
Bayesian Analysis (2022) 17, Number 2, pp. 491–514

Posterior Consistency of Factor Dimensionality
in High-Dimensional Sparse Factor Models∗

Ilsang Ohn† and Yongdai Kim‡

Abstract. Factor models aim to describe a dependence structure among high-
dimensional random variables in terms of a low-dimensional unobserved random
vector called a factor. One of the major practical issues of applying the factor
model is to determine the factor dimensionality. In this paper, we propose a com-
putationally feasible nonparametric prior distribution which achieves the posterior
consistency of the factor dimensionality. We also derive the posterior contraction
rate of the covariance matrix which is optimal when the factor dimensionality of
the true covariance matrix is bounded. We conduct numerical studies that illus-
trate our theoretical results.

Keywords: covariance matrix, factor dimensionality, factor model, Indian buffet
process, posterior consistency, posterior contraction rate.

1 Introduction

Factor models describe a dependence structure among a high-dimensional correlated
random vector in terms of a low-dimensional unobserved random vector called a latent
factor or just factor. To be specific, the (linear) factor model considered in this paper
assumes that a p-dimensional random vector Y is distributed as

Y|Z = z ∼ N(Bz, σ2I), Z ∼ N(0, I), (1.1)

where B is a p×K factor loading matrix, Z is a K-dimensional factor with K < p, and
σ2 > 0 is a noise variance. Under this model, the marginal distribution of Y is given by

Y ∼ N(0,Σ), Σ := BB� + σ2I.

That is, the distribution of Y is determined by the structured covariance matrix BB�+
σ2I. This decomposition of the covariance matrix leads to the substantial reduction of
the model complexity, and thus the factor model has been applied to a broad range of
areas including high-dimensional covariance estimation (Fan et al., 2008, 2011, 2018),
high-dimensional supervised learning (Fan et al., 2017; Kneip and Sarda, 2011; Silva,
2011; Stock and Watson, 2002) and multiple testing under arbitrary dependence (Fan
et al., 2012, 2019; Leek and Storey, 2008), and popularly used in various application
fields such as economy, psychology and gene expression studies (e.g., Bernanke et al.,
2005; Carvalho et al., 2008; Forni et al., 2003; Hochreiter et al., 2006; McCrae and John,
1992).
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A major practical issue of using the factor model is to determine the factor di-
mensionality K. We need to select an appropriate factor dimensionality to optimize
the bias-variance trade-off. In addition, the factor dimensionality is of interest itself
in practice since each factor could have a physical interpretation (e.g., the number
of interacting pathways in genomics and the number of personality traits in psychol-
ogy).

Frequentist approaches typically choose the factor dimensionality before estimating
the loading matrix. One of the widely used methods is to fit the factor models for
different values of K and to select the best K based on a model selection criterion (Bai
and Ng, 2002, 2007). Alternatively, the factor dimensionality can be chosen based on
the eigenvalues of the empirical covariance matrix (Ahn and Horenstein, 2013; Lam and
Yao, 2012; Onatski, 2010).

Various priors have been developed for Bayesian analysis of the factor model with
unknown factor dimensionality. Examples are spike and slab priors with the Indian
buffet process (IBP) (Chen et al., 2010; Knowles et al., 2011; Rockova and George, 2016)
and shrinkage type priors with the degree of shrinkage increasing across the column
index (Bhattacharya and Dunson, 2011; Srivastava et al., 2017).

Large sample properties of the posterior distribution of the factor model also have
received much attention. Pati et al. (2014) investigated the posterior contraction rate of
the covariance matrix with respect to the spectral norm for a sparse factor model where
most of the entries in the factor loading matrix are zero. They showed that the derived
posterior contraction rate is near-optimal in the minimax sense, up to a logarithm factor
even when p is much larger than n. An improved contraction rate was obtained by Xie
et al. (2018) and Ning (2021) proved that the variational posterior can also achieve this
improved rate.

However, these studies focused on the covariance matrix but not on the factor dimen-
sionality. Rockova and George (2016) considered the Bayesian factor model with a spike
and slab prior with the IBP proposed by Ghahramani and Griffiths (2005), and proved
that the posterior probability that the factor dimensionality is bounded by a certain
quantity converges to one. But, the posterior consistency of the factor dimensionality is
still unsolved.

Gao and Zhou (2015) studied a Bayesian sparse principal component analysis (PCA)
model, which is equivalent to the factor model with the constraint that the columns of
the loading matrix are orthogonal to each other. They derived posterior contraction
rates of the covariance matrix and the principal subspace estimation with respect to
the spectral norm and proved the posterior consistency of the rank of the covariance
matrix. Due to the orthogonality of the loading matrix, the rank of the covariance matrix
is equal to the factor dimensionality. But there is no easy computational method to
approximate the posterior distribution mainly because of the orthogonality constraint
on the loading matrix.

The main contribution of this paper is to propose a Bayesian factor model which
is computationally tractable and at the same time achieves the posterior consistency
of the factor dimensionality. For this purpose, we consider a spike and slab prior with
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the two-parameter IBP which is an extension of the one-parameter IBP in Ghahramani
and Griffiths (2005). Bayesian factor models with two-parameter IBP have been studied
by Chen et al. (2010) and Paisley and Carin (2009) but no theoretical study has been
done. In this paper, we develop an easily implementable Markov chain Monte Carlo
(MCMC) algorithm for our proposed Bayesian model, which is similar to that for the
model of Ghahramani and Griffiths (2005), and prove the posterior consistency of the
factor dimensionality. In addition, as a by-product, we derive the posterior contraction
rate of the covariance matrix which is similar to or sometimes better than other Bayesian
factor models.

This paper is organized as follows. In Section 2, we introduce the assumptions on
the true model. Then we explain the proposed prior and its properties. In Section 3, we
provide posterior asymptotic results. In Section 4, we provide an MCMC algorithm for
our proposed Bayesian model. In Section 5, we conduct simulation studies to supplement
our asymptotic results and show superiority of the proposed method. Real data analysis
is conducted in Section 6. Concluding remarks follow in Section 7.

1.1 Notation

Let R be the set of real numbers and N be the set of natural numbers. For the positive
integer p, we let [p] := {1, 2, . . . , p}. For a real number x, let �x� denote the largest
integer less than or equal to x and �x� denote the smallest integer larger than or equal
to x. For two real numbers a and b, we write a∨ b := max{a, b} and a∧ b := min{a, b}.
For two positive sequences {an}n∈N and {bn}n∈N, we write an � bn if there exists a
positive constant C > 0 such that an ≤ Cbn for any n ∈ N. Moreover, we write an � bn
if bn � an and write an � bn if an � bn and an � bn. We denote by 1(·) the indicator
function. Let Γ(a) denote the gamma function and B(b, c) denote the beta function,
where a, b and c are positive constants. Let 0 and 1 denote the vector of 0’s and the
one of 1’s, respectively.

For a set S, |S| denotes its cardinality. For a p-dimensional vector β ≡ (βj)j∈[p], let
‖β‖0 :=

∑p
j=0 1(βj �= 0). We denote βS := (βj : j ∈ S) for a subset S ⊂ {1, . . . , p}.

We let λ1(Σ) ≥ λ2(Σ) ≥ · · · ≥ λp(Σ) be the ordered eigenvalues of a p × p matrix Σ.
For a p × k matrix A ≡ (ajh)j∈[p],h∈[k], we denote the spectral norm of the matrix A
by ‖A‖ and the Frobenius norm by ‖A‖F. That is, ‖A‖ := supx∈Rk:‖x‖2=1 ‖Ax‖2 =

λ
1/2
1 (A�A) and ‖A‖F :=

√
tr(A�A). Also we use ‖A‖1 to denote �1 norm of vec(A),

i.e., ‖A‖1 :=
∑p

j=1

∑k
h=1 |ajh|.

2 Assumptions and prior distribution

2.1 Assumptions

Throughout this paper, we assume that for each n ∈ N, we observe n independent
and identically distributed pn dimensional observations Y1:n ≡ (Y1, . . . ,Yn) from the
normal distribution with mean 0 and covariance matrix Σ0n and we model the data
using the model (1.1).
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We introduce some regularity conditions on the sequence of the true covariance
matrices {Σ0n}n∈N. First, we consider sparse loading matrices. Since we want to deal
with a high dimensional case where pn is much larger than n, we assume that the true
loading matrix is sufficiently sparse to make the factor loading estimable. Define the
class of p×k0 matrices with the sparsity condition that the number of nonzero elements
of each column is at most s,

B(p, k0, s) :=
{
B ≡ (β1, . . . ,βk0) ∈ R

p×k0 : max
1≤h≤k0

‖βh‖0 ≤ s

}
. (2.1)

The above class of sparse loading matrices is also considered by Pati et al. (2014) and
Gao and Zhou (2015). The parameter space for the true covariance matrix we consider
is given by

C(p, k0, s, c) :=
{
Σ ≡ BB�+σ2I : B ∈ B(p, k0, s), σ2 > c0, ‖Σ‖ ≤ c

}
(2.2)

for some universal constant c0 > 0. Here the lower bound σ2 > c0 is introduced to
prevent that Σ0n becomes ill-conditioned.

We assume that for each sample size n ∈ N, the true covariance matrix Σ0n belongs
to the class C0n := C(pn, sn, k0n, cn), where the sequence of the classes {C0n}n∈N satisfies
the following assumptions:

(A1) pn > n.

(A2) c2ns
2
nk0n log pn/n = o(1).

(A3) 1 ≤ k0n < pn/2.

(A4) cn � sn.

The assumption (A1) means that we consider high dimensional models. However,
our theoretical analysis can be applied to low dimensional cases where n > pn. In the low
dimensional cases, the log pn factors in the results are replaced with logn. The quantity
c2ns

2
nk0n log pn/n in (A2) is equal to the square of the posterior contraction rate of the

covariance matrix under our proposed prior with respect to the spectral norm. In (A3),
we assume that the true model has at least one factor and the factor dimensionality
does not exceed half of the number of observed variables for technical reasons.

The assumption (A4) implies that we allow the largest eigenvalue ofΣ0n to grow with
sample size. The bound cn � sn is mild in view of random matrix theory. Suppose that
B̃ is a sn×k0n random matrix whose entries are independent centered random variables
with finite fourth moments. Then by Theorem 2 of Latala (2005), E‖B̃‖ � √

sn+
√
k0n.

If k0n � sn, we have that E‖B̃B̃�‖ � sn. Pati et al. (2014) and Rockova and George
(2016) assumed the same condition, while the other works on the Bayesian covariance
estimation assumed the stronger condition that the largest eigenvalue of Σ0n is bounded
(Gao and Zhou, 2015; Xie et al., 2018).
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2.2 Prior and its properties

Let βjk be the (j, k) entry of the p×∞-dimensional loading matrix B. We consider the
following prior

βjk|ξjk ind∼ (1− ξjk)δ0 + ξjkLaplace(1), j ∈ [p], k ∈ N, (2.3)

ξjk|θk ind∼ Bernoulli(θk), j ∈ [p], k ∈ N, (2.4)

θk :=

k∏
h=1

νh, k ∈ N where νh
iid∼ Beta(α, κ+ 1), h ∈ N, (2.5)

where α > 0 and κ ≥ 0 are hyperparameters. Note that {ξjk} is the stick-breaking
representation of the two-parameter IBP (Teh et al., 2007). Thus, we refer to the above
distribution on B as SSIBPp(α, κ), which is an abbreviation of spike and slab Indian
buffet process.

The (one-parameter) IBP introduced by Ghahramani and Griffiths (2005), which is
the prior on {ξjk} with κ = 0, has been popularly used as a prior on the nonzero entries
of the loading matrix. The prior distribution of Knowles et al. (2011) for B is almost
the same as the SSIBP prior except that κ = 0 and the Laplace distribution in (2.3) is
replaced by the normal distribution. Rockova and George (2016) used the IBP for the
prior of ξjk, but they replace δ0 in the first line of (2.3) with the Laplace distribution
with a very small dispersion. This replacement enables us to use the fast and scalable
expectation-maximization algorithm that estimates a posterior mode. We consider the
two parameter IBP in order to get the posterior consistency of the factor dimensionality
by choosing κ appropriately. Although Chen et al. (2010) and Paisley and Carin (2009)
used the two-parameter IBP, no theoretical study has been done.

In the following three subsections, we provide some theoretical properties of the
SSIBP prior. All the proofs of the results in this section are deferred to Appendix A.1
in the supplementary material (Ohn and Kim, 2021).

Prior distribution of the factor dimensionality

We derive an upper bound of the tail probability of the factor dimensionality induced
by the SSIBP prior. We first define the factor dimensionality of the p×∞ dimensional
loading matrix B.

Definition 2.1. For a given p × ∞ loading matrix B ≡ (β1,β2, . . . ), we define the
factor dimensionality K+(B) as the number of nonzero columns of B, i.e.,

K+(B) :=
∞∑
k=1

1
(
‖βk‖0 ≥ 1

)
,

where βk denotes the k-th column of B.

The following lemma shows that the tail probability of the factor dimensionality is
exponentially decaying as the factor dimensionality increases.
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Lemma 2.1. If B ∼ SSIBPp(α, κ) for α > 0 and κ ≥ 0, then for any k ∈ N

Π(K+(B) > k) ≤ Cα,κp

(
α

α+ κ+ 1

)k+1

, (2.6)

where Cα,κ := 2((α+ κ+ 1)/(κ+ 1) + 4/3). In particular, if α ≤ κ+ 1, then

Π(K+(B) > k) ≤ 6p

(
α

α+ κ+ 1

)k+1

. (2.7)

Prior distribution of row-wise sparsity

Recall that we assume column-wise maximum sparsity of the true loading matrix. In
this section, for the ease of mathematical expositions, we introduce a notion of stronger
sparsity called row-wise sparsity.

Definition 2.2. For a p×∞ loading matrix B ≡ (βjh)j∈[p],h∈N and a positive integer
k ∈ N, we define the row-support up to k-th column of B as

suppk(B) :=

{
j ∈ [p] :

k∑
h=1

|βjh| > 0

}
.

B is said to be row-wise s-sparse up to k if |suppk(B)| ≤ s.

Note that for any B ∈ R
p×∞ and any k ∈ N,

max
1≤h≤k

‖βh‖0 ≤ |suppk(B)|,

where βh denotes the h-th column of B.

Throughout this paper, we set κ = p1+δ for a fixed constant δ > 0. This choice of the
hyperparameter is intended to put most of the prior mass concentrating on sufficiently
sparse loading matrices, which is shown in the following lemma.

Lemma 2.2. If B ∼ SSIBPp(α, p
1+δ) with α ∈ (0, 1) and δ > 0, then for any k ∈ N,

and t ≥ 1,
Π(|suppk(B)| > t) ≤ (k + 1)e−(δ/12)t log p. (2.8)

The above lemma trivially implies that

Π

({
B ≡ (β1,β2, . . . ) ∈ R

p×∞ : max
1≤h≤k

‖βh‖0 > t

})
≤ (k + 1)e−(δ/12)t log p.

Prior concentration near the true loading matrix

In this subsection, we show that the SSIBP prior puts sufficiently large mass near the
truth. Since the true loading matrix B0n ∈ R

pn×k0n depends on n, we let also the
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hyperparameters α = αn and κ = κn also depend on n. We let Πn denote the prior
distribution SSIBPpn(αn, κn) × IG(a, b) on (B, σ2), where IG(a, b) denotes the inverse
gamma distribution with shape parameter a > 0 and scale parameter b > 0. Unless
there is a confusion, we understand the loading matrix B0n ∈ R

pn×k0n as the pn ×∞
dimensional matrix (B0n,0pn×∞), if necessary, where 0pn×∞ denotes pn × ∞ dimen-
sional matrix of 0’s.

Lemma 2.3. Suppose that B0n ∈ B(pn, k0n, sn). If B ∼ SSIBPpn(αn, p
1+δ
n ) for αn > 0

and δ > 0, then for any n ∈ N and η > 0,

Πn

(
‖B−B0n‖F ≤ η

)
≥ αk0n

n e−‖B0n‖1−ηk0n−C1snk0n log(pn∨η−1) (2.9)

for some universal constant C1 > 0 depending only on δ. Moreover, if ηn is such that
p−m
n � ηn � 1 for some m > 0 and the assumption (A4) holds, we have

Πn

(
‖B−B0n‖F ≤ ηn

)
≥ αk0n

n e−C2snk0n log pn (2.10)

for some universal constant C2 > 0 depending only on δ.

Using Lemma 2.3, we can obtain the following prior concentration result for the
covariance matrix with respect to the Frobenius norm.

Corollary 2.4. Suppose that Σ0n ∈ C0n := C(pn, k0n, sn, cn), where {C0n}n∈N satisfies
the assumptions (A1)–(A4). If B ∼ SSIBPpn(αn, p

1+δ
n ) and σ2 ∼ IG(a, b) for αn > 0,

δ > 0, a > 0 and b > 0, then

Πn

(
‖Σ−Σ0n‖F ≤

√
snk0n
n

)
≥ αk0n

n e−C1snk0n log pn (2.11)

for some universal constant C1 > 0 depending only on δ, a and b.

Most priors for high dimensional sparse factor models have the lower bound
exp(−Csnk0n log pn) for the prior concentration (Gao and Zhou, 2015; Pati et al., 2014;
Rockova and George, 2016). The lower bound in (2.11) is similar to them, but the key
difference of (2.11) is that the lower bound depends explicitly on the hyperparameter
αn. For the posterior consistency of the factor dimensionality, controlling αn is indis-
pensable.

3 Asymptotic properties of the posterior distribution

In this section we study asymptotic properties of the posterior distributions of the
covariance matrix and the factor dimensionality in the sparse factor model, respectively.
We denote by Πn(·|Y1:n) the posterior distribution induced by the prior Πn and the
data Y1:n ≡ (Y1, . . . ,Yn). For a given sample size n and covariance matrix Σ, we let
PΣ and EΣ denote the probability measure and the expectation operator under the law
(N(0,Σ))n, where we suppress the dependence on n for simplicity.

The proofs of the results in this section are deferred to Appendix A.2 in the supple-
mentary material (Ohn and Kim, 2021).
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3.1 Posterior contraction rate of covariance matrix

We let {C0n}n∈N with C0n := C(pn, k0n, sn, cn) be the sequence of the classes of co-
variance matrices satisfying the assumptions (A1)–(A4). The next theorem derives the
posterior contraction rate of the covariance matrix.

Theorem 3.1. A priori, let B ∼ SSIBPpn(αn, p
1+δ
n ) with 0 < αn < 1 and σ2 ∼ IG(a, b)

for δ > 0, a > 0 and b > 0. Then

sup
Σ0n∈C0n

EΣ0n

[
Πn

(
‖Σ−Σ0n‖ > Mεn

∣∣∣Y1:n

)]
= o(1) (3.1)

for any sufficiently large M > 0, where

εn := cn

√
k0n
n

max

{
sn log pn, log

(
1

αn

)}
. (3.2)

If we set the hyperparameter αn to satisfy log( 1
αn

) � sn log pn, for instance, αn = α0

for some α0 ∈ (0, 1) or αn = p−1
n as in Rockova and George (2016), the posterior

contraction rate becomes

εn = cn

√
snk0n log pn

n
. (3.3)

We compare this rate with those in other related Bayesian studies. Pati et al. (2014)
derived a similar posterior contraction rate with their own prior and assumptions. The
posterior contraction rate of Pati et al. (2014) is cn

√
snk30n log pn/n

√
logn. We remove

k0n
√
logn factor by using the improved test construction developed by Gao and Zhou

(2015). Gao and Zhou (2015) obtained the posterior contraction rate
√

snk0n log pn/n
under the assumption that the largest eigenvalue of the true covariance matrix is
bounded. The posterior distribution of Xie et al. (2018) and the variational posterior dis-
tribution of Ning (2021) enjoy the contraction rate

√
sn log pn/n under the assumptions

that both the true largest eigenvalue and the true factor dimensionality are bounded.
Our posterior contraction rate in (3.3) recovers those rates.

Whether the convergence rate εn in (3.3) is minimax optimal is still open problem.
The closely related minimax result is studied by Cai et al. (2015). They derived the
minimax convergence rate of a covariance matrix with a row-wise sparse loading matrix,
i.e., the covariance matrix in the class given by

C̄(p, k, s, c) :=
{
Σ ≡ BB� + σ2I : B ∈ R

p×k, |suppk(B)| ≤ s, σ2 ≥ c0, ‖Σ‖ ≤ c
}
. (3.4)

Under the additional assumption that σ2 = 1, Cai et al. (2015) proved that

inf
Σ̂

sup
Σ0n∈C̄(pn,k0n,sn,cn):σ2

0n=1

EΣ0n‖Σ̂−Σ0n‖ � √
cn

√
sn log(pn/sn)

n
, (3.5)

which is faster than the posterior convergence rate in Theorem 3.1 by the factor
√
cn.

However, if we drop the assumption of σ2 = 1, we have the minimax lower bound

inf
Σ̂

sup
Σ0n∈C̄(pn,k0n,sn,cn)

EΣ0n‖Σ̂−Σ0n‖ � cn

√
sn log(pn/sn)

n
. (3.6)
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See Appendix A.3 in the supplementary material (Ohn and Kim, 2021) for derivation.
Note that C(pn, k0n, sn, cn) ⊂ C̄(pn, k0n, snk0n, cn) but C(pn, k0n, sn, cn) �⊂ C̄(pn, k0n, q, cn)
for any q < snk0n. Thus, our posterior contraction rate εn in (3.3) would be expected
to be (nearly) minimax optimal, which we leave as a future work.

3.2 Posterior consistency of the factor dimensionality

For the posterior consistency of the factor dimensionality, we need the additional as-
sumption on the smallest eigenvalue of the low rank matrix B0nB

�
0n. Define

C�(p, k0, s, c, ζ) :=
{
Σ ≡ BB� + σ2I ∈ C(p, k0, s, c) : λk0(BB�) > ζ

}
(3.7)

for ζ > 0. We assume that the true covariance matrix Σ0n belongs to the class C�
0n :=

C�(pn, k0n, sn, cn, ζn), where the sequence of the classes {C�
0n}n∈N satisfies the following

assumption:

(A5) ζn > C0cn
√

s2nk0n log pn/n for a sufficiently large constant C0 > 0

in addition to the assumptions (A1)–(A4).

The assumption (A5) assumes that ζn is larger than the posterior contraction rate of
the covariance matrix, which is necessary for not underestimating the factor dimension-
ality k0n. The assumption (A5) plays a similar role as the beta-min condition which has
been popularly used to prove variable section consistency in high-dimensional regression
(Castillo and van der Vaart, 2012; Martin et al., 2017).

We let {C�
0n}n∈N with C�

0n := C�(pn, k0n, sn, cn, ζn) be the sequence of covariance
matrices satisfying the assumptions (A1)–(A5). The following theorem proves that the
posterior consistency of the factor dimensionality.

Theorem 3.2. A priori, let B ∼ SSIBPpn(p
−As2n
n , p1+δ

n ) for sufficiently large A > 0 and
σ2 ∼ IG(a, b) for δ > 0, a > 0 and b > 0. Then

sup
Σ0n∈C�

0n

EΣ0n

[
Πn

(
K+(B) �= k0n

∣∣∣Y1:n

)]
= o(1). (3.8)

Rockova and George (2016) proved that EΣ0n [Πn(K
+(B) > Msnk0n

∣∣Y)] = o(1)
for sufficiently large M > 0 for our prior with κn = 0 (i.e., the one-parameter IBP).
This result is much weaker than ours when sn diverges. Also Rockova and George
(2016) did not consider the posterior probability of the underestimation of the factor
dimensionality. We introduce a diverging value of κn and the assumption (A5) to prevent
the underestimation.

For posterior consistency of the factor dimensionality, the condition (A5) plays a
crucial role. When the assumption (A5) does not hold, that is, the true covariance
matrix Σ0n belongs to the larger class C(pn, k0n, sn, cn) instead of C�

0n, we only ensure
that

EΣ0n

[
Πn

(
k̃n ≤ K+(B) ≤ k0n

∣∣∣Y1:n

)]
→ 1, (3.9)
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where k̃n := sup{k̃ ∈ [k0n] : λk̃(B0nB
�
0n) > ζn} ∨ 0 with ζn satisfying (A5). The proof

of (3.9) is given at the end of Appendix A.3 in the supplementary material (Ohn and
Kim, 2021).

Cai et al. (2015) proved that if the true covariance matrix is of the form B0nB
�
0n+ I

with B0n ∈ R
pn×k0n and |suppk0n

(B0n)| ≤ qn, the necessary and sufficient condition for
consistent estimation of the factor dimensionality is given by

ζn > C

√
qn log pn

n

for a sufficiently large constant C > 0 under regularity conditions. Compared to the
optimal lower bound of Cai et al. (2015), our lower bound of the eigengap in (A5) is
larger by

√
sn factor. Moreover, for αn in Theorem 3.2, the posterior contraction rate

of the covariance matrix becomes

εn = cn

√
s2nk0n log pn

n
, (3.10)

which is also
√
sn times slower than the posterior contraction rate in (3.3). This sub-

optimality would be mainly due to the SSIBPpn(p
−As2n
n , p1+δ

n ) prior but not an inherent
problem of Bayesian analysis. There is a prior which achieves the posterior consistency
of the factor dimensionality and the fast posterior contraction rate of the covariance ma-
trix as (3.3) simultaneously. An example is the prior of Gao and Zhou (2015). However,
note that the SSIBP prior is computationally tractable.

Remark 1. When the true noise variance σ2
0n is known, we can derive a posterior contrac-

tion rate of the covariance matrix with respect to the Frobenius norm from Theorems 3.1
and 3.2. This is because if K+(B) = k0n holds, we have rank(BB�−B0nB

�
0n) ≤ 2k0n and

so ‖Σ−Σ0n‖F = ‖BB� −B0nB
�
0n‖F ≤

√
2k0n‖BB� −B0nB

�
0n‖. Hence the posterior

contraction rate of ‖Σ−Σ0n‖F is at most
√
k0nεn = cnsnk0n

√
log pn/n.

3.3 Bounded factor dimensionality

The suboptimality of the posterior contraction rate of the covariance matrix with the
SSIBP prior can be improved when the true factor dimensionality k0n is bounded.
The bounded factor dimensionality is not too restrictive in some situations such as
macroeconomic applications (Onatski, 2010; Li et al., 2017). We introduce the following
two assumptions instead of (A3) and (A5):

(A3′) 1 ≤ k0n ≤ K̄ for some absolute constant K̄ > 0.

(A5′) ζn > C0cn
√

sn log pn/n for a sufficiently large constant C0 > 0.

Let {C̃0n}n∈N with C̃0n := C(pn, k0n, sn, cn) be the sequence of the classes of co-
variance matrices satisfying the assumptions (A1), (A2), (A3′), (A4). Furthermore, let
C̃�
0n := C�(pn, k0n, sn, cn, ζn) ⊂ C̃0n with ζn satisfying (A5′).
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Lemma 3.3. A priori, let B ∼ SSIBPpn(p
−Asn
n , p1+δ

n ) for sufficiently large A > 0 and
σ2 ∼ IG(a, b) for δ > 0, a > 0 and b > 0. Then

sup
Σ0n∈C̃0n

EΣ0n

[
Πn

(
‖Σ−Σ0n‖ > Mcn

√
sn log pn

n

∣∣∣Y1:n

)]
= o(1), (3.11)

for any sufficiently large M > 0 and

sup
Σ0n∈C̃�

0n

EΣ0n

[
Πn

(
K+(B) �= k0n

∣∣∣Y1:n

)]
= o(1). (3.12)

The detailed proof of Lemma 3.3 is almost similar to Theorems 3.1 and 3.2 and thus
omitted.

The convergence rate in (3.11) is minimax optimal (Pati et al., 2014). That is,
under the bounded factor dimensionality setup, we can attain both posterior consis-
tency of the factor dimensionality and the optimal convergence of the covariance ma-
trix. As we have shown in Corollary 2.4, the prior concentration is lower bounded by
αk0n exp(−C1sn log pn) for some C1 > 0 in this case, thus the upper bound of the pos-
terior probability EΣ0nΠn(K

+(B) > k0n|Y1:n) is given by αn exp(C2sn log pn) for some
C2 > 0. Therefore the choice of the hyperparameter αn = p−Asn

n for large A > C2,

instead of the choice αn = p
−As2n
n in Theorem 3.2, is sufficient to make the upper bound

go to zero. Moreover, the choice αn = p−Asn
n does not hurt the prior concentration,

i.e., αk0n exp(−C1sn log pn) � exp(−C3sn log pn) for some C3 > 0, thus the results of
Theorem 3.3 can be obtained.

Remark 2. A referee raised a question whether the same results of Lemma 3.3 hold
when the upper bound K̄ of the factor dimensionality grows as n goes to infinity.
Unfortunately, the answer is negative. If k0n ≤ K̄n for some positive sequence {K̄n}n∈N,
it can be shown from our proof that the posterior consistency of the factor dimensionality
is obtained with the hyperparameter αn � p−AsnK̄n

n for sufficiently large A > 0, but

this yields the posterior contraction rate cn
√

snk0nK̄n log pn/n of the covariance matrix,

which is larger than the optimal one cn
√

snk0n log pn/n when K̄n → ∞. That is, with
the current proof technique, we cannot obtain the optimal convergence of the covariance
matrix and the consistency of the factor dimensionality simultaneously if the factor
dimensionality is not bounded.

4 Posterior computation

In this section, we provide an MCMC algorithm for posterior computation under the
prior distribution SSIBPp(α, κ) × IG(a, b) on (B, σ2). We report computation times of
the MCMC sampler for some large-scale synthetic data sets in Appendix C.1 in the
supplementary material (Ohn and Kim, 2021) to show its tractability. In addition, we
provide trace, autocorrelation and partial autocorrelation plots of the posterior samples
of some randomly selected parameters in Appendix C.2 in the supplementary material
(Ohn and Kim, 2021) to check the convergence of generated MCMC samples.
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For notational simplicity, let K∗ := K+(B) be the number of nonzero columns of
the loading matrix. The detailed algorithm is as follows:

• For posterior sampling of the factor loading βjk, we use the scale mixture repre-
sentation of the Laplace distribution. If βjk|τjk ∼ N(0, τjk) and τjk ∼ Exp(1/2),
then marginally we have βjk ∼ Laplace(1), where Exp(1/2) denotes the exponen-
tial distribution with mean 2. In the MCMC algorithm, we introduce auxiliary
scale parameters τjk for j ∈ [p] and k ∈ [K∗] to generate βjk from its conditional
posterior distribution easily. For j ∈ [p] and k ∈ [K∗], the factor loading βjk is
sampled from the conditional posterior

βjk|− ∼
{
N(β̂jk, τ̂jk) if ξjk = 1,

δ0 if ξjk = 0,

where

τ̂jk :=

(
σ−2

n∑
i=1

Z2
ik + τ−1

jk

)−1

,

β̂jk := τ̂jk

{
σ−2

n∑
i=1

Zik

(
Yij −

∑
h∈[K∗]:h 
=k

Zihβjh

)}
.

• For j ∈ [p] and k ∈ [K∗], the auxiliary scale parameter τjk is sampled from

τjk|− ∼
{
GIG(1, β2

jk,
1
2 ) if ξjk = 1,

Exp( 12 ) if ξjk = 0,

where GIG(a, b, p) denotes the generalized inverse Gaussian (GIG) distribution
with the density f(z) proportional to f(z) ∝ zp−1e−(az+b/z)/2.

• For j ∈ [p], the indicator parameters (ξjk : k ∈ N) are sampled as follows. For
k ∈ [K∗], ξjk is sampled with probability

Π(ξjk = 1|−)

Π(ξjk = 0|−)
=

pjk
κ+ p− pjk

√
τ̂jk
τjk

exp

(
1

2τ̂jk
β̂2
jk

)
,

where pjk :=
∑

l∈[p]:l 
=j ξlk. For k > K∗, we first propose K∗
j ∈ N ∪ {0} and

β∗
j := (β∗

j,1, . . . , β
∗
j,K∗

j
) ∈ R

K∗
j from the proposal distribution

J(K∗
j )J(β

∗
j |K∗

j ) = Poisson(1)Laplace(1)K
∗
j .

Then we accept the proposal with probability

max

{
1, |Mj |−n/2eu

2
j (β

∗
j )

�M−1
j β∗

j /2

(
α

p

)K∗
j

}
,
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where we denote Mj := σ−2β∗
j (β

∗
j )

�+I and uj := σ−2
∑n

i=1(Yij−
∑K∗

k=1 Zikβjk).
If the proposal is accepted, we update

B ← (B, (β∗
j,k1(� = j))�∈[p],k∈[K∗

j ]
),

K∗ ← K∗ +K∗
j .

• For i ∈ [n], the latent variable Zi is sampled from

Zi|− ∼ N
(
σ−2Σ̂ZB

�Yi, Σ̂Z

)
,

where Σ̂Z := (σ−2B�B+ I)−1.

• The noise variance parameter σ2 is sampled from

σ2|− ∼ IG

(
a+

np

2
, b+

1

2

n∑
i=1

p∑
j=1

(
Yij −

K∗∑
k=1

Zikβjk

)2)
.

5 Simulation study

We conduct numerical experiments that illustrate our theoretical findings. The posterior
distribution is estimated by the MCMC algorithm presented in Section 4. For each
posterior computation, we run the MCMC sampler for 3,000 draws, discard the first
500 samples as burn-in and save every 10th sample.

5.1 Choice of hyperparmeters

We compare the concentrations of the posterior distributions of the factor dimensionality
and the covariance matrix with various choices of the hyperparameters αn and κn by
simulation.

We let the sample size n vary among {100, 200, 300}. For each sample size n, we let
the dimension of the data be equal to pn = 10n (i.e., pn = 1000, 2000, 3000) and the
column-wise maximum sparsity be equal to sn = 3�log pn� (i.e., sn = 18, 21, 24). We
consider the bounded factor dimensionality cases where the true factor dimensionality
k0n is either 1 or 5. For given sn and k0n, the pn × k0n true loading matrix B0n is
generated by selecting sn nonzero elements randomly of each column and then sampling
their values from {−2, 2} randomly. A noise variance σ2

0n is set to be 1. Simulated data
are generated from the Gaussian distribution with the mean 0 and covariance matrix
Σ0n := B0nB

�
0n + I.

We consider two different choices of αn. The first one is αn = p−1
n , which is used

by Rockova and George (2016), and the other one is αn = p−sn
n motivated by our

theoretical result in Lemma 3.3. For κn, we consider two different choices: κn = 0,
which corresponds to the one-parameter IBP, and κn = p1+δ

n with δ = 0.1, which is the
prior considered in this paper.

We investigate the two quantities: the posterior probability of the correct selection
of the factor dimensionality (i.e., Πn(K

+(B) = k0n|Y1:n)) and the scaled spectral norm
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k0n (n, pn)
αn = p−1

n αn = p−sn
n

κn = 0 κn = p1.1n κn = 0 κn = p1.1n

1
(100, 1000) 0 (0.001) 0.005 (0.007) 0.134 (0.105) 0.256 (0.128)
(200, 2000) 0 (0) 0.001 (0.002) 0.461 (0.106) 0.54 (0.137)
(300, 3000) 0 (0) 0 (0.001) 0.961 (0.142) 0.967 (0.093)

5
(100, 1000) 0.008 (0.007) 0.043 (0.016) 0.12 (0.047) 0.228 (0.082)
(200, 2000) 0.004 (0.004) 0.015 (0.008) 0.504 (0.077) 0.558 (0.109)
(300, 3000) 0.002 (0.003) 0.004 (0.004) 0.927 (0.113) 0.98 (0.067)

Table 1: The averages and standard errors of the posterior probabilities of the correct
selection of the factor dimensionality over 100 simulations.

k0n (n, pn)
αn = p−1

n αn = p−sn
n

κn = 0 κn = p1.1n κn = 0 κn = p1.1n

1
(100, 1000) 0.158 (0.071) 0.17 (0.069) 0.157 (0.069) 0.167 (0.075)
(200, 2000) 0.099 (0.051) 0.103 (0.058) 0.093 (0.049) 0.098 (0.057)
(300, 3000) 0.098 (0.06) 0.099 (0.065) 0.094 (0.067) 0.097 (0.063)

5
(100, 1000) 0.216 (0.064) 0.238 (0.058) 0.222 (0.053) 0.238 (0.056)
(200, 2000) 0.165 (0.047) 0.175 (0.053) 0.159 (0.049) 0.177 (0.05)
(300, 3000) 0.152 (0.043) 0.153 (0.046) 0.151 (0.043) 0.158 (0.044)

Table 2: The averages and standard errors of the scaled spectral norm losses of the
covariance matrix over 100 simulations.

loss of the covariance matrix (i.e., ‖Σ̂ − Σ0n‖/‖Σ0n‖, where Σ̂ denotes the posterior
mean of the covariance matrix). We generate 100 independent data sets to have 100
measures of these two quantities and report the averages of those quantities in Tables 1
and 2, respectively.

Table 1 presents the averaged posterior probability of the factor dimensionality being
equal to the true one by the four choices of the hyperparameters αn and κn. The results
indicate that the choice of both αn and κn is important for the posterior consistency
of the factor dimensionality, but the choice of αn is more important. For the choice
of αn = p−1

n , we found that the posterior distribution puts most of its mass to larger
values of the factor dimensionality than the true one. Table 2 presents the averaged
scaled spectral norm losses for covariance matrix estimation. The results are similar
for all the choices of the hyperparameters. It supports our theoretical results that the
posterior contraction rates are the same for the four choices.

5.2 Comparison with other methods

In this simulation, we compare finite sample performance of the SSIBP prior with other
methods. We use the hyperparameters αn = p−25

n and κn = p1.1n for the SSIBP prior.
For factor dimensionality estimation, we use the posterior mode as the point estimator
and for covariance matrix estimation, we take the posterior mean as the point estimator.

For synthetic data generation, we consider the following two challenging scenarios.
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Case 1 (Low sample size) Generate data with sample size n = 50 and dimension pn =
1000. For a true covariance matrix, we consider two values of the column-wise
maximum sparsity sn ∈ {5, 20} and three values of the factor dimensionality
k0n ∈ {1, 3, 5}. As in Section 5.1, nonzero loading values are sampled from
{−2, 2} and the noise variance is set to be 1.

Case 2 (Large noise variance) Generate data with larger sample size n = 150 and
dimension pn = 1000. But in this case the noise variance is set to 3, three times
larger than that is Case 1. The sparsity and true factor dimensionality values
are the same as the Case 1.

For each setup, we repeat the data generation 100 times and compute the point
estimators of the factor dimensionality and the covariance matrix by the SSIBP prior
and other competing methods for each synthetic data set.

For factor dimensionality estimation, we consider the following three estimators as
competitors:

• Eigenvalue threshold estimator (ET, Onatski (2010))

k̂ET :=

p∑
j=1

1
(
λj(S) > wλkmax+1(S) + (1− w)λ2kmax+1(S)

)
,

with w := 22/3(22/3 − 1), where S denotes the sample covariance matrix and
kmax ∈ [p] does the pre-specified upper bound of the factor dimensionality.

• Eigenvalue ratio estimator (ER, Ahn and Horenstein (2013); Lam and Yao (2012)):

k̂ER := argmax
j∈[kmax]

λj(S)/λj+1(S).

• Multiplicative gamma process shrinkage prior (MGPS, Bhattacharya and Dun-
son (2011)): The posterior mode of the sparse Bayesian factor model with the
multiplicative gamma process shrinkage prior.

For covariance estimation, we consider the following three competitors: the principal
orthogonal complement thresholding method (POET, Fan et al. (2013)), the variational
inference method for Bayesian sparse PCA (VI, Ning (2021)) as well as the MGPS
(Bhattacharya and Dunson, 2011). For the POET and VI, an user must select the factor
dimensionality a priori. We set the true value of the factor dimensionality for this. We
use the posterior mean of the covariance matrix as the point estimator for the MGPS.

The simulation results of factor dimensionality estimation for Cases 1 and 2 are
summarized in Table 3 and Table 4, respectively. The SSIBP prior performs very well
for all the setups. The frequentist method ET also performs well in general but does
not for the setup with sn = 5, k0n = 5 and σ2

0n = 3. The frequentist method ER tends
to underestimate the factor dimensionality for the extremely sparse setups (i.e., sn = 5)
in both Cases 1 and 2. The Bayesian method MGPS is suboptimal in all the setups.
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k0n sn ET ER MGPS SSIBP

1

5

True 89 100 0 100
Over 11 0 100 0
Under 0 0 0 0
Ave 1.12 1 15.34 1

20

True 83 100 0 97
Over 17 0 100 3
Under 0 0 0 0
Ave 1.17 1 15.25 1.03

3

5

True 97 59 1 100
Over 1 0 99 0
Under 2 41 0 0
Ave 2.99 2.38 15.32 3

20

True 99 98 0 79
Over 1 0 100 21
Under 0 2 0 0
Ave 3.01 2.98 14.75 3.21

5

5

True 80 37 3 99
Over 0 0 92 0
Under 20 63 5 1
Ave 4.79 3.13 16.05 4.99

20

True 100 100 5 86
Over 0 0 87 14
Under 0 0 8 0
Ave 5 5 14.18 5.14

Table 3: Proportions of the estimated factor dimensionality over 100 simulations for
Case 1. “True”, “Over” and “Under” denote proportions of correct estimation, overesti-
mation and underestimation, respectively. “Ave” is the average of the estimated factor
dimensionality.

Table 5 and Table 6 present the simulation results of covariance matrix estimation for
Cases 1 and 2, respectively. For each method, we report the average of the scaled spectral
norm losses ‖Σ̂−Σ0‖/‖Σ0‖ for the true covariance matrix Σ0 and the estimate Σ̂ over
100 simulations. The results show that the SSIBP prior outperforms the other competing
methods. The VI method behaves reasonably well, however the overall performance is
inferior to the SSIBP prior.

6 Real data analysis

In this section, we analyze the big five personality traits (Goldberg, 1990) data set which
we obtained from https://www.kaggle.com/tunguz/big-five-personality-test. This data
set contains answers of 50 questions about personality with the five-level Likert scale.
The 50 questions can be grouped into five groups which represent the five personal-
ity traits of extraversion, agreeableness, openness, conscientiousness, and neuroticism.

https://www.kaggle.com/tunguz/big-five-personality-test
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k0n sn ET ER MGPS SSIBP

1

5

True 84 100 3 100
Over 16 0 97 0
Under 0 0 0 0
Ave 1.16 1 2.82 1

20

True 89 100 3 100
Over 11 0 97 0
Under 0 0 0 0
Ave 1.11 1 3.66 1

3

5

True 97 60 17 98
Over 3 0 27 0
Under 0 40 56 2
Ave 3.03 2.44 3.5 2.98

20

True 98 100 15 100
Over 2 0 11 0
Under 0 0 74 0
Ave 3.02 3 2.44 3

5

5

True 59 42 5 98
Over 0 0 13 0
Under 41 58 82 2
Ave 4.57 3.36 3.5 4.98

20

True 100 100 0 100
Over 0 0 4 0
Under 0 0 96 0
Ave 5 5 2.6 5

Table 4: Same as Table 3 but for Case 2.

Therefore we expect that the true factor dimensionality is 5 and each element of the
factor represents the one of these five personality traits. The total number of responses
are 1,015,342 but the respondents who completely answered are 874,434.

We repeat the following procedure 1,000 times. We first randomly select 200 re-
sponses and normalize them to have the mean of each question be 0. We then estimate
the factor dimensionality by the four methods we considered in Section 5.2, i.e., eigen-
value threshold estimator (ET, Onatski (2010)), eigenvalue ratio estimator (ER, Ahn
and Horenstein (2013); Lam and Yao (2012)), multiplicative gamma process shrinkage
prior (MGPS, Bhattacharya and Dunson (2011)) and the SSIBP prior. The hyperpa-
rameters of the SSIBP prior are set to be αn = p−20

n and κn = p1.1n . As in Section 5.2,
posterior modes are used as the point estimator of the factor dimensionality for the
Bayesian methods.

The estimation results of the factor dimensionality by the four methods are summa-
rized in Figure 1. In view of the prior knowledge that the true factor dimensionality is
5, we can see that the ET and SSIBP prior perform better than the other two methods.
The ER method has the large proportion of underestimation and the MGPS always
yields factor dimensionality estimates larger than 5.
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k0n sn POET VI MGPS SSIBP

1
5 1.642 (0.14) 0.183 (0.105) 1.906 (1.005) 0.182 (0.091)
20 0.662 (0.124) 0.196 (0.111) 0.612 (0.258) 0.23 (0.122)

3
5 1.794 (0.146) 0.435 (0.119) 2.039 (1.191) 0.239 (0.078)
20 0.787 (0.137) 0.451 (0.125) 0.691 (0.394) 0.364 (0.126)

5
5 1.96 (0.198) 0.722 (0.16) 2.092 (0.979) 0.297 (0.108)
20 0.917 (0.151) 0.69 (0.125) 0.791 (0.468) 0.356 (0.092)

Table 5: The averages and standard errors of the scaled spectral norm losses of the
covariance matrix over 100 simulations for Case 1.

k0n sn POET VI MGPS SSIBP

1
5 1.708 (0.071) 0.115 (0.056) 0.975 (0.622) 0.12 (0.053)
20 0.667 (0.09) 0.142 (0.073) 1.026 (0.706) 0.154 (0.06)

3
5 1.795 (0.104) 0.318 (0.1) 1.108 (0.668) 0.189 (0.114)
20 0.751 (0.079) 0.341 (0.088) 0.923 (0.56) 0.198 (0.06)

5
5 1.83 (0.145) 0.535 (0.11) 1.142 (0.595) 0.21 (0.106)
20 0.775 (0.072) 0.545 (0.087) 0.847 (0.343) 0.209 (0.05)

Table 6: Same as Table 5 but for Case 2.

In Figure 2, we compare the estimated loading matrices of the two Bayesian methods.
In the figure, we plot the posterior means of the loading matrix given that the factor
dimensionality is equal to the posterior mode, that is, E(B|K+(B) = k̂,Y1:n) where

k̂ = argmaxk∈N Πn(K
+(B) = k|Y1:n). Recall that the total 50 questions in the data set

are grouped so that 10 questions in each group correspond to each personality trait. The
SSIBP prior captures this structure quite well, while the MGPS prior does not recover it.

7 Concluding remarks

In this paper, we proposed a computationally tractable prior which has desirable large
sample properties. The proposed prior achieves the posterior consistency of both the
factor dimensionality and induced covariance matrix. We also derived the posterior
contraction rate of the covariance matrix, which is a near-optimal rate. Moreover, if
the true factor dimensionality is bounded, we obtained the posterior consistency of
the factor dimensionality and the optimal convergence rate of the covariance matrix
simultaneously. In addition, we provided the MCMC algorithm and showed that it
works well with (moderately) large data sets.

Our MCMC algorithm is applicable without much hamper to moderately large data
but would be difficult to use for very large data. Computationally more efficient inferen-
tial methods such as variational inference for big data are worth pursuing. Ning (2021)
proposed the variational inference algorithm for the sparse Bayesian factor model. How-
ever, the algorithm of Ning (2021) does not infer the factor dimensionality, but it fixes
the factor dimensionality given by an user. Designing a variational inference algorithm
which can infer the factor dimensionality would be an interesting future work.
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Figure 1: Distributions of the factor dimensionality estimates over 1,000 data sets of
size 200 randomly selected from the big five personality traits data.

The selection consistency of entries in the loading matrix is also an important prob-
lem. Since it is devised for selecting the factor dimensionality, our prior may not achieve
the entry-level selection consistency. Once the true factor dimensionality is known, the
problem is similar to the high-dimensional regression problem, but the latent factor is
random and not observable. Thus techniques to prove the selection consistency of high-
dimensional regression models such as those of Castillo et al. (2015) may not be appli-
cable directly. To check the entry-level selection consistency of our prior or to develop a
prior which achieves the entry-level selection consistency would require completely new
researches.

The proposed prior distribution is nonadaptive in the sense that the true spar-
sity level sn should be known in advance to choose the hyperparameters optimally. In
practice, the hyperparameters could be selected by the maximum marginal likelihood
(Rousseau and Szabo, 2017), which would be computationally demanding and not theo-
retically guaranteed. It would be an interesting future work to develop a computationally
tractable prior which is adaptive to the true sparsity level sn.

In an ultra high dimensional setup in which the dimension pn grows exponentially
in n, the number of nonzero rows sn of the loading matrix should be of order log pn.
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Figure 2: Posterior means of the loading matrix for a subsampled big five personality
traits data set.

This order would be too small compared to the dimension pn because (pn − log pn)
many entries of the random vector Y should be pure noises. To resolve this problem, a
G-block covariance model by Bunea et al. (2020) could be an alternative, but there is
no Bayesian inference method with theoretical guarantees. We leave this problem as a
future work.

Supplementary Material

Supplementary Material to “Posterior consistency of factor dimensionality in high-
dimensional sparse factor models” (DOI: 10.1214/21-BA1261SUPP; .pdf).
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