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Bayesian Topological Learning for Classifying
the Structure of Biological Networks

Vasileios Maroulas∗, Cassie Putman Micucci†, and Farzana Nasrin‡

Abstract. Actin cytoskeleton networks generate local topological signatures due
to the natural variations in the number, size, and shape of holes of the networks.
Persistent homology is a method that explores these topological properties of
data and summarizes them as persistence diagrams. In this work, we analyze and
classify simulated actin filament networks by transforming them into persistence
diagrams whose variability is quantified via a Bayesian framework on the space
of persistence diagrams. The proposed generalized Bayesian framework adopts an
independent and identically distributed cluster point process characterization of
persistence diagrams and relies on a substitution likelihood argument. This frame-
work provides the flexibility to estimate the posterior cardinality distribution of
points in a persistence diagram and their posterior spatial distribution simulta-
neously. We present a closed form of the posteriors under the assumption of a
Gaussian mixture and binomial for prior intensity and cardinality respectively.
Using this posterior calculation, finally, we implement a Bayes factor algorithm
to classify simulated actin filament networks and benchmark it against several
state-of-the-art classification methods.

Keywords: Bayesian inference and classification, intensity, cardinality, marked
point processes, topological data analysis.

MSC2020 subject classifications: Primary 62F15, 60G55, 62-07; secondary
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1 Introduction

The actively functioning transportation of various particles through intracellular move-
ments is a vital process for cells of living organisms (Porter and Day (2016)). Such
transportation must be intricately organized due to the tightly packed nature of the
interior of a cell at the molecular level (Breuer et al. (2017)). The actin cytoskeleton,
which consists of actin filaments cross-linking with myosin motor proteins along with
other pertinent binding proteins, is an important component in plant cells that deter-
mines the structure of the cell and provides transport of cellular components (Freedman
et al. (2017); Breuer et al. (2017)). Although researchers have investigated the molecular
features of actin cytoskeletons (e.g., Staiger et al. (2000); Shimmen and Yokota (2004);
Freedman et al. (2017); Mlynarczyk and Abel (2019)), the underlying process that de-
termines their structures and how these structures are linked to intracellular transport
remains undetermined (Thomas et al. (2009); Madison and Nebenführ (2013)). A cru-
cial step to understand this transport is to define quantitative measures of the actin
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cytoskeleton’s structure, and understand the different structural networks of filaments
on which the organelles are moving. However there is not a method for either fully
depicting the characteristics of networks.

Researchers are interested in developing and using quantitative tools to capture actin
filament structures. The analysis of skewness in the pixel intensities of microscopic im-
ages is performed to quantify the actin cytoskeleton bundles and density in Higaki et al.
(2010). Polymer network-based models are studied and classified to identify how actin
cytoskeleton structure can be efficiently represented in Banerjee and Park (2015). On
the other hand, from a closer look, the inherent variation in size, density, and position-
ing of actin filaments yields topological signatures in the cytoskeleton’s network, (Tang
et al. (2014)). In this article, we develop a fully data-driven Bayesian topological learn-
ing method, which could aid researchers by providing a pathway to predict cytoskeleton
structural properties by classifying simulated actin filament networks to identify the
effect of the number of cross-linking proteins on the network. With more cross-linking
proteins available, the cell has networks with many binding locations, which create
larger loops within the whole structure of the actin cytoskeleton. Topological data anal-
ysis (TDA) can be viewed as a dimensionality reduction method that allows us to map
data from high dimensional space to a lower dimensional space. When viewed through
the lens of topology, these networks show dissimilarity due to the presence and size of
loops. Differentiating between the empty space and the connectedness of these networks
allows us to create an accurate classification rule using topological methods. Although
we focus on our analysis to the classification of actin filament networks, the topological
Bayesian framework could be generalized to other data sets.

Persistent homology is a powerful TDA tool that provides a robust way to model
the topology of data and summarizes salient features with persistence diagrams (PDs).
These diagrams are multisets of points in the plane, each point representing a homologi-
cal feature whose time of appearance and disappearance is contained in the coordinates
of that point (Edelsbrunner and Harer (2010)). Persistent homology has proven to be
promising in a variety of applications such as shape analysis Patrangenaru et al. (2018),
image analysis Guo et al. (2018), neuroscience Sizemore et al. (2018); Biscio and Møller
(2019); Nasrin et al. (2019), sensor networks D�lotko et al. (2012); Carlsson and de Silva
(2010), biology Sgouralis et al. (2017); Maroulas and Nebenführ (2015); Mike et al.
(2016); Nicolau et al. (2011), dynamical systems Khasawneh and Munch (2016), action
recognition Venkataraman et al. (2016), signal analysis Marchese and Maroulas (2018,
2016), chemistry and material science, Kimura et al. (2018); Maroulas et al. (2020);
Townsend et al. (2020), and genetics Humphreys et al. (2019).

While there are several methods present in the literature to compute PDs, we choose
geometric complexes that are typically used for applications of persistent homology to
data analysis; see Edelsbrunner and Harer (2010) and references therein. The homo-
logical features in PDs have no intrinsic order, implying that they are sets as opposed
to vectors. Due to this, the utilization of PDs in machine learning algorithms is not
straightforward. Some researchers map the PDs into Hilbert spaces to adopt tradi-
tional machine learning tools (see e.g., Di Fabio and Ferri (2015); Turner et al. (2014);
Adams et al. (2017); Bubenik (2015); Reininghaus et al. (2015)). Direct use of PDs for
statistical inference and classification has been developed by several authors such as
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Maroulas et al. (2019, 2020); Marchese and Maroulas (2018); Bobrowski et al. (2017);
Fasy et al. (2014); Mileyko et al. (2011); Robinson and Turner (2017).

In this paper, we quantify the variability of PDs through a novel Bayesian framework
by considering PDs as a collection of points distributed on a pertinent domain space,
where the distribution of the number of points is also an important feature. This setting
leads us to view a PD through the lens of an independent and identically distributed
(i.i.d.) cluster point process (PP) (Daley and Vere-Jones (1988)). An i.i.d. cluster PP
consists of points that are i.i.d. according to a probability density but have an arbitrary
cardinality distribution. For example, an i.i.d. cluster PP is reduced to the classical
Poisson PP if the points in a PD are spatially distributed according to a Poisson dis-
tribution. The study in Maroulas et al. (2020) implicitly estimates the cardinality of
a PD by integrating the intensity of a Poisson PP. The framework of Maroulas et al.
(2020) also yields that the variance is equal to the mean and leads to an estimation of
cardinality with high variance whenever the number of points in a PD is high. However,
modeling PDs as i.i.d. cluster PPs allows us to estimate the intensity and the cardinality
component of the distribution simultaneously. This is very critical as the importance of
cardinality in PDs has been underlined in problems related to statistics and machine
learning Fasy et al. (2014); Kerber et al. (2017).

Our Bayesian framework quantifies prior uncertainty with given intensity and car-
dinality for an i.i.d. cluster PP. The likelihood in our model represents the level of
belief that observed diagrams are representative of the entire population and are de-
fined through marked point processes (MPPs). A central idea of this paper is to develop
posterior distributions of the spatial configuration of points on persistence diagrams and
their associated number instead of the point clouds in the data generating space. The
persistence diagrams summarize their topology which in turn is employed in the clas-
sification algorithm. By viewing point clouds through their topological descriptors, the
proposed framework can reveal essential shape peculiarities latent in the point clouds.
Our Bayesian method adopts a substitution likelihood technique by Jeffreys in Jeffreys
(1961) instead of considering the full likelihood for the point cloud. Due to the nature
of PDs, an observed PD contains points that correspond to the latent topology in the
underlying data as well as points that solely arise due to noise in the data. Our Bayesian
model addresses instances of noise by means of an i.i.d. cluster PP. In particular, we
are able to quantify the uncertainty with an estimated intensity and cardinality using
the i.i.d. cluster PP. This framework estimates the posterior cardinality and intensity
simultaneously, which provides a complete knowledge of the posterior distribution.

Another key contribution of this paper is the derivation of a closed form of the pos-
terior intensity, which relies on Gaussian mixture densities for prior intensities and a
closed form for the posterior cardinality, which uses binomial priors. The direct benefits
of this closed form solution of the posterior distribution are two-fold: (i) it demonstrates
the computational tractability of the proposed Bayesian model and (ii) it provides a
means to develop a robust classification scheme through Bayes’ factors. Another com-
putational benefit of these closed forms is the quantification of the intensity of the
unexpected PP by means of an exponential density. The exponential density is an ideal
choice because (i) it gives a natural intuition of the unexpected (noise) features, and



714 Bayesian Topological Learning

(ii) it provides a more computationally automatic approach as we only need to modify
one parameter. This Bayesian paradigm provides a method for the classification of actin
filament networks in plant cells that captures their distinguishing topological features.

Overall, the contributions of this work are:

1. A generalized Bayesian framework that simultaneously estimates the spatial and
the cardinality distribution of PDs using i.i.d. cluster PPs.

2. A general closed form expression of both the posterior spatial distribution and the
posterior cardinality distribution of PDs.

3. A Bayesian classification algorithm for actin filament networks of plant cells that
directly incorporates the variations in topological structures of those networks
such as number and size of loops.

This paper is organized as follows. Section 2 provides a brief overview of PDs and
PPs. In Section 3, we establish the Bayesian framework for PDs and provide the up-
date formulas for intensity and cardinality. Then Subsection 3.1 introduces a closed
form representation of the posterior intensity and cardinality utilizing Gaussian mix-
ture models and binomial distributions respectively. Detailed demonstrations of this
closed form estimation are presented in Subsection 3.2. To assess the capability of our
Bayesian method, we investigate a problem of classifying filament networks of plant
cells in Section 4. Finally, we end with a discussion in Section 5. We delegate all of the
proofs, as well as some definitions, lemmas, and notations required for the proofs to the
supplementary materials (Maroulas et al., 2021).

2 Preliminaries

We begin by discussing the necessary background for generating Bayesian models for
PDs. In Subsection 2.1, we briefly review simplicial complexes, the building blocks for
constructing PDs. Pertinent definitions, theorems, and some basic facts about i.i.d.
cluster point processes (PPs) are discussed in Subsection 2.2.

2.1 Persistence Diagrams

Definition 2.1. The convex hull of a finite set of points {xi}ni=1 is given by
∑n

i=1 αixi,
where αi ≥ 0 for all i and

∑n
i=1 αi = 1.

Definition 2.2. The set of points {xi}ni=1 is affinely independent if whenever∑n
i=1 αixi = 0 and

∑n
i=1 αi = 0, then αi = 0 for all i.

Definition 2.3. A k-simplex, [x0, . . . , xk] is a collection of k + 1 affinely independent
elements along with their convex hull. The faces of a k-simplex are the (k−1)-simplices
spanned by subsets of {x0, . . . , xk}.
Definition 2.4. A simplicial complex σ is a collection of simplices such that for every
set A in σ and every nonempty set B ⊂ A, we have that B is in σ.
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Definition 2.5. The Vietoris-Rips complex for threshold ε > 0, denoted VR(ε), is the
abstract simplicial complex determined in the following way: a k-simplex with vertices
given by k+1 points in X is included in V R(ε) whenever ε/2 balls placed at the points
all have pairwise intersections.

Figure 1: (a) An underlying dataset of points. (b) The Vietoris-Rips complex consisting
of the points and the light blue line segment. (c) The Vietoris-Rips complex consisting
of the points and line segments that now form an “eight” shape, which has two 1-
dimensional holes. (d) The tilted PD for connected components and holes.

Formally, for each homological dimension, a PD is a multiset of points (b, d), where
b is the radius in the Vietoris-Rips complex at which a homological feature is born and
d is the radius at which it dies. Intuitively, the homological features represented in a PD
are connected components or holes of different dimensions. To illustrate the Vietoris-
Rips complexes we present a toy example in Figure 1 by considering an “eight” shape
in (a). The algorithm starts by taking into account circles with increasing radii (at each
algorithmic step) centered at each data point. As the “resolution” of the data changes
by increasing the radii, homological features emerge or disappear by examining if two
or more circles intersect. For example, Figure 1(b) presents a scenario where only two
circles intersect. While the circles centered at each data point grow and more connected
components are generated, holes and voids may be also created (see Figure 1 (c)).
Eventually, they get filled due to increasing the radii, and the process ends when all
circles intersect. The algorithmic results are summarized in a persistence diagram. Each
point in a persistence diagram (shown as red triangles in Figure 1 (d)) is referred as
(b, p) in W := {(b, p) ∈ R2| b, p ≥ 0} where b is the birth scale and p = d − b is the
persistence value.

2.2 I.I.D. Cluster Point Processes

This section contains basic definitions and fundamental theorems related to i.i.d. cluster
PPs. Detailed treatments of i.i.d. cluster PPs can be found in Daley and Vere-Jones
(1988) and references therein. Throughout this section, we let X be a Polish space and
X be its Borel σ-algebra.
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Definition 2.6. A finite point process ({ρn}, {Pn(•)}) consists of a cardinality distri-
bution ρn with

∑∞
n=0 ρn = 1 and a symmetric probability measure Pn on Xn, where

X 0 is the trivial σ-algebra.

To sample from a PP, first one draws an integer n from the cardinality distribution
ρn. Then the n points (x1, . . . , xn) are spatially distributed according to a draw from
Pn. Since PPs model unordered collections of points, we need to ensure that Pn assigns
equal weights to all n ! permutations of (x1, . . . , xn). The requirement in Definition 2.6
that Pn is symmetric guarantees this. A natural way to work with random collections of
points is the Janossy measure, which combines the cardinality and spatial distributions,
while disregarding the order of the points.

Definition 2.7. For disjoint rectangles A1, . . . , An, the Janossy measure for a finite
point process is given by Jn(A1 × · · · ×An) = n!ρnPn(A1 × · · · ×An).

Definition 2.8. An i.i.d. cluster PP Ψ is a finite PP on the space (X,X ) which has
points that: (i) are located in X = Rd, (ii) have a cardinality distribution ρn with∑∞

n=0 ρn = 1, and (iii) are distributed according to some common probability measure
F (·) on the Borel set X .

We consider Janossy measures for the point process Ψ, JΨn , that admit densities
jn with respect to a reference measure on X due to their intuitive interpretation. In
particular, for an i.i.d. cluster PP Ψ, if F (A) =

∫
A
f(x)dx for any A ∈ Xn, then

jn(x1, . . . , xn) = ρnn!f(x1) · · · f(xn) determines the probability density of finding the
n points at their respective locations according to F . The n! term gives the number
of ways the points could be at these positions. For a finite intensity measure Λ on X

that admits the density λ, we also have f(x) = λ(x)
Λ(X) . The intensity is the point process

analog of the first order moment of a random variable. Precisely, the intensity density
λ(x) is the density of the expected number of points per unit volume at x. Hereafter, we
sufficiently characterize our i.i.d. cluster PPs with intensity and cardinality measures.
Next, we define the marked PP, which provides a formulation for the likelihood model
used in our Bayesian setting. Let M be a Polish space that represents the mark space,
and let its Borel σ-algebra be M.

Definition 2.9. Suppose � : X×M → R+∪{0} is a function satisfying: 1) for all x ∈ X,
�(x, •) is a probability measure on M, and 2) for all B ∈ M, �(•, B) is a measurable
function on X. Then, � is a stochastic kernel from X to M.

Definition 2.10. A marked i.i.d. cluster PP (Ψ,ΨM ) is a finite PP on X × M such
that: (i) Ψ = ({ρn} , {Pn(•)}) is an i.i.d. cluster PP on X, and (ii) for a realization
(x,m) ∈ X × M, the marks mi of each xi ∈ x are drawn independently from a given
stochastic kernel �(•|xi).

Remark 1. A marked point process (Ψ,ΨM ) is a bivariate PP where one point process
is parameterized by the other. Therefore, if the cardinalities of x and m are equal, then
the conditional density for m is �(m|x) = 1

n!

∑
π∈Sn

∏n
i=1 �(mi|xπ(i)), where Sn is the

set of all permutations of (1, . . . , n). Otherwise, the density can be taken as 0.
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The final two definitions we need to construct the Bayesian theorem are the proba-
bility generating functional (PGFL) and elementary symmetric function. The PGFL is
a point process analogue of the probability generating function (PGF) of random vari-
ables. Intuitively, the point process can be characterized by the functional derivatives of
the PGFL (Moyal (1962)). The other necessary definitions and theorems related to the
PGFL, which will be heavily used in the proof of Theorem 3.1 are provided in Section
1 of the supplementary materials.

Definition 2.11. Let Ψ be a finite PP on X and H be the Banach space of all
bounded measurable complex valued functions ζ on X. For a symmetric function,
ζ(x) = ζ(x1) · · · ζ(xn) and x = (x1, · · · , xn) ∈ X, the PGFL of Ψ is given by

G(ζ) = E
[ n∏
j=1

ζ(xj)
]
=

∞∑
n=0

1

n!

∫
Xn

⎛
⎝ n∏

j=1

ζ(xj)

⎞
⎠ Jn(dx1 . . . dxn). (2.1)

The first expression shows the analogy of the PGFL with the PGF, as it is the
expectation of the product

∏n
j=1 ζ(xj). Hence, if ζ(xi) = x, a constant real non-negative

number for all xi, then G(ζ) takes the form of a PGF gN (x) =
∑∞

n=0 pN (n)xn, where
pN (n) is the probability distribution of a random N ∈ N0 = {0, 1, 2, · · · }.
Remark 2. For an i.i.d. cluster process Ψ the PGFL has the form (Daley and Vere-Jones
(1988)):

G(ζ) = gN

(∫
X
ζ(x)f(x)dx

)
, (2.2)

where gN is the PGF of the cardinality N , ζ has the same form as in Definition 2.11,
and f is the probability density discussed after Definition 2.8.

Definition 2.12. The elementary symmetric function eK,k is given by eK,k(ν1, · · · ,
νK) =

∑
0≤i1<···<ik≤K νi1 · · · νik with e0,k = 1 by convention.

3 Bayesian Inference

For developing the framework for Bayesian inference, we consider the underlying prior
uncertainty of a PD, DX , generated by an i.i.d. cluster PP, DX , with intensity λDX

and cardinality distribution ρDX
= P (|DX | = n), the probability of the number of

elements in the PP DX to be equal to n, where | · | denotes the cardinality. To motivate
the discussion and develop the intuition about our method, let’s consider the point
clouds (blue dots in Figure 2 (a) and (c)) are generated from an ‘eight’ shape (solid line
Figure 2 (a) and (c)). A perfect noiseless point cloud yields a 1-dimensional PD with two
points whose y-coordinates (persistence values) are much greater than 0. However, noisy
point clouds would lead to PDs which may or may not clearly expose the topological
‘fingerprint’ of prominent points depending on the level of noise. For example, observe
in Figure 2 (b) that the two higher persistence points are well separated from the noise
points close to the birth axis. But, that’s not the case in Figure 2 (d) where only
one prominent point is detected To that end, sample persistence diagram from a prior
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Figure 2: (a) and (c) point clouds (blue dots) generated by sampling the ‘eight’ shape
(solid line) and perturbing with Gaussian noise having variances 0.01I2 and 0.1I2, re-
spectively. (b) and (d) PDs for 1-dimensional features only of (a) and (c), respectively.

which carries the knowledge about topological signatures of the underlying truth would
be partially observed. Hence a point x in DX would be observed with probability α(x)
or vanish with probability (1−α(x)) as a result of noise in the data. Consequently, the
prior DX is decomposed as DX = DXO

∪ DXV
, where DXO

includes the points that
survived and DXV

otherwise.

Employing the theory of marked PPs, we establish the likelihood model by consid-
ering the association with the observed PDs, DY , samples of an i.i.d. cluster PP, DY ,
which is decomposed into DYO

and DYU
. DYO

consists of the points in the data (persis-
tence diagram) that are linked to DXO

via a pertinent marked PP with stochastic kernel
�(y|x) (as in Definition 2.9). Consequently, for the marked PP (DXO

,DYO
), the inten-

sity (spatial) likelihood is computed using the stochastic kernel �(y|x). The cardinality
likelihood is obtained by the conditional distribution of the observed PD DY given that
there are n points in DX . Typically, PDs DY consist of points that correspond to the
latent topology of the point cloud and that generate solely from noise. Consequently, the
points that arise from noise fail to associate with the prior and we call them unexpected
features. We model such points as generated by an i.i.d. cluster PP DYU

with intensity
density λDYU

and cardinality probability distribution ρDYU
.

Figure 3 gives a visual representation to illustrate the contribution of the prior and
the observations to the spatial and the cardinality distributions of PDs of the Bayesian
framework. For this, we superimpose two PDs: one is a sample from the prior (DX and
shown as triangles) and the other is the observed PD (DY and shown as dots) (see
Figure 3 (a)). More precisely, the PD of a synthetic point cloud is considered as DX

and the PD of a perturbed version of the point cloud is considered as DY . Any arbitrary
point x in DX is equipped with a probability of being observed, which we present using
blue (DXO

) and brown (DXV
) otherwise in Figure 3. Presumably, any point x ∈ DXO

is marked with an observed point in DYO
via the marked PPs. This implies that for

any possible configuration, the number of points in DXO
will be the same as DYO

as
shown in the blue box in Figure 3 (c). Also, we present the unexpected features DYU
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Figure 3: (a) A sample DX (triangles) from the prior PP DX and an observed PD DY

(dots). (b) is an example of the cardinality distribution of prior and observed PDs which
shows some possible configurations of the cardinality probability of DXO

,DXV
,DYO

,
and DYU

. (c-d) are similar color-coded representations of possible configurations of the
spatial density for the observed and vanished features in the prior, along with the marked
PP (DXO

,DYO
) and the unexpected features of the data DYU

.

(associated to noise) as red in Figure 3. We show different possible scenarios for the
relationship of the prior to the data likelihood for the cardinality distribution of PDs
in Figure 3 (b). As any point in DXV

has no association with points in the observed
PD DY , if all of the points in DX belong to DXV

, in the observed PD we encounter
only the unexpected DYU

(the first bar in Figure 3 (b)). This scenario is possible in the
presence of very high noise in data. As some points of DY are more likely to be marks
than others, we illustrate these instances with different levels for the blue parts of the
cardinality bars. The last two bars demonstrate cases where all of the points in DY are
expected to be marks of the prior features; this is encountered in the presence of very
low noise in data.

Figure 3 (c) and (d) show different possible scenarios for the relationship of the
prior to the data likelihood for the spatial distribution of points on a PD. The observed
DXO

and vanished DXV
features are presented as triangles inside of blue and brown

boxes respectively. All associations between points DXO
and DYO

together constitute
the marked PP which admits a stochastic kernel �(y|x). This indicates that the point
x may have any point y ∈ DY as its mark, but intuitively some marks should be more
likely than others. In Figure 3 (c) and (d) we give examples of these different matchings,
which are indicated by connected pairs inside of the blue box. Finally, the unexpected
features in DYU

are presented as dots inside of red boxes in Figure 3 (c) and (d). The
stochastic matching is used as likelihood basically to understand the nature of points
on the observed PDs. The posterior intensity and cardinality are given in the theorem
below, whose proof is delegated to Section 1.1 in the supplementary materials.

Theorem 3.1. For a random PD, denote the prior intensity and cardinality by λDX
and

ρDX
, respectively. Suppose α(x) is the probability of observing a prior feature, and DXO

and DXV
are two instances of observed and vanished features in the prior respectively.

If �(y|x) is the stochastic kernel that links DYO
with DXO

, and λDYU
and ρDYU

are the
intensity and cardinality of DYU

respectively, then for a set of independent samples of
PDs DY1:m = {DY1 , · · · , DYm} from DY with cardinalities K1, · · · ,Km, we have the
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following posterior intensity and cardinality:

λDX |DY1:m
(x) =

1

m

m∑
i=1

[
(1−α(x))λDX

(x)B(∅)+
∑

y∈DYi

α(x)�(y|x)λDX
(x)B(y)

λDYU
(y)

]
, (3.1)

and

ρDX |DY1:m
(n)

=
1

m

m∑
i=1

ρDX
(n)

(∑Ki

k=0(Ki − k)!Pn
k ρDYU

(Ki − k) (λDX
[1− α])n−k eKi,k(DYi)

)

〈ρDX
,Γ0,0

DYi
〉

,

(3.2)

where

B(∅)=
〈ρDX

,Γ0,1
DYi

〉
〈ρDX

,Γ0,0
DYi

〉
, B(y)=

〈ρDX
,Γ1,1

DYi
\y〉

〈ρDX
,Γ0,0

DYi
〉
, eKi,k(DYi)=

∑
SYi

⊆DYi

|SYi
|=k

∏
y∈SYi

λDX
[α�(y|x)]

λDYU
(y)

,

Γa,b
DYi

(τ)

=

(
min{Ki−a,τ}∑

k=0

(Ki − k − a)!P τ
k+b ρDYU

(Ki − k − a)(λDX
[1− α])τ−k−beKi−a,k(DYi)

)
,

(3.3)

f [ζ] =
∫
X ζ(x)f(x)dx is a linear functional, Pn

i is the permutation coefficient, and the

sum in Γ0,0
DYi

(n) of (3.2) goes from 0 to Ki.

In the posterior intensity expression given in (3.1), the two terms reflect the decom-
position of the prior intensity. Due to the arbitrary cardinality distribution assumption
for i.i.d. cluster point processes, the two terms are also weighted by two factors B(∅) and
B(y) respectively. The first term is for the vanished features DXV

, where the intensity is
weighted by 1−α(x) and B(∅). The factor B(∅) is encountered since there is no y ∈ DYi

to represent the vanished features DXV
. The second term in (3.1) corresponds to the

observed part DXO
and is weighted by α(x) and B(y). The factor B(y) depends on

specific y ∈ DYi to account for the associations between the features in DXO
and those

in DYi . To be more precise, if x ∈ DX is observed, it can be associated with any of the
y ∈ DYi and the remaining points of DYi , defined as DYi \ y, are considered to either be
observed from the rest of the features in DX or originated as unexpected features DYU

.

The posterior cardinality is given in (3.2). The associated likelihood is given as the
sum from k = 0 to Ki, where Ki is the number of features in DYi . This provides the
likelihood of each observed PD DYi given that there are n points in DX . In particular,
for k = 0, the cardinality term for the unexpected feature reduces to ρDYU

(Ki) and
the intensity term for the vanished feature reduces to (λDX

[1− α])n. This implies that
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if the observed PD consists only of unexpected features then all of the points in the
prior are most likely to have vanished. As the value of k increases, contributions from
the unexpected features and vanished features decrease, indicating the presence of more
associations between prior and observed features through the marked point process
(DXO

,DYO
).

3.1 Closed Form of Posterior Estimation

Next, we present a closed form solution to the posterior intensity and cardinality equa-
tion of Theorem 3.1 by considering a Gaussian mixture density for the prior intensity
and a binomial distribution for the prior cardinality. Below we specify the necessary
components of Theorem 3.1 to derive these closed forms.

(M1) The expressions for the prior intensity λDX
and cardinality ρDX

are:

λDX
(x) =

N∑
l=1

cDX

l N ∗(x;μDX

l , σDX

l I), and ρDX
(n) =

(
N0

n

)
ρnx(1− ρx)

No−n, (3.4)

where N is the number of components of the Gaussian mixture, μDX
i is the mean which

is a 2× 1 vector of birth and persistence coordinates, and σDX
i I is the 2× 2 covariance

matrix of i-th component. Since PDs are modeled as point processes on the space W not
on R2, the Gaussian densities are restricted to W as N ∗(z; υ, σI) := N (z; υ, σI)1W(z),
with mean v and covariance matrix σI, and 1W is the indicator function of W. N0 ∈ N

is the maximum number of points in the prior PP and ρx ∈ [0, 1] is the probability of
one point to fall in the space W.

(M2) The likelihood function �(y|x), which is the stochastic kernel of the marked i.i.d.
cluster PP (DXO

,DYO
), takes the form

�(y|x) = N ∗(y;x, σDYO I), (3.5)

where σDYO is the covariance coefficient that quantifies the level of confidence in the
observations.

(M3) The i.i.d. cluster PPDYU
, consisting of the unexpected features in the observation,

has intensity λDYU
and cardinality ρDYU

. The intensity for DYU
takes the form

λDYU
(ybirth, ypers) = μ2

DYU
exp(−μDYU

(ybirth + ypers)). (3.6)

μDYU
controls the rate of decay away from the origin. This distribution for λDYU

consid-
ers points closer to the origin more likely to be unexpected features. Points close to the
origin in PDs are often created either from the spacing between the point clouds due to
sampling or from the presence of noise in the data. Typically points with higher persis-
tence or higher birth represent significant topological signatures, so for our analysis we
count them as less likely to be unexpected. The cardinality distribution is

ρDYU
(n) =

(
M0

n

)
ρny (1− ρy)

M0−n, (3.7)
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where M0 ∈ N is the maximum number of points in the PP DYU
and ρy ∈ [0, 1] is the

probability of one point to fall in the space W.

Proposition 3.1. Suppose that λDX
, ρDX

, �(y|x), λDYU
, and ρDYU

satisfy the assump-
tions (M1)–(M3), and α is fixed. Then the posterior intensity and cardinality of Theorem
3.1 are given by:

λDX |DY1:m
(x) =

1

m

m∑
i=1

[
(1− α)λDX

(x)B(∅) +
∑

y∈DYi

N∑
l=1

C
x|y
l N ∗(x;μ

x|y
l , σ

x|y
l I)

]
(3.8)

and

ρDX |DY1:m
(n) =

1

m

m∑
i=1

ρDX
(n)Γ0,0

DYi
(n)

〈ρDX
,Γ0,0

DYi
〉

, (3.9)

where Γa,b
DYi

(τ), B(∅), and B(y) are as in Theorem 3.1 with

eKi,k(DYi) =
∑

SYi
⊆DYi

,|SYi
|=k

∏
y∈SYi

α〈cDX , q(y)〉
λDYU

(y)
; ql(y) = N (y;μDX

l , (σDYO + σDX

l )I);

C
x|y
l =

B(y) αcDX

l ql(y)

λDYU
(y)

; μ
x|y
l =

σDX

l y + σDYOμDX

l

σDX

l + σDYO

; and σ
x|y
l =

σDYO σDX

l

σDX

l + σDYO

.

We present the proof in Section 2 of the supplementary materials. One can see that
the intensity estimation in (3.8) is in the form of a Gaussian mixture, and hence it is ob-
tained from a conjugate family of priors. However, we do not observe a similar property
for the cardinality estimation. A detailed example of these estimations is provided in
Section 3.2. The cardinality distribution in (3.9) is computed for infinitely many values
of n, which is unattainable. Hence, for the practical application, we must truncate n at
some Nmax such that Nmax is sufficiently larger than the number of points in the prior
PP. Without loss of generality, we can choose Nmax = N0.

3.2 Sensitivity Analysis

We present the following example to (i) illustrate the estimation of the posterior using
(3.8) and (3.9), (ii) examine the effects of the choice of prior intensity and cardinality
on the posterior distributions, and (iii) examine the effects of likelihood function and
unexpected features parameters on the posterior distributions. To reproduce these re-
sults, the interested reader may download our R-package BayesTDA. We consider point
clouds generated from a polar curve that contains two inner loops (see Figure 4 (a)) and
focus on 1-dimensional features in their corresponding PDs as they are the important
homological features of this shape.

Choice of Priors We commence by defining an i.i.d cluster PP with three types of prior
intensities: (i) informative, (ii) weakly informative, and (iii) uninformative, and two

https://github.com/maroulaslab/BayesTDA
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Parameters for (M1)

Prior μDX
i σDX

i cDX
i N0

Informative
(0.2, 0.55)

(0.17, 0.35)
0.0018
0.0018

2
2

15

Weakly Informative
(0.2, 0.55)

(0.17, 0.35)
0.005
0.003

2
2

15

Unimodal Uninformative (0.5, 0.5) 0.5 1 15

Table 1: List of parameters for (M1). We take into account three types of prior intensi-
ties: (i) informative, (ii) weakly informative, and (iii) uninformative, and two types of
prior cardinalities: (i) informative and (ii) uninformative.

types of prior cardinalities: (i) informative and (ii) uninformative. The prior intensities
are considered to be Gaussian mixtures as discussed in (M1). We present all intensity
maps on a scale from 0 to 1 throughout this example to ensure uniformity. Due to
the symmetric nature of the polar curve, in a noiseless scenario, the corresponding PD
consists of two points each with multiplicity two. Hence we use two Gaussian components
centered at the two points with a very small variance and weights cDX

i = 2 for the
informative intensity (II) (see Figures 4, 6–7 (b)). The weakly informative intensity
(WII) also has two Gaussian components centered at the same points as II with a
slightly higher variance ((see Figures 4, 6–7 (c))). The informative cardinality (IC) is
determined by using a discrete distribution with the highest probability at cardinality 4
(see Figures 4, 6–7 (e)). On the other hand for the uninformative intensity (UI), we use
one Gaussian component centered at an arbitrary point with higher variance than the
informative cases as shown in Figures 4, 6–7 (d). Similarly, the uninformative cardinality
(UC) follows a discrete uniform distribution (see Figures 4, 6–7 (i)). We present the list
of parameters used to define the prior PP in Table 1. We examine the cases below.

The observed PDs are generated from point clouds sampled uniformly from the
polar curve and perturbed by varying levels of Gaussian noise with variances 0.001I2
(Figure 4 (a)), 0.005I2 (Figure 6 (a)), and 0.01I2 (Figure 7 (a)) which are considered
in Case-1, Case-2, and Case-3 respectively. Consequently, their PDs exhibit distinctive
characteristics such as four prominent features with high persistence and very few spu-
rious features, four prominent features with medium persistence and several spurious
features, and three prominent features with medium persistence and many spurious
features.

Case-1 The point cloud considered here is shown in Figure 4 (a). The 1-dimensional
features in the corresponding PD are presented as black triangles overlaid on the poste-
rior intensity plots. We examine the posterior intensity and cardinality for six different
combinations of priors – (II, IC), (WII, IC), (UI, IC), (II, UC), (WII, UC), and (UI,
UC). As the PD consists of a very low number of spurious features, we observe that
the posterior computed from any combination of the six predicts the existence and
position of all 1-dimensional features accurately (Figure 4 (f)–(h) and (j)–(l)). The un-
informative prior cardinality also produces very low variance in the posterior cardinality
estimation.
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Figure 4: Posterior intensities and cardinalities obtained for Case-1 by using Proposition
3.1. The 1-dimensional features in the corresponding PD are presented as black triangles
overlaid on the posterior intensity plots. The color map represents scaled intensities.

Figure 5: Cardinality statistics for
the posterior obtained by using the
parameters in Case-1 for Poisson
and i.i.d. cluster point process.

Furthermore, for this case we present a com-

parison between the cardinality statistics given by

using i.i.d. cluster point process characterization

of the PD presented herein and a Poisson point

process framework presented in Maroulas et al.

(2020) that estimates the number of homological

features by integrating the estimated posterior in-

tensity. As discussed earlier, the Poisson PP frame-

work approximates the cardinality as a Poisson

distribution, and consequently this estimation pro-

duces higher variability as the number of points

increases. However, the i.i.d. cluster PP character-

ization leads to accurate estimation of the cardi-

nality with tighter variance (see Figure 5).
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Cases Parameters for (M2) Parameters for (M3)
σDYO μDYU ρy M0

Case-1 (e),(f),(h),(i) 0.01 20 0.5 15

Case-2
(e),(f),(h),(i)

(k)

(l)

0.01
0.001
0.001

20
25
16

0.5 15

Case-3 (e),(f),(h),(i)

(k)–(l)
0.01
0.001 20

0.5
0.6

15

Table 2: List of parameters for (M2) and (M3). For Cases-1, 2, and 3, we consider point
clouds sampled from the polar curve and perturbed by Gaussian noise having variances
0.001I2, 0.005I2, and 0.01I2 respectively.

Case-2 We consider all of the priors as in Case-1. The point cloud used for this case
(Figure 6 (a)) is more perturbed around the polar curve than Case-1 (Gaussian noise
with variance 0.005I2). The associated PD, presented as black triangles overlaid on the
posterior intensity plots, exhibits more spurious features. The parameters used for this
case are listed in Table 2. First, we estimate the posterior intensity and cardinality
for all six combinations using the same parameters as in Case-1, and the results are
presented in Figure 6 (f)–(h) and (j)–(l). For the combinations (II, IC), (WII, IC), and
(UI, IC) of priors, the posterior intensity and cardinality can accurately estimate the
holes with different variance levels. As the WII equipped with variance higher than II,
the variance of posterior cardinality obtained from (WII, IC) is slightly higher than
that of (II, IC). However, due to the presence of several spurious features the three
combinations, (II, UC), (WII, UC), and (UI, UC), slightly overestimate the cardinality.
Next, to illustrate the effect of observed data on the posterior, we adjust two parameters,
the variance of the likelihood σDYO

and the decay parameter of the unexpected features,
μDYU

. Recall that the intensity density of the PP DYU
, consisting of the unexpected

features in the observation, is exponential (Equation (3.6)), where μDYU
controls the

rate of decay away from the origin. We present the updated posteriors from the three
combinations of priors (II, UC), (WII, UC), and (UI, UC). By decreasing the variance
of the likelihood σDYO

, the posterior intensities rely more on the observed features in
the PD (see Figure 6 (n)–(p)). On the other hand, by adjusting the decay parameter,
we enable our model to recognize the presence of several spurious features in PD. This
improves the estimation of posterior cardinality, which is evident in Figure 6 (n)–(p).

Case-3 In this case we consider the point cloud (Figure 7 (a)), which is very noisy
(Gaussian noise with variance 0.01I2). Due to the noise level, we encounter only three
points with medium prominent persistence, and there are many spurious features. All
the priors are the same as in Case-1 and Case-2. The associated PD is presented as
black triangles overlaid on the posterior intensity plots. The parameters used for this
case are listed in Table 2. First, we estimate the posterior intensity and cardinality
for all six combinations using the same parameters as in Case-1, and the results are
presented in Figure 7 (f)–(h) and (j)–(l). For the combinations (II, IC), (WII, IC),
and (UI, IC) of priors, the posterior intensity and cardinality can accurately estimate
the position and number of 1-dimensional features with different variance levels. The
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Figure 6: Posterior intensities and cardinalities obtained for Case-2 by using Proposition
3.1. The 1-dimensional features in the corresponding PD are presented as black triangles
overlaid on the posterior intensity plots. The color map represents scaled intensities.

posterior estimates from (WII, IC) show higher variability than that of (II, IC). Due to
the presence of several spurious features, the other three combinations (II, UC), (WII,
UC), and (UI, UC) overestimate the cardinality distribution. Also, in the (UI, UC) case
the posterior intensity estimates the location of the hole with higher variance and is
skewed towards the noise features. Next, to illustrate the effect of the observed features
on the posterior, we adjust two parameters, the variance of the likelihood σDYO

and the
unexpected feature cardinality parameter ρy in the posterior estimation for the three
combinations (II, UC), (WII, UC), and (UI, UC). By decreasing σDYO

we notice that
the posterior intensities rely more on the observed features in the PD (see Figure 7 (n)–
(p)). On the other hand by increasing ρy the model is able to identify that there are
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Figure 7: Posterior intensities and cardinalities obtained for Case-3 by using Proposition
3.1. The 1-dimensional features in the corresponding PD are presented as black triangles
overlaid on the posterior intensity plots. The color map represents scaled intensities.

more spurious features in this PD than that of Case-1 and Case-2. This improves the
estimation of posterior cardinality (see Figure 7 (n)–(p)).

4 Classification of Actin Filament Networks

In this section, we classify 150 simulated actin filament networks in plant cells. Such
filaments are key in the study of intracellular transportation in plant cells, as these
bundles and networks make up the actin cytoskeleton, which determines the structure
of the cell and enables cellular motion. In particular, three different classes of networks
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Figure 8: (a)–(c) are examples of PDs generated from networks in C1, C2, and C3 respec-
tively. (d)–(f) are their corresponding PDs.

with different numbers of cross linking proteins were considered. The number of cross
linking proteins in the network affects the shape it. The networks were created using
the AFINES (Active Filament Network Simulation) stochastic simulation framework
introduced in Freedman et al. (2018, 2017), which models the assembly of the actin
cytoskeleton. In the data set the location of beads that represents segments of individual
filaments are known. The value of each parameter in the simulation process is chosen
to mimic real actin filaments. Hence our Bayesian topological learning method herein
can be implemented directly to real actin filament network data sets.

Higher numbers of cross-linking proteins produce local geometric signatures (Tang
et al. (2014)). However, the differences are not always notable due to the presence
of noise in the data, which is a routine scenario for real experiments. To that end,
we adopt a data-driven scheme for classification using an uninformative flat prior. We
learn the networks in training sets by means of their respective PDs as they distill
salient information about the network patterns with respect to connectedness and empty
space (holes), i.e. we can differentiate between filament networks by examining their
homological features.

The three classes generated with the cross-linking proteins numbers ofN = 825, 1650,
and 3300 are denoted as C1, C2, and C3, respectively (see Figure 8 (a)–(c) for exam-
ples). From the viewpoint of topology, class C2 and class C3 contain more prominent
holes than class C1. Also, their respective PDs have different cardinalities. Hence, this
topological aspect yields an important contrast between these three classes. To cap-
ture these differences we employ the following Bayes factor classification approach
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Parameters for (M1)

μDX
i σDX

i cDX
i N0 ρDX

(1, 2) 6 1 25 24/25
Parameters for (M2) Parameters for (M3)

σDYO μDYU M0 ρy α
0.01 1 25 2/25 0.95

Table 3: List of parameters used for the classification.

by relying on the closed form estimation of posterior distributions discussed in Sec-
tion 3.1. A PD D that needs to be classified is a sample from an i.i.d. cluster point
process D with intensity λD and cardinality ρD and its probability density has the
form pD(D) = ρD(|D|)

∏
d∈D λD(d). For a training set QY k := DY k

1:n
for k = 1, · · · ,K

from K classes of random diagrams DY k , we obtain the posterior intensities from the
Bayesian framework using Proposition 3.1. The posterior probability density of D given
the training set QY k is given by

pD|D
Y k

(D|QY k) = ρD|D
Y k

(|D|)
∏
d∈D

λD|Q
Y k

(d), (4.1)

and consequently, the Bayes factor is obtained by the ratio BF ij(QY i , QY j ) =
ρD|D

Y i
(D|QY i )

ρD|D
Y j

(D|QY j )
for a class i, j = 1, · · · ,K such that i 
= j. For every pair (i, j), if

BF ij(QY i , QY j )>c, we assign one vote to classQY i , or otherwise forBF ij(QY i , QY j ) <
c. The final assignment of the class of D is obtained by a majority voting scheme.

Figure 9: The intensity density
for the unexpected feature PP
used in classifying the filament
networks.

PDs with 1-dimensional features (see Figure 8 (d)–
(f) for an example of each class) were created for each
actin network through Rips filtration as discussed in
Section 2.1, which were then used as input for the
Bayes factor classification scheme of (4.1). The num-
ber of 1-dimensional features in the dataset is large and
the posterior estimation for this dataset is not compu-
tationally attainable. To mitigate this issue, we sub-
sample the dataset to reduce the size of it. Precisely,
our subsampled dataset consists of 25 points from each
of the PDs obtained from the 150 simulated filament
networks. We found that taking more than 25 points
from each of the PDs did not improve the classification,
and typically led to a very expensive computational
scheme. Table 3 summarizes the choices of parameters
for the model. The intensity density of DYU

used for
the classification is presented in Figure 9.

One intuitive interpretation of the unexpected features is that they represent the
presence of noise in the dataset, consequently they often have very short persistence. On
the other hand, the dataset of filament networks routinely consists of several incomplete
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loops, which imply that points with late birth and short persistence are expected from
the underlying topology. Since we use 10-fold cross validation to estimate the model’s
accuracy, the posterior is calculated using the training set for each fold and each class.
Then for each instance, we assign the class by using the majority voting scheme. We
compute the resulting area under the receiver operating characteristic (ROC) curves
(AUCs) and the results are listed in Table 4. The AUC across 10-folds was 0.925.
Further details on the classification problem are given in the supplementary materials.

4.1 Comparison with Other Methods

We compared our method with several other machine learning algorithms to bench-
mark against them. We mainly pursued two avenues – (i) features selected using TDA
methodology, and (ii) features selected using non-TDA methodology. The TDA method-
ologies are persistence images (PIs) (Adams et al., 2017), persistence landscapes (PLs)
(Bubenik, 2015), and Euler characteristic curves (ECCs) (Richardson and Werman,
2014). These summaries have been widely implemented as they are amenable to the
existing machine learning methodologies. The main theme of these summaries is the
extraction of a pertinent feature vector and implement a classifier trained using ma-
chine learning algorithms. Here we input these topological summaries as features for
three different optimized classification algorithms: random forest (RF), support vector
machine (SVM), and neural network (NN).

We considered a vector of 2500 values at which the PLs of order 1, 2, and 3 are
evaluated, and found that the third order PL to be the most efficient summary for
this classification task. In order to compute the PIs, we discretize the domain space
into a 50 × 50 grid with a spread of 0.1. The linear ramp function is used to produce
weights for computing PIs. We explore the classification problem using PIs with and
without incorporating the linear weights and found that the PIs without any weights
provide better accuracy than those with weights. This is justified as the linear ramp
function assigns more weights to the higher persistence points leaving the local features
to be insignificant. Another topological summaries we implemented are ECCs from
0 and 1-dimensional persistence diagrams where the filtration were constructed from
the range of birth and persistence values. We optimally tune the parameters of SVM
using a grid search. Precisely, the parameter γ of the radial basis kernel, that is the
inverse of the standard deviation of the kernel, was optimally selected from a range of
0.1 to 1 with a spread of 0.1. In order to choose the optimal parameters for NN, we
performed an extensive grid search for all parameters. However, we found that out of
all the parameters, the only two that can potentially improve the classification accuracy
are the number of hidden layers and the maximum number of iterations. The optimal
performance was achieved for PLs with 20 layers and maximum iterations of 10, for
PIs with 3 layers and maximum iterations of 200, and for ECCs with 20 layers and
maximum iterations of 10. For the RF algorithm we employ 500 trees.

Additionally, we compare our method with machine learning algorithms where the
features are selected using a non-TDA method. As the filament networks pose a very
definite spatial structure, we found the most useful method to extract the feature is the
Raster images Hijmans (2019). In particular, the raster image represents data by using
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Figure 10: (a) An example filament network from C1. (b) The network in (a) converted
to a raster image.

a grid with a value assigned for each pixel. The assigned value can reflect a wide variety
of information. In our analysis, we discretize the domain of a filament network into 2500
grid cells identified by 50 rows and 50 columns, and then count the number the points
of each grid cell. This approach not only converts each filament network into a raster
image which in turn is used as input to machine learning algorithms but also captures
the definite spatial structures such as the presence of empty space and connectedness
in a very efficient manner. We present an example in Figure 10. The parameters for
the machine learning algorithms are tuned in a similar fashion, i.e., the parameters are
optimally tuned using a grid search. The optimal performance for NN was achieved with
5 layers and maximum iterations of 200. The results of this comparison are in Table 4,
which showcases that our method outperforms the other methods.

Method AUC Method AUC
Bayesian Framework 0.925 Random Forest ECC 0.81
Random Forest PI 0.90 SVM ECC 0.78

SVM PI 0.85 NN ECC 0.77
Neural Net PI 0.88 Random Forest Raster 0.69

Random Forest PL 0.82 SVM Raster 0.77
SVM PL 0.72 Neural Net Raster 0.6

Neural Net PL 0.79

Table 4: Comparison of methods for filament networks.

5 Discussion

This paper has proposed a generalized Bayesian framework for PDs by modeling them
as i.i.d. cluster point processes. Our framework provides a probabilistic descriptor of
the diagrams by simultaneously estimating the cardinality and spatial distributions of
points on a PD. In this work we focus on developing Bayesian model for PDs only.
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A fusion of different topological summaries engaged within a Bayesian perspective is a
worthwhile future direction.

It is noteworthy that our Bayesian model directly employs PDs, which are topo-
logical summaries of data, for defining a substitution likelihood rather than using the
entire point cloud. This deviates from a strict Bayesian model, as we consider the
statistics of PDs rather than the underlying datasets used to create them; however, our
paradigm incorporates prior knowledge and observed data summaries to create poste-
rior distributions, analogous to the notion of substitution likelihood in Jeffreys (1961).
The general relationship between the likelihood models related to point cloud data and
those of their corresponding persistence diagrams remains an important open problem.
We demonstrate that a valid update of the prior distribution on persistence diagrams
to the posterior can be made by substitution of the likelihood through a topological
summary of the data rather than a traditional likelihood function. Indeed, the idea of
utilizing topological summaries of point clouds in place of the actual point clouds proves
to be a powerful tool with applications in wide-ranging fields. This process incorporates
topological descriptors of point clouds, which simultaneously decipher essential shape
peculiarities and avoid unnecessarily complex geometric features.

We derive closed forms of the posterior for realistic implementation, using Gaus-
sian mixtures for the prior intensity and binomials for the prior cardinality. A detailed
example showcases the posterior intensities and cardinalities for various interesting in-
stances created by varying parameters within the model. This example exhibits our
method’s ability to recover the underlying PD. Thus, the Bayesian inference developed
here opens up new avenues for machine learning algorithms and data analysis techniques
to be applied directly to the space of PDs. Indeed, we derive a classification algorithm
and successfully apply it to simulated filament networks data, while we compare our
method with other TDA and machine learning approaches successfully.

Supplementary Material

Supplementary material for: Bayesian Topological Learning for Classifying the Structure
of Biological Networks (DOI: 10.1214/21-BA1270SUPP; .pdf).
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