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Bayesian Nonstationary and Nonparametric
Covariance Estimation for Large Spatial Data

(with Discussion)∗

Brian Kidd† and Matthias Katzfuss‡

Abstract. In spatial statistics, it is often assumed that the spatial field of interest
is stationary and its covariance has a simple parametric form, but these assump-
tions are not appropriate in many applications. Given replicate observations of
a Gaussian spatial field, we propose nonstationary and nonparametric Bayesian
inference on the spatial dependence. Instead of estimating the quadratic (in the
number of spatial locations) entries of the covariance matrix, the idea is to infer a
near-linear number of nonzero entries in a sparse Cholesky factor of the precision
matrix. Our prior assumptions are motivated by recent results on the exponential
decay of the entries of this Cholesky factor for Matérn-type covariances under
a specific ordering scheme. Our methods are highly scalable and parallelizable.
We conduct numerical comparisons and apply our methodology to climate-model
output, enabling statistical emulation of an expensive physical model.

Keywords: Bayesian linear regression, climate-model emulation, modified
Cholesky factorization, ordered conditional independence, sparsity, Vecchia
approximation.

1 Introduction

Modeling spatial data typically involves specification of spatial dependence in the form of
a covariance function or matrix, under an implicit or explicit assumption of joint Gaus-
sianity. This may involve many challenges, including small numbers of replicates, high-
dimensional distributions, and complex, nonstationary dependence. Examples include
gap-filling for satellite data (e.g., Cressie and Johannesson, 2008); forecast-covariance
estimation in the ensemble Kalman filter (e.g., Furrer and Bengtsson, 2007; Katzfuss
et al., 2016); conducting observing-system simulation experiments at the National Aero-
nautics and Space Administration (e.g., Zeng et al., 2021); and statistical climate-model
emulation (e.g., Castruccio and Stein, 2013; Castruccio et al., 2014; Nychka et al., 2018;
Wiens et al., 2020) based on an ensemble of spatial fields generated by an expensive
computer model (Figure 1). Thus, there is a need for flexible and scalable methods for
inferring high-dimensional spatial covariances.

Countless approximations have been proposed to address computational challenges
in spatial statistics (see Heaton et al., 2019, for a recent review and comparison). In
recent years, there has been increasing interest in the idea of Vecchia (1988), which
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Figure 1: Four members of an ensemble of surface-temperature anomalies (in Kelvin)
produced by a climate model, on a grid of size n = 81 × 96 = 7,776 (see Section 4 for
more details).

effectively approximates the Cholesky factor of the precision (i.e., inverse covariance)
matrix as sparse. Under certain settings, the Vecchia approximation can provably pro-
vide ε-accurate approximations at near-linear computational complexity in the number
of spatial locations (Schäfer et al., 2021a). A generalization of the Vecchia approach
includes many popular spatial approximations as special cases (Katzfuss and Guinness,
2021). However, Vecchia approaches have mostly been used for approximating paramet-
ric and often isotropic covariance functions.

Isotropic, parametric covariance functions (e.g., Matérn) only depend on spatial
distance and on a small number of unknown parameters. Despite being highly restric-
tive, this is the standard assumption in spatial statistics, especially in the absence of
replicates. Approaches to relax these assumptions include parametric nonstationary co-
variances (e.g., as reviewed by Risser, 2016), stationary nonparametric covariances (e.g.,
Huang et al., 2011; Choi et al., 2013; Porcu et al., 2019), weighted sums of stationary co-
variances (e.g., Fuentes, 2002), and stationary covariances in transformed domains (e.g.,
Sampson and Guttorp, 1992; Damian et al., 2001; Qadir et al., 2019). In the context
of local kriging, covariance functions are typically estimated locally from a parametric
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(e.g., Anderes and Stein, 2011) or nonparametric (e.g., Hsing et al., 2016) perspective;
local estimation does not directly imply a valid joint model or positive-definite covari-
ance matrix, but local parametric fits can be used to inform joint distributions (Nychka
et al., 2018; Wiens et al., 2020).

Outside of spatial statistics, covariance estimation is often performed based on (mod-
ified) Cholesky decompositions of the precision matrix. This approach is attractive, be-
cause it automatically ensures positive-definiteness, because sparsity in the Cholesky
factor directly corresponds to ordered conditional independence and hence to directed
acyclic graphs, and because it allows covariance estimation to be reformulated as a se-
ries of regressions. Regularization can be achieved as in other regression settings, for
example by enforcing sparsity using a Lasso-like penalty or a thresholding procedure
(e.g., Huang et al., 2006; Levina et al., 2008) or via Bayesian prior distributions (e.g.,
Smith and Kohn, 2002). Motivated by a Gaussian Markov random field assumption for
spatial data, Zhu and Liu (2009) estimate the Cholesky factor based on an ordering of
the spatial locations intended to minimize the bandwidth, which amounts to coordinate
ordering on a regular grid, and they regularize the entries of the Cholesky factor using
a weighted Lasso penalty depending on spatial distance; this approach scales cubically
in the number of spatial locations.

Here, we propose scalable nonparametric and nonstationary Bayesian inference on
a high-dimensional spatial covariance matrix. The basic idea is to infer a near-linear
number of nonzero entries in a sparse Cholesky factor of the inverse covariance matrix.
Our model can be viewed as a nonparametric extension of the Vecchia approach, as
regularized inference on a sparse Cholesky factor of the precision matrix, or as a series
of Bayesian linear regression or spatial prediction problems. We specify prior distribu-
tions that are motivated by recent results (Schäfer et al., 2021b,a) on the exponential
decay of the entries of the inverse Cholesky factor for Matérn-type covariances under a
maximum-minimum-distance ordering of the spatial locations (Guinness, 2018; Schäfer
et al., 2021b). Thus, we obtain a highly flexible method that enforces neither stationary
nor parametric covariance structures, but instead regularizes the estimation and ac-
counts for uncertainty via Bayesian priors. The resulting posterior contracts around the
true covariance matrix as the number of replicates increases; an analysis of the climate
data in Figure 1 indicates that this allows our method to outperform more restrictive
approaches even for relatively small numbers of replicates. Our method scales well to
very large datasets, as the number of nonzero entries in the Cholesky factor and the
computational cost both scale near-linearly in the number of spatial locations, in ef-
fect inferring a near-linear number of parameters in the sparse inverse Cholesky factor
instead of a square number of parameters in the dense covariance matrix. Further speed-
ups are possible, as the main computational efforts are perfectly parallel. Our approach
is applicable to a single realization of the spatial field, but the inference will be most
useful and accurate if replicate observations are available.

The remainder of this document is organized as follows. Section 2 describes our
methodology. Section 3 provides numerical comparisons using simulated data. In Sec-
tion 4, our method is used for climate-model emulation. Section 5 concludes.
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2 Methodology

2.1 Sparse inverse Cholesky approximation for spatial data

Consider a N × n matrix of spatial data,

Y =

⎛
⎜⎜⎝

y
(1)
1 · · · y

(1)
n

...
. . .

...

y
(N)
1 · · · y

(N)
n

⎞
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⎛
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— y(1)′ —

...
— y(N)′ —

⎞
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⎛
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y1 · · · yn

| |

⎞
⎠ , (1)

where y
(�)
i is the �th observation at spatial location si. We assume that the locations

s1, . . . , sn, and hence the columns of Y, are ordered according to a maximin order-
ing (Guinness, 2018; Schäfer et al., 2021b), which sequentially selects each location in
the ordering to maximize the minimum distance from locations already selected (see
Figure 2).

We model the rows y(�) = (y
(�)
1 , . . . , y

(�)
n )′ of Y as independent n-variate Gaussians:

y(�)|Σ iid∼ Nn(0,Σ), � = 1, . . . , N. (2)

We assume that the data are centered, either using an ad-hoc pre-processing step (e.g.,
by subtracting location-wise means) or using a more elaborate procedure (see Sec-
tion 2.8).

Our goal is to make inference on the n × n spatial covariance matrix Σ based on
the N × n observations Y, in the case where n is large (at least in the thousands) and
N is relatively small. Typically, a parametric, and often isotropic, covariance function
is assumed such that Σ is a function of only a small number of parameters, which can
then be estimated relatively easily. Here, we avoid explicit assumptions of isotropy or
parametric structure.

We assume a form of ordered conditional independence,

p(y
(�)
i |y(�)

1:i−1,Σ) = p(y
(�)
i |y(�)

gm(i),Σ), i = 2, . . . , n, � = 1, . . . , N, (3)

where gm(i) ⊂ (1, . . . , i−1) is an index vector consisting of the indices of the min(m, i−1)
nearest neighbors to si among those ordered previously; that is, s(gm(i))j is the jth
nearest neighbor of si among s1, . . . , si−1 (see Figure 2). While (3) holds trivially for
m = n−1, for many covariance structures it even holds (at least approximately) form �
n, as has been demonstrated numerically (e.g., Vecchia, 1988; Stein et al., 2004; Datta
et al., 2016; Guinness, 2018; Katzfuss and Guinness, 2021; Katzfuss et al., 2020a,b)
and theoretically (Schäfer et al., 2021a) in the context of Vecchia approximations of
parametric covariance functions. Assume for now that m is known.

Consider the modified Cholesky decomposition of the precision matrix:

Σ−1 = UD−1U′, (4)

where D = diag(d1, . . . , dn) is a diagonal matrix with positive entries di > 0, and U is
an upper triangular matrix with unit diagonal (i.e., Uii = 1). (To be precise, (4) is the
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Figure 2: For n = 50 randomly sampled locations on the unit square, comparison of
coordinate (bottom to top) and maximin ordering. For i = 15, previously ordered
locations s1, . . . , sn−1 are highlighted in blue to show their roughly equidistant spread
over the domain for maximin. As an example, for m = 4, we would have conditioning
sets g4(15) = (13, 9, 14, 6) for coordinate and g4(15) = (7, 13, 10, 1) for maximin.

reverse-ordered Cholesky factorization of the reverse-ordered Σ−1, which simplifies our
notation later.) The ordered conditional independence assumed in (3) implies that U
is sparse, with at most m nonzero off-diagonal elements per column (e.g., Katzfuss and
Guinness, 2021, Proposition 3.1). We define ui = Ugm(i),i as the nonzero off-diagonal
entries in the ith column.

2.2 Covariance estimation via Bayesian regressions

From (4), we see that we can estimate the O(n2) unknown entries of Σ by inferring the
O(nm) variables d1, . . . , dn and u1, . . . ,un. To do so, our data model (2) can be written
as a series of n linear regression models (Huang et al., 2006):

p(Y|Σ) =

n∏
i=1

p(yi|y1:i−1,Σ) =

n∏
i=1

NN (yi|Xiui, diIN ), (5)

where the “response vector” yi = (y
(1)
i , . . . , y

(N)
i )′ is the ith column ofY in (1) consisting

of the N observations at the ith spatial location, and the “design matrix” Xi consists
of the observations at the m neighbor locations of si, stored in the columns of Y with

indices gm(i); specifically, Xi is an N ×m matrix with �th row −y
(�)
gm(i)

′.

The Bayesian regression models in (5) are completed by independent conjugate
normal-inverse-gamma (NIG) priors:

ui|di,θ ind.∼ N (0, diVi), di|θ ind.∼ IG(αi, βi), i = 1, . . . , n, (6)
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where θ is a vector of hyperparameters determining m, Vi, αi, and βi (see Section 2.3
below). Due to conjugacy, the posterior distributions (conditional on θ) are also NIG:

p(u1, . . . ,un, d1, . . . , dn|Y,θ) =
n∏

i=1

p(ui, di|Y,θ) =
n∏

i=1

p(ui|di,Y,θ) p(di|Y,θ)

=

n∏
i=1

N (ui|ûi, diGi) IG(di|α̃i, β̃i), (7)

where ûi = GiX
′
iyi, Gi = (X′

iXi + V−1
i )−1, α̃i = αi + N/2, and β̃i = βi + (y′

iyi −
û′
iG

−1
i ûi)/2 = βi + (y′

i(IN +XiViX
′
i)

−1yi)/2.

Using (7), we can easily obtain samples or posterior summaries of the entries of
U and D conditional on θ. However, in many applications, primary interest will be in
computing posterior summaries of Σ and other quantities. If n is not too large (n < 104,
say), we can simply compute Σ−1 (and hence Σ) from U and D. For large n, it is often
not possible to even hold the entire dense matrix Σ in memory, but we can quickly
compute useful summaries of it based on the sparse matrices U and D (e.g., Katzfuss
et al., 2020a). For example, a selected inversion algorithm can compute the variances
Σii and all entries Σij for which i ∈ gm(j) or j ∈ gm(i). We can also compute the
covariance matrix for any set of linear combinations Hy(�) as HΣH′ = A′A, where
A = D1/2U−1H′. In many applications, including climate-model emulation, it is of
interest to sample new spatial fields from the model, which we can do by sampling
z ∼ N (0, In), and then setting y� = (U′)−1D1/2z; if U and D are sampled from
their posterior distribution given Y, then we have obtained a sample from the posterior
predictive distribution p(y�|Y).

2.3 Parameterization of the prior distributions

We now discuss parameterizing the NIG priors for ui and di in (6) as a function of a small
number of hyperparameters, θ = (θ1, θ2, θ3)

′, inspired by the behavior of Matérn-type
covariance functions. The parameter θ1 is related to the marginal variance, while θ2 and
θ3 are related to the range and smoothness. In general, our prior parameterizations are
motivated by interpreting ui and di as the kriging weights and variance, respectively,

for the spatial prediction problem implied by (3), consisting of predicting y
(�)
i from

y
(�)
gm(i); due to the maximin ordering, the locations of the variables in y

(�)
gm(i) all have

roughly similar distance to si (see Figure 2), and this distance decreases systematically
with i.

First, consider di ∼ IG(αi, βi) in (6). For an exponential covariance with variance
θ1 and range 2/θ2, we have Σi,j = θ1 exp(−θ2‖si − sj‖/2); assuming m = 1, we obtain

di = var(y
(�)
i |y(�)

gm(i)) = θ1 − (θ1 exp(−θ2‖si−sg‖/2))2
θ1

= θ1(1− e−θ2‖si−sg‖), (8)

where g = g1(i), and the distance ‖si−sg‖ between location si and its nearest previously
ordered neighbor decreases roughly as (i)−1/p for a regular grid on a unit hypercube,
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Figure 3: Illustration of the true entries d1, . . . , dn of D as a function of location index i
for a Matérn covariance function on a regular n = 50×50 = 2,500 grid on the unit square.
The columns correspond to different smoothness parameters, while the rows correspond
to different range parameters. The dashed lines are approximate 95% pointwise intervals
implied by our inverse-gamma prior, where θ2 was chosen for illustration using a least-
squares fitting procedure (nls in R) assuming known θ1 = 1.

D = [0, 1]p. (Throughout, i is an index and not the imaginary number.) This motivates

a prior for di that shrinks toward di ≈ θ1(1− e−θ2(i)
−1/p

). While (8) only holds exactly

for an exponential covariance with m = 1, Figure 3 illustrates that this functional form

approximately holds for Matérn covariance functions in two dimensions with m = n−1

as well. Thus, we set the prior mean as E(di|θ) = βi/(αi−1) = θ1fθ2(i), where fθ2(i) =

1− e−θ2(i)
−1/p

. In Figure 3, the empirically observed variance of the di elements around

the fit line decreases with i as well, and so we set the prior standard deviation of di to

be half of the mean. Solving for αi and βi, we obtain αi = 6 and βi = 5θ1fθ2(i), because

V ar(di|θ) = β2
i /((αi − 1)2(αi − 2)).

Recent results based on elliptic boundary-value problems (Schäfer et al., 2021b,

Section 6.2) imply that the Cholesky entry (ui)j , corresponding to the jth nearest

neighbor, decays exponentially as a function of j, for Matérn covariance functions whose

spectral densities are the reciprocal of a polynomial (ignoring edge effects). Thus, we

assume vij = exp(−θ3j)/(θ1fθ2(i)) for Vi = diag(vi1, . . . , vim) in ui|di,θ ∼ N (0, diVi)

in (6). Note that we divide by E(di|θ) in vij , because the prior variance in (ui)j |θ ∼
N (0, divij) is multiplied by di. Figure 4 demonstrates this exponential decay as the

neighbor number increases.
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Figure 4: Illustration of the entries (ui)j of U as a function of neighbor number j for
the same setting as in Figure 3. The dark lines correspond to approximate pointwise
95% prior intervals (±2

√
exp(−θ3i)).

Finally, consider the choice of conditioning-set size m. Simply setting m to a fixed,

reasonable value (e.g., m ≈ 10, depending on computational constraints) works well in

many settings, but the results can be highly inaccurate if m is chosen too small, and the

computational cost is unnecessarily high if m is chosen too large. Hence, we prefer to

allow the data to choose m by tying m to the prior decay of the elements of U; for all of

our numerical experiments, we setm as the largest j such that exp(−θ3j) > 0.001, where

j denotes the neighbor number. This coincides with the amount of variation expected

to be learnable from the data. Thus, entries of U with sufficiently small prior variance

as implied by a specific θ3 are set to zero, which ensures computational feasibility of

our method.

2.4 Inference on the hyperparameters θ

The hyperparameters θ = (θ1, θ2, θ3)
′ determine m, Vi, αi, and βi as described in

Section 2.3. We now discuss how θ can be inferred based on the data Y. All elements of

θ are assumed to be positive due to the decay previously discussed, and so we perform

all inference on the logarithmic scale.

The crucial ingredient for inference on θ is the marginal or integrated likelihood,

which can be obtained by combining (5) and (6), moving the product over locations

outside of the integral over the entries of U and D, and simplifying using standard
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results for conjugate Gaussian models (e.g. Murphy, 2007):

p(Y|θ) =
n∏

i=1

∫
di

∫
ui

NN (yi|Xiui, diIN )N (0, diVi)IG(αi, βi)duiddi

∝
n∏

i=1

( |Gi|1/2
|Vi|1/2

βαi

i

β̃α̃i
i

Γ(α̃i)

Γ(αi)

)
, (9)

where Γ denotes the gamma function, the prior parameters αi, βi,Vi are given in (6),

and the posterior parameters α̃i, β̃i,Gi are given in (7).

Based on this integrated likelihood, both empirical and fully Bayesian inference are
straightforward. Empirical Bayesian inference is based on a point estimate of θ obtained
by numerically maximizing the log integrated likelihood. Fully Bayesian inference re-
quires the specification of a hyperprior for θ, which we simply assume to be flat (on the
log scale). As a result, the posterior distribution p(θ|Y) ∝ p(Y|θ) is proportional to
the integrated likelihood in (9). While this distribution cannot be obtained analytically,
we can sample from the posterior using the Metropolis-Hastings (MH) algorithm. To
avoid slow mixing due to large negative correlation between θ1 and θ2, we employ an
adaptive MH algorithm that jointly proposes θ and learns its covariance matrix on-line;
specifically, we use the implementation in R by Scheidegger (2012).

2.5 Computational complexity

The cost for inference, including computing the posteriors in (7), sampling y�, or eval-
uating the integrated likelihood in (9), is dominated by computing the m ×m matrix
Gi, which requires O(m2N) time, and decomposing Gi, which requires O(m3) time,
for each i = 1, . . . , n. Hence, the time complexity is O(n(m2N +m3)) for each unique
value of θ, where m is often very small (e.g., m ≈ 10 in most of our numerical exper-
iments). In addition, the most expensive computations can be carried out in parallel
over i = 1, . . . , n.

For very small numbers of replicates, with N < m, we can use alternative expressions
(see below (7)) relying on computing and decomposing the N ×N matrix XiViX

′
i+ IN

(instead of Gi), which requires O(mN2 +N3) = O(mN2) time.

The maximin ordering and large nearest-neighbor conditioning sets (with mmax =
50, say) can be computed in quasilinear time in n (Schäfer et al., 2021b,a). For any
m ≤ mmax implied by a specific θ, we can then simply select gm(i) as the first m entries
of gmmax(i).

2.6 Asymptotics

Assuming temporarily that (2) holds for some true n × n positive-definite covariance
matrix Σ0, the data model with the true Σ0 can be written in the regression form (5)
with m = n − 1. Holding n fixed and assuming N → ∞, there are a fixed number
(depending only on n, not on N) of variables in the regression models, and our prior
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distributions on the ui, di, and θ place nonzero mass on the true model. Hence, using
well-known asymptotic results based on the Bernstein–von Mises theorem (e.g., Van der
Vaart, 2000), the posterior distributions will be asymptotically normal and our posterior
ofΣ will contract around the true covarianceΣ0 as the number of independent replicates
N approaches infinity. While we are most interested in the case N � n, our climate-data
analysis in Section 4 will demonstrate that the posterior-contraction properties allow
our method to outperform more restrictive approaches even for relatively small N .

2.7 Correlation-based ordering

For our methods, as discussed in Section 2.1, we recommend a maximin ordering of
the variables y1, . . . , yn, and then selecting the conditioning sets gm(i) based on the m
nearest previously ordered variables, with m determined by θ as described at the end
of Section 2.3. So far, these tasks were assumed to be based on the Euclidean distance
of the corresponding locations s1, . . . , sn (see Figure 2), which implies that our priors
shrink toward isotropy (i.e., distributions for which dependence is only a function of
distance). This shrinkage is not appropriate in some real-data applications. However,
it is relatively straightforward to adapt our methods to processes (e.g., anisotropic or
nonstationary) for which Euclidean distance is not meaningful. We merely require some
prior guess of the correlation structure, based on expert knowledge, historical data, or (a
regularized version of) the sample correlation of the data Y; a simple choice used here
is the element-wise product of the sample correlation and an (isotropic) exponential
correlation with a large range parameter (e.g., half the maximum distance between any
pair of locations in the dataset). Then, our procedures can be carried out as before,
except that the ordering and nearest-neighbor conditioning is based on a correlation
distance, defined as (1 − |correlation|)1/2. This implicitly scales the space, so that the
process is approximately isotropic in the transformed space. This approach can increase
accuracy in the context of Vecchia approximations of parametric covariances (Kang
and Katzfuss, in prep.); we propose it here for our nonparametric procedures. Schäfer
et al. (2021a, Algorithm 7) allows us to compute the correlation-based ordering and
conditioning sets in quasilinear time in n.

2.8 Noise or spatial trend

Our methodology described so far is most appropriate if the data are observed with-
out any noise or nugget, meaning that realizations of the underlying spatial field are
continuous over space; in this setting, approximations based on sparse inverse Cholesky
factors of many popular covariance functions can be highly accurate (e.g., Katzfuss and
Guinness, 2021; Schäfer et al., 2021a).

Now consider noisy observations w(�)|y(�) iid∼ Nn(y
(�), τ2In), � = 1, . . . , N , with y(�)

as in (2). One option is to simply apply our methodology directly to the data w(�) as
before; this will likely work well if the noise variance τ2 is small, but the conditional-
independence assumption in (3) is less appropriate if τ2 is large (e.g., Katzfuss and
Guinness, 2021), meaning that a much larger m might be necessary. A larger m results
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in higher computational cost and potentially less accuracy due to the higher number of
Cholesky entries that must be estimated.

Hence, for large noise levels, we instead propose a Gibbs sampler that iterates be-
tween sampling y(�) conditional on w(�) and Σ−1 = UD−1U′, and sampling θ and
the entries of U and D conditional on the y(�) as in Sections 2.2 and 2.4. The former
task can be accomplished without increasing the computational complexity for each
Gibbs iteration, by exploiting the sparsity of the Cholesky factor UD−1/2 of the prior
precision, and approximating the Cholesky factor of the posterior precision using an
incomplete Cholesky factorization to avoid fill-in as described in Schäfer et al. (2021a,
Section 4.1). (If τ2 is unknown, it is straightforward to sample from its full-conditional
distribution as well.)

A similar Gibbs-sampling strategy can be employed to make inference on a spatial
trend. For example, if the observations w(�) are given by y(�) plus a linear spatial trend
with a Gaussian prior on the trend coefficients, the coefficients can be sampled in closed
form conditional on Σ, and all other unknown quantities can be sampled given the trend
coefficients as before based on y(�) obtained by subtracting the trend from w(�).

2.9 Shrinkage toward a specific covariance

Our methodology can be modified to center the prior distributions at and thus shrink
toward a specific covariance function C. For i = 1, . . . , n, define

u
(m)
i = −C(Sgm(i),Sgm(i))C(Sgm(i), si),

d
(m)
i = C(si, si) + u

(m)
i

′C(Sgm(i), si),

where u
(m)
1 = 0, and Sgm(i) is the (ordered) set of locations corresponding to ygm(i). If we

assume Σij = C(si, sj), then we can write Σ as in (4) with ui = u
(i−1)
i and di = d

(i−1)
i

(e.g., Katzfuss et al., 2020a, App. B). The Vecchia approximation essentially exploits

that (u
(i−1)
i )j decays rapidly as a function of the neighbor number j for many covariance

functions C; this is illustrated for various members of the Matérn family in Figure 4,
and for generalized Cauchy covariances in Figure 5. Thus, we can set the prior mean of
the ui and di in (6) to the values implied by a Vecchia approximation of C with m � n.

Specifically, we first need to determine a sparsity level m; for example, we can choose
m arbitrarily, or we can set it as the maximum integer j such that the average of

(u
(j)
2 )2j , . . . , (u

(j)
n )2j is above some small threshold. Given m, we then assume a NIG

prior as in (6), except with E(di) = d
(m)
i and with a nonzero mean for the normal

distribution, ui|di ∼ N (μi, diVi), where μi = u
(m)
i . When determining αi and βi, we

can again assume the prior standard deviation of di to be some multiple (e.g., half) of
its mean; similarly, we can assume vij = (aμij)

2/E(di) (e.g., with a = 1/2).

Inference can then proceed as in Section 2.2, except that due to the nonzero prior
mean of ui, we now have ûi = Gi(X

′
iyi + V−1

i μi) and β̃i = βi + (yi − Xiμi)
′(IN +

XiViX
′
i)

−1(yi −Xiμi)/2.



302 Bayesian Nonstationary and Nonparametric Covariance Estimation

Figure 5: Illustration of (u
(i−1)
i )j as a function of neighbor number j as in Figure 4,

except for a generalized Cauchy covariance, C(si, sj) = (1+ (‖si − sj‖/λ)η)(−ν/η), with
range parameter λ = 0.25 (as in Figure 8), and different values of the smoothness
ν ∈ {0.5, 1.5} and long-range dependence η ∈ {1.0, 1.5}.

In most cases, the goal will be to shrink toward a family of covariance functions,
rather than a specific member of the family, and so we really have Cθ that depends on
an unknown parameter vector θ. In that case, we can make inference on θ using the
integrated likelihood as described in Section 2.4.

In practice, it may be unclear which covariance family to choose, and in many appli-
cations no standard family may be appropriate. Our nonparametric approach described
in earlier sections avoids such arbitrary choices; it is also computationally cheaper than
the parametric shrinkage here, which has time complexity O(nm4) due to the search
over m.

3 Simulation study

We compared the following methods:

SCOV: Basic sample covariance

OURS: Our method described in Sections 2.1–2.4

MLE: Covariance estimate based on the maximum likelihood estimates of ui and di
for the regressions in (5) (i.e., no prior shrinkage), with m = min(mOURS, N − 1),
with mOURS implied by OURS θ estimate

LASSO: Least absolute shrinkage and selection operator for each regression in (5),
with all previous points included as possible predictors (i.e., m = n− 1)
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Figure 6: Based on N = 20 draws from a Gaussian process with Matérn covariance at
n = 900 locations (see Section 3.1): (a) Sample estimates (SCOV) and posterior 95%
credible intervals using our fully Bayesian method (OURS) for 20 entries of the covari-
ance matrix. (b) 50%, 80%, and 95% credible intervals using OURS for one randomly
sampled entry of the covariance matrix corresponding to each unique distance.

SLASSO: Spatial LASSO with penalty scaled by the spatial distance to favor inclusion

of nearer points as predictors, intended to be similar to Zhu and Liu (2009)

autoFRK: Resolution-adaptive automatic fixed rank kriging (Tzeng and Huang, 2018;

Tzeng et al., 2021) with approximately
√
n basis functions, resulting in a similar

number of parameters as OURS

The spatial domain for all comparisons was the unit square.

3.1 Uncertainty quantification

First, we fit a fully Bayesian version of OURS to simulated data, to demonstrate the

uncertainty quantification in the covariance estimation. Specifically, we considered N =

20 realizations of a Gaussian process with Matérn covariance function with variance

3, smoothness 1, and range parameter 0.25, at n = 900 randomly sampled locations.

We obtained 50,000 posterior samples of θ. The trace plots showed good mixing and

convergence, and the individual effective sample sizes for the three parameters were all

larger than 1,000. After conservatively discarding the first half of the samples for burn-

in and thinning by a factor of 50, a covariance matrix was calculated from a sample

from (7) for each θ draw.

Figure 6a shows the resulting 95% posterior credible intervals (CIs) along with the

SCOV estimates for 20 randomly sampled matrix entries Σij as a function of ‖si − sj‖,
the distance between the corresponding spatial locations. Most of the OURS CIs con-

tained the true value and tracked the decay of the covariance as a function of distance.

This is also the general trend for CIs at all distances shown in Figure 6b.
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Figure 7: For the comparison in Section 3.2, KL divergence (on a log scale) for differ-
ent covariance estimation methods for varying numbers N of samples from a Matérn
covariance at n = 900 locations.

3.2 Comparison to LASSO for small n

We compared estimation accuracy using the Kullback-Leibler (KL) divergence between

the estimated distribution Nn(0, Σ̂) and the true distribution Nn(0,Σ):

KL(Σ̂‖Σ) = tr(Σ̂Σ−1)− log |Σ̂Σ−1| − n,

where tr(·) denotes the trace and | · | denotes the determinant. This exclusive KL di-

vergence does not require inverting the estimate Σ̂ and thus avoids issues with SCOV

for N < n. For ease of computation and comparison to the non-Bayesian methods, we

computed the KL divergence for OURS based on a point estimate Σ̂ = (Û−1)′D̂Û−1,

where Û and D̂ were the maximum a posteriori (MAP) estimates from (7), using the

value of θ that maximized the integrated likelihood (9).

Figure 7 shows the results, using the same set-up with n = 900 as in Section 3.1,

for various numbers of replicates N . autoFRK performed nearly as well as our method

for small N , but it did not meaningfully improve with larger N . MLE was similarly

accurate as OURS for large N , as expected, but it performed worse for small N due to

the lack of prior shrinkage. Similarly, the inclusion of spatial information in SLASSO

resulted in higher accuracy than LASSO for small N . LASSO and SLASSO were not

competitive with OURS and MLE, despite increased flexibility in selecting predictors

(i.e., conditioning sets) in the regressions (5), and despite much higher computational

cost due to calculations involving all O(n) possible predictors.
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Figure 8: Comparison of KL divergence (on a log scale) for four different settings with
n = 2,500 described in Section 3.3. MM: maximin ordering. COR: Correlation-based
ordering (only used in the nonstationary setting).

3.3 Comparison for larger n

Figure 8 shows further comparisons with n = 2,500 spatial locations using the KL diver-
gence (again based on the MAP estimate for OURS) in four different settings (counter-
clockwise from top right), all with a marginal variance of 5: Matérn with smoothness 1
and range parameter 0.5 on a regular 50× 50 spatial grid (corresponding to the middle
panel in the bottom row of Figures 3 and 4); a Cauchy covariance with range 0.25 and
memory parameters 1 and 0.5 on a regular 50×50 grid; Matérn covariance with varying
anisotropy (Paciorek and Schervish, 2006), for which the range parameter is constant
at 0.05 in the x direction but varies as 0.05 + 0.45 sy (as a function of the y-coordinate
sy) in the y direction, on a regular 50× 50 grid; Matérn with smoothness 1 and range
0.25 at n = 2,500 randomly spaced locations sampled uniformly.

For all scenarios, MLE was roughly as accurate as OURS for very large N , but per-
formed poorly for small N , indicating that the added shrinkage from our prior improved
the accuracy. OURS strongly outperformed SCOV in all settings. For the nonstationary
covariance, we also considered the correlation-based ordering described in Section 2.7.
While we used the true correlation for the comparison here, the element-wise product of
the sample covariance and an exponential correlation proposed in Section 2.7 resulted in
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comparable accuracy (not shown). As expected, correlation-based ordering performed
better than maximin-ordering in this nonstationary setting. We also conducted some
experiments (not shown) using a natural ordering by one of the spatial coordinates,
which performed comparably to maximin ordering for isotropic covariances on a regular
grid, but was much less accurate for randomly sampled locations. We did not consider
(S)LASSO or autoFRK here, because they were not competitive in the similar setting
of Section 3.2.

Overall, our method performed well across all simulations, even though our prior
distributions were motivated by isotropic Matérn-like covariances. In addition, the com-
putational burden for OURS was relatively low, with the estimated m often around ten
and always below 30. While we only considered moderate n here in order to be able
to carry out many comparisons using the KL divergence, it is also possible to run our
method on much larger datasets. For example, using a C++ implementation, evaluat-
ing the integrated likelihood (9) only took about 6 seconds on a 4-core laptop (Intel
i7-7560U) for n = 250,000, m = 10, N = 50.

4 Climate-model emulation

We analyzed climate-model output from the Community Earth System Model (CESM)
Large Ensemble Project (Kay et al., 2015). Specifically, we considered daily mean surface
temperature (in Kelvin) on July 1 in 98 consecutive years starting in the year 402, on
a roughly 1◦ longitude-latitude grid of size n = 81× 96 = 7,776 containing much of the
Americas (see Figure 1). The chosen region features ocean, land, islands, and mountain
ranges, leading to a complicated, nonstationary dependence structure. The data Y
were defined as the temperature anomalies obtained by standardizing the climate-model
output at each grid point to unit mean and variance. We found no evidence of temporal
correlation in the data, and so the assumption of independent replicates in (2) was at
least approximately satisfied.

First, we compared several covariance estimates: an exponential covariance with a
range parameter estimated from the data (EXP); a tapered sample covariance given
by the element-wise product of the sample covariance and an exponential correlation
with a range of 6,000 km, with a small added nugget with variance 10−5 for numeri-
cal stability (SCOVT); the MAP estimate (as in Section 3.2) using our method with
correlation ordering (Section 2.7) based on the SCOVT matrix (OURS); autoFRK, de-
scribed at the beginning of Section 3; and a nonstationary, locally parametric method
specifically developed for gridded climate data (Wiens et al., 2020), which locally fits
anisotropic Matérn covariances in small windows around every grid point and then syn-
thesizes these local fits into a global model (LOCAL). Of the 98 replicates (i.e., years),
we randomly selected and withheld 18 as test data, and fit the models on subsets of
various sizes N between 6 and 80. As the true distribution was unknown, it was not
possible to compute the KL divergence. Instead, we used the strictly proper log score
(e.g. Gneiting and Katzfuss, 2014) given by the average negative log posterior predic-
tive density of the test data based on (2), with Σ replaced by each of the methods’
estimates.
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Figure 9: Comparison using the log score (lower is better) of methods fitted on climate-
model temperature anomalies with varying numbers of replicates N (see Section 4).

Figure 9 shows the resulting scores, averaged over three random training/test splits.
OURS was more accurate than SCOVT for all values of N , and its posterior-contraction
properties (Section 2.6) enabled it to be more accurate than EXP for all N ≥ 10. We
also tried OURS with Euclidean (instead of correlation-based) ordering, which resulted
in similar scores for large N but required almost twice the N = 17 replicates to sur-
pass EXP (not shown). To our surprise, autoFRK performed worse than EXP and was
thus not included in Figure 9. LOCAL performed best for small N < 25, but did not
meaningfully improve and was thus less accurate than OURS for larger N ; this indi-
cates that OURS was able to capture some non-Matérn behavior in the climate data
that LOCAL was not, due to its local Matérn assumption. Computing each covariance-
matrix estimate on a 4-core laptop (Intel i7-7560U) without parallelization took over
17 hours using LOCAL but at most a few minutes using OURS, although both of these
computing times could be reduced via parallelization.

We created a stochastic simulator emulating the climate model, by fitting a fully
Bayesian version of OURS to the full dataset with N = 98 and sampling from the
posterior predictive distribution p(y�|Y) as described at the end of Section 2.2. Four
such samples are shown in Figure 10; they look qualitatively similar to the actual sam-
ples from the climate model in Figure 1, including reproducing features corresponding
to land/ocean effects despite using no explicit information on land boundaries. These
results were based on 50,000 Metropolis-Hastings (MH) samples of θ (after a burn-in of
50,000) with trace plots showing good mixing and effective sample sizes all larger than
1,000; the samples were then thinned by a factor of 50. On the laptop, it took about 200
minutes to train the emulator (i.e., for 100,000 MH iterations), and it took 2.5 seconds
to obtain a sample y� for a given value of θ.
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Figure 10: Four temperature-anomaly fields (in Kelvin) sampled from the posterior pre-
dictive distribution using our fully Bayesian method, computed as described in Section 4
based on climate-model output as in Figure 1.

5 Conclusions

We have developed a scalable, flexible Bayesian model for spatial covariance estimation
and emulation. We regularize our method by taking advantage of a form of ordered con-
ditional independence often assumed for spatial data. This motivates the assumption of
sparsity in the Cholesky of the precision matrix, which greatly improves scalability and
reduces the number of unknown parameters from quadratic to near-linear in the number
of spatial locations. We describe three hyperparameters related to the marginal vari-
ance and the decay of Cholesky entries; these hyperparameters can be quickly optimized
or sampled, resulting in an automatic data-based selection of the sparsity structure.
Hence, our method requires no manual tuning or cross-validation. While our approach
was motivated by the behavior of isotropic covariances on regular grids, our numerical
comparisons demonstrated its generality with more complex covariances and irregularly
spaced locations. We also applied the method to climate-model emulation, where it
was able to capture the nonstationary and nonparametric behavior better than exist-
ing methods. R code implementing our method can be found at https://github.com/
katzfuss-group/NPVecchia.

https://github.com/katzfuss-group/NPVecchia
https://github.com/katzfuss-group/NPVecchia
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There are several interesting extensions for our spatial covariance estimation pro-
cedure. Our method can be extended to handle missing values by imputation using a
Gibbs sampler similar to the samplers described in Section 2.8. However, if the number
of observations at a particular location is very small or even zero, the posterior distribu-
tion at that location will be very vague and thus generally not particularly useful, unless
some additional assumptions about the covariance between the unobserved and observed
locations are made; for example, our prior can be modified to shrink toward a specific
parametric covariance (see Section 2.9). Another potential extension is to estimate the
covariance as a function of external variables by including them as additional covariates
in the regressions in (5); for instance, for climate-model emulation, the covariance could
depend on season, year, elevation, or land versus ocean. Finally, our approach can be
extended to data assimilation, by using it to infer the forecast covariance matrices in
an ensemble Kalman filter (Boyles and Katzfuss, 2021).
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Invited Discussion∗

Bo Li† and Lyndsay Shand‡,§

1 Overview

We admire the authors for developing this computationally efficient Bayesian method to
estimate the nonstationary correlation structure in large spatial data, without relying
on a restrictive parametric model. The method is presented as a nonparametric exten-
sion of the Vecchia approach (Vecchia, 1988) and is based on the ordered conditional
independence assumption that holds or approximately holds for many data sets arising
from a Gaussian random process. The conditional independence leads to a sparse pre-
cision matrix and consequently a sparse Cholesky factorization. It has been shown that
an n-variate Gaussian model can be expressed as a series of linear regression models
with the nonzero elements in the Cholesky factor matrix as the regression coefficients
(Huang et al., 2006). This enables us to estimate the Cholesky factorization and thus the
precision matrix through Bayesian regression. The authors carefully studied the proper-
ties of unknown parameters and selected independent conjugate normal-inverse-gamma
(NIG) priors that lead to closed-form posteriors and thus further improve computational
efficiency.

There have been various approaches to nonstationary or nonparametric covariance
modeling for spatial or spatiotemporal data. Kidd and Katzfuss (2022) (referred to
KK22 thereafter) has provided an excellent review of previous literature. In addition to
all methods reviewed for nonstationary covariance modeling in the Introduction, another
semiparametric approach for nonstationary covariance modeling is through dimension
expansion (Bornn et al., 2012; Shand and Li, 2017). Bornn et al. (2012) also requires
replicates to estimate the spatial model.

KK22 thoroughly discussed many aspects of their method, including the theory,
computation complexity, solutions for the presence of noise or trend, data ordering,
conditioning-set size, and how to adapt priors to allow posterior converging to a covari-
ance structure other than Matérn. We find several aspects very interesting and worth
additional discussions. In the following, we adopt all notations from KK22.
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2 Further considerations

2.1 Requirement for replicates

The KK22 method was developed for spatial data with independent replicates and
requires an ordering of spatial locations. KK22 used a maximin ordering that makes
locations in gm(i) all have a roughly similar distance to the location si and this distance
decreases systematically as i increases. Observing how the mean and variance of the
di in D decrease exponentially with i given an underlying isotropic Matérn covariance
structure (Sháfer et al., 2021a,b), the authors developed an inverse gamma prior for di
with an appropriate form for αi and βi. Via the same scheme, they chose the normal
prior for ui with a tailored form for the correlation matrix. These carefully chosen
conjugate priors ensure fast posterior sampling of unknown parameters, making the
proposed method computationally efficient. The posteriors hold the nice property that
the estimated covariance matrix contracts around the true covariance matrix as the
number of replicates N increases. The numerical results showed that the Kullback-
Leibler (KL) divergence of the KK22 method is lower than other methods in comparison,
even for a very small N relative to the number of spatial locations n. In particular, the
method works more efficiently than the maximum likelihood (ML) method for small N
due to the inclusion of prior information, and then performs similarly to ML without a
surprise when N increases. This conclusion holds for large n as well.

Given that this method demonstrates reasonable performance when N is as low as
3, do we really need replicates, i.e., N > 1, for the proposed method to be valid? This
seems a rather constraining requirement. It is very common to observe spatial data
without independent replicates. For example, suppose we are interested in an annual
data of last year that can be either temperature over North America, or the county
level Midwest crop yield or zip code level human immunodeficiency virus (HIV) new
diagnoses in Philadelphia; all these spatial data likely have only one observation at
each location. KK22 proposed their method based on Vecchia (1988), who developed
a procedure with a spatial process not necessarily with replicates. We conjecture the
requirement for replicates is mainly to attain the nice posterior-contraction property
and reduce uncertainty in the parameter estimation. Is it possible to find a way to relax
the replicates requirement (i.e., N = 1) but still approximately obtain the posterior-
contraction? The authors investigated how the parameters decay with i, but is there any
other spatial structure not in the order of i but on the distance between different i’s that
can be exploited to reduce the dependence on replicates? More specifically, can di and ui

be also modeled as spatially dependent processes in addition to their dependence on i?
Of course, modeling additional spatially dependent processes can increase computation,
so some special techniques such as those modeling dependence only on the nearest
neighbors (Datta et al., 2016) may be considered. The maximin ordering makes the
spatial dependence between i’s unclear, but it may be worth a deliberation.

2.2 Choice of m

The choice of m is a trade-off between estimation accuracy and computation. KK22
suggested to set m as the largest j such that exp(−θ3j) > 0.001, where j denotes the
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neighbor number. We wonder whether it is better to set m as adaptive for different i.
With the maximin ordering, the distance between the conditioning-set to si decreases as

i increases, but the size of the pool, y
(l)
1:i−1, is always increasing. So it seems reasonable

to have m as an increasing function of i to better approximate the full conditional
distribution with the conditional distribution given a few neighbors.

2.3 Spatiotemporal data

Spatial data often have temporally correlated “replicates”, i.e., spatiotemporal data.
The temperatures of North America, the Midwest crop yield, and the disease data in
our early examples can all become spatiotemporal if we now collect the annual data for
the last 10 years. For spatiotemporal data, the temporal correlation and its interaction
with spatial correlation need to be considered. This brings an additional challenge as
the observations in the temporal dimension rapidly inflate the size of the covariance
matrix Σ unless some simplified assumption such as space-time separability is assumed.
If the KK22 method can be extended to this wealth of data, it would certainly expand
its applicability. There is more impetus to relax the replication requirement in this case
though, as independent replicates for spatiotemporal data are rarely available.

Similar to KK22, the nonstationary covariance modeling method in Bornn et al.
(2012) also requires independent replicates of spatial data. Shand and Li (2017) ex-
tends Bornn et al.’s idea to model nonstationary covariance in both space and time for
spatiotemporal data, and discusses the scalability of the method by taking random sam-
ples for latent dimension estimation. In Shand and Li (2017), observations in space and
time are treated somewhat as independent replicates when estimating temporal and
spatial correlation, respectively. Those intermediate results are then taken as inputs
when dependency in all different forms is considered holistically. This strategy helps
us estimate both space-time separable and nonseparable covariance structures while
eliminating the dependence on replicates.

In the context of KK22, the ordering of space-time observations can be a chal-
lenge because both spatial and temporal distances are involved and the maximin or-
dering cannot be directly applicable. However, KK22 also mentioned other ordering
strategies such as the ordering based on correlation distance which would more nat-
urally extend to space-time data. Once the space-time observations are ordered, the
KK22 method can readily apply to such data. Regarding the inflated size of Σ, Sec-
tion 2.2 in KK22 already discussed how to deal with a very large covariance ma-
trix. If we can assume space-time separability, the precision matrix will be a Kro-
necker product of the precision matrices in space and time. In that case, we won-
der if the ordering can be calculated for each dimension separately, and then ui in
space and time can be estimated separately as well. On the other hand, if we as-
sume a simple temporal correlation structure such as an autoregressive model of or-
der 1 (AR(1)), we wonder whether the estimates of ui in the spatial dimension can
approximately attain the posterior-contraction property, because the observations in
time may act as dependent replicates for spatial correlation estimation. All these dis-
cussions for spatiotemporal data can be generalized to multivariate spatial data mod-
eling.
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3 Miscellaneous discussion

The smoothness of random fields is difficult to capture for nonparametric modeling.
Im et al. (2007) proposes a semiparametric method that models the spectral density
as a linear combination of B-splines up to a certain frequency threshold ω0 and then
an algebraic power function with a smoothness parameter similar to Matérn model
for high frequencies beyond ω0. However, many other nonparametric models, including
Choi et al. (2013) that constructs the spatial or space-time covariance function using
completely monotone functions do not directly consider the smoothness of covariance
models. It is inspiring that KK22 has a smoothness parameter in their priors. We are
curious how θ3 explicitly relates to the smoothness of random fields.

There are different measures to evaluate covariance structure estimation. For ex-
ample, mean squared prediction error is common for comparing different covariance
estimates as prediction is a typical task for spatial data analysis. We think it would be
informative if the authors could briefly comment on whether KL divergence relates to
the prediction performance measure in general.

Spatial random effects and multi-resolution models (e.g. Nychka et al., 2014) are
very popular for capturing either stationary or nonstationary spatial structures of mas-
sive datasets. KK22 also included the resolution adaptive fixed rank kriging approach
by Tzeng and Huang (2018) (autoFRK), as one of the competitive methods. The au-
thor Katzfuss published a very high-impact paper on multi-resolution approximation
(Katzfuss, 2017). We would like to learn how the authors view the connection, the
discrepancies and the comparison between the KK22 and multi-resolution models.

4 Summary

We congratulate the authors on developing a very useful method for large spatial data.
This method would find many applications for modeling the complex dependency struc-
ture of global climate data, e.g., the teleconnection of climate variables (Choi et al.,
2015). Studies for spatial extremes often approximate the block maxima as independent
replicates (e.g. Cao and Li, 2018), so the KK22 method can be naturally used to model
dependence in spatial extremes by combining with the copula technique that takes care
of the marginal extreme value distribution, among many other exciting applications.
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Invited Discussion

Sudipto Banerjee∗ and Michele Peruzzi†

We congratulate the authors for an interesting article on a very relevant topic in spatial
statistics. Nonstationary spatial modeling and inference holds significant value in spatial
statistics and has attracted significant attention over the years to produce a substantial
body of original contributions; a fairly comprehensive account is provided by Sampson
(2010). Nonstationarity in spatial models can refer to nonstationarity in the mean or in
the spatial covariance. Nonstationarity in the mean, or trends, is customarily addressed
by introducing the effects of known explanatory processes in the mean either using
spatially-varying regression models (see, e.g., Gelfand et al., 2003).

Nonstationarity in spatial covariance deals with characterizing and constructing spa-
tial processes that will describe nonstationarity. The rich spectral theory available for
stationary processes is far less accessible for nonstationary processes. Valid nonstation-
ary processes, therefore, have largely emerged from tractable operations on stationary
processes. Examples include deformations of stationary processes (Sampson and Gut-
torp, 1992; Damian et al., 2001; Schmidt and O’Hagan, 2000); kernel convolutions of
stationary processes (Higdon et al., 1999; Fuentes, 2001, 2002a,b; Calder, 2008); and
spatially-varying covariance kernels (Gelfand et al., 2004; Paciorek and Schervish, 2006;
Risser and Calder, 2015).

Much of the aforementioned literature focuses upon the construction of a nonstation-
ary spatial covariance function Cov(y(s), y(s′)) = C(s, s′) for pairs of spatial locations
s and s′, which will legitimately define a spatial stochastic process over an uncountable
set of locations {y(s) : s′ ∈ D ⊆ R

d}. Kidd and Katzfuss (2022) appear to broadly clas-
sify the above approaches as “parametric”, avoid the construction of a nonstationary
process and, therefore, describe their approach as “nonparametric” with regard to mod-
eling spatial covariances. The use of the term “nonparametric” may appear as somewhat
misplaced since the distribution on the realizations of the process are still parametric
(Gaussian) with an unspecified covariance matrix. We remark that nonparametric spa-
tial models with no parametric specifications on the distribution of process realizations
can be constructed using spatial Dirichlet processes (Gelfand et al., 2005; Duan et al.,
2007).

A distinctive feature of Kidd and Katzfuss (2022) is that they do not attempt to
construct a nonstationary spatial process, instead working with the probability law
of replicated finite-dimensional realizations of the process to ease the computational
burden of Bayesian inference for nonstationary processes for large spatial data sets. Here,
we should remark that process-based dimension reduction, which has become pervasive
in analyzing large spatial data, often leads to classes of nonstationary models in a natural
way. Examples include low rank spatial processes derived from empirical orthogonal
functions (Holland et al., 1999), multiresolution basis functions (Nychka et al., 2002),
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†Department of Statistical Science, Duke University, michele.peruzzi@duke.edu
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fixed-rank kriging (Cressie and Johannesson, 2008), and predictive processes (Banerjee
et al., 2008; Finley et al., 2009; Katzfuss, 2017). However, low rank processes with
truncated basis functions are limited in their capabilities to emulate the underlying
process because of a natural tendency to oversmooth (Banerjee, 2017), which can be
very pronounced in very large or massive data sets where the number of basis functions
is a small fraction of the number of data points.

Faced with increasingly massive spatial and spatial-temporal data, spatial processes
built from directed acyclic graphs (DAGs), following Gaussian process likelihood ap-
proximations outlined in Vecchia (1988), have attracted much attention (Datta et al.,
2016a,b; Guinness, 2018; Katzfuss and Guinness, 2021; Peruzzi et al., 2020; Jin et al.,
2021). The authors exploit this idea to develop classes of intuitive, simple, yet effective
hierarchical models for analyzing large spatial data. Their elegant solutions connect the
emerging literature on so-called Vecchia approximations of Gaussian processes (GPs)
to the existing literature on sparse covariance estimation. Of particular interest is that
parametric (stationary) covariance models motivate the prior distribution specification
for entries in the (modified) Cholesky factor of the Gaussian precision matrix. The
idea of allowing nonstationarity while shrinking towards a simple (perhaps stationary)
model is intuitive and very appealing. Additionally, the proposed strategies enable mas-
sive parallelization of all operations, leading to scalability to large scale data.

We offer some remarks with respect to predictive inference at new arbitrary spatial
locations s∗i ’s, which seems to have been glossed over by Kidd and Katzfuss (2022).
A key objective of extending finite-dimensional approximations to well-defined spatial
processes, such as the Nearest-Neighbor GP (NNGP; Datta et al. 2016a) or the meshed-
GP (MGP; Peruzzi et al. 2020), is to facilitate spatial or spatial-temporal interpolation
or prediction at arbitrary points. Unlike process-based approaches such as the NNGP or
the MGP, where the modified Cholesky decomposition is parametrized using a parent
covariance function, the U and D in (4) of Kidd and Katzfuss (2022) are free parameters
that do not depend on covariance function parameters. This assumption together with
the availability of replicates is cleverly exploited by the authors to estimate U using
essentially the familiar distribution theory from conjugate Bayesian linear regression
models. Indeed, conjugate Bayesian spatial models, often criticized for their lack of
flexibility, deliver substantial computational benefits in handling massive datasets on
modest computing architectures (Banerjee, 2020).

It is worth comparing predictive inference from process-based frameworks with that
proposed by the authors. Assume that the N × n matrix of spatial data, Y, as defined
in (1) of Kidd and Katzfuss (2022) consists of observed measurements and let sn+1

be a new location where we wish to predict the value of the process, say Y (sn+1).
The posterior predictive distribution p(Y (sn+1) |Y) is then obtained by sampling from
Y (sn+1) ∼ N(x�

n+1un+1, dn+1) for each {un+1, dn+1} sampled from their posterior
distribution. However, it is unclear how effectively {un+1, dn+1} is learned from the
spatial data matrix Y. In process-based frameworks, such as for the NNGP and the
MGP, un+1 and dn+1 explicitly depend on the covariance function parameters, which
act as a bridge between the observed data and the predictive distribution. Here, we
do not see such parameters and, hence, we do not see how the higher values of spatial
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covariance between neighboring points will affect spatial predictions. The effectiveness
of predictive inference for the nonparametric framework of Kidd and Katzfuss (2022)
should, we opine, be further investigated and compared with process-based counterparts
based on parametric spatial covariance functions.

We also note that the authors focus on models of a single, continuous, noise-free,
Gaussian spatially referenced outcome. This Gaussian response model is often con-
trasted with a latent model (Finley et al., 2019; Katzfuss and Guinness, 2021), in
which case the spatial GP enters the Bayesian hierarchy as a random effect. In la-
tent models, dependence must flow through the random effects: assumptions of con-
ditional independence of the outcomes given the latent effects enable great flexibility
in modeling, e.g., multivariate non-Gaussian data via latent GPs (Peruzzi and Dun-
son, 2022a). In attempting to extend their proposal to a latent plus noise model, the
authors suggest a posterior sampling strategy based on a block Gibbs sampler. One
iterates between (1) sampling the latent process y(�) given the data w(�) and the other
parameters Θ = (θ,U,D), and (2) sampling Θ given y(�) and w(�). This Gibbs sam-
pler ultimately produces correlated samples from the joint posterior p(y(�),Θ | w(�)) ∝
p(w(�) | y(�),Θ)p(y(�) | Θ)p(Θ). There are difficulties in performing (1) because the
conditional independence assumptions encoded by U are not immediately useful in cal-
culating the modified Cholesky factor of the posterior precision matrix Σ−1 + 1

τ2 In.

In fact, Σ−1 + 1
τ2 In = VR−1V� where V and U do not in general share the same

sparsity structure. Since V may be considerably denser than U, using V may result in
bottlenecks when sampling the latent process from its full conditional distribution.

The authors propose to replace V with V∗ obtained via an incomplete Cholesky
factorization which forces it to share the same sparsity structure of U. However, using
V∗ leads to sampling y(�) from an approximate full conditional distribution. This ap-
proximation breaks the coherence between steps (1) and (2) and leads to a sampling
algorithm which is not a Gibbs sampler and is not guaranteed to converge (what distri-
bution would it converge to?). In order to maintain coherence between the two steps,
one can either use the exact Cholesky factor V, or accept/reject the approximate sam-
ple ỹ(�) based on the Hastings ratio. The performance of both strategies will deteriorate
when the nugget is large: in the former case, computing exact Cholesky of V will be
slow due to substantial fill-in relative to U, whereas in the latter, incomplete Cholesky
decompositions will lead to a poor approximation of the full conditional distribution,
resulting in a low acceptance probability. Alternatives to sample from the exact full
posterior of the latent process involve visiting the nodes of the spatial DAG used to
build U; while sequential visits may lead to inefficiencies (Finley et al., 2019), block-
ing via domain partitioning, graph coloring, parameter expansions, and gradient-based
sampling methods have all been proposed to improve algorithmic performance in these
settings (Peruzzi et al., 2020, 2021; Peruzzi and Dunson, 2022a). Alternatively, one can
use models that lead to no fill-in by construction (Katzfuss, 2017; Peruzzi and Dunson,
2022b).

In summary, we enjoyed reading this interesting and stimulating article and, in
particular, are in agreement that conjugate Bayesian modeling frameworks have much
to offer for the data science community when it comes to scalable inference. We raise
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some potential concerns with respect to predictive inference and offer some additional
thoughts that, we hope, will motivate further developments of Bayesian models for
nonstationary data and related scalable computing algorithms.
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Stefano Peluso∗

Congratulations to the Authors for the interesting work. Starting from an assumed
ordering of the variable nodes i ∈ {1, . . . , n}, in the model formulation the set of parents
of i is fixed to be gm(i) ⊆ {1, . . . , i − 1}, with |gm(i)| ≤ m. This is equivalent to
assume the knowledge of a base graph G0, where the parents of node i are m at most. A
posteriori the Authors provide an estimator Ĝ of the graph G of dependences which is not
necessarily equal to G0, but dependent on the latter: with the introduction of a threshold,
say a small τ > 0, for which vij will be fixed to zero whenever exp{−θ3(i − j)} < τ ,
gm(i) is replaced by

gm,τ (i) := {j ∈ gm(i) : j ≥ i+ log τ/θ3},

estimated substituting θ3 with θ̂3. The graph Ĝ is derived accordingly, by removing from
G0 all those edges j → i for which j ∈ gm(i) but j /∈ ĝm,τ (i).

Through a slight change in the priors proposed by Kidd and Katzfuss (2021), it is
of interest to see the relationship with the model of Ben-David et al. (2015). When G is
restricted to be a Directed Acyclic Graph (DAG), the proposed priors are equivalent to
assign (D,U) a DAG-Wishart prior with hyperparameter L (a q × q positive definite
matrix, diagonal for simplicity) and shape hyperparameter aG = (aG1 , . . . , a

G
q )

�; see also
Cao et al. (2019) and Castelletti and Peluso (2022) for further analyses of the model
with, respectively, observational and interventional data. Hierarchically, this means to
further characterize the Inverse Gamma (IG) prior di|θ ∼ IG(αi, βi) as

IG
(
(α− n+ |gm(i)|+ 1)/2,Li|gm(i)/2

)
,

where Li|gm(i) is the Schur complement of Lgm(i),gm(i) in Li∪gm(i),i∪gm(i). Also, the prior
ui|di, θ ∼ N(0, diVi) becomes

N
(
0, di(Lgm(i),gm(i))

−1
)
.

This choice of hyperparameters guarantees compatibility among DAGs, so that different
DAGs implying the same conditional independences will have equal integrated likeli-
hoods; see Peluso and Consonni (2020). Then, following the Authors,

E (di|θ) = Li|gm(i)/ (α− n+ |gm(i)| − 1)
fixed
= θ1fθ2(i)

and note that Li|gm(i) = L−1
ii . Then vij is fixed as

vij = (Lgm(i),gm(i))
−1
jj = L−1

jj = θ1fθ2(j) (α− n+ |gm(j)| − 1)

and we still see an explicit dependence on j, also in the expression

V ar (uij |θ) = θ21fθ2(i)fθ2(j) (α− n+ |gm(i)| − 1) (α− n+ |gm(j)| − 1) .
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Finally, with this prior choice, we have

V ar (di|θ) =
(
4θ21fθ2(i)

2
)
/ (α− n+ |gm(i)| − 3) ,

so that the hyper-parameter α is free to choose, but under the constraint α > n+ 3.

The reformulation in terms of DAG-Wishart prior also suggests a direct way to
extend to a model where the whole space of graphs is investigated, without the strong
restrictions to the known ordering of the variables and to graphs which are absolutely
continuous to the base G0. The Metropolis-Hastings algorithm could move jointly, or
conditional to one another, on both the graph space and the space of θ, by using the
algorithm suggested by Kidd and Katzfuss (2021) as a step on θ together with, for
instance, the sampler in Consonni et al. (2017) as a step on DAGs.
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Diego Andrés Pérez Ruiz∗ and Tom Leonard†

Maybe the authors should refer to the Bayesian Econometric approach pioneered by
LeSage and Kelley Pace (2007). Le Sage and Kelley proposed the matrix exponential
spatial specification (MESS) as a way of simplification of the log-likelihood allowing
a closed form solution to the problem of maximum likelihood estimation and simpli-
fication of the Bayesian estimation of the model. MESS can produce estimates and
inferences similar to those from conventional spatial auto-regressive (AR) models, but
has analytical, computational, and interpretive advantages.

Inference and estimation of traditional spatial autoregressive (SAR) models requires
non-linear optimization for estimation and inference. The conventional spatial autore-
gressive approach introduces additional theoretical complexity relative to non-spatial
autoregressive models and is difficult to implement in large samples.

MESS replaces the conventional geometric decay of influence over space with an
exponential pattern of decay. It results in theoretical simplicity as well as improved
numerical performance relative to the conventional spatial autoregression. MESS models
the dependence of the covariances on explanatory variables by observing that for any
real symmetric matrix A the matrix exponential transformation C is a positive definite
matrix.

Le Sage and Kelley utilise an approach proposed by Chiu et al. (1996). Chiu et al.
develop a generalized linear model for covariance matrices together with a linear model
for the means, using the matrix logarithmic transformation

A = logC.

This provides a very general paradigm for modeling a multitude of spatial processes,
particularly when random effects are included with fixed effects. Why is another ap-
proach needed?

Perhaps the authors should also consider the large literature for Bayesian inference
for a covariance matrix C that refers to the matrix transformation A = logC. Key
papers include Leonard and Hsu (1992) and Hsu et al. (2012), who assume a matrix
normal prior distribution for the upper triangular elements of A. In particular, Deng
and Tsui (2013) address the estimation of large sparse covariance matrices. Most re-
cently, Magnus et al. (2021) derive an explicit expression for the Jacobian of the matrix
exponential transformation, with even further applications in Econometrics.

∗School of Social Statistics, University of Manchester, diego.perezruiz@manchester.ac.uk
†Retired – 4/3 Hopetoun Crescent, Edinburgh EH7 4AY, leonardthomas70@googlemail.com

mailto:diego.perezruiz@manchester.ac.uk
mailto:leonardthomas70@googlemail.com
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Matthew J. Heaton∗

I thank Kidd and Katzfuss (2021) for a fascinating article. The core idea to flexibly
model spatial data in a computationally feasible way through a series of regressions
is novel. The structure of their method is exciting for the spatial statistics community
because it opens the door to allowing the data to infer the type of underlying covariance
function rather than requiring the user to specify one. Further, their careful attention to
the choice in priors to allow shrinking towards a given covariance function is particularly
appealing for situations in which the data may not be able to fully inform the covariance
function. Overall, their methods provide a fascinating approach to modeling spatial data.

While the approach of Kidd and Katzfuss (2021) provides a promising way forward
for spatial analysis, there are various aspects of their approach that I worry may limit
the applicability of their methods and, I believe, are not well discussed in the original
article. Hence, I submit this public discussion in hopes of further illuminating these
shortcomings and to create a forum for potentially addressing them.

1. Lack of Repetitions. Following the notation of Kidd and Katzfuss (2021), let

yi = (y
(1)
i , . . . , y

(N)
i )′ be the vector of N repeated measures of a response at

location si for i = 1, . . . , n. Assuming independence between repeated measures
and a Gaussian process within a measure, the Vecchia approximation gives the
likelihood as

n∏
i=1

N (yi | Xiui, diIN ) , (0.1)

where Xi is an N × m matrix of {y(j)i : i ∈ Si, j ∈ {1, . . . , N}} where Si is the
set of m neighbors of location i, ui are m unknown regression coefficients and di
is a common variance (see Kidd and Katzfuss 2021 Equation (5) for more details
on the derivation). Inference for the above model is carried out via conjugate
normal-inverse gamma priors for ui and di.

Under this regression framework, in order for ui and di to be identifiable, the
number of repetitions N would have to exceed the number of neighbors m. To
see this in the extreme sense, notice that if N = 1 then yi = yi is a scalar
used to infer m coefficients in ui (a situation where the number of parameters is
m times the number of observations). Admirably, the authors recognize this and
specify highly informative priors that shrink towards a certain covariance function.
However, I am not convinced that the derived shrinkage priors are sufficient to
perform inference. This is evidenced by the fact that the authors only consider
situations where as few as N = 3 repetitions are available and never consider the
extreme case where N = 1. In my experience, repeated measures in spatial data
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are actually quite rare (see the recent spatial data competitions in Heaton et al.,
2019; Huang et al., 2021, for examples) with the more common situation being a
spatio-temporal field rather than actual repeated measures.

A potential solution to the lack of identifiability would be to parameterize {ui, di}
as a function of a set of parameters rather than parameterizing the priors as such.
This was done in a similar setup by Messick et al. (2017) who used basis functions
to parameterize the coefficients (albeit in a conditional setup for a multivariate
spatial response rather than a univariate response as is the case here). However,
such parameterization would sacrifice conjugacy of the model (and, hence, com-
putational speed) to obtain identifiability.

2. Kriging. Under the usual Vecchia process setup, prediction is possible because
the conditional distributions are given by a small set of covariance parameters
(see Datta et al., 2016a). However, under the regression setup in (0.1) above,
when considering prediction to a new location s�, the associated coefficients, say
u�, are unknown and, hence, how to use the model of Kidd and Katzfuss (2021)
for prediction is unclear. This is demonstrated by the fact that the authors focus
primarily on covariance estimation (a worthy endeavor in its own right) rather than
prediction. It would seem that {ui, di} would have to, again, be parameterized
using a small set of parameters to facilitate prediction.

3. Extensions. While the authors mention several interesting extensions to their
work in their concluding section, I can see several additional extensions that were
not mentioned but, I feel, should be highlighted to illustrate the flexibility and
novelty of their approach. First, the approach of Kidd and Katzfuss (2021) can be
intertwined with the methods of Cressie and Zammit-Mangion (2016) or Messick
et al. (2017) to capture non-stationary multivariate spatial processes. Second, a
similar conditional approach could be used for space-time processes potentially
mimicking a dynamic linear model (Petris et al., 2009) wherein regression co-
efficients are estimated not only for spatial neighbors but space-time neighbors
(Datta et al., 2016b).

In conclusion, I again thank Kidd and Katzfuss (2021) for what will surely be a
highly read and influential paper. I believe their methods will be a go-to-method in
spatial statistician’s toolboxes for years to come.
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Contributed Discussion

Lamiae Azizi∗, Sara Wade†, and Weichang Yu‡

1 Introduction

First, we would like to congratulate the authors for producing interesting and important
contributions to advance Bayesian inference of spatial data. In the present paper, the au-
thors investigated the important issue of nonparametric and nonstationary Bayesian in-
ference of a high dimensional covariance matrix. The novel framework relies on an exten-
sion of the Vecchia approximation, which effectively approximates the Cholesky factor of
the precision matrix with a sparse matrix; a common approach for covariance estimation.
The extension relaxes the usual restrictive assumptions of isotropy and the need for a
specific parametric form of the covariance function, an unrealistic one in many real world
applications. The authors exploited recent results on the exponential decay of the entries
of the inverse Cholesky factor for covariance matrices under a specific ordering scheme of
the spatial locations in order to specify suitable prior distributions. The resulting frame-
work is a scalable and flexible approach that enforces neither stationary nor parametric
structures while accounting for uncertainty and allowing for regularization through the
choice of priors. We note that the proposed inference approach achieves a remarkable
computational performance with a complexity that is linear in the number of locations
n, i.e., O(n(m2N+m3)). This is a significant reduction from the original computational
complexity of inferring a general covariance matrix O(n3). The flexible specification of
the hyperparameters allows for the incorporation of prior information about the under-
lying covariance structure when available. The authors provided a comprehensive reposi-
tory for the accompanying codes and tutorial, which allows their results to be reproduced
and facilitates their model to be adopted in other applications (we noted a small typo
in the Github tutorial: find nn dist(fields::rdist(dataa), n locs) should be
find nn dist(fields::rdist(locs), n locs)).

We start our discussion by commenting on the authors’ choice of priors. In particular,
both the di’s and ui’s are assigned conditionally independent priors, across i = 1, . . . , n.
This prior independence is motivated by conjugacy, resulting in closed form expressions,
and to reduce the computation burden. Nonetheless, if one were to simulate from the
prior, the behavior of the di’s and ui’s could be quite erratic across i due to this
independence assumption. This may result in a strange covariance structure, and we
invite the authors to simulate from the prior and comment on this aspect.

We further note that while independence of ui j for j = 1, . . . ,m is assumed, i.e. diag-
onal Vi, a general form of Vi could be used, allowing for dependence, without increasing
the computational cost. Moreover, the authors specified the prior hyperparameters for
di to match the exponential decay in the true values of di of an exponential covariance
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function. However, the prior credible intervals in Figure 3 of their paper suggest that
the true values in some of the panels are not included and point towards a not-well
chosen hyperparameter. The choice of hyperparameters αi and βi is guided by the rule
that the prior SD of di is half of the prior mean. While it looks reasonable to us, to some
extent, to assume that the prior SD decays exponentially, the authors did not provide
convincing justification for the choice of the multiplicative factor 0.5; indeed this factor
may need to be larger for better prior coverage of the true values. We follow by com-
menting on the independence assumption in the data model. We wonder how restrictive
is this in cases where the y(l)’s are correlated. The potential heterogeneous behavior
across the replicates is not accounted for by the approach, and it is unclear to us how
difficult the extension to account for this would be or how robust the results would be
when applied to such cases in its current form? Lastly, we ask the author’s to clarify
the data-driven choice of m. When using MCMC, would m change at every iteration
based on the sampled θ3? and how do you combine MCMC draws across varying m?

2 Functional Data Analysis

While the author’s work was motivated by spatial data, we believe that this piece of
work has the potential to become an important building block of more general mod-
els for functional data as well. Similar to spatial data, the issues of nonstationarity
and nonparametric structures of the covariance matrices are prevalent and require spe-
cial design when developing an appropriate model for the application of interest. This
observation stems from our recent work in Yu et al. (2021) for high dimensional non-
stationary functional data, where we developed a Bayesian approach that relies on a
non-stationary exponential covariance structure and a novel variational scheme that ex-
ploits advances in the use of sparse precision matrices to achieve scalability. To illustrate
briefly our suggested extension and its usefulness in this context, we use the author’s
approach to model the breast cancer data analyzed respectively in Shi et al. (2006) and
Yu et al. (2021) and check its ability to recover the non-stationarity structure present in
the data. The dataset consists of N = 64 spectra of breast cancer patients observed at
n = 10451 locations. To assess briefly how the author’s proposed approach can be used
for covariance estimation in functional data, we sampled three draws from the posterior
predictive distribution p(y�|Y ), and we compare these to the observed data as well
as to samples from the posterior predictive distribution using the model in Yu et al.
(2021). Figure 1 suggests that both approaches behave similarly in recovering the non-
stationary behavior and range of functions, indicating that the proposed approach has
potential to be useful beyond the context it was initially developed for. Moreover, the
experimental results in the authors’ paper suggest that a sufficient number of replicates
N (at least 20) is required for competitive covariance estimation with their method,
and this is typically the case in functional data, with N often greater than 50.

We should however emphasize that in its current form some extensions are neces-
sary in order for it to be applied accurately to functional data, notably in classifica-
tion tasks (e.g. discriminating breast cancer patients from healthy individuals based
mass-spectrometry data). In particular, we require the specification of a non-zero mean
function, which must be inferred and typically also exhibits non-stationarity. Moreover,



L. Azizi, S. Wade, and W. Yu 333

Figure 1: (a) Kernel density plots based on approximately 1× 106 MCMC samples of θ
with m = 3. (b) Three draws from the predictive distributions based on: model in Yu
et al. (2021) (Top row), the present paper’s method (Middle row), randomly selected
observed spectra in the dataset (Bottom row).

heterogeneity may exist across the observed functional replicates; and it would be in-
teresting to understand if one could build a semi-parametric extension that allows for
some parametric heterogeneity across replicates.
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Contributed Discussion

Suman Guha∗

We would like to start by congratulating the authors for their brilliant effort in putting
together the nonparametric Bayesian method and Vecchia approximation to create a
scalable Bayesian nonstationary and nonparametric model for spatial data with/without
replication.

To the best of our knowledge, there are only a few articles that consider Bayesian
nonstationary and nonparametric modeling of the covariance function underlying a spa-
tial process and two early notable works in this direction are Damian et al. (2001)
and Schmidt and O’Hagan (2003). Unfortunately, both of these models require imple-
menting the MCMC algorithm on high dimensional parameter space, which is com-
putationally demanding. On the other hand, fitting the model proposed by Kidd and
Katzfuss (2021) requires merely O(n(m2N + m3)) time and hence can be applied to
massive spatial data. However, note that Kidd and Katzfuss (2021) assume that the
spatial locations are already ordered following a maximin ordering, which iteratively
selects the (i + 1)-th location to be the furthest one from the already selected i lo-
cations. In reality, quite opposite happens and the spatial locations are often ordered
according to clusters formed by geographical and political boundaries, for example,
terrains, countries, zip codes, etc. In that case, the true computational cost for run-
ning an MCMC up to L iterations would be the sum of computational cost for finding
a maximin ordering, computational cost for finding the nearest-neighbor conditioning
sets, and the computational cost exclusively attributed to the MCMC iterations. At
this point, we differ with Kidd and Katzfuss (2021) to state that finding a maximin
ordering of n spatial locations requires O(n3) time (see Guinness, 2018) and hence the
total cost would be O(n3) + O(n logn) + O(Ln(m2N + m3)) = O(n3). Moreover, the
algorithm for finding a maximin ordering is not parallelizable. However, there are ap-
proximate maximin orderings that preserve the salient features of a maximin ordering
and can be found in O(n log n) time (see Guinness, 2018). Using such an approximate
maximin ordering the model proposed by Kidd and Katzfuss (2021) can be fitted in
O(n log n)+O(n log n)+O(Ln(m2N +m3)) = O(n log n) time albeit providing similar
performance.

Another critical aspect is the selection of the neighbor sets that determines the
sparsity of the model which is an approximation to the full and dense spatial Gaussian
process model. Kidd and Katzfuss (2021) use m nearest locations to form the neighbor
set for any particular location and suggest a data-driven dynamic choice of m which is
neither too small nor too large. However, we anticipate that a judiciously chosen fixed m
would produce an equally good result as the dynamic one and sensitivity analysis over a
range of values ofm would confirm it. In a purely parametric setting as specified in Datta
et al. (2016) different reasonable values of m which are neither too small nor too large
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show an insignificant difference in model performance. Similar behavior is anticipated
also for this model. Alternatively, one may elicit a prior on the natural numbers and
select m in a fully Bayesian manner from the associated posterior. A different line of
thought is exploring the effect of considering mostly the nearest neighbors with a few far
neighbors. What if the neighbor sets include a few far neighbors besides the nearest ones
as sometimes that leads to dramatic improvements in the efficiencies of the resulting
estimators (see Stein et al., 2004).

Selection of prior distribution and prior hyperparameters is an integral part of any
Bayesian modeling and more so in the Bayesian spatial modeling. The form of the
prior distribution and the exact values of the hyperparameters are to be set so as
to ensure that a wide range of spatial structures can be accommodated within the
proposed Bayesian model. Kidd and Katzfuss (2021) propose the general pragmatic
solution of selecting proper, but weakly informative independent normal-inverse-gamma
priors for each of (ui, di) for i = 1, · · · , n. The normal-inverse-gamma priors lead to
normal-inverse-gamma posteriors for (ui, di), from which it is easy to simulate. However,
we wonder whether one can elicit a non-informative prior for the model in Kidd and
Katzfuss (2021) as in Berger et al. (2001), who carried out objective Bayesian analysis
for spatial data using reference and Jeffreys priors for variance-covariance parameters
in a Gaussian random field without nugget effect.

Finally, it is important to assess how weak is the prior (for Σ) induced on the
cone of positive definite matrices. Kidd and Katzfuss (2021) point out that the prior
does not center around any specific covariance matrix or any specific family of co-
variance matrices. Indeed, in section 2.9 they describe how little modification of their
approach lands with a prior that centers at and hence shrinks towards a specific covari-
ance matrix/family of covariance matrices. That said, we still believe that the prior is
mostly supported on covariance matrices induced by Matérn kernels, by its very con-
struction. Won’t it conflict with spatial data originating from kernels which are very
different from Matérn i.e. Gaussian kernels or periodic kernels? One way to answer
this question is to simulate Σ from the proposed prior and investigate the histogram of
tr((Σ−Σ0)

′(Σ−Σ0)), λmax((Σ−Σ0)
′(Σ−Σ0)) or KL(Σ || Σ0) where Σ0 is associated

with the kernel of interest.
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We first want to congratulate the authors for the impressive work, which consists in a
non-parametric method for estimating the spatial dependence structure of both station-
ary and non-stationary fields. For convenience, we refer to their method as NPVecchia.
We are convinced that their work represents a notable advance in spatial statistics and
brings a powerful and flexible analysis tool into many real-data problems. Nevertheless,
to better understand which domains of application could benefit of such innovation,
some open issues should be further discussed.

Due to the absence of an explicit model for the underlying continuous spatial field,
we are concerned about the possibility of using NPVecchia for performing common
operations in spatial data analysis, such as spatial interpolation and prediction. This
limitation would restrict the range of applications to contexts of in-sample analysis,
where prediction over unobserved sites is not the main goal. Moreover, geo-spatial data
are frequently observed upon a collection of sites distributed extremely irregularly over
the space and so the distances between different points can vary considerably. On the
contrary, Kidd and Katzfuss (2021) implicitly assume an almost uniform distribution
of the observed locations.

It therefore appears that NPVecchia is appropriate for applications whose data are
characterized by roughly equally-spaced sites, with many observations per site, and
whose main goal is not the prediction over unobserved locations. Based on these con-
siderations, we believe that NPVecchia would be ideal for modelling the data processed
by a new, groundbreaking class of technologies for DNA sequencing, called spatial tran-
scriptomics (s.t.). For the substantial contributions that s.t. is carrying into the study
of biological organisms, it was named method of the year 2020 (Marx, 2021). The 10X
Visium sequencing platform (Rao et al., 2020), one among several s.t. technologies, col-
lects the cells of a tissue sample through a grid of equally spaced spots on the surface
of a chip. The transcriptome is sequenced within each spot, where a few neighbour cells
are collected. The output of the procedure is the expression of thousands of genes within
each spot, together with the coordinates of the spots. Figure 1 is an example of a human
prostate cancer tissue sample processed with 10X Visium.1

The growing popularity of s.t. has allowed researchers to identify the so-called spa-
tially expressed (s.e.) genes, i.e., genes that show spatial variation patterns across the
tissue. Discovering and comprehending the functions of s.e. genes is of great scientific
interest and might lead to new insights and discoveries of specific biological processes.
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Figure 1: Left: human prostate cancer sample analysed with the 10X Visium platform.
The tissue covers a total of 4,371 spots. Right: detail of the left figure corresponding to
the black square. The spots on the chip are visible as circles over the whole surface.

Svensson et al. (2018) and Sun et al. (2020) tackle this research question as a statisti-
cal hypothesis testing problem where, for each gene, the presence of spatial variation
patterns is tested. Both these methods assume a stationary field and express the de-
pendency across the spots using parametric spatial correlation functions. To overcome
these limitations and perform an accurate inferential process, we discuss a possible use
of the idea of Kidd and Katzfuss (2021) into the analysis of s.t. experiments, with the
aim of improving the discovery of s.e. genes.

Let Y = (y(1), . . . ,y(N))T be an N ×n experiment matrix, where y(�) is the expres-
sion of gene � over the n observational sites (spots) with spatial coordinates s1, . . . , sn.
We assume that the data have been centered and pre-processed in such a way that

y
(�)
i ∈ R and the histogram of each y(�) is approximately symmetric. Then, we assume
the following model:

y(�)|f (�), λ2
� , σ

2
ε ∼ Nn(f

(�), λ2
�In + σ2

εIn), f (�)|τ2� ,Σ ∼ Nn(0n, τ
2
� Σ), (1)

where f (�) is the gene-specific spatial field with marginal variance τ2� and common co-
variance matrix Σ, while λ2

� and σ2
ε are the variances of idiosyncratic error terms. We

assume the prior structure on the precision matrix Σ−1 proposed by Kidd and Katzfuss
(2021), and non-informative priors for the variance parameters λ2

� and σ2
ε as suggested

by Gelman (2006). Last, taking inspiration from the recent literature on shrinkage priors
and on the extraction of sparse signals (Bhadra et al., 2019), we propose to consider a
prior model for τ2� that performs an aggressive shrinkage toward 0 if no spatial patterns
arise, while leaving a high level of flexibility when the genes show a significant amount
of spatial correlation. Within this framework, an interesting choice with optimal the-
oretical properties is the Horseshoe prior (Carvalho et al., 2010), corresponding to a
hierarchical Half-Cauchy distribution on the standard deviation parameter τ�.

Formula (1) can be seen as a generalized, Bayesian version of the SpatialDE model
proposed by Svensson et al. (2018), where all the unknown parameters, including the
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spatial covariance matrix Σ, are inferred directly from the data using, for example,
a Gibbs sampling algorithm as described in Section 2.8 of Kidd and Katzfuss (2021).
Thanks to the shrinkage imposed on τ2� through its a priori setup, the s.e. genes can
be determined by evaluating the posterior distribution of δ� = τ2� /(τ

2
� + λ2

�), that is
the percentage of spatial variability specific of gene �. For example, one may define an
operating rule based on some threshold conditions, classifying as s.e. only those genes
which have P(δ� ≥ t|Y) ≥ p for t close to 0 and p close to 1.

Although we see a lot of promise in applying the work of Kidd and Katzfuss (2021) to
the problem of identifying s.e. genes, it remains an open question whether irregularities
on the edges and within the surface of tissues, as the one that appears in Figure 1 (left),
could somehow affect the estimate of Σ.

Several generalizations of the model in Formula (1) could be explored. First, it is
often of clinical interest to evaluate biological processes common to a cohort of patients.
Hence, the model could be extended to identify s.e. genes by simultaneously evaluating
multiple tissue samples. Second, since s.t. raw data are highly variable, possibly zero-
inflated counts, a Poisson or Negative Binomial extension could be considered, similarly
to what has been done by Sun et al. (2020).
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Isa Marques∗, Thomas Kneib†, and Finn Lindgren‡

Vecchia approximations can, by construction, be seen as a special case of general Gaus-
sian Markov random field (GMRF) computational Cholesky techniques. We are there-
fore surprised by the general lack of references to and discussion of other non-stationary
GMRF methods and their continuous domain counterparts, stochastic partial differ-
ential equations (SPDE), in the introduction as well as in the simulation study and
discussion. The SPDE representations from Lindgren et al. (2011) provide direct meth-
ods for representing continuous non-stationary Gaussian random field (GRF) precision
operators as GMRFs on the coefficients of locally supported or nested basis expansions.
Crucially, the SPDE models have spatially coherent interpretability via the differen-
tial operators, regardless of the discretised node ordering, which also generalises to
non-Markovian models (Lindgren et al., 2022). Some of these computationally efficient
models, such as Ingebrigtsen et al. (2015) or Fuglstad et al. (2015), would have been
relevant approaches worth considering, at least in the simulation study. In particular,
the former model considers replicates and accommodates covariates.

As shown by Guinness (2018), the order in which the observations are included has
an impact on the quality of Vecchia approximations. The method presented (OURS)
involves a choice of discretisation ordering and resulting directed acyclic graph (Katzfuss
and Guinness, 2021). The resulting coefficients are strongly tied to this graph, and
cannot easily be interpreted in a spatially coherent manner. In contrast, the continuous
domain SPDE-approach provides both closed form expressions for the precision matrix
elements, and spatially coherent interpretability on the continuous space, as opposed to
only on the discrete subset of locations that have observations (in OURS). However, we
note that the maximin ordering bears a qualitative resemblance to hierarchical wavelet
basis methods (Bolin and Lindgren, 2013), and adapting the computational methods to
such basis expansions could potentially improve the interpretability and generalisability,
especially if combined with a more spatially coherent shrinkage prior.

The authors suggest to parameterise their prior distribution such that it is centered
around the prior expectation of a Matérn-like covariance. While the prior mean may
be interpreted as the centre of the prior in some sense, a more principled approach
for constructing priors that are appropriately centered around a base model has been
developed in Simpson et al. (2017). They quantify the deviance between a prior and the
base model with a distance measure and then construct an exponential decay prior on
the distance scale. This approach has the advantage of centering around the complete
base model, rather than working with the prior expectations, and is also equivariant
under parameter transformations. We are curious whether such an approach could be
transferred to the construction of the prior distribution for the model suggested here.
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†Georg-August-University Göttingen, Germany
‡The University of Edinburgh, Scotland
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On a related note, the numerical results in the paper highlight that a sufficiently
large number of replicates N is important to get useful and accurate inferences. In the
simulation study, the Bayesian model (OURS) seems quite robust, even for a small N ,
while the maximum likelihood estimated (MLE) version performs poorly for N < 10.
As a potential explanation, the authors state that the added shrinkage from their prior
improves accuracy when compared to MLE. While shrinkage would certainly play an
important role, we wonder about the concrete specification used – if it follows Section 2.9
of the paper and shrinks towards the Vecchia approximation of the true covariance, the
results might not translate well to the application, where the true covariance is unknown.
Ultimately, this could explain the behavior of OURS in Figure 9 for N < 10.

In summary, while there are clear computational speed advantages to the proposed
method, it is unclear how to adjust it to achieve spatially coherent models.
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Brian Kidd† and Matthias Katzfuss‡

We would like to thank all discussants for their stimulating comments. In this rejoinder,
we first discuss a few bigger issues and common threads, and then give some shorter
responses to individual comments. We use the same notation as in the main paper
(Kidd and Katzfuss, 2022). All section, figure, and equation numbers in this rejoinder
are prefixed by the letter R, to distinguish them from elements in the main paper.

R1 Shrinkage toward a parametric covariance

Our methodology can be modified to center the prior distributions at and thus shrink
toward a parametric covariance function C, as briefly described in Section 2.9. This
modification directly and indirectly addresses a large number of comments by several of
the discussants, and so we elaborate on it here. The idea is to set the prior mean of the

ui and di to the values u
(m)
i and d

(m)
i , respectively, implied by a Vecchia approximation

of C with m � n. Specifically, we assume ui|di ∼ N (u
(m)
i , diVi) and di ∼ IG(αi, βi)

with E(di) = βi/(αi − 1) = d
(m)
i . The prior standard deviations, which determine

the degree of shrinkage toward C, can be set to be roughly fractions cu and cd of the

respective prior means, such that Vi = diag(vi1, . . . , vim) with vij = (cuu
(m)
i,j )2/E(di)

and sd(di) = βi/((αi − 1)(αi − 2)1/2) = cdE(di).

This modification of our methodology is especially useful for small numbers N of
training replicates, and it can even be used when N = 1, a situation of interest to several
discussants. We implemented this parametric-shrinkage modification based on a fixed
Matérn covariance C, with fixed cu = 1/2 and cd = 1. Figure R1 shows a comparison
in this setting, illustrating that both our original method and the parametric-shrinkage
modification can outperform a Gaussian process (GP) with a slightly misspecified para-
metric covariance. We also added the parametric-shrinkage approach to the climate-data
comparison in Figure 9; as shown in Figure R2, the modification was more accurate than
our original approach for small N (roughly, N < 20), and less accurate for large N .

The parametric-shrinkage modification provides a solution to Banerjee and Peruzzi’s
concern that our approach is not parameterized according to a parent covariance. Fur-
ther, Azizi was concerned about erratic behavior of the di’s and ui’s when sampling
from our original prior; this is alleviated using the parametric-shrinkage modification,
especially for small cu and cd.

Our modification could be further improved and extended. Most importantly, in-
stead of fixing C, we can consider a covariance family Cθ that depends on an unknown
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1654083, DMS–1953005, and CCF–1934904.

†Department of Statistics, Texas A&M University
‡Department of Statistics, Texas A&M University, katzfuss@gmail.com
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Figure R1: Comparison of Kullback-Leibler (KL) divergences for different priors based
on a single replicate (N = 1) in the setting of Figure 7, which is based on simulating
data from a Matérn with smoothness 1 and range 0.25 at 900 locations. The boxplots
show results over 20 repetitions of the simulation. Exp: GP with exponential covariance.
Old: Our original method from the main paper. Smooth and Truth are variants of the
parametric-shrinkage modification in Section R1 with m = 10 neighbors, shrinking
toward Matérn covariances with range 0.25 and smoothness 1.5 and 1, respectively. Old
often performed better than shrinking toward an incorrect covariance model (Smooth).
Shrinking toward the true covariance performed best.

parameter vector θ, which can be inferred using the integrated likelihood as described in
Section 2.4. It will also likely be useful to add cu and cd to θ, to let the data decide how
strongly the covariance should be shrunk toward C. These extensions may substantially
improve the results of the parametric-shrinkage methods in Figures R1–R2. Further, it
would even be possible to let θ (and hence the implied covariance) vary as a function
of covariates (e.g., spatial location).

R2 Prediction at unobserved locations

Several discussants asked about using or extending our methodology to make predictions
at unobserved locations. We want to emphasize that our methodology was intended for
data on a (regular or irregular) grid, where data may be missing at each grid location for
some but not all replicates (see Section 5). However, it is in principle possible to obtain
predictions at entirely unobserved locations using our method, although these predic-
tions will be most useful under the parametric-shrinkage modification in Section R1.

Assume we would like to predict y
(�)
n+1 at location sn+1 based on Y. The most

straightforward way to do this is to order sn+1 (and hence y
(�)
n+1) after the n observed
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Figure R2: The climate-data comparison of Figure 9 with an added method SHRINK
that shrinks toward the fitted exponential (EXP) with m = 10 neighbors (see Sec-
tion R1). SHRINK performed better than OURS for small N , and provided similar
results as EXP for N = 1.

locations. In that case, we can simply train the model as before based on Y, and then

consider prediction as a separate step. Specifically, we consider here the empirical Bayes

approach of Section 2.4, in which we obtain a hyperparameter estimate θ̂ based on the

training data. Then, the predictive distribution is

p(y
(�)
n+1|Y) =

∫
N (y

(�)
n+1| − y

(�)
gm(n+1)

′un+1, dn+1)p(un+1|dn+1, θ̂)p(dn+1|θ̂)dun+1ddn+1

= t2αn+1

(
y
(�)
n+1| − y

(�)
gm(n+1)

′μn+1,
βn+1

αn+1
(1 + y

(�)
gm(n+1)

′Vn+1y
(�)
gm(n+1))

)
,

where un+1 and dn+1 (and m) are informed by the training data Y only through θ̂ (i.e.,

we simply consider their prior distribution for θ = θ̂), and so μn+1 is the prior mean of

un+1. In our original model, we had μn+1 = 0, meaning that the prediction is centered at

zero, no matter how close sn+1 is to an observed location. Much more useful predictions

can be obtained using the parametric-shrinkage modification in Section R1, with μn+1 =

u
(m)
n+1 as implied by a Vecchia approximation of a parametric covariance Cθ̂. If the prior

variability converges to zero (i.e., cu, cd → 0), then y
(�)
n+1|Y ∼ N (−y

(�)
gm(n+1)

′u
(m)
i , d

(m)
i ),

which is equivalent to a (parametric) Vecchia GP prediction based on Cθ̂. For cu, cd > 0,

the predictive distribution is centered at the same value but has larger variance and

heavier tails, due to the uncertainty in un+1 and dn+1. This is illustrated numerically

in Figure R3.
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Figure R3: Predictive distributions (means and 80% intervals) using our method from
Sections R1–R2 with m = 9 neighbors (blue) versus standard GP prediction (green)
using the true covariance (Matérn with variance 5, smoothness 1.5, and range 0.25),
along with the true values (red). Training data consisted of N = 1 replicate of a GP
with the true covariance at n = 250 randomly sampled locations on the unit square
[0, 1]2; predictions are made at coordinates (x, 0.5) for various locations x on the x-axis
of the plot, with predictions offset slightly for better visibility.

R3 Gibbs sampler for noisy data

In Section 2.8, we considered noisy observationsw(�)|y(�) iid∼ Nn(y
(�), τ2In), �=1, . . . , N ,

with the latent fields y(�) modeled using our Bayesian nonstationary approach. We pro-
posed a Gibbs sampler, which requires sampling y(�) conditional on w(�) and Σ−1 =
UD−1U′. When n is at most moderately large (say, n < 105), this can be done exactly
via Cholesky factorization of the sparse posterior precision matrix A := Σ−1 + τ−2In
after applying a fill-reducing ordering (e.g., approximate minimum degree).

For very large n, however, the fill-in and computational cost may become too high,
and so we suggested approximating the Cholesky factor of A using an incomplete
Cholesky factorization as described in Schäfer et al. (2021a, Sect. 4.1). We agree with
Banerjee and Peruzzi, who point out that this approximation breaks the coherence of
the Gibbs sampler. Our hope is that the resulting sampler may still produce useful
results, because the incomplete-Cholesky error is often small.

Alternatively, it is possible to carry out exact sampling of y(�) conditional on w(�)

and Σ without substantially increasing the computational complexity. If we sample
z(�) ∼ Nn(0, In) and w̃(�) ∼ Nn(w

(�), τ2In), then

y(�) = A−1(UD−1/2z(�) + τ−2w̃(�)) (R1)
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is a sample from the desired distribution, as has been exploited, for example, in the
ensemble Kalman filter (e.g., Hunt et al., 2007; Boyles and Katzfuss, 2021). In (R1), we
need to solve a linear system in A, which can be done to any desired accuracy via the
conjugate gradient algorithm, using its incomplete Cholesky factor as a preconditioner
(Schäfer et al., 2021a, Sect. 4.1 and Fig. 9).

R4 Extensions for spatio-temporal fields

As pointed out by several discussants, extending our method to spatio-temporal fields
is important for many environmental applications.

Ordering and nearest-neighbor selection for space-time coordinates could be ob-
tained using the correlation distance in Section 2.7. In the simplest case, this would be
equivalent to a scaled space-time distance, which would require estimating (either as a
pre-processing step or as part of θ) the ratio of the temporal correlation range relative
to the spatial range.

Ensembles (i.e., N > 1 replicates) of spatio-temporal fields are available in some
applications, such as climate models. In this setting, our methods can be applied directly.
Shrinkage toward parametric (see Section R1) spatio-temporal covariance functions,
including separable ones (as mentioned by Li and Shand), is also straightforward.

However, in many applications only N = 1 spatio-temporal field is available, as
pointed out by Li and Shand. Our method could be extended to this setting under more
restrictive assumptions. For example, we could order the spatio-temporal coordinates
first by time and then by maximin ordering in space within a given time point. Inference
would then be possible under the assumption that the process value at a particular spa-
tial location depends on its spatial neighbors at the current and previous time point(s)
in the same way at each time point, in which case time can act as a pseudo-replicate.

R5 Further applications

We were excited to see that several of the discussants shared ideas for interesting appli-
cations or extensions of our methodology. Li and Shand suggested combining our method
with copula techniques to model dependence in spatial extremes. Azizi et al. made a
case for using our method for functional data, with some potential extensions. And Sot-
tosanti et al. suggested applying our method to spatial transcriptomics; we believe that
our method would be able to handle irregularities on the edges and within the surface
of tissues relatively well given sufficiently large numbers of training replicates. We are
hoping that our approach will be used successfully in these and other applications.

R6 Brief responses to miscellaneous comments

• Li and Shand:

– Letting mi depend on i is an interesting idea, which is explored in Figure R4.
However, we observed little indication that mi should increase with i — on
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Figure R4: Illustration of (u
(i−1)
i )j as a function of maximin index i (as in Figure 4) for

several values of range and smoothness in a Matérn covariance, with points colored by
neighbor number (larger values correspond to closer neighbors).

the contrary, the importance of the first nearest neighbor (NN) relative to,
say, the fifth NN increased with i, and somi could potentially decrease with i.

– Regarding relating θ3 to the smoothness of random fields, some empirical
results can be found in Figure 4. When centering the prior on a Matérn
covariance as in Section R1, the smoothness of this covariance can directly
be regarded as one of the hyperparameters of the resulting model, making
the link more explicit.

– The multi-resolution approximation (Katzfuss, 2017; Katzfuss and Gong,
2020) can be viewed as a variant of the Vecchia approximation (Katzfuss
and Guinness, 2021), and so it could be extended nonparametrically in a
similar way to our model here. The main difficulty would be to come up with
suitable prior distributions, although shrinkage to a parametric covariance
(Section R1) is one possibility.

• Banerjee and Peruzzi:

– Our model indeed only infers the covariance structure nonparametrically, un-
der the strong parametric assumption of a Gaussian joint distribution. Katz-
fuss and Schäfer (2021) propose an extension of our approach to non-Gaussian
distributions using Bayesian transport maps, including a further nonpara-
metric extension based on Dirichlet process mixtures for flexible marginal
distributions.
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Figure R5: Comparison of KL divergence in the setting of Figure 8, except for simulated
data at highly irregular locations on ten strips of 250 points each, mimicking satellite
orbits that are a common source of spatial data. The results are similar to those for
gridded or randomly sampled locations in Figure 8.

• Sottosanti et al.:

– Our method does not necessarily require the observation locations to be on a
regular grid. We also obtained good results for uniformly sampled locations
(Figure 8). Figure R5 shows that similarly good results can be obtained
for extremely irregular locations mimicking the sampling patterns of polar-
orbiting satellites.

• Azizi et al.:

– We appreciate pointing out the typo in our GitHub tutorial. It has been
corrected.

– It is possible to account for correlation between replicates. The expression
p(Y|Σ) =

∏n
i=1 NN (yi|Xiui, diIN ) in (5) could be generalized to

p(Y|Σ) =
∏n

i=1 NN (yi|Xiui, diCi)

for some nondiagonal correlation matrix Ci, which may not depend on i and
may depend on parameters that can be included in θ. We conjecture that
even without this extension, our model may produce useful results based on
correlated replicates, although the resulting posterior uncertainty may then
be an underestimate of the true uncertainty.

– When using Markov chain Monte Carlo (MCMC), m may change at every
iteration based on the sampled θ3. However, the resulting MCMC draws of
ui can always be viewed (at least conceptually) as vectors of length i − 1
with all but m entries equal to zero, and so combining MCMC draws is
straightforward.
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• Marques et al.:

– We agree that the stochastic partial differential equation (SPDE) approach
is very useful in many applications and provides spatially coherent inter-
pretability, which our approach does not. To our knowledge, the form or
structure of the nonstationarity in SPDE approaches is typically specified
manually as a function of hyperparameters.

– Shrinkage toward a parametric covariance was not used for any numerical
results in the main paper.

– We agree that it would be interesting to investigate whether our method
could be combined with the principled approach of centering priors around a
base model proposed in Simpson et al. (2017). However, this appears difficult
to us, especially when trying to avoid increasing the computational burden.

• Guha:

– An exact maximin ordering of n spatial locations can indeed be computed in
quasilinear time in n using the algorithms provided in Schäfer et al. (2021b,a).

– It would certainly be possible to include a few far-away locations in the neigh-
bor sets, as originally suggested by Stein et al. (2004) for parametric Vecchia
approximations. However, it is not obvious how these locations should be
selected and what the corresponding priors should be. Guinness (2018) did
not observe an improvement due to including far-away points (as opposed to
using only nearest neighbors) for parametric Vecchia approximations under
maximin ordering.

• Pérez Ruiz and Leonard:

– While our literature review was focused on the existing approaches most
closely related to our specific methodology based on modified Cholesky de-
composition (MCD), we agree that there is a vast literature on covariance
estimation. Instead of MCD, positive-definiteness constraints can also be
avoided by estimating the matrix log of the covariance (e.g., Leonard and
Hsu, 1992; Chiu et al., 1996; Hsu et al., 2012), but this may only be feasi-
ble for large n (and small N) under additional sparsity assumptions (e.g.,
Deng and Tsui, 2013). If we consider extending our approach to a spatial
autoregressive (SAR) model, there seem to be potential insights and overlap
with the matrix exponential spatial specification (LeSage and Pace, 2007),
which fixes the sparsity pattern of U based on nearest neighbors as in our
approach, but it also fixes the values up to a scaling constant, making it less
flexible. However, their use of a matrix exponential to approximate U−1 has
major computational advantages for SAR models. Similarly, Mukherjee et al.
(2011) use a Bayesian SAR model with the nonzeros in U being a function of
distance, with further spatially varying extensions in Mukherjee et al. (2014).

• Peluso:

– Reformulating our prior as a directed acyclic graph (DAG)–Wishart prior
provides insight into the hyperparameter choices of αi, βi and connects the
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idea to a diagonal scale matrix parameter of the Wishart. (Rather than αi

being fixed, at the start of the ordering it could decrease by 0.5 per neighbor
until the number of neighbors is constant.) Then, as shown in Peluso and
Consonni (2020), the prior is compatible under DAGs, so our method could
be considered jointly with graph estimation (i.e., not a-priori fixing the graph
and ordering), though this may not be computationally feasible for large n.
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