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On Posterior Consistency of Bayesian Factor
Models in High Dimensions∗

Yucong Ma† and Jun S. Liu‡

Abstract. As a principled dimension reduction technique, factor models have
been widely adopted in applications. However, conducting a proper Bayesian fac-
tor analysis can be subtle in high-dimensional settings since it requires both a
careful prescription of the prior distribution and a suitable computational strat-
egy. We analyze issues of posterior inconsistency and sensitivity under different
priors for high-dimensional sparse normal factor models, and show why adopting
the

√
n-orthonormal factor assumption can resolve these issues and lead to a more

robust and efficient Bayesian analysis. We also provide an efficient Gibbs sampler
to conduct the required computation, and show that it can be orders of magnitude
more efficient than compared existing algorithms.

Keywords: factor analysis, high dimensional data, posterior consistency,
orthogonality, Gibbs sampling.

1 Introduction

Factor models, which assume that the information in high-dimensional observations can
be captured by a few latent factors, have been widely adopted in social science, eco-
nomics, bioinformatics, and many other fields that need interpretable dimension reduc-
tion for their data. In this article, we consider the following normal factor formulation:
each G-dimensional vector observation yi (e.g., daily returns of ∼3000 U.S. stocks) is
related to a K-dimensional vector of latent factors ωi (e.g., 20 market factors) through
a skinny tall factor loading matrix B, plus idiosyncratic errors:

yi | ωi,B,Σ
i.i.d.∼ NG(Bωi,Σ), i = 1, . . . , n, (1.1)

and the idiosyncratic variance matrix Σ is assumed to be diagonal as in the literature.
In matrix form, we denote the observations as Y = (y1, · · · ,yn), which is a G × n
matrix, and the factors as a K × n matrix Ω = (ω1, . . . ,ωn). The factors are usually
assumed to follow the standard Gaussian independently: ωi ∼ NK(0, IK).

People are often interested in estimating the G×K loading matrix B in order to gain
insight in the correlation structure of the observations. Marginalizing out ωi, we have
[yi | B,Σ] ∼ NG(0,BBT +Σ), implying that the loading matrix B is only identifiable
up to a right orthogonal transformation (rotationally invariant). It is thus rather difficult
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to pinpoint the factor loading matrix consistently, to determine the dimensionality of
the latent factors, or to design efficient algorithms to conduct a proper full Bayesian
analysis of the model.

In recent years, considerable progresses have been made in the realm of sparse
Bayesian factor analysis under different prior settings (Bhattacharya and Dunson, 2011;
Ročková and George, 2016; Fruehwirth-Schnatter and Lopes, 2018). Both Ročková and
George (2016) and Fruehwirth-Schnatter and Lopes (2018) employed spike-and-slab
(SpSL) priors, i.e., mixtures of either a concentrated distribution with a small variance
(continuous) or a point mass (discrete), and a diffuse distribution, for elements in B.
While Fruehwirth-Schnatter and Lopes (2018) imposed discrete SpSL priors conditional
on the feature allocation, Ročková and George (2016) employed independent continu-
ous SpSL priors, under which a fast posterior mode-detecting strategy was proposed.
The identifiability of sparse factor models was discussed in Fruehwirth-Schnatter and
Lopes (2018), who also designed an efficient Markov chain Monte Carlo (MCMC) proce-
dure to simulate from the posterior distribution of an over-parameterized sparse factor
model under the discrete SpSL prior. Bhattacharya and Dunson (2011) introduced the
multiplicative gamma process (MGP) shrinkage prior, which allows for infinitely many
factors and proposed an adaptive Gibbs sampler for automatic factor number selection.

Our work focuses on how to make ‘correct’ Bayesian inference for a sparse Bayesian
factor model in high dimensions. By ‘correct’ we mean that the posterior distribution of
the covariance matrix (BBT +Σ) should concentrate at the underlying true matrix and
should contract towards the truth asymptotically as both sample size and dimensionality
increases under certain conditions. This is a subtle problem since a prior that induces
posterior consistency in low dimensions (n � G) may fail to do so in a high dimensional
(G � n) regime. The “incorrectness” is most prominently shown when the seemingly
innocent SpSL prior is used as in Ročková and George (2016). When the average number
s of nonzero elements in each column of the loading matrix B is no less than the
sample size n, we observe from simulations a ‘magnitude inflation’ phenomenon. That
is, posterior samples of the loading matrix (also the covariance matrix) are inflated in
the matrix norm compared to the true data-generating loading matrix. The extent of
inflation is affected by the variance of the slab part of the SpSL prior — the more diffuse
the slab prior the more inflation we observe. Interestingly, however, this inflation is not
reflected in the posterior mode as Ročková and George (2016) showed that themaximum
a posteriori (MAP) estimate of the loading matrix is consistent (up to trivial rotations)
under the same simulation setup. This s ≥ n setting is not unusual in practice, as shown
by the real example in Section 7.

The inflation phenomenon is closely related to the nearly non-identifiable nature of
model (1.1): B × ωi = (BC) × (C−1ωi) for any non-singular C ∈ RK×K . Requiring
that the ωi are i.i.d. normal alleviates the identifiability issue, but is not enough to
“tie down” B in the posterior distribution if too many independent diffuse priors are
imposed on its elements. Problems with the use of diffuse priors in general Bayesian
inference when observation sample sizes are small relative to the number of parameters
being estimated have been studied in the literature (Efron, 1973; Kass and Wasserman,
1996; Natarajan and McCulloch, 1998). Such issues for Bayesian factor analysis were
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also noted in Ghosh and Dunson (2009) and a practical solution was proposed without
further theoretical investigations.

The Ghosh-Dunson model allows each factor to have an unknown variance that
follows an inverse Gamma prior and imposes the standard normal distribution on the
loading matrix’s elements. If one reallocates the variances of the factors to the loading
matrix side, this model is equivalent to reformatting the elements of the loading matrix
B as βjk = qjk · rk with rk being a column-wise parameter following an inverse-Gamma
distribution and qjk being i.i.d. standard normal. When a diffuse prior is imposed
on rk, the marginal prior for βjk is also diffuse. Consequently, this hierarchical prior
construction resolves the magnitude inflation problem by imposing a prior dependency
among the elements in each column of B and reducing the number of diffuse parameters.
Bhattacharya and Dunson (2011) follows this idea and thus is free of the inflation
phenomenon as well. But this prior is observed to have a mild “twisting” effect on the
posterior of the loading matrix.

The magnitude inflation phenomenon is closely related to the weak identifiability
nature of the normal factor model in high dimensions. As a consequence, informative
priors can easily become too influential and thus dominate the posterior distribution.
Though it is not obvious, the independent SpSL prior is a very informative prior, as the
dimension s grows faster than n. Ghosh and Dunson (2009)’s solution for controlling the
prior effect is effective empirically. But it is still an open problem to show theoretically
that the Ghosh-Dunson model is free from the prior dominance.

To search for a more principled strategy for resolving the prior dominance issue,
we here study asymptotic behaviors of the posterior distributions under an indepen-
dent SpSL prior for elements of the loading matrix and a right-rotational invariant
distribution for the factor matrix Ω (i.e., Ω and ΩR follows the same distribution for
all n × n orthogonal matrix R). In doing so, we are able to connect the observed in-
flation phenomena of the posterior distribution with the factor assumption and show
that employing a stronger control over ΩΩT /n through the factor assumption can re-
sult in a consistent posterior distribution for the loading matrix under high dimensions
(s � n → ∞) provided that the sparsity pattern is known.

Insights revealed by our theoretical analyses are: (i) the normal factor model assump-
tion controls ΩΩ�/n too weakly, thus inducing a weakly identifiable high dimensional
model; (ii) the posterior distribution of B becomes too sensitive to the prior because of
the weak identifiability and high dimensionality. Consequently, we propose the following√
n-orthonormal factor model as a remedy: under the same relationship as in (1.1), we

assume that Ω/
√
n is uniform on the Stiefel manifold St(K,n), which is the set of all or-

thonormal K-frames in R
n, or, equivalently, the first K rows of a n×n Haar-distributed

random orthogonal matrix (Meckes, 2014).

The proposed model should be viewed as an inferential model instead of a gen-
erative model, which is analogous to the “standardization” idea often employed in
data analysis. Technically, whenever the data are generated from the normal factor
model, i.e., Y = BΩ + Δ as in (1.1) with Ω being a generated standard normal
matrix, it can also be viewed as being generated by a

√
n-orthonormal factor model

Y = (BK(Ω)/
√
n)× (

√
n ·V(Ω)) + Δ with loading matrix being (BK(Ω)/

√
n). Here
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K(Ω) and V(Ω) are from the LQ decomposition Ω = K(Ω)V(Ω). The LQ decomposi-
tion can be done by the Gram–Schmidt orthogonalization starting from the first row of
Ω, resulting in a K×K lower triangular matrix K(Ω) and a K×n orthonormal matrix
V(Ω). By the Bartlett decomposition theorem (Muirhead, 2009), V(Ω) is uniform on
the Stiefel manifold St(K,n) ifΩ is a matrix with i.i.d. standard Gaussian elements. The
new loading matrix (BK(Ω)/

√
n) inherits the same generalized lower triangular struc-

ture (Fruehwirth-Schnatter and Lopes, 2018) from B (if it possesses any) and they are
identical in the asymptotic sense as n → ∞. Thus, the

√
n-orthonormal factor model re-

allocates the magnitude variability ofΩ to the loading matrix so that the posterior infer-
ence of the new loading matrix, and thus the whole model, becomes less sensitive to the
prior. Besides having the same model interpretability, the

√
n-orthonormal factor model

is shown by simulations (under various prior setups) to have two major advantages:

(a) Robustness. The posterior distribution is robust against the choice of the prior
distribution for elements of the loading matrix in the “Large s, Small n” scenario.
The posterior consistency can hold for a broader set of prior choices including the
one from Ročková and George (2016).

(b) Efficiency. Gibbs samplers for the normal factor model can be easily adapted to
handle

√
n-orthonormal factors by only modifying the conditional sampling step

for Ω. This modification requires negligible computational cost, but leads to a
significant efficiency gain in MCMC sampling. We demonstrate this improvement
with both simulations and a real data example.

Compared to other methods for boosting MCMC (e.g., Fruehwirth-Schnatter and Lopes
(2018)), our approach is also more straightforward and easier to implement. For these
reasons, we suggest to use the

√
n-orthonormal factor model in place of the normal

factor model before specifying priors and conducting the downstream Bayesian analysis
in high-dimensional settings.

All consistency and convergence concepts in our work are in the frequentist (repeated-
sampling) sense. Take the loading matrix for example. If for any open neighborhood N
of an entry of the true loading matrix (the magnitude of entries is at the constant order),
the probability for a random draw from the posterior distribution of that entry to fall
in N , as a function of the data in the repeated sampling sense, converges to 1 almost
surely as n and G go to infinity, we say that the posterior inference of the loading matrix
is consistent, or simply that “the posterior sample of the loading matrix converges to
the truth.”

The article is structured as follows. Section 2 introduces Bayesian sparse factor
models of Ročková and George (2016), Ghosh and Dunson (2009) and Bhattacharya and
Dunson (2011). Under these frameworks, Section 3 illustrates by a synthetic example the
posterior inconsistency problem in high dimensions, especially the ‘magnitude inflation’
phenomenon under the SpSL prior from Ročková and George (2016). Section 4 provides
theoretical explanations for the phenomenon. Section 5 reveals the connection between
the posterior inconsistency and the factor modeling assumption, and proposes the

√
n-

orthonormal factor model whose posterior consistency can be guaranteed. Section 6
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numerically verifies the robustness and efficiency gain of using the
√
n-orthonormal

factor model for Bayesian inference. Section 7 presents a real-data application, and
Section 8 concludes with a short discussion.

2 Bayesian sparse factor models and inference

2.1 Prior settings for loading coefficient selection

In order to enhance model identifiability and interpretability, one often imposes a spar-
sity assumption for the loading matrix. Two typical types of priors for encoding sparsity
are SpSL priors and continuous shrinkage priors (see more reviews and discussions in
Shin and Liu (2021)). In this article, we consider the prior setups for the loading matrix
discussed in Ročková and George (2016), Ghosh and Dunson (2009), and Bhattacharya
and Dunson (2011), with a primary focus on the first one due to both theoretical con-
venience and its prominent and typical posterior behavior under high dimensions. The
idiosyncratic variance matrix Σ is assumed to be diagonal with elements σ2

j following

a conjugate prior: σ2
1 , · · · , σ2

G
i.i.d.∼ Inverse-Gamma(η/2, ηε/2) in all considered prior

setups.

The SpSL-IBP prior (Ročková and George, 2016) Let βjk denote the (j, k)-th ele-
ment of the loading matrix B. Then, a priori, the βjk’s follow a SpSL prior and are
mutually independent given the hyper-parameters, i.e.,

[βjk | γjk, λ0, λ1] = (1− γjk)ψ(βjk|λ0) + γjkψ(βjk|λ1), λ0 � λ1, (2.1)

where [· | ·] is a generic notation for conditional distributions, ψ(β | λ) = λ
2 exp(−λ|β|)

denotes the Laplace (λ) distribution, and the binary indicator γjk follows

γjk | θk ind∼ Bernoulli(θk) and θk =

k∏
l=1

νl, νl
i.i.d.∼ Beta(α, 1). (2.2)

Note that θk decreases with respect to k. The prior on the θk’s is known as the Indian
Buffet process (IBP) prior, which is employed to select the true factor dimensional-
ity adaptively. Ročková and George (2016) proposed a PXL-EM (parameter expanded
likelihood EM) algorithm, a Bayesian variant of parameter-expanded EM (Liu et al.,
1998) for posterior mode detection, which converges dramatically faster than the EM
(expectation-maximization) algorithm (Dempster et al., 1977) in finding the maximum

a posteriori (MAP) estimator (i.e., B̂, Σ̂, Θ̂ that maximizes π(B,Σ,Θ | Y) where Θ is
the vector formed by θk’s) and also demonstrated the consistency of the MAP estimator
in estimating the loading matrix under the “Large s, Small n” setting.

The modified Ghosh-Dunson prior We modify the prior setting introduced by Ghosh
and Dunson (2009) to a SpSL form. More precisely, each element βjk is expressed as the
product of a column-wise magnitude parameter rk and the ‘normalized’ loading element
qjk, i.e., βjk = rkqjk with

[rk | λ] = ϕ(rk|λ) and [qjk | γjk, λ0, λ1] = (1− γjk)ϕ(qjk|λ0) + γjkϕ(qjk|λ1), (2.3)
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where ϕ(· | λ) is the normal density with mean 0 and precision λ, and λ0 � λ1 � λ.
We assign γjk the same prior as in (2.2). Ghosh and Dunson (2009)’s original model
corresponds to assuming λ1 = 1, γjk ≡ θk ≡ 1, i.e., a normal instead of normal mixture
prior for the qjk. With this dependent prior specification, the number of the “slab
parameters” is greatly reduced since all elements in each column of B share a common
slab parameter rk. This idea of reducing the number of slab parameter is useful for
curbing the influence of the priors in a high-dimensional setting.

The multiplicative gamma process (MGP) shrinkage prior Bhattacharya and Dunson
(2011) consider a shrinkage-type prior with the degree of shrinkage increasing across the
column index as follows,

βjk | φjk, τk ∼ N
(
0, φ−1

jk τ
−1
k

)
, φjk ∼ Gamma(v1/2, v2/2), (2.4)

τk =

k∏
l=1

δl, δ1 ∼ Gamma (a1, 1) , δl ∼ Gamma (a2, 1) , l � 2, a2 > 1. (2.5)

Here τk is a global shrinkage parameter for the k-th column and the φjk’s are local

shrinkage parameters for elements in the k-th column. Note that βjkτ
1/2
k plays the same

role as qjk in the modified Ghosh-Dunson prior and τ
−1/2
k corresponds to the magnitude

parameter rk. The two priors differ in the representation of sparsity (the SpSL vs. the
continuous shrinkage form) and how factor dimensionality is selected. Bhattacharya and
Dunson (2011) decide the true factor dimensionality using the MGP prior (2.5) that
induces an increasing shrinkage effect on βjk as k grows.

The aforementioned priors all have posterior consistency (for BBT +Σ) guaranteed
under a fixedG and n → ∞ setting. However, they induce distinctive posterior behaviors
in the “Large s, Small n” setting when the factors are assumed to be standard normal
in the inferential model.

2.2 Standard Gibbs sampling procedures

We explore the posterior distributions under different prior settings via Gibbs sampling
(Gelfand and Smith, 1990; Liu, 2008; Tanner and Wong, 1987). Take the SpSL-IBP
prior as an example, the full posterior distribution of the parameters, (B,Ω,Σ,Γ,Θ),
can be written generically as

π(B,Ω,Σ,Γ,Θ | Y) ∝ f(Y|B,Ω,Σ)f(Ω)p(B|Γ)p(Γ|Θ)p(Θ)p(Σ), (2.6)

where π(·) is a generic notation representing the posterior density, f(·) stands for the
model likelihood, and p(·) denotes the imposed prior density. As explained earlier, Ω is
the K×n factor matrix with column vectors ωi, Γ is the G×K feature allocation matrix
with entries given by γjk, Σ is the diagonal matrix of idiosyncratic variances, and Θ is
the K-dimensional feature sparsity probability vector formed by the θk’s. Observation Y
is formatted as a G×n matrix with columns yi. A standard Gibbs sampler for sampling
from the full posterior distribution (2.6) iteratively updates each component according
to the corresponding conditional distributions (see Appendix B (Ma and Liu, 2021) for
a detailed prescription).
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Due to multimodality of the posterior distribution caused by the invariance of the
likelihood function under matrix rotations (therefore only the sparsity prior can provide
information to differentiate different modes) and the strong ties between the factor
loading and common factors, this basic Gibbs sampler is very “sticky” and can only
explore a small neighborhood of the initial values. By initializing the sampler from a
“good” value, such as the MAP estimate found by the PXL-EM algorithm, however,
this sampler appears to be a reasonable tool for revealing the local posterior behavior
around the initial value. More dramatic global MCMC transition moves are required in
order to have a fully functional MCMC sampler (see Appendix C (Ma and Liu, 2021)).

3 The posterior inconsistency phenomenon

3.1 A synthetic example

We generate a dataset from model (1.1) similar to that of Ročková and George (2016),
which consists of n = 100 observations, G = 1956 responses, Ktrue = 5 factors drawn
from N (0, I5), and Σtrue = IG. The true loading matrix is a block diagonal matrix as
shown in the leftmost sub-figure of Figure 2, where a black entry stands for 1 and a
blank one for 0 (thus s = 500 > n). With the synthetic dataset, we run the basic Gibbs
sampler for each model (using different priors with the normal factor assumption) under
the following tuning setups: (i) α = 1/G, λ0 = 20, λ1 = 0.1 for the SpSL-IBP prior; (ii)
α = 1/G, λ = 0.001, λ0 = 200, λ1 = 1 for the modified Ghosh-Dunson prior; (iii)
v1 = v2 = 3, a1, a2 ∼ Gamma(2, 1) for the MGP prior. We set K = 8 (run the samplers
with K factors) and η = ε = 1 by default for all the three priors. The loading matrix
B and the idiosyncratic variance matrix Σ are initialized at their MAP estimates from
the PXL-EM algorithm.

Heat-maps of the estimated covariance matrix BBT + Σ from three different ap-
proaches are presented in Figure 1. The first panel plots the data generating covariance
matrix as a reference. The other three panels show the posterior mean estimates of the
covariance matrix, B̄B̄T + Σ̄, under the three priors discussed in Section 2.1. Here,
B̄ and Σ̄ are the posterior means based on 1500 posterior samples obtained from the
Gibbs sampler. We use this form of the estimates in order to maintain the factor model
structure. The three priors induce quite different posterior behaviors, among which the
posterior estimate under the modified Ghosh-Dunson prior is the closest to the data
generating true value. For the MGP prior, posterior estimate of some zeros elements
(blue area in panel (d) of Figure 1) are “twisted”—not penalized to values close to the
truth 0. The posterior estimate under the SpSL-IBP prior exhibits an interesting “mag-
nitude inflation” phenomenon (the range of the color-bar in panel (b) is 100 times larger
than the others), although the relative magnitudes after rescaling look most similar to
the true ones.

Under the SpSL-IBP prior with λ0 = 20 and λ1 = 0.1, we show in Figure 2 ten snap-
shots of the heat-map of |B| in a Gibbs sampling trajectory with all model parameters
initialized at their true values. We can observe that the direction of each column vector in
the loading matrix is well preserved during Gibbs iterations, whereas the absolute value
of every non-zero element increases over the iteration and eventually stabilizes around
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Figure 1: Heat-maps of the estimated covariance matrix BBT +Σ. Panel (a) plots the
data generating covariance matrix. Panels (b), (c), and (d) show the covariance matrix
estimated using 1500 posterior samples under each prior setup. Note that the colorbar
in panel (b) is 100 times larger than others, indicating the much inflated covariance
matrix estimate under the SpSL-IBP prior.

a value much larger than the true one. As a demonstration of the inflation, Figure 3(a)
further displays the trace plot of log(|β1,1|) with λ1 = 0.001 and 0.1, respectively, which
also indicates the slow convergence of the basic Gibbs sampler under a small λ1. As
detailed in Appendix C (Ma and Liu, 2021), the convergence can be dramatically im-
proved by adding a few scaling group moves (Liu and Wu, 1999; Liu and Sabatti, 2000)
to the Gibbs sampler. The degree of inflation is influenced by the ratio of the number of
observations n over the average number of nonzero elements of each column in the true
factor loading matrix, s, as well as the choice of independent slab priors. For example,
as in Figure 3(b), when n is increased from 100 to 1000, the posterior samples of the
loading matrix stabilize around somewhere closer to the true loading matrix.
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Figure 2: Heat-maps of |B| in 100 iterations from the Gibbs sampler under the
SpSL-IBP prior setup. The gray scale of an entry βjk in one subplot is decided by
|βjk|/maxj,k{|βjk|}. The darker entries imply a larger ratio. The directions of the
columns of the loading matrix are well preserved throughout the Gibbs iterations.

Figure 3: Trace plots of log(|β1,1|) from a Gibbs sampler under the SpSL-IBP prior with
λ0 = 20, and λ1 = 0.001 and 0.1, respectively, for data sets of size (a) n = 100, and (b)
n = 1000. The samples of β1,1 stabilize around a much larger value than its true value
1. The inflation of the samples is more severe when n is smaller or the variance of slab
priors is larger.

3.2 Magnitude inflation and direction consistency

Our numerical results revealed some perplexing consequences of using independent (con-
ditional on the feature allocation Γ) SpSL priors for a Bayesian factor model when s ≥ n,
which can be summarized as “magnitude inflation” and “direction consistency”. While
the former means that the posterior draws of the loading matrix are inflated entry-wise
compared with the true loading matrix with the inflation magnitude dependent on how
diffuse the slab prior is, the latter says that the direction of columns of posterior sam-
ples of the loading matrix somehow still converges to the true direction as n, s → ∞.
Intuitively, when the number of independent slab priors employed grows at a faster rate
than the number of observations, these priors will overwhelm the signal from data. The
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interesting observation is that the overdose of independent slab priors only dilutes the
signal for the magnitude part in the loading matrix but has little impact on the identi-
fication of the column space. It is also worth mentioning, regardless of the occurrence
of “magnitude inflation”, the posterior distribution of the idiosyncratic variance matrix
Σ still has a nice concentration around the truth.

Traditional literature tends to ignore the inflation problem by treating it as a con-
sequence of the lack of enough observations (i.e., n is too small compared to s) to guar-
antee posterior sample consistency. However, we notice that, with the same amount of
observations, the inflation problem does not occur when using the priors prescribed in
Ghosh and Dunson (2009) and Bhattacharya and Dunson (2011) with hyper-parameters
within a reasonable range. Their priors impose an additional hierarchical structure on
elements in the loading matrix. Moreover, the MAP estimator is rather precise in es-
timating the true loading matrix and directions of columns of the loading matrix are
well captured by the posterior samples (under the SpSL-IBP prior), as in the synthetic
example. This suggests that the data provide sufficient information for recovering the
true loading up to trivial rotations. Thus, the magnitude inflation phenomena or other
posterior inconsistency problems may be caused by some modeling issues.

One likely explanation is that the normal factor model is only weakly identifiable,
and thus the posterior distribution is sensitive to the prior on the high-dimensional
loading matrix (Figure 1), if not well controlled. The magnitude inflation phenomenon
is an expression of the dominating influence of the independent SpSL prior. Although
a diffuse prior (such as normal with a large variance) is uninformative in low dimen-
sions, it becomes highly informative in magnitude when many parameters follow this
prior independently (i.e., as s grows faster than n in our setting). Ghosh and Dunson
(2009) provides a strategy to control the impact of the prior by imposing a hierarchical
dependency structure for elements in each column of the loading matrix. In this arti-
cle, we give another solution though enhancing the model identifiability by changing
the factor assumption. This idea is motivated by the theoretical study of the posterior
behavior under the independent SpSL prior, which we will introduce in the next two
sections. In Section 4 and 5, we focus on the SpSL-IBP prior and follow the notations
from Section 2.

4 Characterization of the magnitude inflation

It is generally recognized that in a Bayesian factor model using an improper flat prior on
elements of the loading matrix can be dangerous, and will lead to an improper posterior
distribution whenG ≥ n. This is in fact not very intuitive, so we illustrate this point with
a very simple example with K = 1 factor, n = 2 observations, and independent noises.
Let the two vector observations be y1 and y2, each of G-dimensional. We can therefore
write y1 = v1 + ε1, and y2 = v2 + ε2, with εi ∼ N (0, IG), which is very much like
the canonical Normal means problem, with only one additional requirement: v1 = ω1b
and v2 = ω2b. Here, the model assumes that the factor ωj ∼ N (0, 1), and b is a G-
dimensional loading matrix (vector). Thus, marginally we have yi ∼ N(0, IG+bbT ), i =
1, 2.
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A peculiar thing is that in the canonical Normal means problem, if we assign flat
priors to v1 and v2, their posterior distributions are simply N (y1, IG) and N (y2, IG),
respectively, which are still proper although they yield inadmissible estimators for v1

and v2 when G ≥ 3. However, with the factor model assumptions, which effectively
reduces the number of parameters from 2G toG, the posterior distribution for b becomes
improper if we assign b a flat prior and G ≥ 2.

Mathematically equivalent phenomena occur even in the simple univariate Gaussian
mean estimation: let y ∼ N (αβ, 1). If we assume that α ∼ N (0, 1), then, when assuming
a flat prior, the posterior distribution of β is proportional to

(β2 + 1)−1/2 exp
{
−(2(β2 + 1))−1y2

}
,

which is a non-integrable function, thus improper. But if we assume a proper prior on
β, its posterior distribution becomes proper but its posterior variance relies heavily on
its prior variance. A simple fix of the problem is to realize that we cannot identify both
parameters simultaneously and have to let α take a fixed value. These phenomena also
happen for the general factor models in certain settings, and our goal is to understand
how these issues play out in high dimensional factor models and whether certain intuitive
remedies work both theoretically and computationally for these more complex cases.

For the general factor model, we can similarly marginalize out the factor variables
and derive the posterior distribution of the loading matrix under the flat prior:

π(B | Y,Σ) ∝ |BBT +Σ|−n/2 exp

{
−1

2
tr

[
(BBT +Σ)−1(

n∑
i=1

yiy
T
i )

]}
,

where the exponential term is both upper and lower bounded by some functions of Y

and Σ. Term |BBT +Σ|−n/2 is lower bounded by (||B||2F +λmax(Σ))−
n×K

2 , where ||B||F
represents the Frobenius norm of B, and λmax(Σ) denotes the largest eigenvalue of Σ.
When the dimension of B, which is G ×K, is no smaller than n ×K, π(B|Y,Σ) will
integrate to infinity in the complement region of any bounded set in RG×K , leading to
an improper posterior distribution. If we impose a proper but diffuse slab prior instead
of the improper flat prior on elements of B, the posterior distribution can still be very
sensitive to the variance of slab prior, as seen in Figure 3.

To formalize this intuition for general Bayesian factor models, we provide the follow-
ing theorem on the divergence of the posterior distribution of the loading matrix if we
use a sequence of increasingly diffuse “slab” priors. Note that for theorems in Section 4,
we do not require Σ to be diagonal. To cover generic prior choices, we replace (2.1) with

[βjk | γjk] = (1− γjk)ψ(βjk) + γjkφ(βjk), (4.1)

where ψ denotes the spike prior density and φ denotes the slab prior density.

Theorem 4.1. Let {φm}m=1,··· be a sequence of densities such that limm→∞φm(β) = 0
for every β ∈R and there exists a constant C ∈ (0, 1) such that φm(β)>C maxβ(φm(β))
holds for every β in some non-decreasing Borel sets Sm that converges to R as m → ∞.
If s = ||Γ||2F /K ≥ n, then for any fixed finite-measure Borel set S, limm→∞ P (B ∈
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S|Y,Σ,Γ,m) = 0, where B | Y,Σ,Γ,m is based on the posterior distribution from
model (1.1) with normally distributed factors and φm as the slab part in the SpSL prior
on loading matrix elements.

Theorem 4.1 partially explains the magnitude inflation and the dependence of the
inflation rate on the choice of the slab prior. Let S be any fixed G × K dimensional
ball. The theorem implies that the probability of a posterior sample B, conditional
on Y,Σ,Γ,m, having a matrix norm smaller than any constant goes to zero as we
use a series of slab priors {φm}m=1,2,··· that is increasingly diffuse. In a general sense,
it can also be understood as the convergence in distribution of B|Y,Σ,Γ,m towards
B|Y,Σ,Γ,∞ (conditional posterior of B with flat slab prior), which is a point mass at
infinity when s ≥ n. For cases such that B|Y,Σ,Γ,∞ is indeed proper, e.g., when s � n
or the assumed distribution on the factors is changed, we strictly have the convergence
of B|Y,Σ,Γ,m towards B|Y,Σ,Γ,∞ in distribution as stated in the next theorem.
Therefore, if the posterior distribution of the loading matrix is proper under a flat slab
prior and the Bayesian consistency is justified in this situation, we have approximately
the same consistency when employing a reasonably diffuse slab prior.

Theorem 4.2. Consider model (1.1) without the normality assumption for the factors.
Let {φm}m=1,··· be a sequence of prior densities maximized at 0 such that, ∀β ∈ R,
limm→∞ φm(β)φ−1

m (0) = 1. Let π(B|Y,Σ,Γ,m) denote the conditional posterior den-
sity of B under a SpSL prior for its elements, with the spike density ψ and the slab
density φm, and let π(B|Y,Σ,Γ,∞) be the one corresponding to the flat slab prior (this
is appropriate since the indicator matrix Γ is conditioned on). If π(B|Y,Σ,Γ,∞) is
integrable, then B|Y,Σ,Γ,m converges to B|Y,Σ,Γ,∞ in distribution as m → ∞.

5 Model modifications and posterior consistency

To concentrate on the magnitude inflation and direction consistency problems, we study
behaviors of the posterior distribution of the Bayesian factor model assuming that the
diagonal idiosyncratic covariance matrix Σ and the true number of factors (for the
basic factor model) or the true feature allocation matrix Γ (for the sparse factor model)
are known. In contrast to the solution provided by Ghosh and Dunson (2009), which
imposes dependency among the magnitudes of loading matrix elements within the same
column through prior setup, we restrict ourselves to a special class of SpSL priors for
loading matrix elements, which have a point mass at zero as the spike and a flat (limit
of a sequence of increasingly diffuse distributions) slab part. This is a natural choice
for being non-informative and is always appropriate when considering the conditional
posterior distributions given Γ. We focus on studying the connection between posterior
consistency and the factor assumption, and demonstrate why the

√
n-orthonormal factor

model is a natural choice under high dimensions.

Notations: Let Hn denote the Haar measure (i.e., uniform distribution) on the
space of n × n orthogonal matrices and let mn be the uniform measure on the Stiefel
manifold St(K,n). Let Mi· and M·j denote the i-th row and the j-th column of matrix
M, respectively, as column vectors, and let Mi,j denote the element at i-th row and j-th
column of M. Mi1:i2 denotes the sub-matrix formed by row i1-th to i2 and Mi1:i2,j1:j2
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denote the sub-matrix formed by rows i1-th to i2 and columns j1 to j2. Notation M⊥

represents an orthogonal complement (not unique) ofM when M is not a square matrix,
P(·) represents the projection mapping towards the row vector space of a matrix and
P(·) is the projection matrix of the mapping. Let λmax(·) and λmin(·) denote the largest
and smallest singular values of a matrix, and let λk(·) denote the k-th largest singular
values. The L2 norm is denoted by ‖·‖, the Frobenius norm is denoted by ‖·‖F , and the
outer product is “⊗”.

5.1 The basic Bayesian factor model

We show the posterior consistency of the loading matrix by first studying the posterior
consistency of the factor matrix Ω (defined in Section 2.2). It is easy to see that, with a
flat prior on every element of B, the posterior distribution of B and Ω can be written as:

Bj�|Y,Ω,Σ
ind∼ N ((ΩΩT )−1ΩYj�, σ2

j (ΩΩT )−1), (5.1)

π(dΩ|Y,Σ) ∝ |ΩΩT |−G/2 exp

⎛
⎝ G∑

j=1

1

2σ2
j

YT
j�Ω

T (ΩΩT )−1ΩYj�

⎞
⎠ pΩ(dΩ), (5.2)

where pΩ denotes the prior distribution ofΩ and “
ind∼ ” means that theBj·’s are mutually

independent.

In Section 5, we no longer restrict the factors in Ω to follow the standard Normal
distribution (i.e., the normal factor assumption), only requiring its distribution pΩ to
satisfy the following two conditions: (a) cov(ωi) = IK , so as to keep the marginal co-
variance structure of Y unchanged; (b) right rotational-invariant (i.e., Ω and ΩR follow
the same distribution ∀ n× n orthogonal matrix R). Two non-Gaussian examples are:
(i) each row of Ω follows independently a uniform distribution on the

√
n-radius sphere;

(ii) Ω/
√
n is uniform on the Stiefel manifold St(K,n), i.e., Ω/

√
n is the first K rows of

a Haar-distributed n×n orthogonal random matrix. We emphasize here again that this
generalization should be viewed as an inference model, instead of a generative model.
It is analogous to analyses of contingency tables conditional on the marginal sums.

A straightforward characterization of condition (b) can be made through the LQ
decomposition (the transpose of the QR decomposition). Suppose the LQ decomposi-
tion of Ω = K(Ω)V(Ω) is done by the Gram–Schmidt orthogonalization starting from
the first row of Ω, resulting in a K × K lower triangular matrix K(Ω) and a K × n
orthonormal matrix V(Ω). Then, requirement (b) enables us to generate Ω from pΩ by
generating a pair of K(Ω) and V(Ω) from two independent distributions—a marginal
distribution on K(Ω) (denoted as pK) and a uniform distribution on the Stiefel manifold
St(K,n) for V(Ω).

Using the LQ decomposition, we can rewrite expression (5.2) as

π(dΩ|Y,Σ) ∝
(
|K(Ω)K(Ω)T |−G/2pK(dK(Ω))

)

×
(
exp

( G∑
j=1

1

2σ2
j

‖PV(Ω)(Yj�)‖2
)
m(dV(Ω))

) (5.3)
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since |ΩΩT | = |K(Ω)K(Ω)T |, and YT
j�Ω

T (ΩΩT )−1ΩYj� is the square of the length of
Yj�’s projection on the row space of Ω. Therefore, K(Ω) and V(Ω) are independent a
posteriori, and

π(dK(Ω)|Y,Σ) ∝ |K(Ω)K(Ω)T |−G/2pK(dK(Ω)), (5.4)

π(dV(Ω)|Y,Σ) ∝ exp
( G∑

j=1

1

2σ2
j

‖PV(Ω)(Yj�)‖2
)
m(dV(Ω)). (5.5)

Equation (5.4) implies that K(Ω) may have an improper posterior distribution be-
cause the likelihood term |K(Ω)K(Ω)T |−G/2 creates “attractors” when the determi-
nant of K(Ω)K(Ω)T is close to 0. Therefore, with large enough G, the right-hand
side of (5.4) explodes to infinity fast enough around the attractors and becomes non-
integrable, thus leading to an improper posterior distribution for K(Ω). In contrast,

since exp
(∑G

j=1
1

2σ2
j
‖PV(Ω)(Yj�)‖2

)
is upper bounded by exp

(∑G
j=1

1
2σ2

j
‖Yj�‖2

)
, the

posterior distribution (5.5) for V(Ω) is always proper, based on which we can further
derive posterior consistency of the row vector space of Ω.

Consistency of the row vector space of the factor matrix

The consistency of row vector space ofΩ is intuitive from (5.5) for the noiseless case (i.e.,
Y = B0Ω0), since the exponential term in (5.5) is uniquely maximized when the row
vector spaces of Ω and Ω0 coincide. As in an annealing algorithm, the exponential term
enforces the growing contraction towards the maximum point (where row spaces of Ω
andΩ0 coincide) asG increases. On the other hand, the prior measure in a neighborhood
of the row vector space of Ω0 (defined as pΩ({Ω : ||V(Ω0)

⊥V(Ω)T ||F < ε})) gets more
diffuse as n grows. Therefore, in an asymptotic regime with G,n → ∞, and under some
mild conditions on the growing rate of G and n to ensure that the diffusion is slower than
the contraction, the consistency of the row vector space of Ω follows immediately as
summarized below. Detailed proofs of the lemma and theorem can be found in Appendix
D.3 and D.4 (Ma and Liu, 2021).

Lemma 5.1. Let B0,G be a G × K matrix, Ω0,n be a K × n matrix, and ΣG be a
known G × G diagonal matrix. Suppose noiseless data generated as Y = B0,GΩ0,n

are given. We, however, model each column of Y as mutually independent and Y·i ∼
NG(BΩ·i,ΣG), i = 1, · · · , n. With a flat prior on each of B’s elements and a right-
rotational invariant prior on Ω, we have the following inequality for the posterior dis-
tribution of Ω:

P (||V(Ω0,n)
⊥V(Ω)T ||F > ε|Y,ΣG)

≤
(
1 +mn({V : ||V0V

T ||F <
ε

L
})× exp(

3

8
ε2λmin(Σ

−1/2
G B0,GK(Ω0,n))

2)
)−1

,

where L = 2λmax(Σ
−1/2
G B0,GK(Ω0,n))/λmin(Σ

−1/2
G B0,GK(Ω0,n)) and V0 is any fixed

K × n orthonormal matrix.
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Lemma 5.1 provides a probability bound between V(Ω) sampled from the pos-
terior distribution and V(Ω0,n) when there is no noise in the observation Y. Since
||V(Ω0,n)

⊥V(Ω)T ||2F equals to the sum of squared sine canonical angles between the
row space of Ω and Ω0, lemma 5.1 implies the convergence of these canonical angles
towards 0 as n,G = s → ∞ (i.e. the Bayesian consistency of row vector space of Ω)

when − log(mn({V : ||V⊥
0 V

T ||F < ε
L})) = o(ε2λmin(Σ

−1/2
G B0,GK(Ω0,n))

2), which is
the technical requirement that ensures the dilution is “covered up” by the contraction.
Base on this lemma, we generalize the consistency of row vector space of Ω to the noisy
observation case under the “Large G(s), Small n” paradigm.

Definition 5.1. Let B0 be a countable array, or a bivariate function of the form
B0(j, k), with j = 1, · · · ,∞ and k = 1, · · · ,K. Intuitively, this is an ∞ × K matrix.
We say that B0 is a regular infinite loading matrix if there are two universal constants
C1, C2 > 0 such that, ‖(B0)j·‖ ≤ C1 and λmin((B0)1:j)/

√
j ≥ C2 for j = 1, · · · ,∞.

Theorem 5.2. Suppose B0 is a regular infinite loading matrix. Let Ω0,n be a K × n
matrix with linear independent rows and let Σ = diag(σ2

1 , · · · ) be a known infinite di-
agonal matrix in which σj , ∀j, is bounded below and above by constants c3 > 0 and
c4 < ∞, respectively. Let Y be an ∞ × n matrix, whose j-th row is generated from
Nn((B0)j·Ω0,n, σ

2
j In), independently. For every fixed G, consider modeling the i-th col-

umn of Y1:G by NG(BΩ·i,ΣG) for i = 1, . . . , n with ΣG = diag(σ2
1 , · · · , σ2

G). With a
flat prior on each of B’s elements and a proper right-rotational invariant prior on Ω, we
have, for a random draw Ω from its posterior distribution, almost surely (with respect
to the randomness in Y) that

||V(Ω0,n)
⊥V(Ω)T ||F | Y1:G,ΣG → 0 in probability as G → ∞.

Posterior distribution of the loading matrix

From (5.5), it is clear that data only provide information on the row vector space of
V(Ω), the posterior distribution of V(Ω) conditioned on its row vector space is uniform
among all the K×n orthonormal matrices within the row space. Utilizing the posterior
consistency of the row space provided by Theorem 5.2, we can approximate an V(Ω)
drawn from its posterior by another random variable of the form OV(Ω0,n), where O
is a K ×K uniform (Haar distributed) random orthogonal matrix (see Appendix D.5
(Ma and Liu, 2021) for details).

Let B0,G denotes the matrix formed by the first G rows of B0. By plugging V(Ω) =
OV(Ω0,n) into the matrix form of (5.1), which can be written as

B | Y,Ω,Σ ∼ NK×G(YΩT (ΩΩT )−1, (ΩΩT )−1 ⊗Σ),

we obtain a decomposition for the posterior samples of BK(Ω)/
√
n as:

1√
n
BK(Ω) | Y,Σ ∼ B0,G(K(Ω0,n)/

√
n)OT + ((Y −B0,GΩ0,n)/

√
n)V(Ω0,n)

TOT

+NG×K(0,
1

n
IK ⊗Σ). (5.6)
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For a considerable large n and normal true factor matrix Ω0,n, K(Ω0,n)/
√
n, as the

Cholesky factor of Ω0,nΩ
T
0,n/n, approaches the identity matrix, so the first term of

the right hand side of (5.6) approaches B0,GO
T . Meanwhile, the second term ((Y −

B0,GΩ0,n)/
√
n)V(Ω0,n)

TOT is the row projection of the idiosyncratic noise matrix
(Y−B0,GΩ0,n) to aK dimensional space, divided by

√
n, which converges in probability

to 0 entry-wise as n → ∞. The third term is a centered normal (independent with O)
with variance shrinking to 0 as n increases. This implies that under G = s � n → ∞
regime, posterior samples of BK(Ω)/

√
n can be asymptotically expressed as the true

loading matrix times an uniform random orthogonal matrix.

Factor assumption and consistency Posterior distributions of B and K(Ω) are cou-
pled. A “deflation” problem of K(Ω)/

√
n occurs when the factors in Ω of the inferential

model are assumed to be normal and n = O(G), in which case the posterior distribution
of K(Ω)/

√
n can be derived in closed form by the Bartlett decomposition as:

1√
n
(K(Ω))k,k|Y,Σ ∼ 1√

n
χn−k+1−G, k = 1, · · · ,K,

1√
n
(K(Ω))k′,k|Y,Σ ∼ N (0,

1

n
), 1 ≤ k < k′ ≤ K,

(5.7)

where χν denotes the Chi distribution with ν degrees of freedom. Posterior samples
of the loading matrix, therefore, have to be inflated correspondingly. Ideally, we desire
the convergence of the posterior distribution of K(Ω)/

√
n towards a point mass at the

identity matrix to guarantee the posterior consistency (up to rotations) of the loading
matrix, and can indeed achieve this by imposing a stronger control over ΩΩT /n through
the assumption on pΩ. A particular simple strategy is to require that all factors are
orthogonal and have equal norm, which implies that Ω/

√
n is uniform in the Stiefel

manifold St(K,n). More discussions are deferred to the end of Section 5.2.

5.2 Sparse Bayesian factor model

With a special feature allocation design, V(Ω) is identifiable so that the consistency of
the row space of the factor matrix can be generalized to the consistency of V(Ω). We
impose a generalized lower triangular structure (Fruehwirth-Schnatter and Lopes, 2018)
on the feature allocation matrix Γ to cope with the rotational invariance problem of the
loading matrix. We call Γ a generalized lower triangular matrix if the row index of the
top nonzero entry in the k-th column lk (define l0 = 1, lK+1 = G + 1) increases with
k and γjk = 1 if and only if j ≥ lk. Under the flat SpSL prior (use a mixture of point
mass at zero and flat distribution as prior) on entries of B in the Sparse Bayesian factor
model, we can derive the conditional distributions of B and Ω: for j = lk, · · · , lk+1 − 1,

Bj,1:k|Y,Ω,Σ,Γ
ind∼ N ((Ω1:kΩ1:k

T )−1Ω1:kYj� , σ2
j (Ω1:kΩ1:k

T )−1), (5.8)

π(dΩ|Y,Σ,Γ)∝
K∏

k=1

|Ω1:kΩ1:k
T |−(lk+1−lk)/2 exp

(
K∑

k=1

lk+1−1∑
j=lk

1

2σ2
j

‖PΩ1:k
(Yj�)‖2

)
pΩ(dΩ),

(5.9)
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where Bj,1:k = (βj1, βj2, · · · , βjk)
T and pΩ denotes the distribution assumed on Ω such

that condition (a) and (b) in Section 5.1 holds.

Given the LQ decomposition Ω = K(Ω)V(Ω) and

Ω1:k = K(Ω)1:kV(Ω) = K(Ω)1:k,1:kV(Ω)1:k,

since K(Ω) is lower triangular, Ω1:kΩ1:k
T = K(Ω)1:k,1:kK(Ω)1:k,1:k

T
is a function of

K(Ω). PΩ1:k
(Yj�) is the projection of Yj� towards the row vector space of Ω1:k, which is

a function ofV(Ω). The adoption of the generalized lower triangular structure on feature
allocation matrix ensures a separation in likelihood of (5.9) so that the determinant part
is connected to Ω only through K(Ω) and the exponential part only through V(Ω). We
thus can derive that K(Ω) and V(Ω) are independent a posteriori and that:

π(dK(Ω)|Y,Σ,Γ) ∝
K∏

k=1

K(Ω)
−(G−lk+1)
k,k pK(dK(Ω)), (5.10)

π(dV(Ω)|Y,Σ,Γ) ∝ exp

⎛
⎝ K∑

k=1

lk+1−1∑
j=lk

1

2σ2
j

‖PV(Ω)1:k(Yj�)‖2
⎞
⎠m(dV(Ω)). (5.11)

Expression (5.11) gives a proper posterior for V(Ω), and for the noiseless case (i.e.
Y = B0Ω0), the density is maximized when the row vector space of V(Ω)1:k and
V(Ω0)1:k coincide for k = 1, · · · ,K, based on which we can generalize theorem 5.2 to
the consistency (up to sign permutations) of V(Ω).

Consistency of V(Ω)

Definition 5.2. Let B0 be an ∞×K matrix with nonzero rows and let Γ0 be a binary
matrix of the same shape. We call Γ0 a generalized lower triangular feature allocation
matrix of B0 if it satisfies

1. I(B0)j,k �=0 ≤ (Γ0)j,k holds for j = 1, · · · ,∞, k = 1, · · · ,K, where I is the indicator
function;

2. (Γ0)j,k1 ≤ (Γ0)j,k2 holds for j = 1, · · · ,∞, K ≥ k1 > k2 ≥ 1.

Furthermore, for every fixed dimension G, let ψG denote the unique permutation of
(1, · · · , G), so that ψG(j1) < ψG(j2) if and only if either (i) (

∑
k Γj1,k) < (

∑
k Γj2,k)

or (ii) (
∑

k Γj1,k) = (
∑

k Γj2,k) but j1 < j2.

Definition 5.3. Let B0 be a ∞×K matrix with nonzero rows and let Γ0 be a generalized
lower triangular feature allocation matrix of B0. The two G×K matrices B0,G and Γ0,G

are formed by permuting the first G rows of B0 and Γ0 according to ψG (the j-th row of
B0 is the ψG(j)-th row of B0,G, see Figure 4 for an example). Let l0,k be the row index
of the top nonzero entry in the k-th column of the generalized lower triangular matrix

Γ0,G (define l0,0 = 1, l0,K+1 = G+1), and let B
(k)
0,G be the submatrix of B0,G formed by
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rows indexed from l0,k to l0,k+1 − 1 and columns indexed from 1 to k. We call (B0,Γ0)
a regular infinite loading pair if there are two universal constants C1, C2 > 0 such that,

‖(B0)j·‖ ≤ C1 and minkλmin(B
(k)
0,j )/

√
j ≥ C2 for j = 1, · · · ,∞.

Figure 4: An example of B0, Γ0, and B0,G, Γ0,G after ψG permutation.

Theorem 5.3. Let (B0,Γ0) be a regular infinite loading pair with Γ0 known, let Ω0,n

be a K×n matrix with linearly independent rows, and let Σ = diag(σ2
1 , · · · ) be a known

infinite diagonal matrix such that C3 ≤ σ2
j ≤ C4 holds for j = 1, · · · , with constants

C3, C4 > 0. The j-th row of ∞ × n matrix Y is generated by Nn((B0)j·Ω0,n, σ
2
j In).

For every fixed G, let Y1:G denote the matrix formed by permuting the first G rows of
Y according to ψG and consider modeling the i-th column of Y1:G by NG(BΩ·i,ΣG)
for i = 1, . . . , n with ΣG = diag(σ2

ψ−1
G (1)

, · · · , σ2
ψ−1

G (G)
). With a flat prior on each of

B’s non-zero element according to the feature allocation matrix Γ0,G and a prior on Ω
that is invariant under right orthogonal transformations, for a random draw Ω from its
posterior distribution, we have almost surely (with respect to the randomness in Y) that

||V(Ω0,n)
⊥
1:kV(Ω)T1:k||F |Y1:G,ΣG,Γ0,G → 0,

for k = 1, · · · ,K as G → ∞.

Theorem 5.3 is understood as the consistency (up to sign permutations) of V(Ω) for
fixed n and G � s → ∞, in the sense that ||V(Ω0,n)

⊥
1:kV(Ω)T1:k||F converges to 0 for all

k, which implies that the canonical angles between the row space of V(Ω0,n)1:k and that
of V(Ω)1:k converge to 0 as G → ∞. When these angles are all equal to 0, V(Ω) differs
from V(Ω0,n) only by a sign for each row. Since the data provides no information
on the signs, in the asymptotic regime with G � s � n → ∞, we can approximate
V(Ω) drawn from its posterior distribution by a random sign diagonal matrix S, i.e., a
diagonal matrix with i.i.d. random signs on the diagonal, times V(Ω0,n).

Posterior sample consistency

Recall that from Section 5.1, for the basic Bayesian factor model with G = s � n → ∞,
BK(Ω)/

√
n drawn from the posterior distribution can be asymptotically represented as
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the true loading matrix times a uniform random orthogonal matrix. If the true feature
allocation matrix is lower triangular, we have

B(k)K(Ω)1:k/
√
n|Y,Ω,ΣG,Γ0,G ∼ B

(k)
0,G(K(Ω0,n)1:k,1:k/

√
n)V(Ω0,n)1:kV(Ω)T1:k

+ ((Ylk:lk+1−1 −B
(k)
0,G(Ω0,n)1:k)/

√
n)V(Ω)T1:k

+N(lk+1−lk)×k(0,
1

n
Ik ⊗Σ

(k)
G ), (5.12)

whose right hand side converges entry-wise in probability to B
(k)
0,GS

T
1:k,1:k under the G �

s � n → ∞ setting (by similar argument as in Section 5.1). Note that B(k)K(Ω)1:k =
Blk:lk+1−1K(Ω), we can therefore summarize the convergence of B(k)K(Ω)1:k/

√
n to

derive the convergence of posterior samples of BK(Ω)/
√
n towards B0,GS

T .

The posterior sample consistency (up to sign permutations) of the loading matrix is
immediate once we have K(Ω)/

√
n, or equivalently ΩΩT /n, from its posterior distri-

bution converging in probability to the identity matrix. The density in (5.10) indicates
that the posterior distribution of ΩΩT /n is contributed by two terms: the determinant∏K

k=1 K(Ω)
−(G−lk+1)
k,k and the model assumption represented by pΩ. The determinant

term creates singularities when K(Ω)k,k = 0 and the order of these “poles” ∼ s. When
this term dominates, we observe the inflation phenomenon of posterior samples of the
loading matrix. Meanwhile, the model assumption term can bound K(Ω) away from
these singularities by assigning little probability measure in their neighborhoods and
also induces the convergence of ΩΩT /n towards the identity matrix (through require-
ment (a) introduced in Section 5.1). Consequently, the posterior behavior of ΩΩT /n is
influenced by both the increasing rate of n, s and the choice of distribution pΩ. Those
pΩ that bounds away singularities with high probability and forces a fast convergence
of ΩΩT /n towards the identity matrix can permit a faster rate of s going to infinity
comparing to n, to guarantee the posterior consistency of the loading matrix. Although
our analysis regarding the relation between the factor assumption and the posterior con-
sistency is specific to the SpSL-IBP prior, it reveals the connection between the factor
assumption and the strength of posterior contraction towards the truth.

A simple and effective strategy to cope with the posterior inconsistency is to adopt
the

√
n-orthonormal factor model for Bayesian inference. That is, we assume a pri-

ori that Ω/
√
n is uniform in the Stiefel manifold St(K,n). With this choice, we have

ΩΩT /n = IK and that the posterior sample consistency of B naturally holds even when
n has a rather slow growing rate compared with s. Under the standard normal factor
generative model, the effect of this modified model is to condition the Bayesian infer-
ence on ΩΩT = E(ΩΩT ). While employing the prior structures proposed by Ghosh and
Dunson (2009) and Bhattacharya and Dunson (2011) work reasonably well empirically,
we have not been able to find rigorous theoretical supports for them. In contrast, using√
n-orthonormal factors with independent SpSL prior is guaranteed to be consistent in

high dimensions given the true feature allocation. In the next section, we also show that
numerically the resulting posterior estimates have the smallest MAEs compared with
those based on other priors discussed in Section 2.1 (with a normal factor inferential
model) and the induced Gibbs sampling algorithm is the most efficient.
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6 Numerical results

6.1 Sample
√
n-orthonormal factors

In Section 5, we justify the adoption of the
√
n-orthonormal factor model in the “Large

s, Small n” paradigm (i.e., the factor matrix Ω scaled by 1/
√
n is uniform in the Stiefel

manifold St(K,n)). To construct a Gibbs sampler under this new factor model, we only
need to revise the conditional sampling of Ω | Y,B,Σ in the basic Gibbs samplers.

Let Ωk· denote the k-th row of the factor matrix and Ω−k denote the remaining
rows, all as column vectors. The conditional distribution Ωk· | Y,Ω−k,B,Σ is altered
from a multivariate normal distribution to:

π(dΩk·|Y,Ω−k,B,Σ) ∝ f(Ωk·; Ω̄k·, σ̄
2
kIn)× pΩ−k

(dΩk·), (6.1)

where pΩ−k
is the uniform measure on the centred

√
n-radius sphere in the orthogonal

space of Ω−k, and f(Ωk·; Ω̄k·, σ̄
2
kIn) is the multivariate normal density function with

mean Ω̄k· and covariance matrix σ̄2
kIn, with

Ω̄k· = (BT
·kΣ

−1B·k)
−1(Y −

∑
t �=k

B·tΩ
T
t·)

TΣ−1B·k, σ̄2
k = (BT

·kΣ
−1B·k)

−1.

To sample from (6.1), we cut this
√
n-radius sphere by hyperplanes that are or-

thogonal to vector Ω̄k· and denote this collection of intersections of the sphere and
hyperplanes as {Sd | d ∈ (−√

n,
√
n)}, where d is the Euclidean distance between the

origin and the hyperplane. Essentially, {Sd} are (n-k)-dimensional spheres and every
point in the same Sd has the same multivariate normal density f(·; Ω̄k·, σ̄

2
kIn), so we

can sample Ωk· from (6.1) by first sampling d from its marginal distribution and then
uniformly sample from sphere Sd given the sampled d. Using the area formula of sphere,
we can deduce the marginal distribution for d as

π(d | Y,Ω−k,B,Σ) ∝ (n− d2)(n−K−2)/2 exp(‖PΩ⊥
−k

(Ω̄k·)‖d/σ̄2
k) (6.2)

and sample from this unimodal distribution using the Metropolis algorithm. The addi-
tional computational cost incurred by the model revision only comes from the Metropolis
algorithm and is almost negligible.

6.2 SpSL-orthonormal factor model

We denote the
√
n-orthonormal factor model with the SpSL-IBP prior as the SpSL-

orthonormal factor model. We revisit the synthetic example in Section 3.1 to check if
the magnitude inflation problem is resolved by employing the

√
n-orthonormal factor

inferential model. The tuning parameters are the same as in Section 3.1 and parameters
B and Σ are initialized at the MAP estimate.

Figure 5 shows the comparison between the posterior estimates of the covariance
matrix under the normal factor model and the

√
n-orthonormal factor model, using the

same SpSL-IBP prior. By comparing panel (c) with panel (b), we conclude that the mag-
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Figure 5: Heat-maps of (a) the true covariance matrix, BBT +Σ, of model (1.1); and
posterior estimates of the covariance matrix under (b), the normal factor model, and (c),
the

√
n-orthonormal factor model, with the SpSL-IBP prior. The estimates are based

on 1500 posterior samples. Note that the range of colorbar in Panel (b) is 100 times
larger than the other two.

nitude inflation problem is completely resolved through imposing the
√
n-orthonormal

restriction on the factors, and the resulting posterior samples of the nonzero elements
in the loading matrix are distributed around the truth (see the supplemental figures
in Appendix E.3 (Ma and Liu, 2021) for a 90% credible interval of the loading matrix
elements).

Under the SpSL-orthonormal factor model, we further show that the posterior dis-
tributions of the loading matrix elements are robust against the choice of λ1 and K (K
is the factor number when running the sampler). We conduct two simulation experi-
ments: (i) K = 8, λ0 = 20 and λ1 ∈ {0.001, 0.01, 0.1, 0.5}; and (ii) λ0 = 20, λ1 = 0.001
and K ∈ {5, 6, 7, 8}. The posterior density of 15 zero elements and 15 nonzero elements
(estimated by averaging over the conditional posterior densities) are demonstrated in
the supplemental figures in Appendix E.3 (Ma and Liu, 2021). We also observe a sim-
ilar robustness against the tuning parameter choices in priors of Ghosh and Dunson
(2009) and Bhattacharya and Dunson (2011) under the

√
n-orthonormal factor model.

Figure 10 of Appendix E.3 depicts a comparison between setting v1 = v2 = 0.5 versus
v1 = v2 = 3 in the MGP prior for a simulated dataset.

6.3 Robustness and efficiency

We here demonstrate the general robustness of the
√
n-orthonormal factor model for

different prior choices by generating datasets from the standard normal factor model
(1.1) with (G, s, n) = (1200, 500, 100), corresponding to a G > s � n case. The true
loading matrix is a block-diagonal matrix with βj,k = 1 for k = 1, 2, 3 and j = 350 ×
(k−1)+1, · · · 350×(k−1)+500, and βj,k = 0 otherwise. The elements of the true factor
matrix are generated from standard normal. We applied the three priors discussed in
Section 2.1 with the following tuning parameters: α = 1/G, λ0 = 20, λ1 = 0.001 for the
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Figure 6: Heat-maps of the posterior estimates of the covariance matrix resulting from
the three priors under the normal factor model with G > s � n. Note that the range
of colorbar for panel (a) is 106 times larger than the others.

Figure 7: Heat-maps of the posterior estimates of the covariance matrix resulting from
the three priors under the

√
n-orthonormal factor model with G > s � n.

SpSL-IBP prior; α = 1/G, λ = 0.001, λ0 = 200, λ1 = 1 for the modified Ghosh-Dunson
prior; v1 = v2 = 3, a1, a2 ∼ Gamma(2, 1) for the MGP prior. We set K = 5 and
η = ε = 1 as default for all three priors.

Figure 6 shows the estimated covariance matrix under the three different priors in
Section 2.1 for a normal factor inferential model. Similar as in Section 3.1, these posterior
distributions are quite different from each other, indicating an overly strong influence
of the prior specification on the posterior inference. However, as shown in Figure 7,
when the

√
n-orthonormal factor inferential model is adopted, the three priors result in

similar posterior distributions, which are all closer to the truth.

To quantify the improved estimation efficiencies under the
√
n-orthonormal factor

model, we further show in Table 1 the entry-wise mean absolute error (MAE) between
each estimated covariance matrix and the true one under three priors and two factor
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SpSL-IBP modified G&D MGP
normal factors 5.7×105/5.5×105/5.5×105 0.117/0.116/0.104 0.248/0.242/0.229√

n-orthonormal factors 0.106/0.099/0.093 0.123/0.111/0.102 0.162/0.146/0.134

Table 1: Mean absolute error of the estimated covariance matrix (computed from 1500
posterior samples of the Gibbs sampler) under different priors and factor assumptions
in three generated datasets for the G > s � n case.

model specifications, with three independent replications. We can see that the MAEs
under the

√
n-orthonormal factor model are either significantly smaller than or com-

parable to their corresponding ones under the normal factor model. Furthermore, the
estimation based on the SpSL-IBP prior under the

√
n-orthonormal factor gives the

smallest MAE in all replications among all settings. We observe the same phenomena
even in the case with s � n as shown later.

Another advantage of adopting the
√
n-orthonormal factor model is to improve

MCMC sampling efficiency. In Table 2, we compute the effective sample size (ESS)
of the model parameters using 1500 iterations of the Gibbs sampler (after burn-in)
under different schemes in the three simulated datasets. The ESS results are averaged
across dimensions. For example, β·,1 indicates ESSs computed by using the average auto-
correlations of all nonzero elements in the first column of the loading matrix B. For the
normal factor model, successive posterior samples from Gibbs sampling of each nonzero
element in B and each element in the factor matrix Ω are strongly positively correlated,
which causes high auto-correlations among the MCMC samples. The strong tie between
the magnitudes of B and Ω is completely removed under the

√
n-orthonormal factor

model, thus resulting in much lower auto-correlations among the MCMC samples and
a significant boost of the ESS. Note that the ESS under the normal factor model is
quite variable across the three replications, further demonstrating the poor mixing of
the Gibbs sampler under this model. Interestingly, the ESS of the σ2

j ’s are not impacted
by the factor assumption and remains very stable across different priors and different
replications.

normal factors
√
n-orthonormal factors

SpSL-IBP modified G&D MGP SpSL-IBP modified G&D MGP
β·1 250.1/27.8/196.6 24.0/16.0/35.6 41.9/22.6/22.9 1396.6/1445.1/1478.2 1489.9/1507.0/1503.2 1416.7/1407.7/1408.7
β·2 69.3/73.8/177.4 18.2/29.8/16.1 140.8/19.9/38.9 1422.9/1469.3/1438.5 1470.8/1487.0/1462.5 1399.1/1414.7/1357.1
β·3 286.5/65.3/74.0 50.2/17.1/39.1 38.9/48.7/19.9 1134.4/1200.6/1475.6 1461.6/1476.8/1483.1 1361.3/1383.0/1403.6
Ω1· 104.2/17.1/83.5 13.8/12.5/21.0 23.3/14.4/14.0 515.7/838.5/438.9 212.8/826.7/495.1 386.4/107.2/115.3
Ω2· 31.6/38.0/75.0 13.2/17.9/11.1 30.2/11.7/12.8 233.5/471.5/392.1 145.4/343.4/403.6 179.4/439.4/237.3
Ω3· 106.1/32.5/33.9 25.1/12.3/19.9 19.5/19.7/12.7 495.2/639.2/219.5 145.9/418.7/416.4 338.8/110.8/127.7
σ2
· 1139.2/1242.6/1208.0 1124.8/971.0/1224.5 1072.9/1084.5/1062.9 1194.6/1217.9/1209.4 1043.5/1283.1/1176.1 866.7/1183.0/1000.6

Table 2: ESS of parameters (computed from 1500 posterior samples) using Gibbs sam-
pling under different schemes in three generated datasets of the G > s � n case.

We further consider an experiment with s � n < G. We generate three datasets
from model (1.1) with (G, s, n) = (1200, 10, 200) and normal factors. The true loading
matrix is a block-diagonal matrix with βj,k = 1 for k = 1, 2, 3 and j = 7 × (k −
1) + 1, · · · 7 × (k − 1) + 10, and βj,k = 0 otherwise. We apply the three priors with
the following tuning parameters: α = 1/G, λ0 = 200, λ1 = 0.001 for the SpSL-IBP
prior; α = 1/G, λ = 0.001, λ0 = 104, λ1 = 1 for the modified Ghosh-Dunson prior;
v1 = 3, v2 = 0.003, a1, a2 ∼ Gamma(2, 1) for the MGP prior. We again set K = 5
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and η = ε = 1 as default for all three priors. The posterior estimates of B based on
MCMC samples under the three priors are similar to each other and close to the truth
under both factor modeling assumptions (see supplemental figures in Appendix E.1
(Ma and Liu, 2021)). This is consistent with the posterior consistency result for using
a discrete SpSL prior under the G > n > s setting (Pati et al., 2014). Nevertheless,
we still observe from Table 3 an efficiency gain of ESS (for the nonzero loading matrix
elements) when using the

√
n-orthonormal factor model. We also see from Table 4 that

the SpSL-IBP prior under the
√
n-orthonormal factor model gives the most accurate

posterior estimate (with the smallest MAE). In contrast, the MGP prior appears to
provide the least accurate estimate.

normal factors
√
n-orthonormal factors

SpSL-IBP modified G&D MGP SpSL-IBP modified G&D MGP
β·1 255.0/144.6/268.4 324.2/228.6/250.4 259.4/165.1/303.5 948.7/912.0/857.3 769.3/1017.7/823.4 747.6/805.1/450.5
β·2 146.6/257.2/265.8 296.4/242.5/168.2 267.1/237.9/292.8 635.7/691.2/568.4 476.4/724.3/464.8 492.5/575.2/337.3
β·3 270.2/278.4/336.8 320.2/346.3/278.6 189.6/212.0/62.7 993.1/843.1/893.5 841.6/862.7/827.8 720.2/690.6/731.1
Ω1· 1129.0/1016.8/1184.5 1070.5/992.2/876.4 951.5/862.6/956.8 1058.5/1113.2/1003.8 969.2/868.5/723.7 852.7/866.5/730.9
Ω2· 1147.9/1149.7/1137.5 708.9/993.2/864.4 851.7/920.1/971.9 988.1/969.7/870.1 801.2/795.1/731.7 739.6/771.7/641.5
Ω3· 1113.5/1189.5/1240.1 1130.3/1157.0/1070.5 880.0/979.7/511.3 1129.9/1127.0/1091.2 1014.8/1072.0/897.9 865.1/885.5/831.3
σ2
· 1492.8/1482.8/1486.4 1435.8/1441.6/1423.2 1200.7/1210.5/1242.2 1484.3/1472.7/1490.4 1403.3/1395.6/1423.9 1246.3/1199.0/1195.6

Table 3: ESS of parameters (computed from 1500 posterior samples) using Gibbs sam-
pling under different schemes in three generated datasets of the s � n < G case.

SpSL-IBP modified G&D MGP
normal factors 1.24×10−4/1.24×10−4/1.14×10−4 1.64×10−4/1.57×10−4/3.35×10−4 7.07×10−4/5.84×10−4/5.83×10−4

√
n-orthonormal factors 1.14×10−4/1.16×10−4/1.11×10−4 1.84×10−4/1.66×10−4/2.59×10−4 7.57×10−4/5.66×10−4/6.96×10−4

Table 4: Mean absolute error of the estimated covariance matrix (computed from 1500
posterior samples of Gibbs sampler) under different priors and factor assumptions in
three generated datasets of the s � n < G case.

7 Dynamic exploration with application

Although the
√
n-orthonormal factor model can be coupled with general prior assign-

ments on the loading matrix, in this application, we focus on the setup from Ročková and
George (2016) (i.e., the SpSL-orthonormal factor model), under which posterior con-
sistency can be theoretically guaranteed given the feature allocation. The application
of our Gibbs sampler requires a successful implementation of the PXL-EM algorithm
(Ročková and George, 2016) to search for a posterior mode that can serve to initialize
the sampler. When applying this framework to real data, the choice of the factor di-
mensionality K as well as parameters λ0 and λ1 for the SpSL prior is crucial. For the
choice of K, we make two recommendations: (i) use the estimated number of factors
from PXL-EM as a plug-in estimator; (ii) choose K to be sufficiently large initially and
discard the useless factors (whose corresponding {γjk}j=1,··· ,G are all zero) in the sam-
pling process, which is similar to the idea of choosing the number of factors adaptively
from Bhattacharya and Dunson (2011). The computational complexity of the Gibbs
sampler scales linearly with the factor dimensionality in sampler, K.

Parameters λ0 and λ1 determine the threshold for a loading matrix’s element to
follow either a spike or a slab prior. For the PXL-EM algorithm, Ročková and George
(2016) proposed a dynamic posterior exploration process to help find the MAP in a se-
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quence of prior settings and determine an appropriate value for these hyper-parameters.
Initially, they fix λ1 at a small value and gradually increase λ0 until the solution path is
stabilized. The solution given by the PXL-EM under the final value of λ0 approximates
the MAP estimate under a flat and point mass mixture prior on loading matrix ele-
ments and is proposed as the estimator for the parameters. The same procedure can be
applied to the full posterior inference based on the SpSL-orthonormal factor model. We
observed a similar stabilization of the posterior distributions of every nonzero loading
element when performing dynamic exploration for the SpSL-orthonormal factor model,
which is illustrated in the application of our method to the cerebrum microarray data
from AGEMAP (Atlas of Gene Expression in Mouse Aging Project) database of Zahn
et al. (2007). This dataset was also analyzed by Ročková and George (2016) using their
PXL-EM algorithm. For every individual mouse in this dataset (5 males and 5 females,
at four age periods), cerebrum microarray expression data from 8932 genes are recorded,
observations yi, i = 1, · · · , 40 for the factor model are taken to be the residuals of the ex-
pression values for each of the 8932 genes regressed on age and gender with an intercept.

We ran a Gibbs sampler initialized at the MAP detected by the PXL-EM algorithm
with λ1 = 0.001, α = 1/G, and λ0 gradually increasing in the sequence of 12, 15, 20,
30, and 40. As the detected factor dimensionality by the PXL-EM algorithm is 1, we
specify K to be 1 in our framework. Figure 8 demonstrates the evolution of the posterior
densities of β2873,1 and β1,1 as λ0 changes.

Figure 8: Posterior pdf of (a) β2873,1 and (b) β1,1 under SpSL-orthonormal factor model
with increasing λ0.

The posterior distribution of β1,1 centers at 0 and becomes more and more spiky as
λ0 increases. For the nonzero element β2873,1, its posterior distributions resemble the
normal distribution with a relative stable variance. The posterior mean of β2873,1 first
moves towards zero and then away and stabilizes. This change of direction is caused
by the change of its slab indicator γ2873,1 from 0 to 1 in its posterior samples, in
which case the posterior distribution of βj,k is only influenced by the slab, but not
the spike prior. Vertical dotted lines are the MAP estimates, which are close to the
posterior means. Having recognized that the stabilization of the MAP estimates and
the posterior distributions occurs almost simultaneously as λ0 increases, in practice
we can find the ideal pair of penalty parameters such that the posterior distribution is
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stabilized by looking for the stabilization of the MAP estimates instead of sampling from
the posterior with λ0 on multiple levels. More summary and comparative figures of the
posterior simulation are illustrated in Appendix E.2 (Ma and Liu, 2021) with λ0 = 30.

Figure 9: Posterior mean and credible interval of β1,1, · · · , β100,1 estimated from samples
of specified model and the MAP estimate from PXL-EM algorithm.

Figure 9 provides a comparison between the posterior inference results from the
SpSL-orthonormal factor model (λ0 = 30, λ1 = 0.001) and the modified Ghosh-Dunson
model (λ = 0.001, λ0 = 200, λ1 = 1), which shows that the two models give very similar
posterior credible intervals (computed using 1000 posterior samples after burn-in) for
the loading matrix, and both posterior means are also very close to the MAP estimate
from the PXL-EM algorithm. Additionally, the Gibbs sampler for the SpSL-orthonormal
factor model results in a much larger ESS compared to that for the Ghosh-Dunson model
(e.g., the ESS for β55,1 are 905.0 and 42.7 for the two methods, respectively). We omit
scientific interpretations of the inference results since our goals are only to verify that
our procedure gives similar results as those in Ročková and George (2016) based on
point estimates under the normal factor model, and to show how to conduct a proper
full Bayesian analysis efficiently for this dataset.

In summary, we can start our Bayesian inference for the SpSL-orthonormal fac-
tor model by first choosing a small λ1 and a sequence of increasing λ0, denoted as

{λ(t)
0 }t=1,···. We then run the PXL-EM algorithm sequentially with λ1 and λ

(t)
0 for

t = 1, · · · , with parameters initialized at the MAP estimate found in the previous
round. The process is terminated when the difference between the new MAP estimate
and the one from the previous round is below a chosen threshold. Afterward, we run our
Gibbs sampler under the SpSL-orthonormal factor model using the final pair of penalty
parameters with B,Σ,Θ and K initialized at the MAP estimate and Ω,Γ initialized
with random draws from their domains.
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8 Discussion

A primary intention of this work is to advocate the use the
√
n-orthonormal factor infer-

ential model, which not only enables us to conduct a more robust full Bayesian analysis,
but also results in a more efficient posterior sampling algorithm for high-dimensional
factor models. We arrive at this point by first numerically revealing the posterior incon-
sistency of a seemingly standard Bayesian analysis of the normal factor model in high
dimensions, and then demonstrating analytically that, under the normal factor model,
the posterior distribution is generally too sensitive to the prior specification and such a
sensitivity is tied to the weakly identifiable nature of the normal factor assumption. We
propose to enforce the

√
n-orthonormal factor assumption as a practical remedy, which

should be treated as an inferential model and is analogous to the multinomial model
used in the analysis of a contingency table conditional on its marginal sums.

Besides our proposed solution, Bernardo et al. (2003) and Ghosh and Dunson (2009)
provided another perspective, which is to reduce the dimensionality of the prior distri-
bution by enforcing certain relationships among the parameters so as to ensure that the
prescribed prior does not overwhelm the data. In this article, we provide a further mod-
ification of their model by imposing a SpSL prior on the normalized loading matrix’s
elements, which allows for a greater flexibility in handling sparsity in high dimensions.

Using the SpSL prior employed by Ročková and George (2016), we are able to
show theoretically that the adoption of a strict

√
n-orthonormal factor assumption can

ensure posterior consistency given the true feature allocation. But this type of rigorous
analysis for other models, including the Ghosh-Dunson model and its modification, still
evades our vigorous attempts. Interests for future exploration may be focused on efficient
posterior sampling algorithms as well as theoretical guarantees of posterior consistency
when using such priors. The

√
n-orthonormal factor model itself is also interesting,

since the posterior consistency under this model is empirically more robust against
prior specification of the loading matrix in the high dimensional setting. It would be
interesting to see a mathematical formulation of this empirical result in future works.

Supplementary Material

Supplementary Material for “On Posterior Consistency of Bayesian Factor Models in
High Dimensions” (DOI: 10.1214/21-BA1281SUPP; .pdf). The supplementary material
provides additional discussions regarding the modified Ghosh-Dunson model, a Gibbs
sampler for the SpSL factor model and the scaling group moves. It also includes the
proofs of theorems and additional summary figures of simulations and the real applica-
tion.
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