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On Quasi-Infinitely Divisible Random Measures∗

Riccardo Passeggeri†

Abstract. Quasi-infinitely divisible (QID) distributions have been recently in-
troduced. A random variable X is QID if and only if there exist two infinitely

divisible random variables Y and Z s.t. X + Y
d
= Z and Y is independent of X.

In this work, we introduce QID completely random measures (CRMs) and show
that a certain family of QID CRMs is dense in the space of all CRMs with respect
to convergence in distribution. We further demonstrate that the elements of this
family possess a Lévy-Khintchine formulation and that there exists a one to one
correspondence between their law and certain characteristic pairs. We prove the
same results also for the class of point processes with independent increments. In
the second part of the paper, we show the relevance of these results in a general
Bayesian nonparametric framework suitable for topic modelling, and provide a
truncation error analysis.
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1 Introduction

1.1 Motivation

Imagine that we want to understand the topics of a corpus of documents, but we only
have access to some of the documents. How do we proceed? First, a topic can be consid-
ered as a certain collection of words, and thus by possessing only some of the documents
of the corpus we only observe certain topics. Since we do not observe all the topics, a
possible solution to our inferential problem is to model each topic as having a frequency.
The higher is the frequency with which a topic appears in the observed documents, the
higher is the probability that topic will reappear again in the corpus. Thus, the objec-
tive reduces to learn the content of the entire corpus by the topics and their respective
frequencies exhibited by each of the observed documents.

Hence, the prior can be represented as

Θ =

K∑
j=1

θkδψk
,

where the cardinality K may be either finite or infinite and where (ψk, θk) is a pair
consisting of the topic ψk, which belongs to some space Ψ of topics, and its frequency
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(or rate) θk. Assume that we posses m documents. These observed documents can be
represented by X1, . . . , Xm, where

Xl =

Kl∑
j=1

xl,kδψk
,

and where xl,k represents the frequency of the ψk topic in the l document and Kl is
a.s. finite, for l = 1, . . . ,m. The topics ψk’s are in general random because we do not
know them a priori. However, in some cases we might know some of the topics a priori,
for example if we know the title of the corpus or we know that the corpus consists of
articles of the Financial Times. Thus, in these cases some of the ψk’s are fixed.

From a mathematical point of view, Θ andX1, . . . , Xm are random measures, namely
random elements whose values are measures. If in addition we assume that the presence
and the frequency of a topic is independent from the presence and the frequency of
another topic, then we talk about completely random measures.

Completely random measures (CRMs), also known as independently scattered ran-
dom measures or random measures with independent increments, and their normaliza-
tion have been vastly used in nonparametric Bayesian analysis. In Lijoi and Prünster
(2010), the authors provide a unifying treatment of nonparametric Bayesian analysis
modeling under the general CRM framework, while Regazzini et al. (2003) and James
et al. (2009), provide general results for normalized CRMs, to name a few. In many
cases, including the example just presented, the number of latent traits in a data set is
expected to increase as the size of the data increases, e.g. the number of different topics
observed is expected to increases as m increases. CRMs possess this desirable property
due to their infinite dimensionality, in other words by setting K equal to infinite there
are countably infinite many latent topics to be discovered.

CRMs have a long history. In 1967, Kingman Kingman (1993) proved a very ap-
pealing and useful representation theorem for all CRMs. He showed that any CRM ξ
is almost surely given by the sum of three components: one deterministic, one concen-
trated on a fixed set of atoms, and one concentrated on a random set of atoms. He
further showed that the last component, which he called the ordinary component, is
fully determined by a Poisson point process: ξord(B) =

∫
(0,∞)

xη(B × dx), where η is a

Poisson point process on S× (0,∞). The Poisson point process is the prime example of
infinitely divisible CRM.

In many cases, the fixed component is left out from the analysis, even though it has
a specific and unique modelling role, because it does not have certain useful properties
which are possessed by the ordinary component, like having an explicit formulation for
the characteristic function (called the Lévy-Khintchine formulation). Moreover, the infi-
nite dimensionality of CRMs typically poses a number of practical challenges regarding
posterior inference and estimation, including the need to derive ad-hoc algorithms (since
most of the algorithms requires finite dimensionality of the CRMs, see Lee et al. (2019)
and references therein).

The goal of this paper is to provide a general recipe to obtain finite dimensional
CRMs which possess many useful properties, including the Lévy-Khintchine formula-
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tion, and which approximate any CRM (with any Lévy measure and any fixed compo-
nent).

1.2 Contributions

Infinitely divisible (ID) distributions have an even longer history than the one of CRMs
which goes back to the work of P. Lévy, A. N. Kolmogorov and B. de Finetti, among
others. They constitute one of the most studied classes of probability distributions. One
of their most attractive properties is that their characteristic function has an explicit
formulation, called the Lévy-Khintchine formulation, written in terms of three math-
ematical objects. These are the drift, which is a real valued constant, the Gaussian
component, which is a non-negative constant, and the Lévy measure, which is a mea-
sure on R satisfying an integrability condition and with no mass at {0}. Gaussian and
Poisson distributions are examples of this class.

In 2018, in Lindner et al. (2018) Sato, Lindner and Pan introduced the class of quasi-
infinitely divisible (QID) distributions. A random variable X is QID (namely has a QID

distribution) if and only if there exist two ID random variables Y and Z s.t. X+Y
d
= Z

and Y is independent of X. QID distributions are like ID distributions except for the
fact that the Lévy measure is now allowed to take negative values. In other words, a
QID distribution has a Lévy-Khintchine formulation which is uniquely determined by a
drift, a Gaussian component and by a ‘signed measure’ (more precisely a real valued set
function) called the quasi-Lévy measure. Any ID distribution is QID, but the converse
is not always true.

In Lindner et al. (2018), the authors show that QID distributions are dense in the
space of all probability distributions with respect to weak convergence and that distri-
butions concentrated on the integers (or any shift and dilation of them) are QID if and
only if their characteristic functions have no zeros, among other results. Further theoret-
ical results have been achieved in Berger (2019); Khartov (2019); Passeggeri (2020c,b,a).
In Passeggeri (2020c), the QID framework is extended to real-valued random noises and
stochastic processes. QID distributions have already shown to have an impact in various
fields: from mathematical physics, see Chhaiba et al. (2016) and Demni and Mouayn
(2015), to number theory, see Nakamura (2015), and to insurance mathematics, see
Zhang et al. (2014).

The first main contribution of this paper is the denseness result for QID random
measures. We prove that a certain class of QID completely random measures (CRMs),
which we denote by A, is dense with respect to convergence in distribution (precisely
in both weak and vague convergence) in the space of all CRMs. This result extends the
denseness result in Lindner et al. (2018) to the infinite dimensional setting of CRMs.

The class A has quite remarkable features. First, it has finite fixed atoms. Second,
these random measures are almost surely finite and even more their ordinary compo-
nent has finite Lévy measure. Third, for the elements of this class, we are able to show
an explicit spectral representation, namely the Lévy-Khintchine formulation, and prove
that there exists a unique one-to-one correspondence between them and pairs of deter-
ministic measures satisfying certain conditions, which we call characteristic pairs. We
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prove all these results also for the class of point processes with independent increments,
of which the Poisson point process is an example.

With these results this paper shows that the fixed component of a CRM, which has
been left out in Kingman’s analysis and in the theory of CRMs in general, have nice
representation results as the widely studied ordinary component. Thus, not only there is
no real need of leaving out of the analysis the fixed component (as Kingman graphically
says, fixed atoms can be removed by simple surgery), but this might also be dangerous
since in many applications the fixed component has an irreplaceable role. This will also
appear evident in the Bayesian setting we discuss in this work (see also Broderick et al.
(2018)).

The second main contribution of the paper is the investigation of the impact of these
results in the nonparametric Bayesian statistical framework presented by Broderick,
Wilson and Jordan in Broderick et al. (2018) based on CRMs (see also Campbell et al.
(2019)). In particular, we consider priors to be given by elements in A (with quasi-
Lévy measure having a particular structure). First, we show that they are dense in the
space of priors considered in Broderick et al. (2018) and Campbell et al. (2019) with
respect to convergence in distribution, thus showing also that our denseness result is
flexible enough to adjust to various assumptions/settings. Second, we present explicit
formulations for their posterior distributions. Third, when focusing on point processes,
we prove automatic conjugacy for all the elements of A under the only condition that
the characteristic function of the posterior distribution has no zeros. This condition is
new and different from the usual condition based on the exponential structure of the
likelihood and of the prior.

We remark that the choice of the setting in Broderick et al. (2018) is not ad hoc,
the general nature of our results allow them to be applied to more general settings and
to answer more general questions.

In the last section we present a truncation error analysis. Building on the class of
CRMs in A, we provide a truncation procedure for any CRM ξ. The truncated random
measure ξn and the tail measure ξ − ξn are independent CRMs. Moreover, the ξn is
composed by the atoms of ξ with weight greater than 1/n (and in some cases lying in
a bounded region). Our truncation procedure, which can be seen as a generalization of
the ε-approximation of Argiento et al. (2016), is remarkably not of the forms discussed
in Arbel and Prünster (2017); Campbell et al. (2019); Nguyen et al. (2021); Lee et al.
(2019), because it is not obtained by truncating a series representation of the CRM,
with stochastically decreasing weights, or by considering a finite measure with n atoms
and iid weights converging in distribution to the CRM as n tends to infinity. Moreover,
we present an upper bound for the L1 error on the marginal likelihood when truncated
CRMs are used in a general hierarchical Bayesian setting. Our finite-dimensional ap-
proximation is more general than the ones presented in Campbell et al. (2019); Nguyen
et al. (2021); Lee et al. (2019) because it applies to any CRM without any assumption.

The paper is structured as follows. Section 2 concerns with the notations and some
preliminaries. In Section 3 we provide the denseness results for CRMs and in Subsec-
tion 3.2 the one for point processes with independent increments. In Section 4, we show
various properties for the classes of QID CRMs and QID point processes presented in
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Section 3. In particular we present the Lévy-Khintchine formulation and the one-to-
one correspondence of these random measures with their unique characteristic pair. In
Section 5, we present the Bayesian setting and the relative results: computation of the
posterior, convergence results for the posterior, and automatic conjugacy. In Section 6
we present the truncation error analysis.

2 Notation and preliminaries

By a measure on a measurable space (V,G) we always mean a positive measure on
(V,G), i.e. a [0,∞]-valued σ-additive set function on G that assigns the value 0 to the
empty set. For a non-empty set V , by B(V ) we mean the Borel σ-algebra of V . The law
and the characteristic function of a random variable X will be denoted by L(X) and by
L̂(X), respectively. For two measurable spaces (V,G) and (T,F), we denote by G ⊗ F
the product σ-algebra of G and F , and by G ×F their Cartesian product. Let us recall
some definitions.

Definition 2.1 (extended signed measure). Given a measurable space (V,G), that
is, a set V with a σ-algebra G on it, an extended signed measure is a function μ :
G → R ∪ {∞,−∞} s.t. μ(∅) = 0 and μ is σ-additive, that is, it satisfies the equality
μ (

⋃∞
n=1 An) =

∑∞
n=1 μ(An) where the series on the right must converge in R∪{∞,−∞}

absolutely (namely the value of the series is independent of the order of its elements),
for any sequence A1, A2, . . . of disjoint sets in G.

As a consequence any extended signed measure can take plus or minus infinity as
value, but not both. In this work, we use the term ‘signed measure’ for an extended
signed measure. Further, the total variation of a signed measure μ is defined as the
measure |μ| : G → [0,∞] defined by |μ|(A) := sup

∑∞
j=1 |μ(Aj)|, where the supremum

is taken over all the partitions {Aj} of A ∈ G. The total variation |μ| is finite if and
only if μ is finite. Let us recall the definition of a signed bimeasure.

Definition 2.2 (Signed bimeasure). Let (V,G) and (T,Γ) be two measurable spaces.
A signed bimeasure is a function M : G × Γ → [−∞,∞] such that:

(i) the function A → M(A,B) is a signed measure on G for every B ∈ Γ,

(ii) the function B → M(A,B) is a signed measure on Γ for every A ∈ G.

Let S be a separable and complete metric space with Borel σ-algebra S and let Ŝ be
the ring composed by bounded Borel sets in S. The triplet (S,S, Ŝ) is called localised
Borel space (see page 19 in Kallenberg (2017)).

Definition 2.3 (random measure). A random measure ξ on S, with underlying proba-
bility space (Ω,F ,P), is a function Ω×S → [0,∞], such that ξ(ω,B) is a F-measurable
in ω ∈ Ω for fixed B and a locally finite measure in B ∈ S for fixed ω.

Definition 2.4 (completely random measure). A completely random measure (CRM)
ξ is a random measure s.t. for any disjoint B1, B2, . . . , Bk ∈ S, k ∈ N, the random
variables ξ(B1), ξ(B2), . . . , ξ(Bk) are independent. CRMs are also called independently
scattered random measure or random measure with independent increments.
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Definition 2.5 (diffuse random measure). Using the notation of the previous definition,
we say that a random measure ξ on S is diffuse if ξ(ω,B) is a locally finite diffuse measure
in B ∈ S for fixed ω (namely ξ(ω, {x}) = 0 for every x ∈ S).

Remark 2.6. The term finite for random measures stands for a.s. finite. Thus, for a
finite random measure we mean an a.s. finite random measure.

Definition 2.7 (fixed atoms, atomless random measure). For a random measure ξ on
a Polish space V , x ∈ V is a fixed atom of ξ if and only if P(ξ({x}) > 0) > 0. Further,

a random measure ξ is called atomless if it has no fixed atoms, namely if ξ({x}) a.s.
= 0

for every x ∈ V .

The atomless condition is for random measures what the continuity in probability is
for continuous time stochastic processes. We remark that an atomless random measure
is not necessarily a diffuse random measure (see Corollary 12.11 in Kallenberg (2002)).
For example, think of a Poisson point process with E[ξ(s)] ≡ 0, like the homogeneous
Poisson point process, which has no fixed atoms but it is not diffuse. Next, we introduce
the QID distribution (see Lindner et al. (2018)).

Definition 2.8. Let Br(R) := {B ∈ B(R)|B ∩ (−r, r) = ∅} for r > 0 and B0(R) :=⋃
r>0 Br(R) be the class of all Borel sets that are bounded away from zero. Let ν :

B0(R) → R be a function such that ν|Br(R) is a finite signed measure for each r > 0 and

denote the total variation, positive and negative part of ν|Br(R) by |ν|Br(R)|, ν+|Br(R)
and

ν−|Br(R)
respectively. Then the total variation |ν|, the positive part ν+ and the negative

part ν− of ν are defined to be the unique measures on (R,B(R)) satisfying
|ν|({0}) = ν+({0}) = ν−({0}) = 0

and |ν|(A) = |ν|Br(R)(A)|, ν+(A) = ν+|Br(R)
(A), ν−(A) = ν−|Br(R)

(A),

for A ∈ Br(R), for some r > 0.

Lemma 2.14 in Passeggeri (2020c) shows the uniqueness of |ν|, ν+ and ν−.

Definition 2.9 (quasi-Lévy type measure, quasi-Lévy measure, QID distribution). A
quasi-Lévy type measure is a function ν : B0(R) → R satisfying the condition in Def-
inition 2.8 and such that its total variation |ν| satisfies

∫
R
(1 ∧ x2)|ν|(dx) < ∞. Let

μ be a probability distribution on R. We say that μ is quasi-infinitely divisible if its
characteristic function has a representation

μ̂(θ) = exp

(
iθγ − θ2

2
a+

∫
R

(
eiθx − 1− iθτ(x)

)
ν(dx)

)
,

where a, γ ∈ R and ν is a quasi-Lévy type measure. The characteristic triplet (γ, a, ν)
of μ is unique, and a and γ are called the Gaussian component and the drift of μ,
respectively. A quasi-Lévy type measure ν is called quasi-Lévy measure, if additionally
there exist a quasi-infinitely divisible distribution μ and some a, γ ∈ R such that (γ, a, ν)
is the characteristic triplet of μ. We call ν the quasi-Lévy measure of μ.

As pointed out in Example 2.9 of Lindner et al. (2018), a quasi-Lévy measure is
always a quasi-Lévy type measure, while the converse is not true. In this work the
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characteristic triplet have always the same order: drift, Gaussian component, and (quasi)
Lévy measure.

Definition 2.10 (QID random measure). Let Λ be a random measure. If Λ(A) is a
QID random variable, for every A ∈ S, then we call Λ a QID random measure.

3 The denseness results

In this section we present the denseness with respect to convergence in distribution of
QID CRMs in the space of all CRMs and of QID point processes with independent
increments in the space of all point processes with independent increments. Let us start
with some preliminaries. Recall that S is a separable and complete metric space with
Borel σ-algebra S and Ŝ is the ring composed by bounded Borel sets in S. Let ĈS be the
space of all bounded continuous functions f : S → R+ with bounded support. Let MS

be the space of locally finite measures, namely μ ∈ MS if μ(B) < ∞ for every B ∈ Ŝ.
The space MS might be endowed with the vague topology, denoted by BMS

, generated
by the integration maps πf : μ �→

∫
f(x)μ(dx), for all f ∈ ĈS . The vague topology is

the coarsest topology making all πf continuous. The measurable space (Ms,BMS
) is a

Polish space. The associated notion of vague convergence denoted by μn
v→ μ is defined

by the condition
∫
f(x)μn(dx) →

∫
f(x)μ(dx) for all f ∈ ĈS .

An equivalent definition of random measure (see Definition 2.3) is the following: a
random measure ξ is a measurable mapping from (Ω,F ,P) to (MS ,BMS

), where BMS

is the topology generated by all projection maps πB : μ �→ μ(B) with B ∈ S, or,
equivalently, by all integration maps πf with measurable f ≥ 0. From Lemma 4.1 in
Kallenberg (1983) or Theorem 4.2 in Kallenberg (2017), we know that BMS

and BMS

coincide. Hence it is equivalent to consider a random measure as a measurable mapping
from (Ω,F ,P) to (MS ,BMS

) or to (MS ,BMS
).

The convergence in distribution of ξn to ξ means that E[g(ξn)] → E[g(ξ)] for every

real valued bounded continuous function g on MS , or equivalently that L(ξn) w→ L(ξ),
where for any bounded measures νn and ν, the weak convergence νn

w→ ν stands for∫
g(y)νn(dy) →

∫
g(y)ν(dy) for all g as above. We write ξn

vd→ ξ to stress that the
convergence of distribution is for random measures considered as random elements in
the space MS with vague topology. As mentioned in the previous section, in this setting
an atom of a random measure ξ is an element s ∈ S such that P(ξ({s}) > 0) > 0.

3.1 The denseness result for QID CRMs

In this section we present the denseness of QID CRMs in the space of all CRMs. We
start with following denseness result which extends Theorem 4.1 in Lindner et al. (2018).

Theorem 3.1. Let A be a connected interval of the real line. The class of QID dis-
tributions with finite quasi-Lévy measure, zero Gaussian component and with support
on A is dense in the class of probability distributions with support on A with respect to
weak convergence.
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Proof. The arguments of this proof extend the arguments in the proof of Theorem 4.1
in Lindner et al. (2018). First, we prove the result when A is bounded. Let A be a finite
closed interval, thus A = [k, c] for some k, c ∈ R. Let μ be a probability distribution
with support [k, c]. For n ∈ N, let bj,n = k + (c − k)j/2n2, j ∈ {0, . . . , 2n2} and define
the discrete distribution μn concentrated on the lattice {b0,n, . . . , b2n2,n} by

μn({bj,n}) =

⎧⎪⎨
⎪⎩
μ((−∞, b0,n]), j = 0,

μ((bj−1,n, bj,n]), j = 1, . . . , 2n2 − 1,

μ((b2n2−1,n,∞)), j = 2n2.

(1)

Then, μn
w→ μ as n → ∞. Observe that μn is the probability distribution of a random

variable with values on {b0,n, . . . , b2n2,n} ⊂ [k, c]. It remains to prove that each μn

is a weak limit of QID distributions with finite quasi-Lévy measure, zero Gaussian
component and with support on [k, c]. W.l.o.g. assume that the approximating sequence
of distributions σ is such that σ({bj,n}) > 0 for every j ∈ {0, . . . , 2n2}. Assume that
the characteristic function σ̂ has zeros (in the other case we can directly use Corollary
3.10 in Lindner et al. (2018) to conclude). Let X be a random variable with distribution

σ and define Y = (X−k)2n2

c−k . Then, Y is concentrated on {0, . . . , 2n2} with masses

aj = P(Y = j) > 0 for j = 0, . . . , 2n2, and its characteristic function has zeroes.

Then, the polynomial f(w) =
∑2n2

j=0 ajw
j has zeroes on the unit circle. Factorizing,

we obtain f(w) = a2n2

∏2n2

j=1(w − ξj), where ξj , j = 1, . . . , 2n2, denote the complex

roots. Let fh(w) = a2n2

∏2n2

j=1(w − ξj − h), where w ∈ C and h > 0. Then, for small

enough h, fh is a polynomial with real coefficients, namely fh(w) =
∑2n2

j=0 ah,jw
j with

ah,j ∈ R. Observe that for small enough h, ah,j and aj will be close, so ah,j > 0. Now,

let Zh be a random variable with distribution σh =
(∑2n2

j=0 ah,j

)−1 ∑2n2

j=0 ah,jδj and let

Xh = Zh(c−k)
2n2 + k. Observe that, for every h > 0, Xh is random variable with values

on the lattice {b0,n, . . . , b2n2,n} and its characteristic function has no zeros, and that

Xh
d→ X as h ↘ 0. Finally, by Corollary 3.10 in Lindner et al. (2018) we know that Xh

is QID with finite quasi-Lévy measure and zero Gaussian component.

Observe that if A is a bounded open interval, say A = (k′, c′) for some c, k ∈ R, then
the above arguments apply. Let μ be a probability distribution with support (k′, c′). For

any n ∈ N let k′n = k′ + (c′−k′)
2n2 and c′n = c′ − (c′−k′)

2n2 and let bj,n = k′n +(c′n − k′n)j/2n
2,

j ∈ {0, . . . , 2n2} and define the discrete distribution μn concentrated on the lattice

{b0,n, . . . , b2n2,n} as in (1). Then, μn
w→ μ as n → ∞ and, applying the same reaming

arguments (in which n is fixed) for k′n and c′n instead of k and c, we obtain the result
for A bounded and open.

Let now A be an unbounded interval of the form A = [k,∞) for some k ∈ R.
Let μ be a probability distribution with support on [k,∞). For n ∈ N, let bj,n =
k + j/n, j ∈ {0, . . . , 2n2} and define the discrete distribution μn concentrated on the

lattice {b0,n, . . . , b2n2,n} as in (1). Then, μn
w→ μ as n → ∞. Using the notation above,

let X be a random variable with distribution σ and define Y = (X − k)n. Then,
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Y is concentrated on {0, . . . , 2n2} with masses aj and its characteristic function has
zeroes by assumption. We proceed as before. Thus, for small enough h, we obtain a

polynomial with real coefficients fh, namely fh(w) =
∑2n2

j=0 ah,jw
j with ah,j ∈ R and

ah,j > 0, for small enough h. Then, let Zh be a random variable with distribution

σh =
(∑2n2

j=0 ah,j

)−1 ∑2n2

j=0 ah,jδj and let Xh = Zh

n + k. Then, Xh is random variables

with support on {b0,n, . . . , b2n2,n} ⊂ [k,∞) and its characteristic function has no zeros,

and that Xh
d→ X as h ↘ 0. Hence, by Corollary 3.10 in Lindner et al. (2018) we obtain

the result. Similarly we obtain the result for (k′,∞), for (−∞, c] and for (−∞, c′), where
k′, c, c′ ∈ R.

Recall that the Lévy-Prokhorov metric (or better just Lévy metric since we work on
R) for two probability distributions F and G on R is defined as

ρ(F,G) := inf {ε > 0 |F (x− ε)− ε ≤ G(x) ≤ F (x+ ε) + ε for all x ∈ R} .
Lemma 3.2. Let F and G be any two probability distributions on R and let Fc(x) :=
F (xc ) and Gc(x) := G(xc ) where c ∈ R \ {0}. For every positive constant c ≤ 1 we have
that ρ(Fc, Gc) ≤ ρ(F,G).

Proof. Let c be any positive constant c ≤ 1. Observe that Fc(x−ε) = F (x−ε
c ) ≤ F (xc−ε)

and similarly we have that Fc(x + ε) ≥ F (xc + ε). This implies that if ε > 0 satisfies
F (x− ε)− ε ≤ G(x) ≤ F (x+ ε) + ε for all x ∈ R, then it also satisfies Fc(x− ε)− ε ≤
Gc(x) ≤ Fc(x+ ε) + ε for all x ∈ R. Then, we have

ρ(Fc, Gc) = inf {ε > 0 |Fc(x− ε)− ε ≤ Gc(x) ≤ Fc(x+ ε) + ε for all x ∈ R}
≤ inf {ε > 0 |F (x− ε)− ε ≤ G(x) ≤ F (x+ ε) + ε for all x ∈ R} = ρ(F,G).

Observe that for two real valued random variables X and Y the above lemma affirms
that for any 0 < c ≤ 1 we have that ρ(cX, cY ) ≤ ρ(X,Y ). Moreover, from condition
3) of the section “Lévy metric” in Zolotarev (2001) (page 405) given any probability
distributions on R F1, . . . , Fk, G1, . . . , Gk, where k ∈ N, we have that

ρ(F1 ∗ · · · ∗ Fk, G1 ∗ · · · ∗Gk) ≤
k∑

j=1

ρ(Fj , Gj). (2)

For the next two results denote by Sn the sequence of bounded sets (i.e. Sn ∈ Ŝ)

s.t. Sn ↑ S. Notice that such sequence exists by the definition of Ŝ, see page 19 in
Kallenberg (2017).

Proposition 3.3. Consider an atomless CRM α with corresponding unique pair (γ, F ).
Let γn(A) = γ(Sn ∩ A) and let Fn(C) = F (C ∩ (Sn × ( 1n ,∞))), for every A ∈ S,
C ∈ S⊗ B((0,∞)) and n ∈ N. Then, γn and Fn are finite measures and there exists a

sequence of atomless finite CRMs αn with pair (γn, Fn) s.t. αn
d→ α.

Proof. From Kingman’s representation theorem (see Kingman (1993) and see also Corol-
lary 12.11 in Kallenberg (2002) and Corollary 3.21 in Kallenberg (2017)), we have that
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every atomless CRM α has the following representation:

α = γ +

∫ ∞

0

∫
S

xδsη(ds dx), a.s. (3)

for some non-random diffuse measure γ ∈ MS and a Poisson process η on S × (0,∞)
with intensity F satisfying ∫ ∞

0

(1 ∧ x)F (A× dx) < ∞, (4)

for every A ∈ Ŝ. In particular, for every B ∈ S we have that α(B) < ∞ if and only if
γ(B) < ∞ and condition (4) holds for B ∈ S (see Corollary 12.11 in Kallenberg (2002)).
Further, notice that the above formulation implies that for every A ∈ S and f ∈ ĈS

α(A) = γ(A) +

∫ ∞

0

xη(A× dx) and αf = γf +

∫ ∞

0

∫
S

xf(s)η(ds dx), a.s..

Moreover, the unique one to one correspondence between α and (γ, F ) is shown in
Theorem 3.20 of Kallenberg (2017). It is possible to see that γn and Fn are measures

on S and on S⊗B((0,∞)), respectively. In particular, since α(A) < ∞ for every A ∈ Ŝ
then γ(Sn) < ∞ and∫ ∞

0

(1 ∧ x)F (Sn × dx) < ∞ ⇒ F (Sn × (
1

n
,∞)) < ∞,

for every n ∈ N. Thus, γn and Fn are finite measures, for every n ∈ N. Now, for every
n ∈ N, let ηn be a Poisson process on S × (0,∞) with intensity Fn and let

αn = γn +

∫ ∞

0

∫
S

xδsηn(ds dx).

Then, we have that αn is an atomless CRM and since γn and Fn are finite then αn is
finite, for every n ∈ N (see Corollary 12.11 in Kallenberg (2002)).

Concerning the stated convergence we have the following. From Lemma 12.2 in
Kallenberg (2002) (or from Lemma 3.1 in Kallenberg (2017)) we have that for every
f ∈ ĈS

− logE

[
exp

(
−
∫

f(s)α(ds)

)]
= γf +

∫ ∞

0

∫
S

1− e−xδsfF (ds dx).

Hence, by assumption we have that for every f ∈ ĈS

− logE

[
exp

(
−
∫

f(s)α(ds)

)]
+ logE

[
exp

(
−
∫

f(s)αn(ds)

)]

=

∫
S

f(s)γ(ds)+

∫ ∞

0

∫
S

1−e−xf(s)F (ds dx)−
∫
Sn

f(s)γ(ds)+

∫ ∞

1
n

∫
Sn

1−e−xf(s)F (ds dx)

=

∫
S\Sn

f(s)γ(ds) +

∫ 1
n

0

∫
Sn

1− e−xf(s)F (ds dx) +

∫ ∞

0

∫
S\Sn

1− e−xf(s)F (ds dx) → 0,
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as n → ∞. Then, by point (iii) in Theorem 4.11 in Kallenberg (2017) (see also Lemma

4.24 in Kallenberg (2017)) we obtain that αn
d→ α, as n → ∞.

From Theorem 7.1 in Kallenberg (1983) we know that a CRM ξ has the following
representation

ξ
a.s.
= α+

K∑
j=1

βjδsj

with K ∈ N ∪ {0} ∪ {∞}, where {sj : j ≥ 1} is the set of fixed atoms of ξ in S, α is
an atomless CRM, and βj , j ≥ 1, are R+-valued random variables, which are mutually

independent and independent of α. We call
∑K

j=1 βjδsj the fixed component of ξ. We
remark that in the Kingman’s representation α is the sum of a deterministic and a
ordinary component (see eq. (3)).

Denote by A the following class of QID CRMs: a CRM ξ belongs to A if ξ
a.s.
= α +∑K

j=1 βjδsj , where α is an atomless CRM with finite Lévy measure, {sj : j = 1, . . . ,K}
is a finite set of fixed atoms in S, and βj , j ≥ 1, are R+-valued QID random variables
with finite quasi-Lévy measure and zero Gaussian component and that are mutually
independent and independent of α.

Since any atomless random measure with independent increments is ID, α is ID.
Observe that, in contrast with general CRMs, the elements of A have that the atomless
random measure α has finite Lévy measure, the number of fixed atoms K is finite, and
βj , j = 1, . . . ,K, are R+-valued QID random variables with finite quasi-Lévy measure
and zero Gaussian component. Thus, the elements of A are almost surely finite on S.
Hence, A is strictly smaller than the class of QID CRMs, which in turn is strictly smaller
than the class of all CRMs. We are ready to present the main result of this section.

Theorem 3.4. A is dense in the space of all CRMs with respect to the convergence in
distribution.

Proof. From Theorem 7.1 in Kallenberg (1983) we know that any CRM has the following
unique representation

ξ
a.s.
= α+

K∑
j=1

βjδsj (5)

with K ≤ ∞, where {sj : j ≥ 1} is the set of fixed atoms of ξ, α is a random measure
without fixed atoms with independent increments (hence, α is an atomless ID random
measure), and βj , j ≥ 1, are R+-valued random variables, which are mutually indepen-
dent and independent of α.

From Theorem 3.1 with A = [0,∞), we know that for each βj there exists a sequence
of non-negative QID random variable with zero Gaussian component and finite Lévy
measure that converges in distribution to βj , for every j ∈ N. Denote by βn,j such a
sequence. Denote by Sn the sequence of bounded sets s.t. Sn ↑ S and by (γ, F ) be the
pair associated to α. Let γn(A) = γ(Sn∩A) and Fn(C) = F (C∩(Sn×( 1n ,∞))), for every
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A ∈ S, C ∈ S ⊗ B((0,∞)) and n ∈ N, as in Proposition 3.3. Then, by Proposition 3.3

there exists a sequence of finite CRMs αn with pair (γn, Fn) s.t. αn
d→ α.

The first step is to show the existence of random measures ξn ∈ A with ID atomless
random measure equal in distribution to αn, with fixed atoms in {sj : j ≥ 1}, and
weights equal in distributions to βn,j . The existence is not immediate because we do
not know whether the βn,j are mutually independent and independent of αn in the
underlying probability space of ξ. This is a classical problem in probability and the
solution lies in the construction of a probability space under which these conditions are
satisfied, which is given by the ‘product’ of the probability spaces.

For the sake of clarity and completeness let us write here the arguments. Fix
n ∈ N. Denote the underlying probability spaces of αn by (Ω,F ,P) and of the ran-
dom variable βn,j by (Ωj ,Fj ,Pj), for j = 1, . . . , n. Consider the probability space
(Ω′,F ′,P′) where Ω′ = Ω× Ω1 × · · · × Ωn, F ′ = F ⊗ F1 ⊗ · · · ⊗ Fn and P′ is the prod-
uct probability measure of P,P1, . . . ,Pn. Let α′

n(·)(ω, ω1, . . . , ωn) := αn(·)(ω) and let
β′
n,j(ω, ω1, . . . , ωn) := βn,j(ωj), where j = 1, . . . , n, for every (ω, ω1, . . . , ωn) ∈ Ω′. Ob-

serve that for every B1, . . . , Bk ∈ S and x1, . . . , xk, x
(1)
1 , . . . , x

(1)
k , . . . , x

(n)
1 , . . . , x

(n)
k ∈ R+

we have that

P′
(
α′
n(B1) < x1, . . . , α

′
n(Bk) < xk, δs1(B1)β

′
n,1 < x

(1)
1 , . . . , δs1(Bk)β

′
n,1 < x

(1)
k ,

. . . , δsn(B1)β
′
n,n < x

(n)
1 , . . . , δsn(Bk)β

′
n,n < x

(n)
k

)
= P

(
α(B1) < x1, . . . , α(Bk) < xk

)
,

n∏
l=1

Pl

(
δsl(B1)β

′
n,l < x

(l)
1 , . . . , δsl(Bk)β

′
n,l < x

(l)
k

)
.

Now, let

ξn(·)(ω′) := α′
n(·)(ω′) +

n∑
j=1

β′
n,j(ω

′)δsj (·), ∀ω′ ∈ Ω′, (6)

where s1, . . . , sn are the same as the ones in (5). It is possible to see that, for every
ω′ ∈ Ω′, ξn(·)(ω′) is a measure because it is the sum of measures and that, for every
B ∈ S, ξn(B)(·) is a measurable function because it is the sum of measurable functions.
Thus, ξn is a random measure on S and from its definition it is possible to see that it
belongs to A.

Since βn,j
d→ βj we can choose a subsequence of βn,j , which by abuse of notation

we denote by βn,j , such that ρ(βn,j , βj) <
1
n2 for every j = 1, . . . , n and n ∈ N. From

the above arguments there exists a sequence of random measures in A (with possibly
different underlying probability spaces) such that ξn = α′

n +
∑n

j=1 β
′
n,jδsj . Thus, using

that β′
n,j

d
= βn,j we obtain that ρ(β′

n,j , βj) <
1
n2 for every j = 1, . . . , n and n ∈ N.

Now, we need to show that ξn
vd→ ξ. From Theorem 4.11 in Kallenberg (2017), it

is sufficient to show that
∫
f(x)ξn(dx)

d→
∫
f(x)ξ(dx) for all f ∈ ĈS . Since α′

n
d
=

αn for every n ∈ N and αn
d→ α for every ω ∈ Ω then α′

n
d→ α. Further, since α′

n
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and α are independent of the corresponding fixed component, this reduces the goal

to prove that
∑n

j=1 f(sj)β
′
n,j

d→
∑∞

j=1 f(sj)βj for all f ∈ ĈS . Let f ∈ ĈS , hence, f
is bounded and has bounded support, and by denoting B the support of f we have
that B ∈ Ŝ and so that almost surely ξn(B) < ∞, n ∈ N, and ξ(B) < ∞. Thus, for
each n ∈ N,

∑n
j=1 f(sj)β

′
n,j < ∞ a.s. and

∑∞
j=1 f(sj)βj < ∞ a.s.. Moreover, notice

that it is sufficient to prove the result for any f ∈ ĈS with f(s) ≤ 1 for every s ∈ S.
Indeed, consider any f ∈ ĈS and let C̄ ∈ R+ be its bound, then

∑n
j=1 f(sj)β

′
n,j =

C̄
∑n

j=1
f(sj)

C̄
β′
n,j and so if

∑n
j=1

f(sj)

C̄
β′
n,j

d→
∑∞

j=1
f(sj)

C̄
βj then

∑n
j=1 f(sj)β

′
n,j

d→∑∞
j=1 f(sj)βj . Now, consider any f ∈ ĈS with f(s) ≤ 1 for every s ∈ S. By the

triangular inequality we have that

ρ

(
n∑

j=1

f(sj)β
′
n,j ,

∞∑
j=1

f(sj)βj

)

≤ ρ

(
n∑

j=1

f(sj)β
′
n,j ,

n∑
j=1

f(sj)βj

)
+ ρ

(
n∑

j=1

f(sj)βj ,
∞∑
j=1

f(sj)βj

)
.

The last element converges to zero as n → ∞ because
∑n

j=1 f(sj)βj
a.s.→

∑∞
j=1 f(sj)βj

as n → ∞. For the other element, by (2) and by Lemma 3.2 we obtain that

ρ

(
n∑

j=1

f(sj)β
′
n,j ,

n∑
j=1

f(sj)βj

)
≤

n∑
j=1

ρ
(
f(sj)β

′
n,j , f(sj)βj

)
≤

n∑
j=1

ρ
(
β′
n,j , βj

)
<

1

n
.

Thus, we have that
∑n

j=1 f(sj)β
′
n,j

d→
∑∞

j=1 f(sj)βj as n → ∞, which concludes the
proof.

Remark 3.5. We could alternatively consider an almost sure equality in (6) and then
use the existence and uniqueness results for random measures (see Theorem 2.15 and
Corollary 2.16 in Kallenberg (2002)) to obtain a random measure almost surely equal
to ξn. In addition, by the Kolmogorov extension theorem the same arguments of the
first part of the above proof hold for the case of n ‘equal’ to infinity, namely ξn =
α′
n +

∑∞
j=1 β

′
n,j . Further, we point out that if ξ is such that the number of fixed atoms

in any bounded set (i.e. in any B ∈ Ŝ) is finite then the number of fixed atoms in the
support of every f ∈ ĈS is finite, namely {sj : j ≥ 1} ∩ supp(f) has finite cardinality,
and so the stated result follows directly from the mutual independence of the β′

n,j ,

j = 1, . . . , n, from the fact that β′
n,j

d→ βj as n → ∞, for every j = 1, . . . , n and n ∈ N,
and from the continuous mapping theorem.

Remark 3.6. Let A∞ be a class of random measures like A, but such that the ID
component is not necessarily finite, i.e. the ‘α’ is not necessarily finite. Then, trivially
A∞ is dense in the space of all CRMs w.r.t. the convergence in distribution. Indeed, let
ξ = α +

∑K
j=1 βjδsj be any CRM on S. If we know the ID component of ξ, i.e. α, and

for modelling/theoretical reasons we can take an approximating sequence of unbounded
ξn, then we can define the ξn s.t. ξn(·)(ω′) := α̃′

n(·)(ω′)+
∑n

j=1 β
′
n,j(ω

′)δsj (·), ∀ω′ ∈ Ω′,
where α̃′

n(·)(ω, ω1, . . . , ωn) := α(·)(ω). Then, ξn ∈ A∞ and from the arguments of the

proof of Theorem 3.4 it is possible to see that ξn
d→ ξ.
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It is possible to consider also the set of bounded measures, denoted by M̂S , which
can be endowed with the vague topology, as for MS , but also with the weak topology.
The weak topology on M̂S is the topology generated by the integration maps πf for
all bounded continuous functions. Then, for random measures ξ, ξ1, ξ2, . . . considered as

random elements in M̂S , endowed with the weak topology, we will denote by ξn
wd→ ξ

the convergence in distribution. Recall that QID CRMs in A are a.s. bounded, and so
they are random measures in this setting as well. We are now ready to present our next
result, which is similar to Theorem 3.4, but applies to M̂S and involves both the vague
and the weak topology.

Theorem 3.7. A is dense in the space of all CRMs, considered as random elements in
M̂S, endowed with either the vague topology or the weak topology, with respect to the
convergence in distribution.

Proof. Consider first the case of M̂S endowed with the vague topology. Then, by the
same arguments as the ones used in the proof of Theorem 3.4 we obtain the result.
For the weak topology case, by the same arguments as the ones used in the proof of

Theorem 3.4 we have that ξn
vd→ ξ. Hence, according to Theorem 4.19 in Kallenberg

(2017) it remains to prove that ξn(S)
d→ ξ(S), namely that α′

n(S) +
∑n

j=1 β
′
n,j

d→
α(S) +

∑∞
j=1 βj . However, this has been proved in the proof of Theorem 3.4 – indeed,

consider f ≡ 1 and notice that ξn(S) and ξ(S) are a.s. finite since ξn and ξ are almost
surely bounded. Thus, the proof is complete.

3.2 The denseness result for QID point processes

In this subsection we answer positively the following question: given any point process
with independent increments is it possible to find a sequence of QID point processes
with independent increments which converges in distribution to it?

Thus, in this subsection we restrict our focus to point processes with independent
increments and check that the denseness result holds. There are two main reasons for
doing this. First, the class of point processes with independent increments represents one
of the most studied class of completely random measures due to their nice theoretical
properties and their importance in applications. Second, we have an explicit formulation
for the quasi-Lévy measure and the drift of QID random variables supported on finite
subsets of N ∪ {0} (see Theorem 3.9 in Lindner et al. (2018)). Let us first show the
denseness result for random variables supported on N ∪ {0}.
Proposition 3.8. The class of QID distributions supported on finite subsets of N∪{0}
is dense in the class of probability distributions with support on N ∪ {0} with respect to
weak convergence.

Proof. Let μ be a probability distribution with support on N. For n ∈ N, define the
discrete distribution μn concentrated on the lattice {0, . . . , 2n} by

μn({j}) = μ({j}), j ∈ {0, . . . , 2n}.
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Then, μn
w→ μ as n → ∞. It remains to prove that each μn is a weak limit of QID distri-

butions with support on {0, . . . , 2n}. W.l.o.g. assume that the approximating sequence
of distributions σ is such that σ({j}) > 0 for every j ∈ {0, . . . , 2n}. Assume that the
characteristic function σ̂ has zeros (in the other case we can directly use Theorem 3.9
in Lindner et al. (2018) to conclude). Let X be a random variable with distribution σ

and let aj = P(X = j) > 0 for j = 0, . . . , 2n. Then, the polynomial f(w) =
∑2n

j=0 ajw
j

has zeroes on the unit circle. Factorizing, we obtain f(w) = a2n
∏2n

j=1(w − ξj), where

ξj , j = 1, . . . , 2n, denote the complex roots. Let fh(w) = a2n
∏2n

j=1(w − ξj − h), where
w ∈ C and h > 0. Then, for small enough h, fh is a polynomial with real coefficients,
namely fh(w) =

∑2n
j=0 ah,jw

j with ah,j ∈ R. Observe that for small enough h, ah,j
and aj will be close, so ah,j > 0. Now, let Xh be a random variable with distribution

σh =
(∑2n

j=0 ah,j

)−1 ∑2n
j=0 ah,jδj . We conclude by noticing that, for every h > 0, Xh

is random variable with values on the lattice {0, . . . , 2n} and its characteristic function

has no zeros (thus it is QID by Theorem 3.9 in Lindner et al. (2018)), and that Xh
d→ X

as h ↘ 0.

From Corollary 3.21 in Kallenberg (2017), for an atomless point process with inde-
pendent increments the corresponding unique pair, which we denote by (γ, F ), is such
that γ = 0 and F is restricted to S × N. Let A′ be the set of all the point processes
in A. In other words, let A′ be composed by CRMs of the form ξ

a.s.
= α +

∑K
j=1 βjδsj ,

with α an atomless point process with independent increments and finite Lévy measure,
{sj : j = 1, . . . ,K} a finite set of fixed atoms in S, and βj , j ≥ 1, QID random vari-
ables concentrated on finite subsets of N ∪ {0} and that are mutually independent and
independent of α. Obviously, we have A′ � A.

Theorem 3.9. A′ is dense in the space of all point processes with independent incre-
ments with respect to the convergence in distribution.

Proof. It follows from the same arguments as the ones used in the proof of Theorem 3.4.
In particular, now we need to use Proposition 3.8 instead of Theorem 3.1. Further, now
γn = γ = 0 and Fn and F are concentrated on S × N. Then, following the same
arguments as the ones used in the proof of Theorem 3.4 we obtain the result.

We conclude this subsection with the denseness result for finite point processes (for
which the weak topology might also be used), namely the equivalent of Theorem 3.7 for
point processes with independent increments.

Proposition 3.10. A′ is dense in the space of point processes with independent incre-
ments, considered as random elements in M̂S, endowed with either the vague topology
or with the weak topology, with respect to the convergence in distribution.

Proof. It follows from the same arguments as the ones used in the proof of Theorem 3.7,
with Theorem 3.9 instead of Theorem 3.4.
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4 Properties of the dense classes

4.1 Properties of the dense class A
In this section we explore some of the properties of the random measures in A, with a
particular focus on their spectral representations. Consider the same notation as in the
previous section. Let ξ ∈ A and so ξ

a.s.
= α +

∑n
j=1 δsjβj for some atomless CRM with

finite Lévy measure α, some finite set of fixed atoms in S {sj : j = 1, . . . ,K}, and some
R+-valued QID random variables βj , j ≥ 1, with finite quasi-Lévy measure and zero
Gaussian component and that are mutually independent and independent of α. Using
Theorem 12.10 and Corollary 12.11 in Kallenberg (2002) we have that

L̂(α(A))(θ) = exp

(
iθγ(1)(A) +

∫ ∞

0

(eiθx − 1)F
(1)
A (dx)

)
, (7)

for every θ ∈ R and A ∈ S, where γ is a finite diffuse measure on S and F (1) is a finite
measure on S⊗B((0,∞)) with diffuse projections onto S. Observe that we can extend
F (1) to a finite measure on S⊗B(R), by assigning value zero outside S⊗B((0,∞)); by
abuse of notation, we call this finite measure F (1).

Further, with centering function equal zero (as in (7)), denote by cj and bj the drift
and the quasi-Lévy measure of βj , for j = 1, . . . , n. Notice that we can use such centering
function because the βj ’s have finite quasi-Lévy measure. Then, the Lévy-Khintchine
formulation of

∑n
j=1 δsjβj is given by

L̂
( n∑

j=1

δsj (A)βj

)
(θ) = exp

(
iθγ(2)(A) +

∫
R

(eiθx − 1)F
(2)
A (dx)

)
,

for every θ ∈ R and A ∈ S, where γ(2)(A) =
∑n

j=1 δsj (A)cj and F
(2)
A (·) =∑n

j=1 δsj (A)bj(·). Then, ξ has the following characteristic function

L̂(ξ(A))(θ) = exp

(
iθν0(A) +

∫
R

(eiθx − 1)FA(dx)

)
, (8)

for every θ ∈ R andA ∈ S, where ν0(A) = γ(1)(A)+γ(2)(A) and FA(·) = F
(1)
A (·)+F

(2)
A (·).

Proposition 4.1. Let ξ ∈ A and adopt the notation above. Then, F extends uniquely
to a finite signed measure on S⊗ B(R).

Proof. Consider the notations above. For the first statement we need to show that F is
a finite signed measure on S ⊗ B(R). Since F (1) is a finite measure on S ⊗ B((0,∞)),
it remains to show that F (2) is a finite signed measure on S ⊗ B(R). We know that

F
(2)
A (·) =

∑n
j=1 δsj (A)bj(·) where bj(·) are finite signed measures on B(R). It is possible

to see that F (2) is a bimeasure on S× B(R) and that

sup
I

∑
i∈I

|F (2)
Ai

(Bi)| =
n∑

j=1

|bj |(R) < ∞,
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where the supremum is taken over all the finite families of disjoints elements of S×B(R).
Then, by Theorem 5.18 in Passeggeri (2020c) (see also Theorem 4 in Horowitz (1977))
F (2) extends to a finite signed measure on S⊗B(R). Thus, F is a finite signed measure
on S⊗ B(R).

Following the notation of the ID case (see Kallenberg (2017) page 89), we call F the
quasi-Lévy measure of ξ. Observe that in the ID case the Lévy measure, which we denote
by FID, is a σ-finite measure on S ⊗ B((0,∞)) such that A �→ FID(A × (0,∞)) is not
necessarily σ-finite (see Kingman (1993) pages 82–83), while our quasi-Lévy measure
is a finite signed measure. In the following result we show the existence of a unique
correspondence between any element in A and a characteristic pair.

Theorem 4.2. Let ξ ∈ A. Then, there exists a pair (ν0, F ) s.t. (8) holds, where ν0 and
F are a finite signed measure on S and S⊗B(R), respectively, s.t. for every A ∈ S and
B ∈ B(R):
(i) ν0(A) = γ(A)+

∑n
j=1 δsj (A)cj, for some diffuse finite measure γ on S, c1, . . . , cn ∈ R,

and finitely many atoms s1, . . . , sn ∈ S,
(ii) F (A × B) = G̃(A × B) +

∑n
j=1 δsj (A)bj(B), for some finite measure G̃ on S ⊗

B(R), which is the extension by zero of some measure G on S ⊗ B((0,∞)) with dif-
fuse projections onto S, and for some finite signed measures bj’s on B(R), such that
exp(b1), . . . , exp(bn) are measures.

Conversely, for every such pair (ν0, F ) there exists a unique random measure ξ ∈ A
s.t. (8) holds.

Proof. Concerning the atomless component of ξ, from Corollary 12.11 in Kallenberg
(2002) and Theorem 3.20 in Kallenberg (2017) we know that there exists a one to one
correspondence between an ID atomless random measure with independent increments
and a characteristic pair, composed by a diffuse measure on S and a measure on S ⊗
B(R) with diffuse projections onto S. In our case we note that the components of
the characteristic pair are finite measures by definition. For the fixed component of ξ,
by Theorem 4.3.4 in Cuppens (1975) we know that a characteristic triplet where the
Gaussian component is zero and the quasi-Lévy measure is finite is the characteristic
triplet of a QID random variable if and only if the exponential of the finite quasi-
Lévy measure is a measure. Then, by the definition of ξ and by the discussion and
the computations at the beginning of this section on the characteristic functions of
the components of ξ, we immediately obtain the result. Notice that for the converse
direction we need also to show the independence of the fixed and atomless components,
but this follows immediately from the linear structure of ν0 and F .

Remark 4.3. Notation: instead of using the characteristic pair we could have equiva-
lently used the characteristic set ({sj}nj=1, γ, {cj}nj=1, G, {bj}nj=1), with the above struc-
ture, in order to have a more explicit one to one identification with ξ ∈ A.

In the following result we present the Laplace transform of ξ ∈ A when the supports
of the quasi-Lévy measure of the random variables of its fixed component lie in R+,
namely when supp(∪n

j=1bj) ⊂ R+.
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Corollary 4.4. Let ξ ∈ A. If supp(∪n
j=1bj) ⊂ R+, then supp(FA) ⊂ R+ for every

A ∈ S, cj = inf(supp(L(βj))) for every j = 1, . . . , n, supp(ν0) ⊂ R+. Further, for every
u ≥ 0 and A ∈ S

E
[
e−uξ(A)

]
= exp

(
−uν0(A) +

∫ ∞

0

(e−ux − 1)FA(dx)

)
. (9)

Proof. It follows from the structure of ξ ∈ A, Theorem 4.2, and Proposition 5.1 in
Lindner et al. (2018).

We have the restriction supp(∪n
j=1bj) ⊂ R+, because the Laplace transform repre-

sentation of general non-negative QID random variables is still an open question.

Example 4.5. Consider a distribution μ with μ({x}) > 1/2, for some x ∈ R, then
μ is QID with no Gaussian component and (explicit) finite quasi-Lévy measure (see
Theorem 3.1 in Lindner et al. (2018)). Moreover, let μ be the distribution on [x,∞),
for some x ∈ R, and let μ({x}) > 1/2. Let b(·) be its finite quasi-Lévy measure. Then,
it is possible to derive from Theorem 3.1 in Lindner et al. (2018), using Lemma 24.1
in Sato (1999), that supp(b) ⊂ R+. For example, given a continuous random variable
X then max(X,median(X) + ε) is an example of such distribution, for any ε > 0.
Hence, given a Normal random variable X ∼ N(μ, σ), where μ ∈ R and σ > 0, we
have that max(N, c) is QID without Gaussian component and without being ID, for
any c > μ. Similar results holds for any distribution. Therefore, a CRM ξ with a
fixed atomic component composed by such distributions, with a finite deterministic
component, and with an ordinary component with finite Lévy measure, belongs to A
and has supp(∪n

j=1bj) ⊂ R+.

Example 4.6. Thanks to Lemma 24.1 in Sato (1999) and the fact that a finite sum
of independent QID random variables is QID and its quasi-Lévy measure is the sum of
the quasi-Lévy measures of the summands, a finite sum of independent CRMs for which
Corollary 4.4 applies is itself a CRM for which Corollary 4.4 applies, namely it belongs
to A and has supp(∪n

j=1bj) ⊂ R+.

Remark 4.7. The results presented in this section also hold for ξ ∈ A∞ (see Re-
mark 3.6). Concerning Proposition 4.1, F (1) is now a σ-finite measure on S⊗B(R) (see
Corollary 3.21 in Kallenberg (2017)), and F (2) is a finite signed measure on S ⊗ B(R)
as shown in the proof of Proposition 4.1. Thus, in this case F = F (1) + F (2) is a signed
measure on S⊗B(R) with values in (−∞,∞]. Concerning Theorem 4.2, the same state-

ment holds except that A is taken in Ŝ (to avoid infinite values) and G (and so G̃) is
now a σ-finite measure. Concerning Corollary 4.4, the same statement holds except that
A is taken in Ŝ.

4.2 Properties of the dense class A′

Since A′ � A all the results presented in the previous section hold for ξ ∈ A′. In this
subsection, we show that even better results hold for the elements in A′, which is the
structure of these random measures. To facilitate the presentation of the results, let us
recall Theorem 3.9 in Lindner et al. (2018).
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Theorem 4.8 (Theorem 3.9 in Lindner et al. (2018)). Let μ be a discrete distri-
bution concentrated on {0, 1, 2, . . . , n} for some n ∈ N, i.e., μ =

∑n
j=0 ajδj , where

a0, . . . , an−1 ≥ 0, an > 0, and a0 + · · ·+ an = 1. Then the following are equivalent:

(i) μ is quasi-infinitely divisible.

(ii) The characteristic function of μ has no zeroes.

(iii) The polynomial w �→
∑n

j=0 ajw
j in the complex variable w has no roots on the

unit circle, i.e.
∑n

j=0 ajw
j �= 0, for all w ∈ C with |w| = 1.

Further, if one of the equivalent conditions (i)–(iii) holds, then the quasi-Lévy mea-
sure of μ is finite and concentrated on Z, the drift lies in {0, 1 . . . , n}, and the Gaus-
sian component of μ is 0. More precisely, if ξ1, . . . , ξn denote the n complex roots of
w �→

∑n
j=0 ajw

j, counted with multiplicity, then the quasi-Lévy measure of μ is given
by

ν = −
∞∑

m=1

m−1

( ∑
j:|ξj |<1

ξmj

)
δ−m −

∞∑
m=1

m−1

( ∑
j:|ξj |>1

ξ−m
j

)
δm, (10)

and the drift is equal to the number of those zeroes of this polynomial which lie inside
the unit circle (counted with multiplicity), i.e., have modulus less than 1.

In the following theorem we adopt the following notation. Let ξ ∈ A′. We denote by
α its atomless component and by βj , j = 1, . . . , n the QID random variables of its fixed

component, i.e. ξ
a.s.
= α +

∑n
j=1 βjδsj . Further, for every j = 1, . . . , n, we denote the

law of βj by
∑kj

l=0 aj,lδl, namely L(βj) =
∑kj

l=0 aj,lδl and denote by ζj,1, . . . , ζj,kj the kj

complex roots of w �→
∑kj

l=0 aj,lw
l. Finally, we denote by bj the quasi-Lévy measure of

βj , i.e.

bj = −
∞∑

m=1

m−1

( ∑
l:|ζj,l|<1

ζmj,l

)
δ−m −

∞∑
m=1

m−1

( ∑
l:|ζj,l|>1

ζ−m
j,l

)
δm, (11)

and by cj its drift, i.e. cj = #{|ζj,l| < 1, l = 1, . . . , kj}.
Theorem 4.9. Let ξ ∈ A′. Then, there exists a pair (ν0, F ) s.t. (8) holds, where ν0
and F are a finite signed measure on S and S⊗B(R), respectively, s.t. for every A ∈ S
and B ∈ B(R):

(i) ν0(A) =
∑n

j=1 δsj (A)cj , where n ∈ N, sj ∈ S is an atom, and cj = #{|ζj,l| <
1, l = 1, . . . , kj}, for j = 1, . . . , n,

(ii) F (A×B) = G̃(A×B)+
∑n

j=1 δsj (A)bj(B), where G̃ is a finite measure on S⊗B(R)
restricted on S×N and with diffuse projections onto S, and where bj satisfies (11),
for j = 1, . . . , n.

Conversely, for every such pair (ν0, F ), where ζj,1, . . . , ζj,kj denote the kj complex

roots of some polynomial w �→
∑kj

l=0 aj,lw
l for j = 1, . . . , n, there exists a unique random

measure ξ ∈ A s.t. (8) holds.
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Proof. It follows from the same arguments as the one used in Theorem 4.2 and from
Theorem 4.8. In particular, the first direction is trivial. For the other direction, we
have the following. As mentioned in the proof of Theorem 4.2, we have a one-to-one
correspondence for the atomless part of ξ and its characteristic pair. Concerning the
fixed component, let us assume that there exist cj and bj which are functions of some

complex roots of some complex polynomial w �→
∑kj

l=0 aj,lw
l with no roots in the unite

circle, where kj ∈ N, a0, . . . , akj−1 ≥ 0, akj > 0, and a0 + · · · + akj = 1. Then, by

Theorem 4.8 there exists a QID probability distribution L(βj) =
∑kj

l=0 aj,lδl. Since this
holds for every j = 1, . . . , n then from the set of atoms s1, . . . , sn ∈ S we obtain the
fixed component

∑n
j=1 δsjβj of a random measure in A′.

The content of Remarks 4.3 and 4.7 holds mutatis mutandis here. In addition, we re-
fer to Nehring et al. (2013) for further properties of certain subclasses of point processes
with quasi-Lévy measures.

Example 4.10. We explore now an example of ξ ∈ A′ for which Corollary 4.4 applies.
Using Theorem 4.8 it is possible to see that such example is provided by a point process

with independent increments ξ with L(βj) =
∑kj

l=0 alδl, where a0, . . . , akj−1 ≥ 0, akj >
0, and such that ζj,1, . . . , ζj,kj satisfy |ζj,l| > 1 for every l = 1, . . . , kj and for every
j = 1, . . . , n. For example, thanks to the Eneström-Kakeya Theorem, the latter condition
is satisfied in the case a0 > a1 > . . . > akj for every j = 1, . . . , n or more generally in the
case a0 = ahj = 0 and ahj+1 > . . . > akj , for some hj = 0, . . . , kj−1. This theorem states
that the (complex) solutions of the equation

∑n
j=0 ajw

j = 0 are in modulus bounded
below by min

j=0,...,n
(aj/aj+1). For the case a0 = ahj = 0 and ahj+1 > . . . > akj we used

the fact that in this case
∑n

j=0 ajw
j = whj+1

∑n
j=hj+1 ajw

j−hj−1 and so the roots are

given by 0 and by the roots of
∑n

j=hj+1 ajw
j−hj−1, which since ahj+1 > . . . > akj we

know to be in modulus strictly bounded below by 1. The root 0 does not affect the
form of the quasi-Lévy measure as it is possible to see from (11). Thus, for example
a CRM with L(β1) = 1

3δ25 + 1
4δ26 + 1

5δ27 + 1
6δ28 + 1

20δ29, with a finite deterministic
component, and with an ordinary component with finite Lévy measure, belongs to A′

and has supp(b1) ⊂ N.

Example 4.11. Following Example 4.6, it is possible to obtain that a finite sum of
independent multinomial distributions of the form explored in Example 4.10 is QID
with no Gaussian component and such that its quasi-Lévy measures have support in N.

We remark that using Theorems 8.1 and 8.8 in Lindner et al. (2018) it is possible
to build examples with distributions on N ∪ {0} with unbounded support.

5 A nonparametric Bayesian setting

In this section we show how the results presented in Sections 3 and 4 apply to a partic-
ular class of nonparametric prior distributions. The framework is the one of the paper
by Broderick, Wilson and Jordan Broderick et al. (2018), which is further explored
in subsequent papers, see Campbell et al. (2019) among others. The authors analyse
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Bayesian nonparametric priors and likelihood functions based on CRMs. In particular,
they let the prior be modelled as:

Θ :=
K∑

k=1

θkδψk
,

where K may be either finite or infinite and where (θk, ψk) is a pair consisting of the
frequency (or rate) of the k-th trait together with its trait ψk, which belongs to some
space Ψ of traits. Notice that ψ1, . . . , ψK include both the fixed and non-fixed atoms.
This representation follows Kingman’s representation of a CRM without deterministic
component, see Kingman (1993). The data point for the m-th individual is modelled as:

Xm :=

Km∑
k=1

xm,kδψk
,

where xm,k represents the degree to which the m-th data point belongs to the trait ψk.

This setting can be applied to many real world applications such as topic modelling,
as seen in the introduction. In topic modelling (see Broderick et al. (2018); Campbell
et al. (2019); Teh et al. (2006)), we have that ψk represents a topic; that is, ψk is a
distribution over words in a vocabulary. Further, θk might represent the frequency with
which the topic ψk occurs in a corpus of documents. Alternatively to what mentioned
in the introduction, xj,k might represent the number of words in topic ψk that occur in

the jth document. So the jth document has a total length of
∑K

k=1 xj,k words. In this
case, the actual observation consists of the words in each m documents, and the topics
of the whole corpus of documents are latent.

From a mathematical (and formal) point of view Θ and Xm are defined as CRMs.
In particular, for the data Xm, we let xm,k be drawn according to some distribution H

that takes θk as a parameter and have support on N ∪ {0}, that is xm,k|θk iid∼ h(·|θk),
independently across m and k. We assume that X1, . . . , Xm are i.i.d. conditional on Θ.
Moreover, Broderick et al. (2018) consider the following assumptions for Θ and Xm:

Assumption A00. the atomless component of Θ has characteristic pair (γ, μ) s.t. γ = 0
and μ(dθ × dψ) = ν(dθ) · G(dψ), where ν is any σ-finite measure on R+ and G is a
proper distribution on Ψ with no atoms.

Assumptions A0, A1, and A2. Θ has a finite number of fixed atoms, ν(R+) = ∞,
and

∑∞
x=1

∫
R+

h(x|θ)ν(dθ) < ∞, respectively.

We remark that by Assumption A00 we have that the location of the non-fixed
atoms ψ and the frequencies θk are stochastically independent. We call ν the weight
rate measure of Θ. Moreover, the assumptions A0, A1 and A2 comes from a modelling
need. By assuming A0 we are saying that we initially know certain traits, by A1 that
there are countably infinite possible traits, and by A2 that the amount of information
from finitely represented data is finite (because by A2 the number of non-fixed atoms
is finite).



274 On Quasi-Infinitely Divisible Random Measures

The first main result in Broderick et al. (2018) is Theorem 3.1, which shows explicit
formulations for the posterior distribution Θ|X1, and it is extended in Corollary 3.2 to
the posterior Θ|X1:m (see also James (2017)). In the following result we are going to show
that similar results hold for any random measure in A without assuming A0, A1 or A2.
Notice that we can write Θ =

∑K
k=1 θkδψk

, whereK = Kfix+Kord, namelyK is the sum
of the fixed and non-fixed atoms, thus K is random. Following the notation of Broderick

et al. (2018), we denote the fixed component of Θ by Θfix =
∑Kfix

k=1 θfix,kδψfix,k
and

the law of θfix,k by Ffix,k := L(Θ({ψfix,k})).

Proposition 5.1. Let Θ ∈ A satisfy A00. Write Θ =
∑K

k=1 θkδψk
, and let X1, . . . , Xm

be generated conditional on Θ according to X1 :=
∑K

k=1 x1,kδψk
with x1,k|θk iid∼ h(·|θk)

for proper, discrete probability mass function h. It is enough to make the assumption
for X1 since the X1, . . . , Xm are i.i.d. conditional on Θ.

Then let Θpost be a random measure with the distribution of Θ|X1:m, where X1:m =
(X1, . . . , Xm). Θpost is a CRM with three parts.

1. For each k ∈ [Kfix], Θpost has a fixed atom at ψfix,k with weight θpost,fix,k
distributed according to the finite-dimensional posterior Fpost,fix,k(dθ) that comes from
prior Ffix,k, likelihood h, and observation X(ψfix,k). Moreover, Ffix,k is QID with no
Gaussian component and finite quasi-Lévy measure, and Fpost,fix,k(dθ) ∝ Ffix,k(dθ)∏m

j=1 h(xfix,j,k|θ).
2. Let {ψnew,k : k ∈ [Knew]} be the union of atom locations across X1, X2, . . . , Xm

minus the fixed locations in the prior of Θ. Knew is finite. Let xnew,j,k be the weight
of the atom in Xj located at ψnew,k, for some j = 1, . . . ,m. Then Θpost has a fixed
atom at xnew,k with random weight θpost,new,k, whose distribution Fpost,new,k(dθ) ∝
ν(dθ)

∏m
j=1 h(xnew,j,k|θ).

3. The ordinary component of Θpost has finite weight rate measure νpost,m(dθ) :=
ν(dθ)h(0|θ)m.

Remark 5.2. Observe that since Θ ∈ A then it has finite fixed atoms so assumption
A0 is satisfied. Moreover, since ν is also finite and h(x|θ) ≤ 1, then assumption A2 is
also satisfied. The only difference with Theorem 3.1 and Corollary 3.2 in Broderick et al.
(2018) is that we do not necessarily satisfy assumption A1. However, A1 is a modelling
assumption rather than a technical one. Indeed, the proof of this result follows from
similar arguments as the one used in the proof of Theorem 3.1 and Corollary 3.2 in
Broderick et al. (2018).

Proof. To lighten the notation let X := X1. Let us first prove the result for Θ|X. Any
fixed atom θfix,kδψfix,k

in the prior is independent of the other fixed atoms and of the or-
dinary component. Thus, all of X except xfix,k := X({ψfix,k}) is independent of θfix,k.
Thus, Θ|X has a fixed atom at ψfix,k and L(θpost,fix,k) ∝ Ffix,k(dθ)h(xfix,k|θ). Recall
that since G is continuous, all the fixed and non-fixed atoms of Θ are at a.s. distinct loca-
tions. Observe that by letting Ψfix := {ψfix,1, . . . , ψfix,Kfix

} we can define the fixed and
ordinary component ofX byXfix(A) := X(A∩Ψfix) andXord(A) := X(A∩(Ψ\Ψfix)),
respectively.



R. Passeggeri 275

Let x ∈ N ∪ {0} and let {ψnew,x,1, . . . , ψnew,x,Knew,x} be all the locations of atoms
in Xord of size x, which is finite and it is a subset of the locations of atoms of Θord.

Further, let θnew,x,k := Θ({ψnew,x,k}). Observe that the values {θnew,x,k}Knew,x

k=1 are gen-
erated from a thinned Poisson point process with rate measure (also known as intensity
measure) νx(dθ) = ν(dθ)h(x|θ), this is due to the h(x|θ)-thinning of the Poisson point
process {θord,k}Kord

k=1 which has rate measure ν. Moreover, given that νx(R+) < ∞, we
have that L(θnew,x,k) ∝ ν(dθ)h(x|θ). Finally, observe that there is a possibility that
atoms in Θord are not observed in Xord, this happens when the likelihood draw returns
a zero. These atom weights form a Poisson point process with rate measure ν(dθ)h(0|θ).

Considering Θ|X1 as the new prior we obtain the formulation for the posterior
Θ|X1, X2 by induction and by observing that the assumptions are still satisfied by
Θ|X1. Then, by induction we conclude the proof.

In the next result, we show that random measures in A satisfying A00 are dense in
the space of all CRMs satisfying A0, A1 and A2, namely all the random measures con-
sidered in Broderick et al. (2018) (and in Campbell et al. (2019)). Further, we show how
this result translates into a convergence for the ordinary component of the respective
posteriors.

Proposition 5.3. Consider any random measure Θ satisfying A00, A0, A1 and A2.
Then, there exists a sequence of random measures (Θn)n∈N in A and satisfying A00

such that Θn
d→ Θ, as n → ∞. Further, Θn,post,ord

d→ Θpost,ord, as n → ∞.

Proof. The first part of this proof consists in realising that the arguments in the proof
of Proposition 3.3 and Theorem 3.4 can be adapted to the present case. Denote by
μ(dθ×dψ) = ν(dθ)·G(dψ) the Lévy measure of Θ. Following the proofs of Proposition 3.3
and Theorem 3.4 it is possible to see that the approximating sequence Θn should have
Lévy measure νn(dθ)·Gn(dψ) where νn(dθ) := ν(( 1n ,∞)∩dθ) and Gn(dθ) := G(Sn∩dψ).
However, given the assumptions on μ, namely that G is a finite measure, we can (and
we do) take the Lévy measure of Θn to be given by μn(dθ × dψ) := νn(dθ) · G(dψ).
Then, applying the same arguments as the one used in the proof of Proposition 3.3 and
Theorem 3.4, we obtain that the ordinary component of Θn converges in distribution to
the one of Θ. The convergence of the fixed component follows directly from Theorem 3.4.
Since μn is finite, we have that Θn is in A and that it satisfies A00.

For the convergence of the posteriors, consider Θn with its respective data points
Xn,1, . . . ., Xn,m, which are defined conditional on Θn as in Proposition 5.1 and be-
long to some probability spaces possibly different from the one of the other data
points. From Proposition 5.1 we know that Θn,post has finite weight rate measure
νn,post,m(dθ) := νn(dθ)h(0|θ)m, while from Corollary 3.2 in Broderick et al. (2018)
we know that Θpost has finite weight rate measure νpost,m(dθ) := ν(dθ)h(0|θ)m. Since
νn,post,m(·) = νpost,m(( 1n ,∞) ∩ ·) we obtain the result by Proposition 3.3.

We summarise our findings so far in words. First, we obtain an explicit expression
for the posterior of any random measure in A satisfying A00. Second, such random
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measures are dense with respect to convergence in distribution in the space of all priors
considered in Broderick et al. (2018). Third, when approximating in distribution such a
prior, call it Θ, the ordinary component of the posteriors of these approximating random
measures converge to the one of Θ.

Example 5.4. Consider the beta process without fixed atomic component as a prior
Θ. The beta process has an ordinary component whose weight rate measure has a beta
distribution kernel,

ν(dθ) = γθ−α−1(1− θ)c+α−1dθ,

with support on (0, 1] and γ, c, and α are three fixed hyperparameters. Consider Θn to
be a CRM without deterministic and fixed components and let its ordinary component
having weight rate measure

νn(dθ) = γθ−α−1(1− θ)c+α−11(1/n,1](θ)dθ.

Then, Θn ∈ A and Θn
d→ Θ, as n → ∞. Usually the beta process is paired with

the Bernoulli process likelihood, namely given Θ we draw Xm =
∑K

k=1 xm,kδψk
with

xm,k
ind∼ Bern(x|θk), where Bern(x|θk) stands for a Bernoulli random variable with

parameter θk. Notice that P(xm,k = 0|θk = 0) = 1 and that the marginal distribution of
the X1:N , drawn given Θ, is called an Indian buffet process Griffiths and Ghahramani
(2005); James (2017). Further, consider the Bernoulli process likelihood also for Θn,

namely given Θn we draw Xn,m =
∑K

k=1 xn,m,kδψk
with xn,m,k

ind∼ Bern(x|θn,k), then
the marginal distribution of the Xn,1:N , drawn given Θn, is a truncation of the Indian
buffet process.

Example 5.5. Consider the priors Θ and Θn of the previous example and instead of
the Bernoulli process likelihood we consider the negative binomial process likelihood. In

this case, xk
ind∼ NegBin(x|r, θk) for some fixed hyperparameter r > 0, and notice that

P(xk = 0|r, θk = 0) = 1. Then, Θn,post,fix, namely the fixed atomic component of the
posterior of Θn, has a fixed atom at ψn,new,k whose weight θn,post,new,k has distribution

Fn,post,new,k(dθ) ∝ νn(dθ) · h(xn,new,k|θ)

= γθ−α−1(1− θ)c+α−11(1/n,1](θ)dθ · θxn,new,k(1− θ)r

∝ Beta(θ| − α+ xn,new,k, c+ α+ r)1(1/n,1](θ)dθ,

while the ordinary component Θn,post,ord has rate measure

νn(dθ) · h(0|θ) = γθ−α−1(1− θ)c+α−11(1/n,1](θ)dθ · (1− θ)r

= γθ−α−1(1− θ)c+r+α−11(1/n,1](θ)dθ.

Thus, the posterior has fixed atoms that are beta distributed and the ordinary part has
a beta distribution kernel (truncated at θ ∈ (1/n, 1]). Thus, we have shown that the
beta process truncated at θ ∈ (1/n, 1] is, in fact, conjugate to the negative binomial
process, and we generalised the result in Broderick et al. (2015) (see also Example 3.3

in Broderick et al. (2018)). Finally, observe that Θn,post,ord
d→ Θpost,ord, as n → ∞, for

any likelihood function.
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In the same spirit as in the previous two examples it is possible to exploit the
automatic conjugacy of the exponential CRMs (see Broderick et al. (2018)) to obtain
automatic conjugacy for truncated exponential CRMs. In the following example we
consider CRMs with only fixed atomic component.

Example 5.6. Consider β1, β2, . . . to be Normal random variables with βj ∼ N(μj , σ),
where μj ∈ [0,∞) and σ ∈ (0,∞), for every j ∈ N. Let Θ =

∑∞
j=1 max(βj , μj)δsj , for

some points s1, s2, . . . in S. Let Θn =
∑n

j=1 max
(
βj , μj +

1
n2

)
δsj . Then, Θn ∈ A, and

since ρ
(
max

(
βj , μj

)
,max

(
βj , μj +

1
n2

))
≤ 1

n2 we have that Θn
d→ Θ, as n → ∞. In

particular, for every n and A ∈ S we have that

E
[
e−uΘn(A)

]
=

n∏
j=1

exp

(
δsj (A)

(
−u

(
μj +

1

n2

)
+

∫ ∞

0

(e−ux − 1)bn(dx)

))
,

where bn is a finite signed measure with support in [0,∞), in particular let Φ(dx) be
the Gaussian measure with mean − 1

n2 and variance σ2, let pn = Φ((−∞, 0)), and let
Φ(0,∞) the truncation of Φ on (0,∞) then

bn =

∞∑
m=1

1

m
(−1)m+1p−m

n Φ∗m
(0,∞)

and bn{0} = 0. The notation Φ∗m
(0,∞) stands for Φ(0,∞) ∗ · · · ∗Φ(0,∞) (m times). We stress

that bn does not depend j. Now, consider a Poisson likelihood process, namely given

Θn we draw X =
∑K

k=1 xkδψk
with xk

ind∼ Poisson(x|θk) that is h(x|θk) = 1
x!θ

x
ke

−θk .
Observe that h(x|θ) is defined only for θ > 0 and so supp(X) ⊂ supp(Θ) a.s.. Then,
the posterior has only fixed atomic component where for each atom ψfix,k, letting
xn,post,fix,k := X({ψfix,k}), the weight θn,post,fix,k has distribution

Fn,post,fix,k(dθ) ∝ Fn,fix,k(dθ) · h(xn,post,fix,k|θ)

= γθ−α−1(1− θ)c+α−11(1/n,1](θ)dθ · θxn,new,k(1− θ)r.

From the results and examples of this section, Θn can be seen as a random truncation
of Θ, and this is because the number of non-fixed atoms of the approximating priors Θn

is a.s. finite for every n ∈ N, while Θ has countably infinite many of them, and Θn
d→ Θ.

We discuss the properties of the truncation procedure in more detail in Section 6. In
the next result we show that, under certain conditions, we have automatic conjugacy
for random measures in A′ satisfying A00.

Proposition 5.7. Let Θ ∈ A′ satisfying A00 and with weight rate measure having
finite support. Let X be generated conditional on Θ according to X :=

∑K
k=1 xkδψk

with xk
indep∼ h(x|θk) for proper, discrete probability mass function h. Assume that the

characteristic functions of the random variables of the fixed component of Θpost have
no zeros, namely assume that∫ ∞

0

eizθh(x|θ)Ffix,k(dθ) �= 0 and

∫ ∞

0

eizθh(x|θ)ν(dθ) �= 0, (12)
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for every z ∈ R, k ∈ [Kfix], and x ∈ N such that h(x|θ) > 0 for some θ. Then,
Θpost ∈ A′, satisfies A00 and has weight rate measure with finite support.

Proof. Assumption (12) implies that the characteristic functions of Fpost,fix,k and of
Fpost,new,j have no zeros. Further, they are also supported on a finite subset of N∪{0}.
Then, by Theorem 4.8 we obtain the result.

Remark 5.8. Let Θ and X be as in Proposition 5.7. Notice that we can write Ffix,k =∑n(k)

j=0 a
(k)
j δj , where a

(k)
0 , . . . , a

(k)
n−1 ≥ 0, a

(k)
n > 0, and a

(k)
0 + · · ·+ a

(k)
n = 1, for k ∈ Kfix.

Further, we can write ν =
∑Kν

j=1 bjδj , where Kν ∈ N indicates the highest value in
supp(ν), b1, . . . , bKν−1 ≥ 0 and bKν > 0. Assumption (12) can be rewritten as: assume
that

n(k)∑
j=0

eizjh(x|j)a(k)j �= 0 and

Kν∑
j=1

eizjh(x|j)bj �= 0,

for every z ∈ R, k ∈ [Kfix], and x ∈ N such that h(x|θ) > 0 for some θ Moreover, by The-
orem 4.8 this assumption (and so assumption (12)) is equivalent to the following assump-

tion: Assume that the polynomials w �→
∑n(k)

j=0 h(x|j)a
(k)
j wj and w �→

∑Kν

j=1 h(x|j)bjwj

in the complex variable w have no roots on the unit circle, for every k ∈ [Kfix] and
x ∈ N such that h(x|θ) > 0 for some θ.

Example 5.9. In this example we build on Example 4.10 and use the notation of
Remark 5.8. Consider any point process with independent increments Θ satisfying A00,

with weight rate measure having bounded support and with a
(k)
0 < . . . < a

(k)
n , for

every k ∈ Kfix, and b1 < . . . < bKν . Then, by the Eneström-Kakeya Theorem Θ ∈
A′. Without loss of generality let Kν ≥ max

k=1,...,Kfix

n(k). Consider a Bernoulli process

likelihood, namely xk ∼ Bern(x| θkKν
). Then, for each atom ψfix,k, letting xpost,fix,k :=

X({ψfix,k}), the weight θpost,fix,k has distribution

Fpost,fix,k(dθ) ∝ Ffix,k(dθ) · h(xpost,fix,k|θ) =
n(k)∑
j=0

a
(k)
j δjdθ ·

θ

Kν
.

Moreover, the posterior of Θ, has a fixed atom at ψnew,k whose weight θpost,new,k has
distribution

Fpost,new,k(dθ) ∝ ν(dθ)h(xnew,j,k|θ) =
Kν∑
j=1

bjδjdθ ·
θ

Kν
.

Thus, any fixed atom of Θpost has distribution of the form
∑ñ(k)

j=0 ã
(k)
j δj , where 0 ≤

ã
(k)
0 < . . . < ã

(k)
n−1 < a

(k)
n , for k ∈ Kfix + Knew, and so its characteristic function has

no zeros. Moreover, the ordinary component of the posterior has weight rate measure∑Kν

j=1 bjδjdθ · 1−θ
Kν

. Therefore, by Proposition 5.7 Θpost belongs to A′, satisfies A00, has
weight rate measure with bounded support.
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Remark 5.10. The results presented in this section hold also if the weight rate measure
is infinite, namely ν(R+) = ∞ (under the additional assumptions A1 and A2). In
particular, the equivalent of Proposition 5.1 would be identical to Corollary 3.2 in
Broderick et al. (2018) except for the result of point 1, because here we additionally
know that Ffix,k is QID with no Gaussian component and finite quasi-Lévy measure.
Further, the equivalent of Proposition 5.3 would follows from the arguments presented
taking into consideration Remark 3.6. The equivalent of Proposition 5.7 is more subtle
and it is presented below.

Now, let A′′ be the class of QID CRMs of the form: ξ
a.s.
= α +

∑K
j=1 βjδsj , with

α an atomless point process with independent increments and finite Lévy measure,
{sj : j = 1, . . . ,K} a finite set of fixed atoms in S, and βj , j ≥ 1, N ∪ {0}-valued
QID random variables that are mutually independent and independent of α. Let A′′

∞
indicate the set of random measures like in A′′ but with α being any atomless point
process with independent increments (hence with a possibly infinite Lévy measure).

As a side comment, we remark that is possible to see that similar results to Theo-
rem 4.2 and Theorem 4.9 hold for the elements in A′′. In this case we would even know
the structure of the Lévy-Khintchine representation in more details thanks to Theorem
8.1 in Lindner et al. (2018).

Proposition 5.11. Let Θ ∈ A′′
∞ and assume A00, A0, A1 and A2. Let X be gener-

ated conditional on Θ according to X :=
∑∞

k=1 xkδψk
with xk

indep∼ h(x|θk) for proper,
discrete probability mass function h. Assume that the characteristic functions of the
random variables of the fixed component of Θpost have no zeros, namely assume that∫ ∞

0

eizθh(x|θ)Ffix,k(dθ) �= 0 and

∫ ∞

0

eizθh(x|θ)ν(dθ) �= 0, (13)

for every z ∈ R, k ∈ [Kfix], and x ∈ N such that h(x|θ) > 0 for some θ. Then,
Θpost ∈ A′′

∞ and satisfies A00, A0, A1 and A2.

Proof. Assumption (13) implies that the characteristic functions of Fpost,fix,k and of
Fpost,new,j have no zeros. Further, they are also supported on N∪{0}. Then, by Theorem
8.1 in Lindner et al. (2018) we obtain the result.

Notice that, thanks to Theorem 8.1 in Lindner et al. (2018),
∫∞
0

eizθFfix,k(dθ) �= 0
for every z ∈ R and k ∈ [Kfix], and that, given any x ∈ N, if h(x|θ) is QID then∫∞
0

eizθh(x|θ)(dθ) �= 0 for every z ∈ R. Further, assumption (13) can be rewritten more
explicitly as done for assumption (12) in Remark 5.8.

The condition for automatic conjugacy in Propositions 5.7 and 5.11 is the absence of
zeros in the characteristic function of the posterior, which in turn is a condition on the
prior and the likelihood function. To the best of our knowledge this is the first time such
condition for automatic conjugacy is explored, which usually relies on the exponential
structure of the probability density function of the prior and of the likelihood function,
see Broderick et al. (2018). We remark that other automatic conjugacy results can be
obtained using properties of QID distributions, for example using the properties that a
distribution with an atom with weight greater than 1/2 is QID (see Example 4.5).
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6 Truncation analysis

In this section we investigate the properties of the truncation procedure considered in
this paper.

Proposition 6.1. Let ξ be a CRM. Thus, ξ
a.s.
=

∑K
j=1 βjδsj + γ +

∫∞
0

∫
S
xδsη(ds dx)

for some K ∈ N ∪ {0} ∪ {∞}, βj’s random variables, sj ’s in S, deterministic measure
γ, and Poisson random measure η. Let ξn be a CRM such that

ξn
a.s.
=

min(n,K)∑
j=1

βn,jδsj + γn +

∫ ∞

1/n

∫
Sn

xδsη
′(ds dx),

where γn = γ(· ∩ Sn), η
′ d
= η, and βn,j ’s are QID with no Gaussian component and

finite quasi-Lévy measure with ρ(βn,j , βj) < (1/n)2 if K is infinite, and βn,j
d→ βj , if

K is finite. Then, ξn ∈ A and ξn
d→ ξ as n → ∞. If ξ has only ordinary component and

if we choose η′
a.s.
= η then ξ − ξn is a CRM independent of ξn and

ξ − ξn
a.s.
=

∫ ∞

0

∫
S\Sn

xδsη(ds dx) +

∫ ∞

1/n

∫
Sn

xδsη(ds dx), (14)

and if in addition ξ satisfies A00 then

ξ − ξn
a.s.
=

∫ 1/n

0

∫
S

xδsη(ds dx). (15)

Proof. Let F be the Lévy measure of ξ, namely F = Eη. Recall that for any measurable
function f ≥ 0 on S we have that

∫
fdF = 0 ⇔

∫
fdη

a.s.
= 0. Let η̃(·) a.s.

= η′(· ∩ (Sn ×
(1/n,∞))) and observe that η̃ is a Poisson random measure with intensity Eη̃(·) =
F (· ∩ (Sn × (1/n,∞))). Let Fn be the Lévy measure of ξn, thus we have Fn(·) =
Eη̃(·) = Eη′(· ∩ (Sn × (1/n,∞))) = Eη(· ∩ (Sn × (1/n,∞))) = F (· ∩ (Sn × (1/n,∞))).
Then, we obtain that ξn ∈ A and by the arguments in the proofs of Proposition 3.3

and Theorem 3.4 we obtain that ξn
d→ ξ as n → ∞. The independence comes from

the independence of the increments of η and the equations (14) and (15) are easily
obtained.

Proposition 6.1 can be seen as an equivalent of Proposition 5.1 and Proposition 5.2
in Lee et al. (2019) applied to our truncation procedure. However, our result is more
general because it applies to any CRM (with only ordinary component) without any
further assumption. Our truncation procedure is a generalization of the ε-approximation
developed in Argiento et al. (2016) because it is not restricted to CRMs with only
ordinary component and with Lévy measure satisfying A00.

We talk about truncation method because ξn is a CRM with n fixed atoms and
having the ordinary component composed by atoms with weights greater than 1/n and
lying in Sn. Moreover, if η′ = η, which is the usual assumption in truncation analysis
and in series representation (see Lee et al. (2019) and Campbell et al. (2019)), then ξn is
composed by the atoms of ξ which are located in Sn and have weight greater than 1/n.
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Thus, differently from Campbell et al. (2019), in the present truncation procedure
the number of non-fixed atoms of the approximating CRM ξn is not arbitrarily fixed.
Moreover, when they are considered as priors in the Bayesian setting of Section 5 they
possess explicit posterior formulations and certain denseness and automatic conjugacy
properties.

In comparison with usual truncation procedures (see Argiento et al. (2016); Camp-
bell et al. (2019); Lee et al. (2019); Nguyen et al. (2021)) our procedure takes into
account the fixed atomic component in a non-trivial way. In particular, by Theorem 4.2
the fixed atomic component (and so the whole CRM) has a simple Lévy-Khintchine for-
mulation, and in some cases it also has an explicit Laplace transform (see Corollary 4.4),
which apart from providing flexibility and improving computability it is also useful in
nonparametric Bayesian spectral estimation, see Tobar (2018) and Meier et al. (2020),
where the Fourier transform of the law of processes and/or random measures plays a
key role, and in moment-matching criterion for quantifying approximations, see Arbel
and Prünster (2017).

Building on Proposition 6.1, it is possible to obtain an upper bound for the L1 error
on the marginal likelihood when truncated CRMs are used for hierarchical Bayesian
models, as in Campbell et al. (2019), Lee et al. (2019). In particular, consider Θ :=∑

k θkδψk
to be a CRM with only ordinary component and satisfying A00 (we denote

by ν its weight rate measure), and let h(·|θ) be a proper probability mass function on
N∪{0} for all θ in the support of ν. Denote by η its Poisson random measure. Consider a
collection of conditionally independent observations X1:N := {Xm}Nm=1 given Θ defined
by Xm :=

∑
k xm,kδψk

with xm,k ∼ h(x|θk) independently across k and iid across m.
Further, define the observed data Ym|Xm ∼ f(·|Xm) for a conditional density f with
respect to a measure κ on some space. Let Θn ∈ A be an element of the approximating
sequence of CRMs driven by a Poisson random measure ηn everywhere equals to η on
(1/n,∞) × S and almost surely equals to zero otherwise. Define Z1:N and W1:N for
Θn analogous to the definitions of X1:N and Y1:N for Θ, and let pN,∞ and pN,n be the
marginal densities (with respect to κ) of the final observations Y1:N and W1:N .

Differently from the setting of Section 5 here Θ has only ordinary component, and
the Poisson random measures of Θn are specified in more detail (in Section 5 the spec-
ification is only on the weight rate measure). We stress that h(·|θ) is defined for all θ in
the support of ν meaning that h(·|0) is not defined (or equivalently h(·|0) ≡ 0) and so
the supp(X1:N ) ⊂ supp(Θ) everywhere (as in Section 5).

Proposition 6.2. We have the bound 1
2‖pN,∞−pN,n‖1 ≤ 1−e

∫ 1/n
0 (1−h(0|θ)N )ν(dθ), and

if A2 is satisfied then ‖pN,∞ − pN,n‖1 → 0 as n → ∞.

Proof. We follow similar steps as the ones in the proof of Theorem 4.3 in Campbell et al.
(2019). By Lemma 4.1 in Campbell et al. (2019) (and Lemma D.1 in its supplementary
material) we have that 1

2‖pN,∞−pN,n‖1 ≤ 1−P(supp(X1:N ) ⊂ supp(Θn)). Observe that
P(supp(X1:N ) ⊂ supp(Θn)) = P(supp(X1:N ) ∩ supp(Θ − Θn) = ∅). By construction, if
θk(ω) > 0 then xm,k(ω) ≥ 0 and if θk(ω) = 0 then xm,k(ω) = 0. Further, notice that
Θh(0|θ)N is a thinned CRM such that P(supp(X1:N ) ∩ supp(Θh(0|θ)N ) = ∅) = 1, and
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since Θ−Θn is everywhere composed by the atoms of Θ with weights less than or equal
to 1/n, we have that P(supp(X1:N ) ∩ supp((Θ − Θn)h(0|θ)N ) = ∅) = 1. Thus, we are
left with the CRM (Θ − Θn)(1 − h(0|θ)N ) and using the fact that a Poisson process
with measure μ(dθ) has no atoms with probability e−

∫
μ(dθ) we have

P(supp(X1:N ) ⊂ supp(Θn)) = e
∫ 1/n
0 (1−h(0|θ)N )ν(dθ).

If A2 is satisfied, namely
∫ 1/n

0
(1 − h(0|θ)N )ν(dθ) < ∞, then e

∫ 1/n
0 (1−h(0|θ)N )ν(dθ) → 1

as n → ∞.

It would be interesting to extend the previous proposition to the case of Θ with a
fixed component too. However, adding countably many fixed points makes the bound
developed in Lemma 4.1 in Campbell et al. (2019) not useful because P(supp(X1:N ) ⊂
supp(Θn)) = 0 and this is true in our case as well as in Campbell et al. (2019). On
the other hand, since the elements of A have an explicit Lévy-Khintchine formulation
it might be possible to quantify the approximation by a moment-matching criterion,
extending Arbel and Prünster (2017) to any CRMs.

7 Discussion

In this work we first prove a denseness result for a class of QID CRMs, which we call A,
in the space of all CRMs. The elements of this class have Lévy-Khintchine formulations,
in some cases even explicit Laplace transform, and their law are uniquely determined by
characteristic pairs. These results allow the fixed atomic component of (asymptotically)
all CRMs, which is usually disregarded in the analysis of CRMs and of their truncations,
to be fully accessible.

In the proof of the denseness result we choose a certain approximation for the ordi-
nary and the deterministic components (see Proposition 3.3). The denseness result and
the whole paper up to Section 6 could be rewritten using another approximation for
these components and the nature of the results and of the examples would be the same.
We have chosen such approximation due to its simplicity and its capacity to adapt to
the deterministic and ordinary components of any CRM. Moreover, such approximation
leads to extremely nice truncation properties, presented in Section 6. Remarkably, our
truncation procedure is different from the ones surveyed and analysed in Arbel and
Prünster (2017); Campbell et al. (2019); Nguyen et al. (2021); Lee et al. (2019), it is
more general than Argiento et al. (2016); Campbell et al. (2019); Nguyen et al. (2021);
Lee et al. (2019) since it does not impose any assumption on the Lévy measure of the
CRM, and in addition it allows for a non-trivial consideration of the atomic component.

We show the relevance of our results using the (hierarchical) nonparametric Bayesian
settings of Broderick et al. (2018) and of Campbell et al. (2019) and by means of various
examples. In particular, we show that the elements of A with homogeneous Lévy mea-
sure when considered as priors have an explicit posterior distribution and possess certain
denseness and automatic conjugacy properties. Concerning the truncation analysis, we
provide an upper bound in the total variation distance between the data distributions
induced by the full and truncated priors in a general hierarchical Bayesian model.
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Due to the general nature of our results, their applicability is not limited to these
settings, but they can be applied to different frameworks to answer numerous questions.
A first research question concerns the extension of the results presented in this paper
to the framework of normalized CRMs. The same research question applies to the class
of correlated random measures (see Ranganath and Blei (2018)) and of dependent nor-
malized CRMs (see Camerlenghi et al. (2019); Lijoi et al. (2014)). A second research
question concerns the connections between normalized QID CRMs and the Dirichlet
process and/or the Pitman-Yor process (see Arbel et al. (2019); Lijoi et al. (2020); Pit-
man (2002)). Further, it would be interesting to explore the role of normalised CRMs
taking values in the space of QID distributions, given that QID distributions are dense
in the space of distributions.

Normalized CRMs are vastly used in Bayesian analysis and answering these questions
might shed new lights on their theoretical properties and their applicability. We leave
these questions to further research.
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