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Generalized Mixtures of Finite Mixtures and
Telescoping Sampling∗

Sylvia Frühwirth-Schnatter†, Gertraud Malsiner-Walli‡, and Bettina Grün§

Abstract. Within a Bayesian framework, a comprehensive investigation of mix-
tures of finite mixtures (MFMs), i.e., finite mixtures with a prior on the number
of components, is performed. This model class has applications in model-based
clustering as well as for semi-parametric density estimation and requires suitable
prior specifications and inference methods to exploit its full potential. We con-
tribute by considering a generalized class of MFMs where the hyperparameter γK
of a symmetric Dirichlet prior on the weight distribution depends on the number
of components. We show that this model class may be regarded as a Bayesian
non-parametric mixture outside the class of Gibbs-type priors. We emphasize the
distinction between the number of components K of a mixture and the num-
ber of clusters K+, i.e., the number of filled components given the data. In the
MFM model, K+ is a random variable and its prior depends on the prior on K
and on the hyperparameter γK . We employ a flexible prior distribution for the
number of components K and derive the corresponding prior on the number of
clusters K+ for generalized MFMs. For posterior inference we propose the novel
telescoping sampler which allows Bayesian inference for mixtures with arbitrary
component distributions without resorting to reversible jump Markov chain Monte
Carlo (MCMC) methods. The telescoping sampler explicitly samples the number
of components, but otherwise requires only the usual MCMC steps of a finite mix-
ture model. The ease of its application using different component distributions is
demonstrated on several data sets.
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1 Introduction

The present paper contributes to Bayesian mixture analysis where the number of com-
ponents K is unknown and a prior on K is specified. This class of mixtures of finite
mixtures (MFMs) has a long tradition in Bayesian mixture modeling (Richardson and
Green, 1997; Nobile, 2004; McCullagh and Yang, 2008) and has gained recent attention
by Miller and Harrison (2018); Geng et al. (2019); Xie and Xu (2020), among others.
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Previously considered MFMs differ with respect to the prior specifications on K and
the component weights. We combine the different approaches to a generalized MFM
model specification. We base our considerations on the crucial distinction between the
number of components K in the mixture distribution and the number of clusters K+ in
the data which is defined as the number of “filled” mixture components used to generate
the observed data. This fundamental distinction between K and K+ has always been
prevalent in Bayesian non-parametric (BNP) mixture analysis, see, e.g., the recent work
by Argiento and De Iorio (2019). In applied finite mixture analysis, however, it is still
common to assume that K and K+ are the same entity, despite earlier work by Nobile
(2004), McCullagh and Yang (2008), and, more recently, Miller and Harrison (2018).

Dirichlet process mixtures (DPMs) are the most popular BNP mixture approach.
Their focus naturally lies on inference on the number of clusters, with K being fixed
at +∞. For DPMs, the number of clusters grows as K+ ∼ α log(N) as the number of
observations N increases. Doubt about the usefulness of DPMs for clustering has been
voiced for many years and, indeed, Miller and Harrison (2013) proved inconsistency of
DPMs for the number of clusters for the simple case of univariate Gaussian mixtures
with unit variances. As a two-parameter alternative to DPMs, Pitman-Yor process mix-
tures were introduced in the BNP literature by Pitman and Yor (1997). Malsiner-Walli
et al. (2016, 2017) introduced sparse finite mixtures (SFMs) in the context of applied
finite mixture analysis. As shown by De Blasi et al. (2015), both model classes are
closely connected. SFMs choose a fixed, clearly overfitting value of K in the spirit of
Rousseau and Mengersen (2011) and a symmetric Dirichlet prior on the weight distri-
bution with a very small hyperparameter γK . Whereas K is fixed, this choice allows the
number of clusters K+ to be a random variable taking values smaller than K. However,
the larger K, the smaller γK has to be, motivating the “dynamic” SFM introduced in
Frühwirth-Schnatter and Malsiner-Walli (2019), where γK = α/K was chosen with α
being a hyperparameter independent of K.

The class of generalized MFMs we introduce in this paper is a finite mixture model
with a prior on K, where the hyperparameter γK may change as a function of K.
We consider two special cases of this specification. The static MFM uses a fixed value
γK ≡ γ. The dynamic MFM uses γK = α/K and can thus induce a dynamic SFM
with a prior on K. This MFM specification, considered previously in McCullagh and
Yang (2008), is less common in applied finite mixture analysis than the static MFM.
McCullagh and Yang (2008) conjecture that the static and dynamic versions of the MFM
are quite different. We shed light on this by investigating the exchangeable partition
probability function (EPPF), i.e., the prior induced on the random partition of the
data (Pitman, 1995) by the generalized MFM, and discuss its specific form for static
and dynamic MFMs. As shown in the seminal work by Gnedin and Pitman (2006),
the static MFM considered in Richardson and Green (1997) and Miller and Harrison
(2018) is equivalent to a BNP mixture with a Gibbs-type prior on the random partitions.
Based on the EPPF of the generalized MFM, we show that the static MFM is the only
mixture within this class that induces a Gibbs-type prior. Any specification where the
hyperparameter γK varies withK leads to a BNP mixture beyond Gibbs-type priors. We
focus on the dynamic MFM where γK = α/K is inversely proportional to the number of
components K and show that it converges to a DPM with concentration parameter α,
if the prior p(K) puts all mass on +∞. Hence, while staying within the finite mixture
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framework, the dynamic MFM can be regarded as a “natural generalization” of the
celebrated Dirichlet process prior beyond the class of Gibbs-type priors.

We propose the three-parameter beta-negative-binomial distribution as a prior on
the number of components K which unifies priors proposed in Richardson and Green
(1997); Nobile (2004); Cerquetti (2010); Miller and Harrison (2018); Grazian et al.
(2020). Building on Antoniak (1974); Nobile (2004); Gnedin and Pitman (2006), we
derive the implicitly induced prior on the number of clusters K+ for generalized MFMs.

A tremendous challenge for Bayesian mixtures with an unknown number of com-
ponents is practical statistical inference. To this aim, Richardson and Green (1997)
introduced reversible jump Markov chain Monte Carlo (RJMCMC) for static MFMs
with univariate Gaussian components. Exploiting that static MFMs are Gibbs-type pri-
ors, Miller and Harrison (2018) introduced sampling techniques from BNP statistics
to finite mixture analysis. Applying the Chinese restaurant process (CRP) sampler of
Jain and Neal (2004, 2007), they sample the partitions and, in this way, the number of
clusters K+ and infer the number of components K in a post-processing step by linking
the distribution of K to the distribution of K+.

In this paper, we introduce a novel MCMC algorithm for generalized MFMs called
telescoping sampling that updates simultaneously the number of clusters K+ and the
number of components K during sampling without resorting to RJMCMC. As opposed
to the CRP sampler, telescoping sampling also works outside the class of Gibbs-type
priors. Sampling K only depends on the current partition of the data and is indepen-
dent of the component parameters. This makes our sampler a most generic inference
tool for finite mixture models with an unknown number of components which can be
applied to arbitrary mixture families. Our sampler is easily implemented, for instance,
for multivariate Gaussian mixtures with an unknown number of components K, and
thus provides an attractive alternative to RJMCMC which is challenging to tune in
higher dimensions, see, e.g., Dellaportas and Papageorgiou (2006).

The paper is structured as follows. In Section 2, we present the generalized MFM
model and derive the EPPF. Section 3 proposes the beta-negative-binomial as a prior
on the number of components K and derives the prior on the number of clusters K+

for a generalized MFM. Section 4 discusses connections between applied finite mixture
analysis based on MFMs and BNP mixtures. Our novel MCMC sampler is presented
in Section 5 and is benchmarked against RJMCMC and the CRP sampler in Section 6.
Additionally, MFMs with various uni- and multivariate component densities are applied
both to artificial and real data of varying dimension and sample size. Section 7 concludes.

2 Generalized mixtures of finite mixture models

2.1 Model formulation

Consider N observations y = (y1, . . . ,yN ) of a uni- or multivariate continuous or
discrete-valued variable. The generalized MFM is defined in a hierarchical way:

K ∼ p(K), (2.1)
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η1, . . . , ηK |K, γK ∼ DK (γK) ,

φ ∼ p(φ),

θk|φ ∼ p(θk|φ), independently for k = 1, . . . ,K,

Si|K, η1, . . . , ηK ∼ MulNom (1; η1, . . . , ηK) , independently for i = 1, . . . , N,

yi|K,Si = k,θk ∼ f(yi|θk), independently for i = 1, . . . , N,

where Si is the latent allocation variable of observation yi, MulNom is the multino-
mial distribution, and f(yi|θk) is the parametric density of component k. Model (2.1)
depends on a sequence γ = {γK} of positive numbers which defines for each K the hy-
perparameter of the symmetric Dirichlet prior ηK |K, γK ∼ DK (γK) on the component
weights ηK = (η1, . . . , ηK). The component parameters θk are independent conditional
on the (random) hyperparameters φ. In combination with the invariance of the sym-
metric Dirichlet prior the prior specification is therefore invariant to label-switching.

Model (2.1) contains the finite mixture model with a prior on the number of com-
ponents K studied by Richardson and Green (1997) and Miller and Harrison (2018),
who termed this model a mixture of finite mixtures (MFM), as that special case where
γK ≡ γ. As noted by Miller and Harrison (2018), assuming the same γ for all K is a
“genuine restriction” which considerably simplifies the derivation of the implied par-
tition distribution – a crucial ingredient to their inference algorithm. McCullagh and
Yang (2008) extend this “static” MFM with constant γ by specifying a “dynamic” MFM
where γK = α/K is inversely proportional to K and depends on a hyperparameter α,
i.e., ηK |K,α ∼ DK (α/K).

For a given K, K+ is defined as the number of components that generated the

data, i.e., K+ =
∑K

k=1 I{Nk > 0}, where Nk = #{i : Si = k} counts the observations
generated by component k. In the following we refer to K+ as the number of clusters.
Including a prior p(K) leads to both K+ and K being random a priori. As opposed
to the common perception that for a finite mixture K+ given K is deterministic and
equal to K, we show in Section 3 that the sequence of hyperparameters γ = {γK} has
a crucial impact on the induced prior of the data partitions and the number of clusters
K+. For a static MFM with γ = 1 (Richardson and Green, 1997; Miller and Harrison,
2018), e.g., the prior expected number of clusters, E(K+|N, γ = 1), is indeed close to
E(K) for many priors p(K) with finite mean, even for small N . However, having γK
decrease with increasing K induces randomness in the prior distribution of K+ given
K, allowing for a gap between K+ and K for a wide range of α and N values.

Under model (2.1), the joint distribution of the data y = (y1, . . . ,yN ) has a repre-
sentation as a countably infinite MFM with K components:

p(y) =

∞∑
K=1

p(K)

N∏
i=1

p(yi|K), p(yi|K) =

K∑
k=1

ηkf(yi|θk). (2.2)

The type of mixtures which are summed over in (2.2) vary with the prior parameter
γK of the component weights. Using a symmetric Dirichlet prior, a priori the mean
of the component weights given K is equal to a vector of dimension K with values
1/K. However, the variance decreases with increasing hyperparameter γK and thus
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more prior mass is assigned to balanced weight distributions. On the other hand, the
variance increases and the component weights a priori become more unbalanced with
decreasing values of γK . For a static MFM with γK ≡ γ, mixtures of a similar type are
combined. For a dynamic MFM with γK = α/K, mixtures favoring different component
size distributions are combined: standard mixture models with balanced components,
which emerge for small K, are mixed with SFMs for moderate K and finally, as K goes
to infinity, with DPMs favoring extremely unbalanced component sizes. As will be shown
in Section 2.2, the dynamic prior on the component weights increases the flexibility of
the prior induced on the partitions and the number of clusters K+ and leads outside the
family of Gibbs-type priors. Moreover, a hyperprior on α, to be discussed in Section 4.3,
achieves additional adaptivity of the induced prior on the partitions to the data at hand.

2.2 The EPPF and the prior distribution of cluster sizes

The MFM model (2.1) induces through the latent indicators S = (S1, . . . , SN ) a random
partition C = {C1, . . . , CK+} of the N data points into K+ clusters where each cluster
Cj contains all observations generated by the same mixture component, i.e., Si = Sj for
all yi,yj ∈ Cj , see Lau and Green (2007). In the tradition of Pitman (1995), we derive
in Theorem 2.1 the prior partition probability function p(C|N,γ) of a generalized MFM
for a given sequence γ = {γK} and discuss static MFMs with γK ≡ γ and dynamic
MFMs with γK = α/K as special cases. In addition, we derive the prior distribution
p(N1, . . . , NK+ |N,γ) of the labeled cluster sizes Nj = card (Cj), where the K+ clusters
in C are arranged in some exchangeable random order and we assign label 1 to the first
cluster, label 2 to the second cluster and so forth (Pitman, 2006).1

Theorem 2.1. For a generalized MFM with proper prior p(K) and ηK |K,γ∼DK (γK),
the probability mass function p(C|N,γ) of the set partition C = {C1, . . . , CK+} and the
prior distribution p(N1, . . . , NK+ |N,γ) of the labeled cluster sizes are given by:

p(C|N,γ) =

∞∑
K=K+

p(K)p(C|N,K, γK), (2.3)

p(C|N,K, γK) =
V K,γK

N,K+

Γ(γK)K+

K+∏
j=1

Γ(Nj + γK), where Nj = card (Cj) , (2.4)

p(N1, . . . , NK+ |N,γ) =
N !

K+!

∞∑
K=K+

p(K)
V K,γK

N,K+

Γ(γK)K+

K+∏
j=1

Γ(Nj + γK)

Γ(Nj + 1)
, (2.5)

V K,γK

N,K+
=

Γ(γKK)K!

Γ(γKK +N)(K −K+)!
. (2.6)

Being a symmetric function of the cluster sizes (N1, . . . , NK+), p(C|N,γ) is an EPPF
(Pitman, 1995) and defines an exchangeable random partition of the N data points

1One such order is arrangement in order of appearance (Pitman, 1996), where the first observation

y1 belongs to the first cluster and for each j = 2, . . .K+, the first observation not assigned to ∪j−1
�=1C�

belongs to cluster Cj . However, any other exchangeable random ordering will do.
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for the class of generalized MFMs. The EPPF is instrumental for understanding the
mathematical properties of the implied partitions and is a main object of interest in
BNP mixtures, see, e.g., Lijoi and Prünster (2010).

An important class of BNP mixture models are mixtures relying on Gibbs-type
random probability measures, or Gibbs-type priors, introduced in the seminal work by
Gnedin and Pitman (2006). They are considered the most natural generalization of
DPMs as they allow better control of the clustering behavior, see the excellent work of
De Blasi et al. (2015). Under a Gibbs-type prior, the EPPF takes a specific product
form and can be compared with the EPPF of a generalized MFM. Relying on Gnedin
and Pitman (2006), Gnedin (2010) and De Blasi et al. (2013), among others, Miller and
Harrison (2018) show that a static MFM induces a Gibbs-type prior on the partitions.
Indeed, for γK ≡ γ the EPPF in (2.3) takes the following product form:

p(C|N, γ) = V γ
N,K+

K+∏
j=1

Γ(Nj + γ)

Γ(γ)
, (2.7)

where V γ
N,k =

∑∞
K=k p(K) K!Γ(γK)

(K−k)!Γ(γK+N) satisfies the following recursion for k = 1, . . . ,

N−1 (see Appendix A in the supplementary material (Frühwirth-Schnatter et al., 2021)
for a proof):2

V γ
N,k = (N + γk)V γ

N+1,k + V γ
N+1,k+1. (2.8)

However, for a generalized MFM with γK depending on K, we obtain a mixture model
with a partition structure beyond Gibbs-type priors. For a dynamic MFM, we estab-
lish in Theorem 2.2 that the EPPF p(C|N,α) can be expressed explicitly in relation
to a DPM with precision parameter α, for which the EPPF is given by the Ewens
distribution:

pDP(C|N,α) =
αK+Γ(α)

Γ(α+N)

K+∏
j=1

Γ(Nj). (2.9)

Theorem 2.2. For a dynamic MFM with γK = α/K, the EPPF p(C|N,α) can be
expressed as:

p(C|N,α) = pDP(C|N,α)×
∞∑

K=K+

p(K)RK,α
N,K+

, (2.10)

RK,α
N,K+

=

K+∏
j=1

Γ(Nj +
α
K )(K − j + 1)

Γ(1 + α
K )Γ(Nj)K

,

where pDP(C|N,α) is the probability mass function (pmf) of the Ewens distribution and
N is the vector of induced cluster sizes (N1, . . . , NK+).

2Note that the normalization Ṽ γ
N,k = γkV γ

N,k is needed to represent (2.7) as the common EPPF of

a Gibbs-type prior: p(C|N,K+ = k) = Ṽ γ
N,k

∏k
j=1 WNj

, where W� = (1 + γ)(�−1)! =
Γ(�+γ)
Γ(1+γ)

are the

rising factorials.
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Figure 1: The implicit prior p(K+|N, γ = 1) on the number of clusters K+ for the static
MFM under the uniform prior K ∼ U{1, 30} for various sample sizes, N = 20, 100, 1000.

It follows from Theorem 2.2 that dynamic MFMs can be regarded as a “natural
generalization” of the celebrated Dirichlet process prior beyond the class of Gibbs-type
priors. Theorems 2.1 and 2.2 (which are proven in Appendix A) are exploited further
in Section 3 to derive the induced prior on the number of clusters p(K+|N,γ) and in
Section 4 to investigate connections between applied finite mixture analysis based on
MFMs and commonly used BNP mixtures in more depth.

3 The prior distributions of K and K+

This section proposes a suitable choice for p(K) and derives the implicit prior of K+ in
dependence of p(K), the hyperparameters γ and N for a generalized MFM.

3.1 Choosing the prior on the number of components K

In their seminal paper, Richardson and Green (1997) suggest a uniform prior K ∼
U{1,Kmax} for a static MFM with γK ≡ 1. However, depending on N , the prior on K+

might be surprisingly informative and far from a uniform distribution. Figure 1 shows
the implied prior p(K+|N, γ = 1) for a static MFM under the prior K ∼ U{1, 30} for
various sample sizes (N = 20, 100, 1000). Evidently, the prior mode depends on N and
only for larger N approximately a uniform prior results.

Nobile (2004) shows that, as an alternative to the uniform prior, any proper prior
p(K) which satisfies p(K) > 0 for all K ∈ N can be adopted. While most discrete
probability distributions include zero, in a mixture context the prior p(K) has to exclude
zero. This is often achieved by truncating the pmf at one, e.g., Nobile and Fearnside
(2007) use the Poisson distribution K ∼ P (1) restricted to {1, 2, . . . ,Kmax}. However,
it is more convenient to work with the translated prior K − 1 ∼ pt, where the pmf
p(K) = pt(K−1) is obtained by evaluating the translated pmf atK−1, as for translated
priors hierarchical priors can be more easily introduced. We propose a translated prior,
where K − 1 ∼ BNB (αλ, aπ, bπ) follows the beta-negative-binomial (BNB) distribution
which is a hierarchical generalization of the Poisson, the geometric and the negative-
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binomial distribution. The corresponding pmf is given by:

p(K) = pt(K − 1) =
Γ(αλ +K − 1)B(αλ + aπ,K − 1 + bπ)

Γ(αλ)Γ(K)B(aπ, bπ)
. (3.1)

Appendix B provides the hierarchical derivation of the prior and illustrates the shapes
for various parameter values. For aπ > 1, the expectation E(K) = 1 + αλbπ/(aπ − 1) is
finite. Prior (3.1) generalizes the prior derived by Cerquetti (2010) for the Gnedin-Fisher
model and the prior derived by Grazian et al. (2020) from loss-based considerations
which can be regarded as a BNB (1, bπ, aπ) prior. In their applications, Grazian et al.
(2020) apply the BNB (1, 1, 1) prior with no finite moments.

The three-parameters αλ, aπ and bπ of the BNB (αλ, aπ, bπ) prior allow simultaneous
control over the expectation and the tails of p(K) and the implied prior p(K+|N,γ) and
its expectation E(K+|N,γ). Priors p(K) with finite expectation imply that E(K+|N,γ)
is finite, even for increasing N . In a clustering context, we propose to use the prior
K − 1 ∼ BNB (1, 4, 3) with E(K) = 2. The induced prior on p(K+|N,γ) is investigated
in more detail in Section 3.2 and differs considerably from previous choices such as
the geometric or the uniform distribution. The BNB (1, 4, 3) prior leads to a weakly
informative prior on K+ which is concentrated on a moderate number of clusters and
exhibits fat tails to ensure that also a high number of clusters may be estimated.

3.2 The induced prior on the number of clusters K+

In applied mixture analysis, we often aim at partitions of the data with a finite, but a
priori random number of clusters K+. Since the number K of components is random
a priori for a MFM, this induces K+ to be random as well, but the induced prior
p(K+|N) on K+ does not necessarily coincide with the prior p(K) for a finite number of
observations N . The induced prior p(K+|N) has been derived earlier for various mixture
models. For DPMs, Antoniak (1974) provides the prior of K+ as pDP(K+|N,α) =

Γ(α)
Γ(N+α)sN,K+ , where sN,K+ =

∑
C
∏K+

j=1 Γ(Nj) is the Stirling number of the first kind.

Nobile (2004, Proposition 4.2) gives the prior on K+ for a standard finite mixture, while
Gnedin and Pitman (2006) derive p(K+|N) for Gibbs-type priors.

Building on this literature, we derive the prior p(K+|N,γ) for generalized MFMs
under arbitrary priors p(K). One way to obtain this prior is summing the EPPF (2.3)
over all suitable partitions C:

Pr{K+ = k|N,α} =

∞∑
K=k

p(K)V K,γK

N,k (γK)kS−1,γK

N,k , (3.2)

where S−1,x
N,k =

∑
C
∏k

j=1 Γ(Nj + x)/Γ(1 + x) are the generalized Stirling numbers of
the second kind. Alternatively, Theorem 3.1 derives p(K+|N,γ) from the prior of the
labeled cluster sizes p(N1, . . . , NK+ |N,γ) given in (2.5).

Theorem 3.1. For a generalized MFM with priors p(K) and ηK |K,γ ∼ DK (γK),
the prior of the number of clusters K+ conditional on the sample size N is given for
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k = 1, 2, . . . , N by:

Pr{K+ = k|N,γ} =
N !

k!

∞∑
K=k

p(K)
V K,γK

N,k

Γ(γK)k
CK,γK

N,k , (3.3)

where, for each K, V K,γK

N,k has been defined in (2.6) and CK,γK

N,k is given by summation
over the labeled cluster sizes (N1, . . . , Nk):

CK,γK

N,k =
∑

N1,...,Nk>0
N1+...+Nk=N

k∏
j=1

Γ(Nj + γK)

Γ(Nj + 1)
. (3.4)

By matching (3.2) and (3.3), we find that CK,γK

N,k is related to the generalized Stirling

numbers S−1,γK

N,k through

N !

Γ(1 + γK)kk!
CK,γK

N,k = S−1,γK

N,k . (3.5)

We found it convenient to compute CK,γK

N,k recursively through Algorithm 1. The recur-
sion is straightforward to implement and scales well for large N , see Greve et al. (2020);
Greve (2021) and Appendix A for mathematical derivations.

For a dynamic MFM with γK = α/K, CK,γK

N,k can be written as CK,α
N,k depending on

K and α:

Pr{K+ = k|N,α} =
N !

k!

αkΓ(α)

Γ(α+N)

∞∑
K=k

p(K)CK,α
N,k

k∏
j=1

(K − j + 1)

KΓ(1 + α
K )

. (3.7)

Algorithm 1 Computing CK,γK

N,k for a generalized MFM.

1. Define the vector cK,1 ∈ R
N and the (N × N) upper triangular Toeplitz matrix

W 1, where wn = Γ(n+γK)
Γ(n+1) , n = 1, . . . , N ,

W 1 =

⎛
⎜⎜⎜⎜⎜⎝

w1
. . . wN−1 wN

w1
. . . wN−1

. . .
. . .

w1

⎞
⎟⎟⎟⎟⎟⎠ , cK,1 =

⎛
⎜⎜⎜⎝

wN

wN−1

...
w1

⎞
⎟⎟⎟⎠ .

2. For all k ≥ 2, define the vector cK,k ∈ R
N−k+1 as

cK,k =
(
0N−k+1 W k

)
cK,k−1, (3.6)

where W k is a (N−k+1)×(N−k+1) upper triangular Toeplitz matrix obtained
from W k−1 by deleting the first row and the first column.

3. Then, for all k ≥ 1, CK,γK

N,k is equal to the first element of the vector cK,k.
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Putting all prior mass on K = +∞, the following way to compute pDP(K+|N,α) for a
DPM emerges from (3.7),

pDP(K+|N,α) =
N !

K+!

αK+Γ(α)

Γ(α+N)
C∞

N,K+
, (3.8)

where C∞
N,K+

is independent of α and obtained through recursion (3.6) with wn = 1/n.
For a static MFM, Theorem 3.1 simplifies to the following expression:

Pr{K+ = k|N, γ} =
N !

k!

V γ
N,k

Γ(γ)k
Cγ

N,k, (3.9)

where V γ
N,k is determined recursively from (2.8) and CK,γK

N,k is written as Cγ
N,k inde-

pendent of K and can be obtained in a single recursion from (3.6). Using, again, the
normalization Ṽ γ

N,k = γkV γ
N,k, prior (3.9) is a special case of the prior given in Gnedin

and Pitman (2006) for Gibbs-type priors:

Pr{K+ = k|N, γ} = Ṽ γ
N,kBN,k(W•), (3.10)

where BN,k(W•) is the Bell polynomial in the W-structure W• = {W�} defined in
Footnote 2.3 Finally, putting all prior mass on K = Kf , (3.9) gives the result of Nobile
(2004, Proposition 4.2) for a standard finite mixture:

Pr{K+ = k|N,K = Kf , γ} =
N !

k!

Kf !

(Kf − k)!

Γ(γKf )

Γ(γKf +N)Γ(γ)k
Cγ

N,k. (3.11)

For illustration, Figure 2 shows the impact of various priors p(K) on the induced
prior p(K+|N,γ) for static MFMs with γ = 1 (top row) and dynamic MFMs with α = 1
(bottom row). The priors p(K) in the three columns are the translated beta-negative-
binomial prior K − 1 ∼ BNB(1, 4, 3) with E(K) = 2 suggested in Section 3.1, the prior
K − 1 ∼ Geo(0.1) with E(K) = 10 suggested by Miller and Harrison (2018) and the
uniform prior K ∼ U{1, 30} with E(K) = 15.5 used by Richardson and Green (1997).

For static MFMs, p(K+) ≈ p(K) for all three priors for values forK+ andK between
one and ten. In contrast, for a dynamic MFM p(K+) and p(K) are only close for the
BNB prior which has a small mean value. For the priors p(K) with larger mean values,
p(K+) considerably differs from p(K) with mass being pulled towards smaller values
of K+. The corresponding posteriors of K and K+ obtained under these priors for the
famous Galaxy data are shown in Figure 6 in Section 6.2.

4 Bridging finite mixtures analysis and BNP mixtures

4.1 Connecting SFMs, MFMs and BNP mixtures

Generalized MFMs extend both Dirichlet process mixtures (DPMs) and sparse finite
mixtures (SFMs). By allowing the number of components K to be finite and random,

3This follows from (3.5) and S−1,γ
N,k = BN,k(W•) (Pitman, 2006, Eq. (1.20)).
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Figure 2: Priors of K (dashed blue lines, triangles) and K+ (solid red lines, circles)
under the priors K−1 ∼ BNB (1, 4, 3), K−1 ∼ Geo (0.1) and K ∼ U{1, 30} for a static
MFM with γ = 1 (top) and dynamic MFM with α = 1 (bottom), with N = 82.

MFMs provide notably more flexibility in the prior distribution on the partition space
than DPMs and SFMs, similar to popular BNP mixtures (De Blasi et al., 2015).

SFMs result as that special case of MFMs, where p(K) = I{K = Kf} puts all
prior mass on a fixed number of components Kf . It follows from Theorem 2.2 and
earlier work by Ishwaran and Zarepour (2000) that the prior distribution imposed on
the partition space by a SFM lacks flexibility with increasing Kf and approaches the
Ewens distribution (2.9) as γKf

= α/Kf approaches 0:

lim
Kf→∞

p(C|γKf
= α/Kf ,Kf )

pDP(C|α = γKf
Kf )

= lim
Kf→∞

R
Kf ,α
N,K+

= 1.

This implies that SFMs do not easily deal with situations with many, well-balanced
clusters, a behavior that is also observed for DPMs. By considering K as an additional
second parameter following a prior p(K), the dynamic MFM emerges as a more flexible
family than a SFM with K = Kf fixed. Dynamic MFMs can also be regarded as a more

flexible extension of a DPM. Since RK,α
N,K+

in Theorem 2.2 converges to 1 as K increases,
putting all prior mass on K = +∞ yields the Ewens distribution as limiting case. Thus,
DPMs result as the limiting case of a dynamic MFM where the prior p(K) increasingly
concentrates all prior mass at K = +∞.

Several close connections between MFMs and Pitman-Yor process mixtures (PYM)
deserve to be mentioned. In Bayesian non-parametrics, mixtures based on the Pitman-
Yor prior PY(σ, θ) with σ ∈ [0, 1), θ > −σ (Pitman and Yor, 1997) are a commonly used
two-parameter alternative to DPMs which are the special case where σ = 0 and θ = α.
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There exists a second family of PYMs, where σ < 0 and θ = K|σ| with K ∈ N being
a natural number, see Gnedin (2010) and De Blasi et al. (2015). In the corresponding
stick-breaking representation, stick vK = 1 a.s. Hence, this prior yields a mixture with
infinitely many components, of which only K have non-zero weights, with the symmetric
Dirichlet distribution DK (|σ|) acting as prior. Furthermore, at most K components can
be populated. The EPPF of a PYM (with K known) reads:

p(C|N, σ, θ) =
Γ(θ)

Γ(N + θ)

K+∏
j=1

(θ + σ(j − 1))
Γ(Nj − σ)

Γ(1− σ)
.

By matching EPPFs (and using Γ(1−σ) = |σ|Γ(|σ|)), it is evident that a finite mixture
with K known and γK > 0 is equivalent to a mixture with a PY(−γK ,KγK) prior, as
proven in Gnedin and Pitman (2006). This equivalence of SFMs and PYMs provides
a theoretical explanation of the empirical finding that SFMs can lead to more sensible
cluster solutions than DPMs, see, e.g., Frühwirth-Schnatter and Malsiner-Walli (2019).

Even more interesting connections to BNP mixtures arise for MFMs, where K is
random. As pointed out by Miller and Harrison (2014) and proven much earlier by
Gnedin and Pitman (2006), for a static MFM, the dual BNP mixture is a Gibbs-type
prior which arises from mixing a PY(−γ,Kγ) prior over the concentration parameter
θK = Kγ, while the reinforcement parameter σ = −γ is fixed. The Fisher-Gnedin model
studied in Gnedin (2010) is equivalent to a static MFM with γ = 1 and K − 1 ∼ P (λ).
The static MFM is also a special case of the class of mixtures based on normalized
independent finite point processes recently introduced by Argiento and De Iorio (2019).

On the other hand, for a dynamic MFM, the prior partition distribution of the
dual BNP mixture lies outside of the family of Gibbs-type priors, as it arises from
mixing a PY(−α/K,α)-prior over the reinforcement parameter σK = −α/K, while the
concentration parameter θ = α is fixed, see also the discussion in De Blasi et al. (2015).
As shown in Pitman (1996), a system of predictive distributions emerges from the EPPF,
quantifying the probability that a new observation yN+1 belongs to any of the K+ = k
existing clusters in C = {C1, . . . , Ck} or creates partitions Cnew = {C1, . . . , Ck, Ck+1}
with a new cluster Ck+1 of size Nk+1 = 1. For a dynamic MFM the prior probability to
introduce a new cluster for yN+1 is given by (see Appendix A for a proof):

Pr{yN+1 ∈ Ck+1|N,K+ = k, α} =
α

α+N

(
1− k ·

∑∞
K=k p(K)/KRK,α

N,k∑∞
K=k p(K)RK,α

N,k

)
. (4.1)

This probability (bounded by the predictive probability α/(α + N) of a DPM) not
only depends on N and the current number of clusters K+, which characterizes Gibbs-
type priors (De Blasi et al., 2013), but also on the occupation numbers N1, . . . , NK+ .
This confirms once more that dynamic MFMs, while staying within the finite mixture
framework, are an example of a general random partition prior (De Blasi et al., 2015).

4.2 Comparing static and dynamic MFMs and DPMs

In the following we compare the induced priors on the number of clusters and the
partitions for static and dynamic MFMs and DPMs in more detail and investigate the
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influence of the prior on K and, respectively, the hyperparameters γ and α.

Regarding the prior on the number of clustersK+, a fundamental question is whether
a MFM allows K+ to be different from K a priori, as for DPMs (where K = +∞). To
gain further understanding, we plot in Figure 3 the expectation of the induced prior
p(K+|N,γ) as a function of γ (for static MFMs) and α (for DPMs and dynamic MFMs)
for N = 100 under various priors p(K). For both classes of MFMs, the gap between
the expected number of clusters, E(K+|N,γ), and the expected number of components,
E(K), decreases for increasing γ or α. However, for dynamic MFMs the decrease is
much slower and, even as α increases, a considerable gap remains between E(K+|N,γ)
and E(K). This is the effect of linking γ to K through γK = α/K, thus avoiding that
K+ increases too quickly as K increases. This implies that the influence of the prior on
K on the induced prior on K+ is attenuated for an extended range of α values.

As emphasized by Green and Richardson (2001), beyond the induced prior on K+,
the conditional EPPF, induced for a given number of clusters K+ = k,

p(N1, . . . , Nk|N,K+ = k,γ) =
Pr{N1, . . . , Nk|N,γ}
Pr{K+ = k|N,γ} , (4.2)

is important for comparing mixture models. This prior allows a deeper understanding
of the impact of choosing γ for MFMs on the partition distribution.

For a DPM, the conditional EPPF can be expressed using Theorem 3.1 as:

pDP(N1, . . . , Nk|N,K+ = k) =
1

C∞
N,k

k∏
j=1

1

Nj
, (4.3)

Figure 3: Prior expectations E(K+|γ,N) for static MFMs (left) and E(K+|α,N) for
dynamic MFMs (right) as functions of γ and α for N = 100 under the priors K − 1 ∼
BNB (1, 4, 3), K − 1 ∼ P (4), and K − 1 ∼ Geo (0.1) in comparison to a DPM. For each
prior p(K), the prior expectation E(K) is plotted as a horizontal dashed line.
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and is known to be highly unbalanced (Antoniak, 1974), favoring partitions with some
small values Nj due to the factors 1/Nj , j = 1, . . . , k (Miller and Harrison, 2018).
However, being independent of α, the conditional EPPF cannot be made more flexible
for a DPM. In contrast, for a static MFM, the conditional EPPF depends on γ,4

p(N1, . . . , Nk|N,K+ = k, γ) =
1

Cγ
N,k

k∏
j=1

Γ(Nj + γ)

Γ(Nj + 1)
. (4.4)

For γ = 1, the uniform distribution over all partitions of N data points into K+ = k
clusters results. Varying the hyperparameter γ introduces flexibility in the conditional
EPPF for a static MFM: decreasing γ favors more unequal allocations, increasing γ
favors partitions with more equal allocations. The conditional EPPF of a dynamic MFM
is obtained by dividing (2.5) by (3.3):

p(N1, . . . , Nk|N,K+ = k, α) =

∞∑
K=k

p(K)
V K,α
N,k

Γ( α
K )k

k∏
j=1

Γ(Nj +
α
K )

Γ(Nj + 1)

∞∑
K=k

p(K)
V K,α
N,k

Γ( α
K )k

CK,α
N,k

. (4.5)

This conditional EPPF depends both on α and p(K), whereas the conditional EPPF
of a static MFM is independent of p(K). Thus, having a second parameter K, dynamic
MFMs are more flexible than static MFMs regarding the conditional EPPF. Overall, in
comparison to DPMs, static and dynamic MFMs induce more flexible prior structures
both on the prior of the number of clusters and on the partition distribution, see Greve
et al. (2020) for a detailed further investigation.

Additional flexibility is achieved by adjusting the hyperparameters γ and α to suit
the data. In Section 4.3, a hyperprior on α is suggested, to achieve adaptivity of the
induced prior on the partition to the data at hand. Also a static MFM can be combined
with a prior on γ, rather than choosing a fixed value such as γ = 1.

4.3 Choosing the prior on α for dynamic MFMs

For a dynamic MFM the parameter α plays a crucial role for the prior distribution
induced on the number of clusters and the partitions. On the one hand, the prior
should have positive mass close to zero to allow a priori for a single cluster solution
which corresponds to homogeneity. At the same time, fat tails should allow a priori
larger values of K+ and partitions with balanced cluster sizes.

The DPM literature would suggest a Gamma distribution α ∼ G(a, b) (e.g., Escobar
and West, 1995; Jara et al., 2007). If a = b 	 1, the expectation of α is one, while the
variance is large, leading to a vague prior on α. For DPMs this induces a very informative
prior on the number of clusters which is concentrated on 1 and +∞ (see Dorazio, 2009;
Murugiah and Sweeting, 2012). For dynamic MFMs, such a prior would – given its

4Note that Miller and Harrison (2018) report an approximate formula for the conditional EPPF of
a static MFM, while our result is exact.
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mode at zero – strongly favor homogeneity, and fail for data with balanced cluster sizes.
Instead, we propose to use the F -distribution α ∼ F(νl, νr). The two parameters allow to
control the behavior of the prior close to zero and in the tail independently. Choosing νr
small gives fat tails. For a finite mean value, given by νr/(νr−2), but no higher moments,
we specify 2 < νr ≤ 3. Choosing a small value for νl allows independent control over
the prior probability of homogeneity. Since the mode is given by (νl − 2)νr/(νl(νr +2)),
choosing νl > 2 avoids a spike at 0. In our empirical analysis, we use α ∼ F(6, 3).

5 Inference algorithm: Telescoping sampling

A novel sampling method called telescoping sampling is introduced for a Bayesian anal-
ysis of finite mixtures with an unknown number of components which is related to,
but also fundamentally different from RJMCMC (Richardson and Green, 1997) and the
CRP sampler (Jain and Neal, 2004, 2007) applied in Miller and Harrison (2018).

Similar to Jain and Neal (2004, 2007), the telescoping sampler is a trans-dimensional
Gibbs sampler which exploits the EPPF of a MFM given in (2.3). However, we do
not work with the marginal EPPF p(C|N,γ), as Miller and Harrison (2018) do, but
use a second level of data augmentation where we introduce the unknown number
of components K, in addition to the partition C, as a latent variable. This allows to
apply the telescoping sampler outside the framework of Gibbs-type priors. We explicitly
include K in the sampling scheme as in Richardson and Green (1997). However, rather
than using RJMCMC, K is sampled conditional on C from the conditional posterior
p(K|C, γK) ∝ p(C|N,K, γK)p(K) which is obtained by combining the conditional EPPF
p(C|N,K, γK) provided in (2.4) with the prior p(K):

p(K|C, γK) ∝ p(K)
K!

(K −K+)!

Γ(γKK)

Γ(N + γKK)Γ(γK)K+

∏
j:Nj>0

Γ(Nj + γK), (5.1)

for K = K+,K+ + 1, . . ., where K+ is the number of clusters in C.
While Miller and Harrison (2018) use (5.1) for static MFMs to infer K in a post-

processing step, the telescoping (TS) sampler integrates (5.1) into a trans-dimensional
Gibbs sampler for generalized MFMs and samples K and the partitions C (including
K+) in different blocks. Since K ≥ K+ by definition, the number of empty components
K − K+ varies over the iterations of the sampler, taking zero or a larger value. The
difference between K and K+ behaves similar to a telescope which can also be stretched
or pulled together; hence the name of the sampler. Full details of the TS sampler are
provided for dynamic MFMs in Algorithm 2. The TS sampler can also be applied with
minor modifications to static MFMs (see Algorithm 3 in Appendix C). In both cases,
the hyperparameter ω = α or, respectively, ω = γ is assumed to be unknown.

Very conveniently, due to the conditional independence between the parameters θk

in the (non-empty) components and the number of components K, given the partition
C, K is sampled from the conditional posterior p(K|C, γK) given in (5.1) without any
reference to the specific component distribution. Hence, the TS sampler is straightfor-
ward to implement and very generic, since the conditional posterior p(K|C, γK) does
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Algorithm 2 Telescoping sampling for a dynamic MFM.

1. Update the partition C by sampling from p(S|ηK ,θ1, . . . ,θK ,y):

(a) Sample Si, for i = 1, . . . , N , from Pr{Si = k|ηK ,θ1, . . . ,θK ,yi,K} ∝
ηkf(yi|θk), k = 1, . . . ,K.

(b) Determine Nk = #{i|Si = k} for k = 1, . . . ,K, the number K+ =∑K
k=1 I{Nk > 0} of non-empty components and relabel such that the first

K+ components are non-empty.

2. Conditional on C, update the parameters of the (non-empty) components:

(a) For the (filled) components k = 1, . . . ,K+, sample θk|S,y, φ from

p(θk|S,y, φ) ∝ p(θk|φ)
∏

i:Si=k

f(yi|θk).

(b) Sample the hyperparameter φ (if any) conditional on K+ and θ1, . . . ,θK+

from

p(φ|θ1, . . . ,θK+ ,K+) ∝ p(φ)

K+∏
k=1

p(θk|φ). (5.2)

3. Conditional on C, draw new values of K and α:

(a) Sample K from

p(K|C, α) ∝ p(K)
αK+K!

KK+(K −K+)!

K+∏
k=1

Γ(Nk + α
K )

Γ(1 + α
K )

, K = K+,K+ + 1, . . . .

(5.3)

(b) Use a random walk Metropolis-Hastings step with proposal log(α
new

) ∼
N

(
log(α), s2α

)
to sample α|C,K from

p(α|C,K) ∝ p(α)
αK+Γ(α)

Γ(N + α)

K+∏
k=1

Γ(Nk + α
K )

Γ(1 + α
K )

.

4. Conditional on K,S, α and φ, add K −K+ empty components and update ηK :

(a) If K > K+, then add K − K+ empty components (i.e., Nk = 0 for k =
K++1, . . . ,K) and sample θk|φ from the prior p(θk|φ) for k = K++1, . . . ,K.

(b) Sample ηK |K,α,S ∼ D (e1, . . . , eK), where ek = α/K +Nk.

not depend on the component parameters. This makes our sampler a most generic,
easily implemented algorithm for finite mixture models with simultaneous inference on
the unknown number of components and the unknown number of clusters for a wide
range of component models. This greatly simplifies the application of MFMs in new ap-
plication contexts allowing for arbitrary component distributions and extensions with
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hierarchical priors. In contrast, the challenge to design good moves for RJMCMC is leg-
endary. But also for CRP samplers (which are confined to static MFMs), the creation of
new clusters requires knowledge of the marginal likelihood which depends on the chosen
mixture family and might be difficult to work out for more complex mixtures.

More specifically, the TS sampler is a partially marginalized sampler, moving back
and forth between sampling from the mixture posterior distribution p(K,S,ηK ,θ1, . . .,
θK , φ, ω|y), which lives in the augmented parameter space of the mixture distribution,
and sampling from the collapsed posterior p(K, C,θ1, . . . ,θK+ , φ, ω|y), which lives in
the set partition space and is marginalized with respect to the parameters of the empty
components, the weight distribution ηK and all allocations S that induce the same set
partition C. The full mixture posterior p(K,S,ηK ,θ1, . . . ,θK , φ, ω|y) is proportional to

∏
k:Nk>0

p(y[k]|θk)p(θk|φ)
∏

k:Nk=0

p(θk|φ)
K∏

k=1

ηNk+γK−1
k

Γ(KγK)

Γ(γK)K
p(φ)p(K)p(ω), (5.4)

where y[k] are the Nk > 0 observations in cluster Ck of the partition C = {C1, . . . , CK+}
implied by S (after reordering such that the K+ non-empty clusters appear first). The
posterior (5.4) lends itself to the conditional sampling Step 1 of the TS sampler which
is a standard step for finite mixtures with K known. The TS sampler is related to
conditional samplers for infinite mixtures insofar, as all indicators S are sampled jointly
due to the conditional independence of S given ηK ,θ1, . . . ,θK ,y. As opposed to this, the
CRP sampler applied in Miller and Harrison (2018) is a single-move sampler updating
the allocation of each observation one-at-a-time.

Integrating (5.4) with respect to the weight distribution ηK , the parameters θk of
the empty components and all allocations S that induce the same partition C yield (after
suitable relabeling) the collapsed posterior which lives in the set partition space:

p(K, C,θ1, . . . ,θK+ , φ, ω|y) ∝
K+∏
k=1

p(y[k]|θk)p(θk|φ)
Γ(KγK)

Γ(γK)K
p(φ)p(K)p(ω)

·
∫ ∏

k:Nk=0

p(θk|φ)d(θK++1, . . . ,θK)
∑

S:S∈C

∫ K∏
k=1

ηNk+γK−1
k dηK

=

K+∏
k=1

p(y[k]|θk)p(θk|φ)
K!

(K −K+)!

Γ(KγK)
∏K+

k=1 Γ(Nk + γK)

Γ(N +KγK)Γ(γK)K+
p(φ)p(K)p(ω). (5.5)

We see in (5.5) that updating of the parameters θ1, . . . ,θK+ and φ (Step 2) can be
performed independently from updating K and the hyperparameter ω (Step 3). It
should be noted that the conditional posterior p(K|C, ω) of K given C that results
from (5.5) is identical with (5.1), verifying the validity of Step 3(a) (or 3(a*)) in our
partially marginalized sampler. In practice, Step 3(a) (or 3(a*)) is implemented by
considering an upper bound Kmax for K and sampling K from a multinomial distri-
bution over {K+, . . . ,Kmax}, with the success probabilities being proportional to the
non-normalized posterior probability of K. In the following empirical analysis we use a
maximum value of Kmax = 100.
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The sampler returns to conditional sampling from the full mixture posterior in
Step 4(b) (or 4(b*)), by sampling the parameters of the empty components conditional
on φ and sampling the weight distribution ηK from the conventional Dirichlet posterior
distribution. Using the stick breaking representation of a finite mixture, with the sticks
following vk|K, γK ∼ B (γK , (K − k)γK), Step 4(b) (or 4(b*)) can be rewritten in terms
of sampling the sticks from a generalized Dirichlet distribution, see, e.g., Algorithm 1
of Frühwirth-Schnatter and Malsiner-Walli (2019).

In order to learn the component parameters, a hierarchical prior structure is intro-
duced in the Bayesian mixture model (2.1). Basically, in Step 2(b) of the TS sampler,
any hierarchical prior p(φ) on the model parameters can be used. For other samplers,
such as the allocation sampler (Nobile and Fearnside, 2007), the prior p(φ) has to be
conditionally conjugate to easily integrate out the component parameters θk. A specific
feature of the TS sampler is that the hyperparameters φ are learned in Step 2(b) only
from the K+ filled components and that the parameters of the K − K+ empty com-
ponents are sampled subsequently in Step 4(a) from the conditional prior p(θk|φ) for
k = K+ + 1, . . . ,K. In this way, the parameters of the filled components inform the
parameters of the empty components. In our opinion, this is an elegant way to handle
hierarchical priors for component parameters in a dimension changing framework.

The TS sampler allows for a varying, but conditionally finite model dimension K.
Truncation, however, does not result from slice sampling (Kalli et al., 2011), a popular
method for DPMs to turn the infinite mixture into a conditionally finite one. The TS
sampler adds and deletes components as follows. Step 3(a) is a birth move, where new
components are created, if a value K > K+ is sampled. These components are empty,
since we leave the filled components in partition C unchanged. Observations are allocated
to any empty component during the subsequent sweep of the sampler in Step 1(a).
Components can only disappear, if they get emptied in the allocation Step 1(a). Hence,
for the TS sampler to work well, the tail probability

∑
K>K+

p(K|C, ω) cannot be too

small, as this probability controls how many empty components are added in Step 3(a)
(or 3(a*)). The more p(K|C, ω) is concentrated at K+, the more likely mixing for K+

and K will be poor for the TS sampler. This is true both for static and dynamic MFMs.

Finally, we allow the hyperparameter of the weight distribution, either α or γ, to
be an unknown parameter estimated from the data under a hyperprior. α (or γ) are
updated in Step 3(b) (or 3(b*)), which is the only updating step where a random walk
Metropolis-Hastings step is employed.

6 Empirical demonstrations

6.1 Benchmarking the telescoping sampler

We compare the performance of the TS sampler to two other samplers previously pro-
posed to fit a static MFM with univariate Gaussian components, namely, reversible
jump MCMC (RJ; Richardson and Green, 1997) and the Jain-Neal split-merge algo-
rithm (JN; Jain and Neal, 2004, 2007; Miller and Harrison, 2018). In contrast to the
TS sampler, where in each iteration both K and K+ are updated, the RJ sampler just
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Sampler 1 2 3 4 5 6 7 8 9 10 11 ≥ 12

TS .000 .000 .070 .161 .228 .228 .159 .087 .040 .017 .006 .003
RJ .006 .000 .070 .161 .227 .226 .158 .086 .040 .017 .006 .003
JN .000 .000 .070 .162 .228 .228 .159 .087 .040 .017 .006 .003

Table 1: Galaxy data. Mean estimates over 100 MCMC runs of the posterior of K+ for
the telescoping (TS), the RJMCMC (RJ) and the Jain-Neal (JN) sampler.

samples K while K+ is calculated a posteriori from the sampled allocations, and the
JN sampler just samples the partitions and thus K+, whereas the posterior of K is
reconstructed in a post-processing step (see Miller and Harrison, 2018, Equation (3.7)).

For this comparison we consider the well-known Galaxy data (Roeder, 1990), which
is a small data set of N = 82 measurements on velocities of different galaxies from six
well-separated sections of the space, and fit univariate Gaussian mixtures, yi|Si = k ∼
N

(
μk, σ

2
k

)
, with K unknown. Priors are chosen as in Richardson and Green (1997),

namely p(K) is a uniform distribution U{1, 30}, ηK |K ∼ DK (γK) with γK ≡ 1 is
uniform, whereas μk ∼ N

(
m,R2

)
, σ2

k ∼ G−1 (2, C0), and C0 ∼ G
(
0.2, 10/R2

)
, where

m and R are the midpoint and the length of the observation interval. These priors are
imposed for sake of comparison with previous results, but not motivated by modeling
considerations nor selected to favor the TS sampler.

Results were obtained for the RJ sampler using the Nmix software provided by
Peter Green and for the JN sampler as implemented in Miller and Harrison (2018).5

Each sampler was run for 1,000,000 iterations without thinning after discarding the first
10,000 iterations and using 100 different initializations. Table 1 summarizes the posterior
p(K+|y) over all 100 runs based on the means for all three samplers (see Appendix D.1
for more detailed results). The posteriors estimated by all three samplers are very similar
indicating that the TS sampler provides suitable draws from this posterior distribution.

The performance of the three samplers is compared by inspecting the number of
clusters K+ as well as the number of components K obtained for the MCMC iterations,
if available. For this comparison, we use a simulated data set with a data generating
process similar to the Galaxy data set and draw N = 1000 observations from a three-
component univariate Gaussian mixture (see Figure D.1 in Appendix D.1). We specify
priors on the component parameters as used in Richardson and Green (1997) for the
Galaxy data set and fit a static MFM with γ = 0.1. The smaller value for the Dirichlet
parameter increases the gap between the prior on K and K+ and thus improves the
mixing of the TS and RJ samplers. Each sampler is run for 100,000 iterations without
thinning. The first 10% iterations are omitted as burn-in.

Figure 4 shows a combined trace plot of K+ and K (if available) for each of the
three samplers using the first 5,000 iterations after omitting burn-in. In each trace plot
the black line shows how the number of clusters K+ induced by the sampled partitions
varies over the iterations. For the TS and RJ samplers, in addition, the gray lines show
how the number of components K vary. For the TS sampler, K is sampled given K+,

5Both are included in the supplementary material to Miller and Harrison (2018).
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Figure 4: Simulated data, N = 1000, γK ≡ 0.1, all other priors as in Richardson and
Green (1997). Trace plots of K (gray) and K+ (black) for the TS, RJ and JN sampler.

Figure 5: Simulated data, N = 1000, γK ≡ 0.1, all other priors as in Richardson and
Green (1997). Auto-correlation function (ACF) for K+ (left) and K (right) for the TS
(solid red line), RJ (dashed blue line) and JN (long dashed green line) sampler.

while for the RJ sampler K changes if components are split or combined or due to a
birth or death of an empty component. This difference is clearly visible in the trace
plots with poorer mixing in K for the RJ relative to the TN sampler.

We assess the efficiency of the three samplers by estimating auto-correlation func-
tions (ACFs) for the sampled K+ and K values (if available) and visualizing them in
Figure 5. Regarding K+, the efficiency is rather comparable over the three samplers,
with slight advantages for JN followed by TS and RJ being the least efficient. Comparing
the ACFs for K clearly confirms that TS outperforms RJ.

The performance comparison indicates that TS is competitive with the other sam-
plers, while providing the advantage of being easily adjusted and immediately applicable
for mixtures with other component distributions or models. Note however, that an ap-
propriate choice of γK has an impact on the efficiency of the sampler. While too large
values of γK prevent that empty components are created, too small values induce many
(superfluous) additional empty components.
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6.2 Sensitivity to the prior choice on the number of components

In the following we use the TS sampler to investigate how the posteriors of K and K+

vary in dependence of different prior specifications p(K, γK) for the Galaxy data set.
Although this data set is very popular in the clustering literature, there is no consensus
on the number of clusters in the sample, see for instance Aitkin (2001), Grün et al.
(2021) and the discussion in Appendix D.2.

In contrast to these previous Bayesian analyses, we keep the priors on the component
parameters fixed to those as specified by Richardson and Green (1997) for all analyses.
In this way, the impact of the priors onK and the component weights can be investigated
without mixing these effects with those of different prior specifications on the component
parameters. We consider static and dynamic MFMs with the same priors p(K) and γK
as specified in Figure 2, i.e.,K−1 ∼ BNB (1, 4, 3),K−1 ∼ Geo (0.1), andK ∼ U{1, 30},
and γ = 1 for the static MFM and α = 1 for the dynamic MFM.

In Figure 6 in the top row, the posteriors of K and K+ are reported for the static
MFM with γK ≡ 1. The posteriors p(K+|y) and p(K|y) are very similar to each other

Figure 6: Galaxy data. Posteriors of K (dashed blue lines, triangles) and K+ (solid red
lines, circles) under priors K − 1 ∼ BNB (1, 4, 3) (left), K − 1 ∼ Geo (0.1) (middle) and
K ∼ U{1, 30} (right) under a static MFM with γ = 1 (top) and dynamic MFMs with
α = 1 (middle) and α ∼ F(6, 3) (bottom), for N = 82.
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regardless of p(K) specified. In contrast, for the dynamic prior γK = 1/K, shown

in the middle row, the posteriors p(K|y) and p(K+|y) differ considerably. While the

posterior p(K|y) becomes flatter compared to fixed γ = 1, most of the posterior mass

of p(K+|y) concentrates on K+ equal to 3, 4 or 5 which are reasonable values for the

number of clusters in this data set. Comparing the posteriors of K+ and K to the

corresponding priors in Figure 2 indicates that the posteriors are strongly influenced by

the prior distributions. E.g., the flat prior for K+ induced by the uniform distribution

and γK = 1 (plot in Figure 2 on the top right) results in a posterior of K+ favoring

large values between 4 and 7 clusters which clearly overestimates the number of clusters

in this small data set. In contrast, a sparse prior on K+ in combination with a dynamic

MFM favors a sparse estimation of the number of clusters also a posteriori, see, e.g.,

the posterior p(K+|y) for the BNB (1, 4, 3) prior where three clusters are estimated.

Under the hyperprior α ∼ F(6, 3), the posterior of K+ looks rather similar to as-

suming that α = 1 fixed, see Figure 6 at the bottom. However, if the shrinkage prior

α ∼ G(1, 20) is specified, the posterior of K+ becomes completely independent of both

the prior and posterior of K, see Appendix D.2 where also results for other specifications

on K and the weights are reported, in particular a FM, a SFM and a DPM model.

Figure 6 shows that depending on the prior on K and whether a static or dynamic

MFM is specified, the posterior mode of p(K+|y) varies. This highlights the impact of

the implicitly specified prior on K+ on the posterior of K+. This especially applies to

the Galaxy data set which contains only N = 82 observations and has no clear cluster

structure. If, in contrast, there is considerable information in the data, the posteriors

of K+ for different prior specifications p(K) coincide, as can be seen in the next section

when analyzing the Thyroid data set.

6.3 Changing the clustering kernel

We use the TS sampler to fit dynamic MFMs with different component distributions,

i.e., the multivariate Gaussian distribution and the latent class model for multivariate

categorical data. This demonstrates how easily the TS sampler can be used to fit a

MFM regardless of the component distributions. For K we use the same priors p(K) as

in the previous section. It will turn out that a prior specification for K where E(K) is

small and the tails are not too light, in combination with the dynamic prior γK = α/K

on the component weights and α ∼ F(6, 3) gives good clustering results.

The final partition is obtained by identifying the models through the post-processing

procedure suggested by Frühwirth-Schnatter (2006) and applied in Malsiner-Walli et al.

(2016, 2017). First, the number of clusters K̂+ is estimated by the mode of the posterior

p(K+|y). Then for all posterior draws whereK
(m)
+ = K̂+, the component parameters are

clustered in the point process representation into K̂+ clusters using k-means clustering.

A unique labeling of the draws is obtained and used to reorder all draws, including the

sampled allocations. The final partition of the data is then determined by the maximum

a posteriori (MAP) estimate of the relabeled cluster allocations.
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Thyroid Fear
p(K) p(K+|y) p(K|y) p(K+|y) p(K|y)

U{1, 30} 3 [3, 3] 3 [4, 19] 6 [5, 9] 30 [10, 24]
Geo (0.1) 3 [3, 3] 3 [3, 7] 4 [4, 7] 5 [5, 16]

BNB (1, 4, 3) 3 [3, 3] 3 [3, 4] 2 [2, 4] 2 [2, 5]

Table 2: Thyroid and Fear data. Posterior inference for K and K+ for a dynamic MFM
based on different priors p(K) and α ∼ F(6, 3). The posteriors of K+ and K are
summarized by their modes, followed by the 1st and 3rd quartiles.

Multivariate Gaussian mixtures: Thyroid data

The Thyroid data are a benchmark data set for multivariate normal mixtures included
in the R package mclust (Scrucca et al., 2016). It consists of five laboratory test vari-
ables which are used for clustering and a categorical variable indicating the operation
diagnosis (with three potential values) for 215 patients. A dynamic MFM with mul-
tivariate normal component densities is fitted using a simplified version of the priors
proposed in Malsiner-Walli et al. (2016) for the component parameters (for details see
Appendix D.3). As can be seen in the left-hand column of Table 2, for all priors on K
the mode of the posteriors for K+ lies at three, even for the uniform prior. Also the pos-
terior mode of K is three, indicating that rarely empty components were sampled. For
the K− 1 ∼ BNB (1, 4, 3) prior, the final partition obtained through the MAP estimate
consists of three clusters with 28, 37 and 150 patients. The adjusted Rand index (ARI)
of this partition with the known operation diagnosis is 0.88, which is equal to the ARI
of the mclust solution. Overall these results suggest that, if the data are informative
regarding a specific cluster structure, the clustering result is not susceptible to the prior
specification of p(K).

Latent class analysis: Fear data

Stern et al. (1994) consider data of 93 children in the context of infant temperamental
research. For each child, three categorical features are observed, namely motor activity
(M) with 4 categories, fret/cry behavior (C) with 3 categories, and fear of unfamil-
iar events (F) with 3 categories, see Frühwirth-Schnatter and Malsiner-Walli (2019)
for the contingency table of the data. The scientific hypothesis is that two different
profiles in children are present. To test this, a latent class model is fitted using a dy-
namic MFM with a uniform Dirichlet prior on the component parameters. Table 2
shows that the prior K − 1 ∼ BNB (1, 4, 3) selects K̂+ = 2, confirming the theoreti-
cally expected number of clusters. The geometric prior with E(K) = 10 and the trun-
cated uniform prior, however, overestimates the number of clusters with the mode of
K+ at 4 and 6, respectively. The results obtained when identifying the MCMC out-
put from a dynamic MFM with K − 1 ∼ BNB (1, 4, 3) and α ∼ F(6, 3) indicate that
the two classes have a rather different profile regarding the occurrence probabilities of
the categories (see Appendix D.3), which coincides with the findings in Stern et al.
(1994).
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6.4 Investigating the telescoping sampler with artificial data

We perform a simulation study with artificial data to investigate how the TS sampler
performs in dependence of sample size N , dimension r and number of clusters K+. In
addition, we vary the priors for p(K, γK) considering static and dynamic MFMs and in
particular include the suggested priorsK−1 ∼ BNB (1, 4, 3) and α ∼ F(6, 3). We sample
100 data sets from a multivariate normal mixture with eight equally sized components,
varying dimension (r = 2, 8, 12) and increasing sample size (N = 400, 4000, 10000),
combining higher values of the dimension r with larger sample sizes N . A detailed
description of the data generating processes of the simulated data as well as the specified
priors p(K) and Dirichlet parameters γ and α and the inference scheme employed is
given in Appendix D.4.

Results are visualized in a bubble plot in Figure 7. The area of the bubbles is propor-
tional to the percentage of data sets with a specific number of clusters K+ estimated
as indicated on the y-axis. The results show how the influence of the prior p(K, γK)
decreases when the information in the sample increases. If the information is weak, i.e.,
for N = 400 and r = 2, the prior specifications on K and on γK have considerable
impact on the clustering result (first column of Figure 7). The estimated number of
clusters K+ tends to be lower for the Poisson prior regardless of the prior imposed on
γK . While the Poisson prior with λ = 1 induces the same prior mean E(K) = 2 as
the BNB (1, 4, 3) prior, it has also light tails. Thus, the fatter tails of the BNB (1, 4, 3)
prior allow to estimate the number of clusters in the data correctly despite its sparsity
inducing properties. Regarding the prior on the Dirichlet parameter γK , the results of
the static MFM clearly indicate that the estimated number of clusters decreases for
decreasing values of γ. In the dynamic case, using α ∼ F(6, 3) gives more reliable re-
sults than the other specifications for α regardless of the prior on K. In contrast, the
influence of the sparsity inducing prior α ∼ G(1, 20) is clearly visible across all priors
on K, leading to less than eight clusters being estimated for the majority of the data
sets. Overall, the results for the combination K − 1 ∼ BNB (1, 4, 3) and α ∼ F(6, 3)
confirm the suitability of this prior specification for determining the number of clusters
in a Bayesian cluster analysis application. For N = 4000 the estimated number of data
clusters K̂+ is equal to eight for nearly all data sets regardless of the prior specifications.
Results are similar for N = 10000.

7 Concluding remarks
Being a finite mixture model where the number of components is unknown, the MFM
model has a long tradition in Bayesian mixture analysis. Building on this tradition, a
key aspect of our work is to explicitly distinguish between the number of components
K in the mixture distribution and the number of clusters K+ in the partition of the
data, corresponding to non-empty components given the data. With this fundamental
distinction in mind, we contribute to MFMs both from a methodological as well as a
computational perspective.

Traditionally, the hyperparameter γ of a symmetric Dirichlet prior on the compo-
nent weights is a fixed value, often equal to one. In this paper, we investigate in detail a
more general MFM specification which defines the hyperparameter γK of the symmetric
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Figure 7: Simulation study. Estimated number of clusters for 100 artificial data sets
drawn from mixtures of multivariate Gaussian distributions with eight components.
Results based on TS sampling for varying sample size N and dimension r (columns),
priors onK (rows) and Dirichlet parameter values γK (x-axis). The size of a bubble point
shows the percentage of artificial data sets with a specific number of clusters estimated.

Dirichlet prior dynamically and dependent on K. We provide theoretical results that
characterize how this specification of a dynamic symmetric Dirichlet prior on the com-
ponent weights influences the induced prior on the number of clusters and the partition
structure. While a static MFM with fixed γ corresponds to a Bayesian non-parametric
mixture within the class of Gibbs-type priors, our dynamic version where γK depends
on K leads to a more flexible mixture outside the class of Gibbs-type priors.

Regarding posterior inference, we introduce the novel telescoping (TS) sampler which
is a trans-dimensional Gibbs sampler that simultaneously infers the posterior on the
number of components K and the number of clusters K+. As illustrated, for instance,
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for multivariate Gaussian mixtures, the TS sampler can be easily implemented for any
kind of component model or distribution. Based on the TS sampler, in future work
many different kinds of mixture models can be easily fitted to cluster different types of
data which require the use of specific component distributions and models. Future work
should also investigate the potential to improve the computational efficiency of the TS
sampler, e.g., by reducing the computational burden due to the empty components.

Supplementary Material

Supplementary material for: “Generalized mixtures of finite mixtures and telescoping
sampling” (DOI: 10.1214/21-BA1294SUPP; .pdf).
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Frühwirth-Schnatter, S. and Malsiner-Walli, G. (2019). “From Here to Infinity: Sparse
Finite Versus Dirichlet Process Mixtures in Model-based Clustering.” Advances in
Data Analysis and Classification, 13: 33–64. MR3935190. doi: https://doi.org/10.
1007/s11634-018-0329-y. 1280, 1290, 1296, 1301
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