the
priors for {δx� }. To encourage active local behavior, including nearly discontinuous tran-
sitions, one would use small variances in Σx to allow the components to concentrate on
small regions, analogous to using many knots in spline models. Supplement S2 further
explores the effect of prior settings on transition means.

We recommend the following default settings for a baseline prior, which in most
cases should be adjusted for the analysis at hand. We typically set aα in the interval
[5, 15], depending on our prior beliefs about the degree of nonlinearity in the transition
function. Setting bα = 1 yields a prior mean of aα. Antoniak (1974) gives the expression
α log ((α+ T − L)/α) as a rough prior estimate for the number of components. While
this applies in the prior joint model, the number of components in our conditional model
(4) is also a function of the Gaussian weight kernels on x. We set b∗0 = (ȳ, 0, . . . , 0), with
ȳ representing the center of the time series, either empirical or based on prior informa-
tion, thus centering the model. We use Ψ∗

0 = s−1
00 diag([range(y)/2.0]2, 16.0, . . . , 16.0),

where s00 is a user-supplied prior guess of σ2, and range(y) represents the range of
the time series, either empirical or based on prior information. The prior guess s00
partially compensates and controls for the fact that the covariance for β∗ in G0 is mul-
tiplied by σ2. We use s00 = [range(y)/6.0]2/R as an automatic prior guess of s0. The
squared quantity is divided by a prior signal-to-noise ratio R > 0 that is set by the
modeler on a case-by-case basis. We interpret R roughly as the ratio of total variance
to mixture-component error variance. We typically use R ∈ [5.0, 10.0]. We use mx

0 = ȳ 1
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and Sμx

0 = [range(y)/6.0]2 IL, where Ik denotes a k × k identity matrix. We allow for
variability in μx by setting νμx = 10 (L + 2) and Ψμx

0 = [range(y)/2.0]2 IL. Similarly,

we set each bβx

0,r = 0, each Sβx

0,r = IL, each νβx
r = 10 (L + 2) and Ψβx

0,r = 2.0 IL−1−r+1,

for r = 1, . . . , L − 1. Finally, we set νδx� = 5.0, with axs0,� = nx
s0,�

νδx� /2 and bxs0,� =

nx
s0,�

νδx� /(2 sx00,�), for � = 1, . . . , L, where nx
s0,�

= 5.0 and sx00,� = [range(y)/8.0]2.

While the preceding prior settings provide a good starting point in general, they are
not always appropriate. We recommend considering alternate settings, especially for α,
and parameters in the base measures forΣx and σ2, depending on prior beliefs about the
functional relationship being modeled in each analysis. We further recommend checking
for sensitivity of inferences for important quantities to these and other prior settings.
Supplement S3 reports a simulation study exploring sensitivity of posterior inference
results to changes in α and R.

2.3 Computation

We briefly outline the MCMC algorithm used to obtain posterior samples from the
proposed model. Further details are given in Supplement S4. We employ a Gibbs sampler
with a variety of update methods for parameter blocks, which proceeds by successively
sampling the parameters in the sets and manner described below.

Latent states The latent states identifying component membership for each observa-
tion yt are updated individually, each using a Metropolized Gibbs step (Liu, 1996) based
on discrete full conditional distributions involving {ωh}, the weight kernel density for
yt−1:L, and the kernel density for yt.

Stick-breaking weights The DP weights {ωh}Hh=1 are defined through the latent
{vh}H−1

h=1 which, conditional on component membership {st}, admit H − 1 indepen-
dent beta full conditional distributions in standard DPM models (Ishwaran and James,
2001). The normalization term in each likelihood contribution of qh(yt−1:L) complicates
the full conditional distribution in our model. It is unchanged from the distribution re-
ported in DeYoreo and Kottas (2017), with the exception that the kernels are now
multivariate Gaussian on the vector yt−1:L. This adjustment yields numerical instabil-
ity and poor mixing in the one-at-a-time slice sampler employed by DeYoreo and Kottas
(2017). To obtain direct samples from this distribution, we instead employ the multi-
variate hyper-rectangle slice sampler of Neal (2003) to update all vh, h = 1, . . . , H − 1,
simultaneously.

Component-specific parameters To facilitate mixing of the y-indexed, component-
specific parameters, we partition η into its y and x components ηy ≡ {μy,βy, σ2}
and ηx ≡ {μx,βx

1 , . . . , β
x
L−1, δ

x}, and sample p(ηh | · · · ) = p(ηx
h | · · · ,−ηy

h) p(ηy
h |

ηx
h, · · · ), where p(ηx

h | · · · ,−ηy
h) =

∫
p(ηh | · · · ) dηy

h. The weight normalization terms
in qh(yt−1:L) preclude simple conjugate updates of ηx

h, for which we employ a random-
walk Metropolis step. This is then followed by an exact draw from the full conditional
distribution of ηy

h.
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DP prior hyperparameters All parameters of the DP centering distribution have con-
ditionally conjugate updates. For computational stability, our implementation fixes,
rather than updates, the parameters in G0 associated with ηy at prior summary val-
ues, as noted in Section 2.1. Finally, the DP concentration parameter α has a gamma
posterior full conditional distribution with shape aα +H − 1 and rate bα − log(ωH).

We typically initialize MCMC chains at default prior settings such as the prior
mean or applicable summary value from the next level of the hierarchy, or with draws
from the prior model (usually with G0 fixed). The primary exception is the initial
allocation to components {st}, for which we use output from a clustering algorithm
applied to (yt, yt−1, . . . , yt−L), for all t = L+1, . . . , T . For example, we use hierarchical
clustering with Euclidean distance and Ward linkage to assign the observations into H
clusters. The sampler is then run for one or several rounds of tuning or adaptation, as
described in Supplement S4. If adaptation is used, scaled empirical covariance matrices
inform subsequent random-walk proposals. After a specified burn-in period, samples are
collected for inference.

In our experience, the weakly identified ηx and ω parameters present the primary
mixing challenge. This appears to indicate redundancy in the weight functions, for which
many configurations produce similar results. Our illustrations with the base model (i.e.,
without lag selection) focus on low-order dependence L ≤ 5. Later illustrations use
diagonal Σx = Δx, which reduces the computational complexity of the most expensive
update, for {ηx

h}, from O(THL3) to O(TL2 + HL3 + THL). We further aid mixing
by iterating between adaptation and pre-burn-in runs before beginning a final burn-in
run. We note that despite the mixing challenges, estimates for functionals of interest
are often stable.

MCMC and other computations for the proposed model were run in the Julia lan-
guage (Bezanson et al., 2017). Runtimes under various settings are compared as part of
a sensitivity analysis in Supplement S3.

2.4 Transition density estimation

Posterior samples from the model yield rich inferences regarding the transition distri-
bution for a time series. The three of most interest to us are the transition density, the
transition mean functional, and inferences for relevant lags. We incorporate the latter
in Section 4. The transition mean functional and estimates of the transition density
are straightforward to compute, as the stick-breaking representation and blocked Gibbs
sampler yield an approximation of the random mixing distribution G at each MCMC
iteration. For any value of y and x, or over a multidimensional grid of values, one
can use posterior samples of parameters to calculate pointwise samples of the finite-
truncated version of fY |X in (4), given as f̃Y |X(y | x) =

∑H
h=1 q̃h(x) N(h)(y | μ(x), σ2),

with q̃h(x) = ωh N(h)(x)/
∑H

j=1 ωj N(j)(x) and μ(x) = μy −
∑L

�=1 β
y
� (x� − μx

� ). The
samples can then be used to construct point and interval estimates for the transition
density. Other functionals such as the transition mean or quantiles are similarly ob-
tained. One can calculate the transition mean for each posterior sample with ẼY |X(y |
x) =

∑H
h=1 q̃h(x)μ(h)(x) over a grid of values for x, yielding pointwise estimates and
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intervals. We obtain samples of the u ∈ (0, 1) quantile of the transition density by solv-

ing for the unique root of Q̃u(y | x) = u −
∑H

h=1 q̃h(x) Φ
(
[y − μ(h)(x)]/σ(h)

)
, where

Φ(·) is the standard normal cumulative distribution function.

Monte Carlo estimates of K-step-ahead forecasts can be obtained by inductively
simulating (s, y)T+k pairs, for k = 1, . . . ,K, following the first two levels of the hi-
erarchical model (6) for each posterior sample. Such samples propagate both forecast
and inferential uncertainty, and can be useful for assessing model performance with
validation data.

3 Data illustrations

We illustrate the proposed model with two examples. The first synthetic data example
highlights some key features and potential uses of the model. The real data example
illustrates the model’s utility for lag-dependent density estimation. Two default prior
settings were utilized in each case, with one promoting a higher signal variance through
prior signal-to-noise ratio R = 8.0 instead of the default R = 5.0. For each model fit,
multiple MCMC chains were randomly initialized using the strategy described in Sec-
tion 2.3, followed by iterative tuning (no adaptation) and 300,000 burn-in samples. The
next 500,000 iterations were then thinned to 5,000 for inference (plots in the following
illustrations generally use 1,000 or 2,000 of these). Inferences are reported for one of
the chains. These values for burn-in and thinning are fairly conservative; shorter chains
often suffice.

3.1 Simulated data: Ricker model

We begin with a time series simulated from an adaptation of a classical model for
population dynamics (Ricker, 1954). The series was generated from

yt = yt−2 exp(2.6− yt−2) + εt , εt
iid∼ N(0, (0.09)2) , (7)

featuring first-order nonlinear dynamics as a function of the second lag only. We fit
the model to the original real-valued time series with L = 2, T = 72 (so that 70
observations contribute to the likelihood), and H = 40. The R = 5.0 fit resulted in
three chains with similar traces of the log-likelihood and occupied mixture components
(always at two). All traces of σ2 for the most occupied cluster (not shown) converge
to approximately 3.5 times the true value of 0.0081, due in part to the prior estimate
s00 = 0.119. Flexibility and prior bias in error variance, together with low sample size,
result in a transition mean fit that locally mixes two planes, capturing the general shape,
but missing curvature in the region yt−2 ∈ (0, 1) (not shown). Two of three chains with
higher signal-to-noise ratio (R = 8.0) use a third mixture component to better capture
this curvature (although one reverts back to two components), as demonstrated for one
chain in Figure 1.

The dynamics are reasonably recovered in data-rich regions of the phase space de-
spite using an over-specified model with two lags on a short time series. We can in-
formally assess the influence of the first lag with the second-order model by checking
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Figure 1: Model fit to the single-lag dynamical simulation with noise (T = 72, L = 2,
R = 8.0), depicting the posterior mean and 95% interval estimates for the transition
mean function over a grid of values for lag 2. In the left panel, values of the first lag (yt−1)
were fixed at a mean value. In the right panel, values for the first lag were randomly
drawn uniformly over the range of observed values. Observations are included, as well
as the true transition map (dashed red line).

for sensitivity of inferences for the transition mean to different values of the first lag.
For example, the left panel of Figure 1 plots estimates for the transition mean over a
grid of values for the second lag, in which all values for the first lag have been fixed at
their mean. The right panel replicates this plot with grid values for the first lag drawn
uniformly over the range of the data. This perturbation has minimal effect, especially
where data are observed, suggesting that lag 1 is negligible in the model fit. We note
particularly wide credible intervals in the data-sparse region, which approximately reach
10. This appears to stem from the weight functions concentrating locally around the
data, leaving data-sparse regions to revert to an indecisive mixture of the component
fits and prior.

3.2 Old Faithful data

Antoniano-Villalobos and Walker (2016) and DeYoreo and Kottas (2017) both illustrate
single-lag versions of our proposed model with the well-known inter-eruption waiting
times of the Old Faithful geyser in Yellowstone National Park, U.S.A. The time series has
attracted attention, both for illustration and analysis from chaos (Nicholl et al., 1994)
and statistical (Azzalini and Bowman, 1990) perspectives, partly due to nonlinear as
well as non-Gaussian dynamics. We revisit Old Faithful using the traditional data set
reported in Azzalini and Bowman (1990), consisting of 299 consecutive pairs of eruption
durations and waiting times between August 1 and 15, 1985. Figure 2 shows a trace of
eruption waiting times in minutes.

We fit the proposed model to the final T = 291 observations with L = 2 and
H = 40. Likelihood traces are similar among runs under both prior signal-to-noise
ratios, switching (infrequently) between values corresponding to two and three occupied
mixture components. Estimated transition mean surfaces, one of which is shown in
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Figure 2: Trace of 150 consecutive Old Faithful eruption waiting times in minutes. This
window of the middle half of the time series typifies the data, with exception of the run
of long waiting times between index 120 and 140.

Figure 3: Nonparametric model fit to Old Faithful waiting times in minutes (T = 291,
L = 2, R = 5.0), with posterior mean estimates of the transition mean (left) and 0.8
quantile (right) surfaces. Observed transitions are included as points.

Figure 3 (left), are primarily driven by the first lag, with minor tilt along the second.
The transition mean functional is less informative for values of yt−1 above 70 minutes,
when the transition distribution becomes bimodal. In this region, estimates of transition
quantiles may be more appropriate than the transition mean. Inferences for quantiles
over a grid of fixed lag values are easily obtained from posterior samples by following the
procedure described in Section 2.4. Figure 3 (right) shows a pointwise posterior mean
estimate of the 0.8 quantile surface as a function of the two lags. Credible intervals for
both surfaces (excluded for simplicity in the plots) are reasonable, falling within the
range of the data.

Figure 4 shows estimated transition densities (posterior mean and 95% credible
intervals) for three values of the two lags. These estimates demonstrate the density
autoregressive feature of the model, which in this case successfully captures density
dependence on lags. Interestingly, the transition density undergoes noticeable change
between yt−2 = 50 and yt−2 = 80 when yt−1 is fixed at 80 minutes, suggesting depen-
dence on the second lag. Other runs show similar structure. A simple analysis using a
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Figure 4: Posterior mean and 95% interval estimates for the transition density of Old
Faithful waiting times at three pairs of fixed values of the first two lags (T = 291, L = 2,
R = 5.0).

discrete-state Markov chain on a dichotomized version of the time series further supports
second-order dependence.

4 Lag selection

We now discuss extending model (4) to include inferences for relevant lags. This step is
important in many applications, as dependence may extend beyond the most recent lags.
In some cases, not all recent lags are important. Methods for state-space reconstruction
require a minimal number of lags to “unfold” an attractor, but using too many can
be inefficient, or render estimation impractical. Reducing system dimensionality to the
minimum necessary for fitting the data further simplifies posterior analysis and model
interpretation. Our approach is to pre-specify a maximal lag horizon L, and fit an
encompassing model that accommodates up to all L lags, but shrinks to select only
those that significantly contribute to the transition density.

In the time series literature, autoregressive order is often assessed with standard in-
formation criteria, which can include regularization (Khalili et al., 2017). Bayesian ap-
proaches typically involve stochastic-search-type algorithms, and several are presented in
Prado and West (2010, Ch. 2). In the stationary, linear case, one can use the specialized
priors of Huerta and West (1999) on roots of the AR characteristic polynomial to infer
order. Wood et al. (2011) employ a two-stage MCMC sampler on a time-weighted mix-
ture of autoregressive models to infer component-specific order and perform Bayesian
model averaging.

O’Hara and Sillanpää (2009) provide a review of Bayesian variable selection methods
in the regression setting, including that of Kuo and Mallick (1998), which we adopt here.
There is also a growing literature for variable selection in BNP regression modeling.
Barcella et al. (2017) provide a review that discusses approaches for covariate-dependent
DPM, DDP, and product partition models. Most approaches involve binary indicator
variables associated with each covariate that either activate lag-specific kernels (as in
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Reich et al., 2012) or break mixtures for key parameters (i.e., regression coefficients)
involving point masses at 0 (as in Chung and Dunson, 2009). Another option with DPM
models is to include model order as a mixing parameter (as in Lau and So, 2008).

We propose a model extension for global lag selection in Section 4.1. Section 4.2
discusses inference, including posterior sampling and other modifications to MCMC,
and sampling for functionals. Section 4.3 describes an analogous extension for local lag
selection. In Section 4.4, we revisit the data illustrations from Section 3 and include two
additional data sets.

4.1 Model extension for global lag selection

In model (4), both mixture kernels and weights depend on the lags, thus necessitating
coordination across multiple parameters for model-based lag selection. To this end, we
employ binary variables {γ�}, for � = 1, . . . , L, to indicate dependence of yt on yt−�, in
both weights and kernels of all H mixture components, if γ� = 1. The most straightfor-
ward approach to incorporating these indicators follows Kuo and Mallick (1998), wherein
we replace βy

� with γ� β
y
� . The modification to βy controls lag dependence in the mixture

kernels. Our proposed modification to the weight kernels N(h)(yt−1:L | μx,Σx) totally
eliminates dependence on lags for which γ� = 0, and is most clearly understood in the
context of the sequential construction of weight kernels given in (5), wherein each βx

�,r

is replaced with γ� γr β
x
�,r. Additionally, if γ� = 0, the univariate Gaussian density asso-

ciated with yt−� is replaced with 1. This is equivalent to appropriately subsetting {βx
� }

and δx prior to constructing the covariance matrix Σx, reducing the dimensionality of
N(h)(yt−1:L | μx,Σx) to nγ =

∑L
�=1 γ�. If nγ = 0, then the weight function reduces ex-

clusively to ω, resulting in a standard univariate Gaussian DPM model. This approach
reduces computational burden and offers a clean, complete lag selection, conditional on
γ = (γ1, . . . , γL).

The modification for lag selection affects the hierarchical model in (6) through
1) the regression mean in the mixture kernel distribution for yt, which becomes μy −∑L

�=1 γ� β
y
� (yt−� − μx

� ); 2) the construction of N(h)(yt−1:L) in the discrete distribution
for st; and 3) addition of a prior for {γ�}. We again favor simplicity and assign inde-
pendent Bernoulli(πγ

� ) priors to each γ�. One option is to set πγ
� equal to a constant for

all lags, a common choice for variable selection in regression settings. When modeling
nonlinear dynamics, however, subsets of lags are often highly correlated and subject to
aliasing. We thus prefer to use, as a default, a decreasing sequence for πγ

� that helps
identify the model by giving ordered preference to lower lags. As a specific choice,
πγ
� = 0.1 + (0.4/0.5) ∗ 0.5�, for � = 1, . . . , L, geometrically decreases from 0.5 to 0.1 to

promote sparsity and dimension reduction. Supplement S3 explores posterior sensitivity
to these prior options.

4.2 Posterior inference

The proposed setup is minimally disruptive to the MCMC algorithm outlined in Sec-
tion 2.3. Conditional on γ, the effect of selection on the mixture kernels, and hence most
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of the Gibbs updates, is straightforward. We update γ as a block, with a Metropolis
step that proposes switching a random subset of γ (similar to Section 3.3 of Schäfer
and Chopin, 2013). Details are given in Supplement S5.1. Although the γ update has
computational complexity on the same order as that of {ηx

h}, the proposed method
saves elsewhere by reducing the effective number of lags (L) in other updates.

It is well known that variable selection methods of this type tend to result in slowly
mixing MCMC algorithms (O’Hara and Sillanpää, 2009). Proposed changes in γ are of-
ten incongruous with current-state values of model parameters, which are shared across
selection configurations. Furthermore, when γ� = 0, draws for the associated parame-
ters revert to their prior distributions, which may be diffuse relative to their posterior
distributions when γ� = 1, producing draws that will discourage returning to γ� = 1.
Alternative methods such as Gibbs variable selection (Dellaportas et al., 2002) adapt
the prior to improve mixing, but require tuning. We do not pursue this here, but note
that despite mixing difficulties and attenuated posterior probabilities for alternate lag
configurations, our experience has been that MCMC chains can provide useful infer-
ences. We recommend running multiple MCMC chains, initialized at different selection
configurations. We begin MCMC with a phase in which γ is not updated, followed by
iterated tuning or adaptation and burn-in phases with the full sampler, followed by a
final burn-in.

Posterior inferences for relevant lags from MCMC samples are trivial, requiring only
samples of γ, which can be aggregated across iterations to obtain a posterior probability
of inclusion for each lag. The full expression for the transition density, marginalizing
over all 2L possible lag configurations, is

f̃Y |X(y | x) =
∑

γ∈{0,1}L

H∑
h=1

q̃h(x | γ) N(h)(y | μ(x | γ), σ2) Pr(γ) , (8)

where Pr(γ) can refer to either the prior or marginal posterior of γ. In practice, we
bypass the burdensome outer summation in (8) and instead calculate the lag-conditional
version of the transition density in Section 2.4 across MCMC samples, which yields the
desired posterior inferences marginalized with respect to the posterior of all model
parameters.

Conditional on lag selection, posterior inference for functionals proceeds as in Sec-
tion 2.4, with appropriate modifications to include γ (see Supplement S5.2 for details).
Calculation of transition density and mean estimates requires the full x ∈ R

L, regard-
less of inferences for γ. However, one may be interested in inferences conditional on
a certain lag configuration, or marginal inferences that in some way ignore or average
over the effect of a subset of x. Suppose one has fit a model with L = 3 and desires
to examine the transition mean function of the first two lags only when γ = (1, 1, 0).
One option would be to use only posterior samples for which this lag configuration was
active (taking into account the order of full-conditional sampling), given a sufficiently
long MCMC chain. They may then calculate the γ-modified transition density using
these samples for any x, substituting a dummy or default value in for x3, and exam-
ining the transition density or mean as a function of x1 and x2 only. If fewer than all
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posterior samples coincide with a particular configuration, one may proceed in the same
way, substituting default (or average) values in for elements of x hypothesized to be
inactive and examining inferences (calculated from posterior samples, including γ) as a
function of the subset of interest. We caution that using a subset of samples ignores pos-
terior uncertainty, and that one should test the resulting inferences for sensitivity to the
default values used for inactive x� before making conclusions. For example, one could
change the default values in x, or replace them with random values drawn uniformly
across the range of {yt}, as demonstrated in Section 3.

4.3 Local lag selection

Thus far, we have used a single set of global indicators, {γ�}. If one believes that lag
(variable) dependence varies across the predictor space R

L, it is straightforward to

instead use a separate set {γ(h)
� } for each mixture component h = 1, . . . , H, in which

case the indicators become part of ηh. Model extensions and implementation for local
lag selection require only slight modifications to the procedures in Sections 4.1 and 4.2.
Mixture kernels N(h)(yt | yt−1:L) and weight kernels N(h)(yt−1:L) are modified in the

same manner as before, but use a unique γh =
(
γ
(h)
1 , . . . , γ

(h)
L

)
for each h = 1, . . . , H.

With replicates of each γ� across components, the L independent Bernoulli priors become
part of G0, and we assign independent mixture priors for each πγ

� . Following Chung and
Dunson (2009) and Lucas et al. (2006), we use πγ

� ∼ (1 − ππ
� ) δ0(π

γ
� ) + ππ

� Beta(πγ
� |

aπ� , b
π
� ), for � = 1, . . . , L, where ππ

� ∈ (0, 1), and δ0 is the Dirac delta measure centered
at 0. We use ππ

� = 0.1 + (0.4/0.5) ∗ 0.5�, for � = 1, . . . , L, aπ1 = · · · = aπL = 1.0, and
bπ1 = · · · = bπL = 0.5 as default values.

All modifications to MCMC updates in Section 4.2 still apply, but require mixture
weight and kernel calculations to reference their respective γh; see Supplement S5.3
for details. Local lag selection modestly increases computational complexity as well
as MCMC runtime relative to global selection (see Supplement S3). This is due to H
repeated calculations of the weight denominator across all observations (each requiring
up to O(THL3), or O(THL) for diagonal Σx, operations). In our experience, however,
increased MCMC efficiency renders local selection worthwhile.

Inference for global dependence can be assessed with local selection, but is more

nuanced. We assess global lag dependence by monitoring the weight
∑

h γ
(h)
�

∑
t 1(st=h)/

(T − L), which gives the proportion of observations in the time series belonging to

mixture components for which lag � is active. Alternatively, we can replace γ
(h)
� in the

preceding expression with γ
(h)
� 1

(|βy (h)
� |>b0)

, for some small threshold b0 > 0, requiring

both dependence in the weights and a minimum contribution to the slope of the kernel

for a lag to be considered active. The quantities
∑

h ωh γ
(h)
� and πγ

� are also informative.
Inferences for transition densities and associated functionals again follow the procedures
in Section 4.2.



1262 BNP Density Autoregression

4.4 Data illustrations incorporating lag selection

We now revisit the analyses from Section 3 with lag selection, and include two addi-
tional examples. All models in this section utilize diagonal Σx and default prior settings.
Parameters of the components of G0 associated with ηy were fixed. For each example,
four MCMC chains were randomly initialized using the strategy described in Section 2.3.
Two chains were initialized with all lags off and two were initialized with all lags on.
Tuning stages were followed by 300,000 burn-in samples. The next 500,000 iterations
were then thinned to 5,000 for inference (and further thinned for computationally ex-
pensive functionals such as surfaces). Both global and local lag selection were employed
and compared.

Simulated data: linear autoregression

To test the model’s ability to identify simple structure, for which the proposed model is
over-specified, we generated time series from a stationary, Gaussian linear autoregressive
model of order two. Models with global and local lag selection perform well on time series
of varying length, successfully recovering parameter values and decisively selecting the
first two lags (with non-negligible inclusion of lag 3 for the longer series). Further details
are given in Supplement S5.4.

Simulated data: Ricker model

Model runs (T = 75, L = 5, H = 40) fit to the nonlinear simulation from Section 3.1
consistently recover lag dependence as well as the nonlinear dynamics with both global
and local selection. Specifically, lag 2 is consistently kept on for all occupied mixture
components throughout the chains, and other lags are generally off, with greater mixing
in the model with local selection. Inferences appear fairly robust to choice of prior signal-
to-noise ratio R ∈ {5.0, 8.0}. The estimated transition mean functional, on lag 2 only,
is visually very similar to the left panel of Figure 1. A few runs include lag 4, which is
reasonable given that the data reside in two diagonal quadrants of the (yt−2, yt−4) lag
coordinate space.

Old Faithful data

Model runs (T = 294, L = 5, H = 40) fit to the Old Faithful time series have mixed re-
sults. Global lag selection runs with low prior signal-to-noise ratio R = 5.0 all converge
to lag 1 only with no mixing over other configurations. Runs with R = 8.0 continue ex-
ploring selection configurations past the specified burn-in phase, on very long timescales.
One run retains lag 3 and another uses lag 2 for part of the chain. Local selection yields
similar results to global, but with exploration of lag inclusion on shorter time scales and
some local inclusion of lags 2 and 3. Nevertheless, these runs do not detect the density
dependence noted in Section 3.2. Additional runs with priors more favorable to higher
lags and larger prior weight-kernel variance also miss dependence on lag 2.
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Figure 5: Trace of the natural logarithm of pink salmon abundance in Alaska from 1934
to 1963.

Pink salmon data

We next investigate a time series of annual pink salmon abundance (escapement) in
Alaska, U.S.A. (Alaska Fisheries Science Center, 2018), whose life cycle reliably follows
a two-year pattern (Heard, 1991). Naive modeling of annual population dynamics based
on the previous year only would capture inter-population, rather than generational
dynamic dependence. We expect even lags to have the most influence in predicting the
current year’s population. The trace of the natural logarithm of abundance in Figure 5
suggests a comprehensive analysis might appropriately include non-stationarity with
long-term trends, which we forego in favor of a simple demonstration. Lag scatter plots
(not shown) suggest that we should be able to detect lag dependence structure, even
with as few as 30 observations.

Model runs (T = 30, L = 5, H = 25) fit to the pink salmon data demonstrate
sensitivity to prior and model specification. Most runs with global lag selection and
higher prior signal-to-noise ratio (R = 8.0) deselect all lags, although one run has lag 2
active for many inference samples. Runs with lower R = 5.0 deselect all lags except lag
2, which is on for long periods in three of four chains. Local lag selection consistently
retains lag 2 throughout most inference samples, as well as lag 4 occasionally. Increasing
R tends to result in a higher inclusion probability for lag 4, presumably from a tendency
to over-fit a transition surface informed by data only in diagonal quadrants of the
(log(yt−2), log(yt−4)) space, similar to the Ricker model above. Figure 6 reports posterior
inferences for the transition mean as a function of lag 2, under the global and local lag
selection model versions. Inferences for the transition mean as a function of lag 2 only
appear appropriate and insensitive to other lags.

5 Transition density estimation performance

Transition density estimation is a primary objective of the methodology. To compare
density estimation across model configurations and data scenarios, we fit the model to
simulated time series exhibiting various features and evaluate Monte Carlo estimates
of the Kullback-Leibler (K-L) divergence between the estimated and true transition
densities.
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Figure 6: Model fit to the logarithm of annual pink salmon abundance with T = 30,
L = 5, using global (left) and local (center and right) lag selection. In the global case,
lag 2 is predominately selected, and this plot reflects only iterations of MCMC for which
lag 2 is on. In the local case, other lags were fixed at the mean (center) or randomly
drawn (right). The plots include pointwise posterior mean estimates and 95% credible
intervals for the transition mean as a function of lag 2, together with observed two-step
transitions. The dotted reference line has unit slope and passes through the origin.

The simulated time series are variants of the Ricker-type system in (7). The first
modification replaces the additive Gaussian error with multiplicative log-normal error.
Specifically, transitions were generated from

yt = yt−2 exp(2.6− yt−2 + εt) , εt
iid∼ N(0, (0.09)2) , (9)

corresponding to a log-normal transition density. This produces right skew and het-
eroscedasticity in the transition distribution, which continues to depend exclusively
on the second lag. The lag scatter plot in Figure 7 depicts 250 transitions. We refer
to this modification as the single-lag, log-normal simulation. The second modification
adds dependence on the first lag through the log-scale, which is equal to 0.09 yt−1.
Thus the transition distribution is still log-normal, with each parameter depending on
a separate lag. The lag scatter plot in Figure 8 depicts 500 transitions, demonstrating
dependence of the variance on both lags. We refer to this modification as the two-lag,
log-normal simulation. In all simulations, a sequence of 1,000 observations was reserved
for model fitting, and a validation set of size 1,000 was randomly sampled from the
subsequent 9,000 observations. In similar data scenarios with right skew and positive-
valued variables, we have previously modeled observations on the logarithmic scale. We
nevertheless proceed by fitting these series directly in order to study and compare how
the proposed models handle heteroscedasticity, subtle departures from Gaussianity, and
subtle variation in lag dependence.

The following models were fit using default settings to all three series: the pro-
posed model (which we denote as the BNP-WMAR model, for Bayesian nonparametric,
weighted mixture of autoregressive models) with L = 2, fullΣx, and no lag selection; the
BNP-WMAR model with L = 5, diagonal Σx, and global lag selection; and finally with
L = 5, diagonal Σx, and local lag selection. Three chains were run for the base model
that does not incorporate lag selection, and four chains were run for each model with
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Figure 7: Lag scatter plot from the modified single-lag nonlinear simulation with log-
normal transition density.

Figure 8: Lag scatter plot from the modified two-lag nonlinear simulation with log-
normal transition density.

lag selection, with two chains initialized with all lags off and the other two initialized
with all lags on.

Each posterior sample was used to create density ordinates, denoted p̂(yt | yt−1:L)
and calculated from the transition density in Section 2.4, appropriately modified by

lag selection indicators. With 2,000 replicate simulation draws {y(i)j }2000i=1 from the data-
generating distribution (with density ptrue(yt | yt−1:L)) for each validation pair
{(yj ,xj)}1000j=1 , we approximated the Kullback-Leibler divergence using

DKL(ptrue ‖ p̂) ≡
∫

ptrue(y | x) log
(
ptrue(y | x)
p̂(y | x)

)
dy

≈
2000∑
i=1

log
(
ptrue(y

(i) | x)
)
− log

(
p̂(y(i) | x)

)
,

(10)

averaged over validation observations and posterior simulations. Let D̂KL denote the
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D̂KL

Simulation Model 70 obs. 300 obs.

Single-lag, Base model (2) 2.756 3.761 0.273 0.384
normal Global selection (5) 0.777 0.821 0.239 0.252

Local selection (5) 0.792 0.828 0.250 0.264

Single-lag, Base model (2) 1.110 1.240 0.337 0.340
log-normal Global selection (5) 0.700 0.733 0.296 0.326

Local selection (5) 0.723 0.776 0.296 0.305

Two-lag, Base model (2) 2.210 2.672 1.084 1.103
log-normal Global selection (5) 1.429 2.096 0.966 2.002

Local selection (5) 1.417 1.445 0.948 0.978

Table 1: Comparison of transition density estimation performance, measured by K-L
divergence, from model fits to three simulations and with two sample sizes. The numbers
in parentheses are L, the number of lags considered in each fit. Within each set, the
minimum (left) and maximum (right) losses across runs are reported.

result. This loss metric is reported in Table 1 for two chains of each model fit to time-
series of lengths T = 75 and T = 305 (T = 72 and 302 for the model with L = 2; using
the same 70 and 300 observations used to fit the models with L = 5). The two reported
runs are those producing the minimum and maximum observed K-L divergence within
each set.

In the single-lag, normal scenario, the burden of fitting an unnecessary dimension
of the phase space is evident, particularly with the short time series. In the T = 302
case with L = 2, two of the chains use three mixture components, whereas one uses
four and performs comparably to the models with lag selection. Both global and local
lag selection perform well for both sample sizes, and yield accurate inferences for lag
dependence, with occasional inclusion of lag 4.

Fitting two lags again hinders the base model in the single-lag, log-normal scenario
when sample size is small. Both global and local lag selection perform well, with the
best run of local selection only slightly outperforming the best run of global selection
in the T = 305 case. In the large sample, chains of the global selection model ini-
tialized with all lags on retain both lags 2 and 4, whereas chains initialized with all
lags off retain only lag 2. Despite this lack of mixing, the discrepancy in K-L loss is
minimal.

In the two-lag, log-normal scenario, the base model with L = 2 has the advantage of
being fixed at the correct lag structure. However, both models with lag selection manage
superior performance. In the small sample, the base model over-fits a few points in the
sparse region with yt−1 low and yt−2 high, producing inferences that fail to generalize.
In contrast, the global selection model retains only lag 2 in three of four runs (selecting
none in the poorly performing run), avoiding the over-fitting issue at the expense of
missing density dependence on the first lag. The model compensates with a right-skewed
transition density when yt−2 is low, irrespective of yt−1. Local lag selection has similar
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behavior in the small sample. All models struggle in the region with small values of
lag 1 and large values of lag 2, where the true density is far more concentrated than
estimated.

In the large sample, global selection is inconsistent, correctly retaining both of the
first two lags when initialized with all lags on, but retaining no lags and lag 2 only in
respective runs initialized with no lags on. The two runs with correct lag selection yield
effective density estimation, capturing variance and skew dependence on yt−1. Local lag
selection does the same, with consistent performance across initializations.

The dimension reduction and parsimony afforded by lag selection provide signifi-
cant gains in density estimation, as measured by K-L distance, and make a strong case
for the proposed model extensions. Global selection can be effective when the depen-
dence structure is simple, but we generally recommend the more versatile local selection
model.

6 Discussion

We have developed a modeling framework for fully nonparametric, nonlinear autore-
gressive models targeted at estimating transition densities. The model extends existing
single-lag counterparts and further offers inference for lag dependence. We have demon-
strated the model’s utility with simulated, geological, and ecological data examples with
diverse objectives. The model allows users to relax restrictive characteristics of standard
models, or softly specify such through prior settings, within a single model.

Results from the base model are promising, faithfully capturing known or anticipated
features in the data examples. Of course, current computing bottlenecks limit what can
practically be accomplished. For example, complex dynamics call for many mixture
components and high truncation level H, and computations for updating component-
specific parameters are not readily distributable in our approach due to their appearance
in the normalized weights.

The modeling objectives of estimating flexible transition densities, accommodating
nonlinear dynamics, and selecting active lags offer many degrees of freedom that in
most cases will not be entirely identified with data alone. Decisions must be made, and
correspondent behaviors encouraged through the prior settings. As such, we recommend
completing a thorough exploratory analysis of data. We further advise that practitioners
fit models with a variety of prior signal-to-noise ratio and flexibility (through α and
possibly δx) settings, each with multiple MCMC chains.

Several considerations can help guide which settings are appropriate for a given sce-
nario. One that bears on lag selection is the interplay between noise and signal. A model
attempting to fit noise may erroneously reach into higher dimensions. However, in the
absence of noise, finding a high-dimensional structure is an objective of techniques such
as time-delay embedding. Another consideration arises from correlation among lags,
which can result in multiple distinct lag configurations that each produce comparably
effective forecasts. This partially motivates our recommendation of decaying inclusion
probabilities in the prior.
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Inference for relevant lags remains practically challenging. Our experience has been
that results from the models with lag selection tend to exhibit prior sensitivity, a nat-
ural consequence of the flexibility discussed. We have also noted that in models with
lag selection, mixing challenges intensify with increased time series length, which tends
to sharpen posterior modes. This often manifests through kernel coefficients being esti-
mated at small, nonzero magnitudes while corresponding lag selection indicators remain
on. Local selection helps alleviate this issue by breaking up the samples informing mul-
tiple lag indicators, naturally tempering the posterior distributions and encouraging
greater mixing. The cost of added versatility and improved mixing is a more intricate
picture of lag importance in posterior analysis.

Although binary lag inclusion parameters are easy to interpret, they offer limited
insight to relative contributions from active lags. Such contributions can be quanti-
fied for the mean transition function through functional decomposition, but this is less
straightforward for transition densities. Ideally, weak dependence would manifest in the
posterior probability of inclusion. Alternatively, we envision a framework that quantifies
lag importance with shrinkage of continuous parameters. Continuous quantification of
lag importance could in turn reduce the influence of weight kernels relative to the DP
weights and thus accommodate multiple sources of influence on the mixture weights.

Notwithstanding theoretical and practical challenges, lag selection is critical for di-
mension reduction and is an integral part of this work. Simpler models can partially
avoid some of the challenges noted, but risk failing to model, or even detect, nonlinear
and/or non-Gaussian dynamics. Our proposed methods extend Bayesian nonparamet-
ric density autoregressive modeling by accommodating multiple lags and providing a
framework for lag selection that works in concert with the other objectives.

Supplementary Material

Supplementary Material to accompany “Bayesian Nonparametric Density Autoregres-
sion with Lag Selection” (DOI: 10.1214/21-BA1296SUPP; .pdf).

Supplementary Material.pdf. Contains additional details referenced in the article. Sec-
tion S1 explores considerations for a model that assumes stationarity of the time series.
Section S2 provides a visualization of the effect of prior settings on the prior transition
mean function. Section S3 reports a simulation study examining sensitivity of model
runtime and posterior inferences to various settings. Section S4 contains additional de-
tails on the MCMC sampler presented in Section 2.3. Section S5 provides additional
details for posterior simulation and inference, as well as an additional illustration with
data simulated from an AR process.

Julia package. Package containing code to support fitting and post-processing models.

Example code. Code and data to fit models and perform simulation studies as described
in the article.

https://doi.org/10.1214/21-BA1296SUPP
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Rodŕıguez, A. and Ter Horst, E. (2008). “Bayesian Dynamic Density Estimation.”
Bayesian Analysis, 3(2): 339–365. MR2407430. doi: https://doi.org/10.1214/

08-BA313. 1246
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