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Bayesian Restricted Likelihood Methods:
Conditioning on Insufficient Statistics in
Bayesian Regression (with Discussion)∗

John R. Lewis†, Steven N. MacEachern‡, and Yoonkyung Lee§

Abstract. Bayesian methods have proven themselves to be successful across a
wide range of scientific problems and have many well-documented advantages
over competing methods. However, these methods run into difficulties for two ma-
jor and prevalent classes of problems: handling data sets with outliers and dealing
with model misspecification. We outline the drawbacks of previous solutions to
both of these problems and propose a new method as an alternative. When work-
ing with the new method, the data is summarized through a set of insufficient
statistics, targeting inferential quantities of interest, and the prior distribution is
updated with the summary statistics rather than the complete data. By careful
choice of conditioning statistics, we retain the main benefits of Bayesian methods
while reducing the sensitivity of the analysis to features of the data not cap-
tured by the conditioning statistics. For reducing sensitivity to outliers, classical
robust estimators (e.g., M-estimators) are natural choices for conditioning statis-
tics. A major contribution of this work is the development of a data augmented
Markov chain Monte Carlo (MCMC) algorithm for the linear model and a large
class of summary statistics. We demonstrate the method on simulated and real
data sets containing outliers and subject to model misspecification. Success is
manifested in better predictive performance for data points of interest as com-
pared to competing methods.

Keywords: Markov chain Monte Carlo, M-estimation, robust regression.

1 Introduction

Bayesian methods have provided successful solutions to a wide range of scientific prob-
lems, with their value having been demonstrated both empirically and theoretically.
Bayesian inference relies on a model consisting of three elements: the prior distribution,
the loss function, and the likelihood or sampling density. While formal optimality of
Bayesian methods is unquestioned if one accepts the validity of all three of these ele-
ments, a healthy skepticism encourages us to question each of them. Concern about the
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prior distribution has been addressed through the development of techniques for subjec-
tive elicitation (Garthwaite et al., 2005; O’Hagan et al., 2006) and objective Bayesian
methods (Berger, 2006). Concern about the loss function is reflected in, for example,
the extensive literature on Bayesian hypothesis tests (Kass and Raftery, 1995). The
focus of this work is the development of techniques to handle imperfections in the likeli-
hood f(y|θ) = L(θ|y). Concern for imperfections in the likelihood are reflected in work
considering minimally informative likelihoods (Yuan and Clarke, 1999), sensitivities of
inferences to perturbations in the model (Zhu et al., 2011), the specification of a class
of models and the use of Bayesian model averaging over the class (Clyde and George,
2004), and considerations of such averaging when the specified class may not contain
the so-called true data generating model (Bernardo and Smith, 2000; Clyde and Iversen,
2013; Clarke et al., 2013).

Imperfection in the likelihood has also been widely discussed in the classical ro-
bustness literature. Hampel (1971), writing on the motivation for studies of robustness,
provides a concise description of three mismatches between data and the model that
purportedly gives rise to the data: “(i) rounding of the observations; (ii) the occurrence
of gross errors; (iii) the model itself may only be an approximation to the underlying
chance mechanism”. In a Bayesian setting, the first is easily handled with MCMC meth-
ods through the introduction of a latent, unrounded variable into the model. We do not
consider it here. The second and third are duals. Misspecification of the model (iii) will
often make observations appear to be outliers (ii). The literature on robust methods
is replete with examples described in terms of “outliers” where the central problem is
model misspecification. In the sequel, we follow the tradition of referring to cases that
are discordant with the stated model as “outliers”, whether this discordance is due to
gross error or a consequence of model misspecification.

In practice, the imperfections in a proposed likelihood often show themselves through
the presence of outliers – whether due to local misspecification of the model or due to
gross error. There are three main solutions to Bayesian outlier-handling. The first is to
replace the basic sampling density with a mixture model which includes one component
for the “good” data and a second component for the “bad” data. With this approach,
the good component of the sampling density is used for prediction of future good data.
The second approach replaces the basic sampling density with a thick-tailed density in
an attempt to discount outliers, yielding techniques that often provide solid estimates
of the center of the distribution but do not easily translate to predictive densities for
further good data. The third approach fits a flexible (typically nonparametric) model
to the data, producing a Bayesian version of a density estimate for both good and
bad data. In recent development, inference is made through the use of robust inference
functions (Lee and MacEachern, 2014).

These traditional strategies all have their drawbacks. The outlier-generating pro-
cesses may be transitory in nature, constantly shifting as the source of bad data changes.
This prevents us from appealing to large-sample arguments to claim that, with enough
data, we can nail down a model for both good and bad data combined. Instead of at-
tempting to model both good and bad data, we propose a novel strategy for handling
outliers. In a nutshell, we begin with a complete model as if all of the data are good.
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Rather than driving the move from prior to posterior by the full likelihood, we use
only the likelihood driven by a few summary statistics which typically target inferential
quantities of interest. We call this likelihood a restricted likelihood because condition-
ing is done on a restricted set of data; the set which satisfies the observed summary
statistics. This restricted likelihood leads to a formal update of the prior distribution
based on the sampling density of the summary statistics.

The advantages and disadvantages of the method are detailed throughout the pa-
per using simulated and real data. One conceptual advantage of our method is that
inferences and predictions are less sensitive to features of the data not captured by the
conditioning statistics than are methods based on the complete likelihood. Choosing
statistics targeting the main features of interest allows for inference that focuses on
these features. The analysis can help to better understand other features which may
not be captured by the conditioning statistics, such as outliers.

The examples in the paper provide a Bayesian analog of classical robust estimators.
The main disadvantage of our methods relative to the classical estimators is computa-
tional. In Section 3 we detail a data-augmentation MCMC algorithm to fit the models
proposed in this paper. The advantages are those of Bayesian methods. As is standard for
Bayes-classical comparisons, the Bayesian method requires greater computational effort
while providing better inference. As a referee notes, asymptotically, the Bayesian and
classical parameter estimates are often very close and have the same limiting posterior
variance / sampling variance. In situations where asymptotic approximation suffices,
there is no need to use the computational techniques developed in this paper.

The remainder of the paper is as follows: Section 2 introduces the Bayesian restricted
likelihood, provides context with previous work, and demonstrates some advantages of
the methods on simple examples. Section 3 details an MCMC algorithm to apply the
method to Bayesian linear models. This computational strategy is a major contribution
to the work, providing an approach to apply the method on realistic examples. Many
of the technical proofs are in the Supplementary Material (Lewis et al., 2021) with R

code available from the authors. Sections 4 and 5 illustrate the method with simulated
data and a real insurance industry data set containing many outliers with a novel twist
on model evaluation. A discussion (Section 6) provides some final commentary on the
new method. An R package brlm to implement our methods is available at github.

com/jrlewi/brlm. Additionally all data and code for the examples in this paper are
available at https://github.com/jrlewi/brlm_paper/.

2 Restricted Likelihood

2.1 Examples

To describe the use of the restricted likelihood, we begin with a pair of simple examples
for the one-sample problem. For both, the model takes the data y = (y1, . . . , yn) to be a
random sample of size n from a continuous distribution indexed by a parameter vector
θ, with pdf f(y|θ). The standard, or full, likelihood is L(θ|y) =

∏n
i=1 f(yi|θ).

github.com/jrlewi/brlm
github.com/jrlewi/brlm
https://github.com/jrlewi/brlm_paper/
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The first example considers the case where a known subset of the data is known to be
bad in the sense of not informing us about θ. This case mimics the setting where outliers
are identified and discarded before doing a formal analysis. Without loss of generality,
we label the good cases 1 through n − k and the bad cases n − k + 1 through n. The
relevant likelihood to be used to move from prior distribution to posterior distribution
is clearly L(θ|y1, . . . , yn−k) =

∏n−k
i=1 f(yi|θ). For an equivalent analysis, we rewrite the

full likelihood as the product of two pieces:

L(θ|y) =
(

n−k∏
i=1

f(yi|θ)
)(

n∏
i=n−k+1

f(yi|θ)
)
, (1)

where the second factor may not actually depend on θ. We wish to keep the first factor
and drop the second for better inference on θ.

The second example involves deliberate censoring of small and large observations.
This is sometimes done as a precursor to the analysis of reaction time experiments (e.g.,
Ratcliff, 1993) where very small and large reaction times are physiologically implausible;
explained by either anticipation or lack of attention of the subject. With lower and upper
censoring times at t1 and t2, the post-censoring sampling distribution is of mixed form,
with masses F (t1|θ) at t1 and 1− F (t2|θ) at t2, and density f(y|θ) for y ∈ (t1, t2). We
adjust the original data yi, producing c(yi) by defining c(yi) = t1 if yi ≤ t1, c(yi) = t2
if yi ≥ t2, and c(yi) = yi otherwise. The adjusted update is performed with L(θ|c(y)).
Letting g(t1|θ) = F (t1|θ), g(t2|θ) = 1 − F (t2|θ), and g(y|θ) = f(y|θ) for y ∈ (t1, t2),
we may rewrite the full likelihood as the product of two pieces

L(θ|y) =
(

n∏
i=1

g(c(yi)|θ)
)(

n∏
i=1

f(yi|θ, c(yi)).
)
, (2)

∏n
i=1 f(yi|θ, c(yi)) is the likelihood of the data conditioned on parameters and the sum-

mary statistic c(·) and recovers the piece of the full likelihood not in
∏n

i=1 g(c(yi)|θ).
Only the first part is retained in the analysis. Several more examples are detailed in
Lewis (2014).

2.2 Generalization

To generalize the approach in (1) and (2), we write the full likelihood in two pieces with
a conditioning statistic T (y), as indicated below:

L(θ|y) = f(T (y)|θ) f(y|θ, T (y)). (3)

Here, f(T (y)|θ) is the conditional pdf of T (y) given θ and f(y|θ, T (y)) is the con-
ditional pdf of y given θ and T (y). In the dropped case example, the conditioning
statistic is T (y) = (y1, . . . , yn−k). In the censoring example, the conditioning statis-
tic is T (y) = (c(y1), . . . , c(yn)). We refer to f(T (y)|θ) as the restricted likelihood and
L(θ|y) = f(y|θ) as the full likelihood.
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Bayesian methods can make use of a restricted likelihood since T (y) is a well-defined
random variable with a probability distribution indexed by θ. This leads to the restricted
likelihood posterior

π(θ|T (y)) =
π(θ)f(T (y)|θ)

m(T (y))
, (4)

where m(T (y)) is the marginal distribution of T (y) under the prior distribution. Pre-
dictive statements for further (good) data rely on the model. For another observation,
say yn+1, we would have the predictive density

f(yn+1|T (y)) =
∫

f(yn+1|θ)π(θ|T (y)) dθ. (5)

2.3 Literature Review

Our motivation for the use of summary statistics in Bayesian inference is concern about
outliers or, more generally, model misspecification. Specifically, the likelihood is not
specified correctly and concentrating on using well chosen parts of the data can help
improve the analysis (e.g., Wong and Clarke, 2004). Direct use of restricted likelihood
for this reason appears in many areas of the literature. For example, the use of rank
likelihoods is discussed by Savage (1969), Pettitt (1983, 1982), and more recently by
Hoff et al. (2013). Lewis et al. (2012) make use of order statistics and robust estimators
as choices for T (y) in the location-scale setting. Asymptotic properties of restricted
posteriors are studied by Doksum and Lo (1990), Clarke and Ghosh (1995), Yuan and
Clarke (2004), and Hwang et al. (2005). The tenor of these asymptotic results is that,
for a variety of conditioning statistics with non-trivial regularity conditions on prior,
model, and likelihood, the posterior distribution resembles the asymptotic sampling
distribution of the conditioning statistic.

Restricted likelihoods have also been used as practical approximations to a full likeli-
hood. For example, Pratt (1965) appeals to heuristic arguments regarding approximate
sufficiency to justify the use of the restricted likelihood of the sample mean and stan-
dard deviation. Approximate sufficiency is also appealed to in the use of Approximate
Bayesian Computation (ABC), which is related to our method. ABC is a collection
of posterior approximation methods which has recently experienced success in appli-
cations to epidemiology, genetics, and quality control (see, for example, Tavaré et al.,
1997; Pritchard et al., 1999; Beaumont et al., 2002; Marjoram et al., 2003; Fearnhead
and Prangle, 2012; Drovandi et al., 2015). Interest typically lies in the full data poste-
rior and ABC is used for computational convenience as an approximation. Consequently,
effort is made to choose an approximately sufficient T (y) and update to the ABC pos-
terior by using the likelihood L(θ|B(y)), where B(y) = {y∗|ρ(T (y), T (y∗)) ≤ ε}, ρ is a
metric, and ε is a tolerance level. This is the likelihood conditioned on the collection of
data sets that result in a T (·) within ε of the observed T (y). With an approximately
sufficient T (·) and a small enough ε, heuristically L(θ|B(y)) ≈ L(θ|T (y)) ≈ L(θ|y).
Consequently, the ABC posterior approximates the full data posterior and efforts have
been made to formalize what is meant by approximate sufficiency (e.g., Joyce and Mar-
joram, 2008).
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Our method can be viewed as ABC with ε = 0 and it is natural to compare it
to ABC. This paper develops sampling methods for fitting Bayesian linear models
conditioning exactly on a set of summary statistics (ε = 0), even when the statis-
tics follow a continuous distribution. Traditional ABC sampling methods are flexible
and will, in general, apply to a broader class of models. The basic sampling method
for ABC is the rejection sampling algorithm (Pritchard et al., 1999) which proposes
a sample θ∗ from the prior, then new data y∗ from the data-model given θ∗. The
value θ∗ is accepted as a draw from the ABC posterior if ρ(T (y), T (y∗)) ≤ ε. Ac-
ceptance rates of this algorithm can be intolerably low and several extensions have
been proposed to improve efficiency (see, for example, Beaumont et al., 2009; Turner
and Van Zandt, 2012). The inefficiency of ABC algorithms is especially problematic
in high-dimensional settings since generating high-dimensional statistics that are close
to the observed values is difficult. Recently, Turner and Van Zandt (2014) developed
the Gibbs ABC method which improves efficiency in the hierarchical setting by making
use of conditional independence of the model to make accept/reject decisions at the
individual group-level, effectively reducing the dimension of the problem to the number
of parameters within each group. We revisit this approach in our comparisons to ABC
in Section 5.2, finding that, for a modest increase in computational cost, we obtain
an algorithm with better convergence and mixing properties. We also retain the de-
sired posterior distribution – the posterior, having conditioned exactly on the summary
statistics.

This work extends the development of Bayesian restricted likelihood by arguing that
deliberate choice of an insufficient statistic T (y) guided by targeted inference is sound
practice. We also expand the class of conditioning statistics for which a formal Bayesian
update can be achieved. Our methods do not rely on asymptotic properties, nor do they
rely on approximate conditioning.

2.4 Illustrative Examples

Before discussing computational details, the method is applied to two simple examples
on well known data sets to demonstrate its effectiveness in situations where outliers are
a major concern. The full model in each case fits into the Bayesian linear regression
framework discussed in Section 3. The first is an example (so far as we know) of gross
error; the second is an example of model misspecification for a subset of the observations.
The first example is an analysis of Simon Newcomb’s 66 measurements of the passage
time of light (Stigler, 1977); two of which are significant outliers in the lower tail. The
full model is a standard location-scale Bayesian model also used in Lee and MacEachern
(2014):

β ∼ N(23.6, 2.042), σ2 ∼ IG(5, 10), yi
iid∼ N(β, σ2), i = 1, 2, . . . , n = 66, (6)

where yi denotes the ith (recorded) measurement of the passage time of light. β is
interpreted as the passage time of light with the deviations yi−β representing measure-
ment error. Four versions of the restricted likelihood are fit with conditioning statistics:
1) Huber’s M-estimator for location with Huber’s ‘proposal 2’ for scale 2) Tukey’s M-
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estimator for location with Huber’s ‘proposal 2’ for scale 3) LMS (least median squares)
for location with associated estimator of scale and 4) LTS (least trimmed squares) for
location with associated estimator of scale. Details of these estimators can be found in
many places, including (Huber and Ronchetti, 2009). We return to the two M-estimators
throughout this paper as we have found them to offer good default choices for prac-
titioners dealing with outliers. A short review of these estimators is provided in the
Supplementary Material. The tuning parameters for the M-estimators are chosen to
achieve 95% efficiency under normality (Huber and Ronchetti, 2009) and, for compa-
rability, roughly 5% of the residuals are trimmed for LTS. Two additional approaches
to outlier handling are considered: 1) the normal distribution is replaced with a t-
distribution and, 2) the normal distribution is replaced with a mixture of two normals.

The t-model assumes yi
iid∼ tν(β, σ

2) with ν = 5. The prior on σ2 is IG(5, ν−2
ν 10) and

ensures that the prior on the variance is the same as the other models. The mixture

takes the form: yi
iid∼ pN(β, σ2) + (1 − p)N(β, 10σ2) with the prior p ∼ beta(20, 1) on

the probability of belonging to the ‘good’ component.

The posterior of β under each model appears in Figure 1. The posteriors group
into two batches. The normal model and restricted likelihood with LMS do not dis-
count the outliers and have posteriors centered at low values of β. These posteriors
are also quite diffuse. In contrast, the t-model, mixture model, and the other restricted
likelihood methods discount the outliers and have posteriors centered at higher val-
ues. There is modest variation among these centers. Posteriors in this second group
have less dispersion than those in the first group. The pattern for predictive distribu-
tions differs (see bottom plot in Figure 1). The normal and t-models have widely dis-
persed predictive distributions. The other predictive distributions show much greater
concentration. The restricted likelihood fits based on M-estimators (Tukey’s and Hu-
ber’s) are centered appropriately and are concentrated. The restricted likelihood based
on LTS and the mixture model results are also centered appropriately, but compar-
atively less concentrated. The LMS predictive is concentrated, but it is poorly cen-
tered.

As a second example, a data set measuring the number of telephone calls in Belgium
from 1950–1973 is analyzed. The outliers in this case are due to a change in measurement
units on which calls were recorded for part of the data set. Specifically, for years 1964–
1969 and parts of 1963 and 1970, the length of calls in minutes were recorded rather
than the number of calls (Rousseeuw and Leroy, 1987). The full model is a standard
normal Bayesian linear regression:

β ∼ N2(μ0,Σ0), σ2 ∼ IG(a, b), y ∼ N(Xβ, σ2I), (7)

where β = (β0, β1)
�, y is the vector of the logarithm of the number of calls, and X is the

n×2 design matrix with a vector of 1’s in the first column and the year covariate in the
second. In reality, the model should include a different piece for the part of the data with
different units. The outliers are really just a manifestation of model misspecification.
Prior parameters are fixed via a maximum likelihood fit to the first 3 data points. In
particular, the prior covariance for β is set to Σ0 = gσ2

0(X
�
p Xp)

−1, with Xp the 3 × 2
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Figure 1: Results from the analysis of the speed of light data. Top: Posterior distributions
of β under each model. Bottom: Log posterior predictive distributions under each model.
The differences in the tails are emphasized in the bottom plot. The horizontal axis is
strategically labeled to help compare the centers of the distributions in each of the plots.

design matrix for the first 3 data points, g = n = 21, σ0 = 0.03 and μ0 = (1.87, 0.03)�.
This has the spirit of a unit information prior (Kass and Wasserman, 1995) but uses a
design matrix for data not used in the fit. Finally a = 2 and b = 1.

Four models are compared: 1) the normal theory base model 2) a two component
normal mixture model, 3) a t-model, and 4) a restricted likelihood model conditioning
on Tukey’s M-estimator for the slope and intercept with Huber’s ‘proposal 2’ for scale.
Each model is fit to the remaining 21 data points. The normal theory model is also
fit a second time after removing observations 14–21 (years 1963–1970). The omitted
cases consist of the obvious large outliers as well as the two smaller outliers at the
beginning and end of this sequence of points caused by the change in measurement units.
The mixture model allows different mean regression functions and variances for each
component. Both components have the same, relatively vague priors. The probability
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of belonging to the first component is given a beta(5, 1) prior. The heavy-tailed model
fixes the degrees of freedom at 5 and uses the same prior on β. The prior on σ2 is
adjusted by a scale factor of 3/5 to provide the same prior on the variance.

The data and 95% credible bands for the posterior predictive distribution under
each model are displayed in Figure 2. The normal model fit to all cases results in a
very wide posterior predictive distribution due to an inflated estimate of the variance.
The t-model provides a similar predictive distribution. The pocket of outliers from 1963
to 1970 overwhelms the natural robustness of the model and leads to wide prediction
bands. The outliers, falling toward the end of the time period, lead to a relatively high
slope for the regression. In contrast, the normal theory model fit to only the good data
results in a smaller slope and narrower prediction bands. The predictive distribution
under the restricted likelihood approach is much more precise and is close to that of
the normal theory fit to the non-outlying cases. The two component mixture model
provides similar results, where the predictive distribution is formulated using only the
good component. For these data, the large outliers are easily identified as following a
distinct regression, leaving the primary component of the mixture for non-outlying data.
In a more complex situation where the outlier generating mechanism is transient (i.e.,
ever changing and more complex than for these data), modeling the outliers is more
difficult. As in classical robust estimation, the restricted likelihood approach avoids
explicitly modeling the outliers.

3 Restricted Likelihood for the Linear Model

The simple examples in the previous section highlight the beneficial impact of a good
choice of T (y) with the use of the restricted likelihood. This work focuses on robustness
in linear models where natural choices include many used above: M-estimators in the
tradition of Huber (1964), least median squares (LMS), and least trimmed squares
(LTS). For these choices the restricted likelihood is not available in closed form, making
computation of the restricted posterior a challenge. For low-dimensional statistics T (y)
and parameters θ, the direct computational strategies described in Lewis (2014) can be
used to estimate the restricted posterior conditioned on essentially any statistic. These
strategies rely on estimation of the density of f(T (y)|θ) using samples of T (y) for many
values of θ; a strategy which breaks down in higher dimensions. This section outlines
a data augmented MCMC algorithm that can be applied to the Bayesian linear model
when T (y) consists of estimates of the regression coefficients and scale parameter.

3.1 The Bayesian Linear Model

We focus on the use of restricted likelihood for the Bayesian linear model with a standard
formulation:

θ = (β, σ2) ∼ π(θ)

yi = x�
i β + εi, for i = 1, . . . , n (8)

where xi and β ∈ R
p, σ2 ∈ R

+, and the εi are independent draws from a distri-
bution with center 0 and scale σ. X denotes the design matrix whose rows are x�

i .
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Figure 2: Pointwise posterior predictive intervals of log(calls) under the normal theory
model fit to the non-outliers, the restricted likelihood model with Tukey’s M-estimator
for the slope and intercept with Huber’s ‘proposal 2’ for scale, and a heavy-tailed t-
distribution model. The first three data points were used to specify the prior with each
model using the remaining 21 for fitting. The normal theory model was also fit after
removing observations 14–20 (years 1963–1970).

For the restricted likelihood model, conditioning statistics are assumed to be of the
form T (y) = (b(X,y), s(X,y)) where b(X,y) = (b1(X,y), . . . , bp(X,y))� ∈ R

p is an
estimator for the regression coefficients and s(X,y) ∈ {0} ∪ R

+ is an estimator of
the scale. Throughout, observed data and summary statistic is denoted by yobs and
T (yobs) = (b(X,yobs), s(X,yobs)), respectively. Several conditions are imposed on the
model and statistic to ensure validity of the MCMC algorithm:

C1. The n× p design matrix, X, whose ith row is x�
i , is of full column rank.

C2. The εi are a random sample from some distribution which has a density with
respect to Lebesgue measure on the real line and for which the support is the real
line.

C3. b(X,y) is almost surely continuous and differentiable with respect to y.

C4. s(X,y) is almost surely positive, continuous, and differentiable with respect to y.

C5. b(X,y +Xv) = b(X,y) + v for all v ∈ R
p.

C6. b(X, ay) = ab(X,y) for all constants a.

C7. s(X,y +Xv) = s(X,y) for all v ∈ R
p.
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C8. s(X, ay) = |a|s(X,y) for all constants a.

Properties C5 and C6 of b are called regression and scale equivariance, respectively.
Properties C7 and C8 of s are called regression invariance and scale equivariance. Many
estimators satisfy the above properties, including several traditional simultaneous M-
estimators (Huber and Ronchetti, 2009; Maronna et al., 2006) for which the R package
brlm (github.com/jrlewi/brlm) is available to implement the MCMC described here.
These M-estimators satisfy C3 and C4 since they are optimizers of continuous and
differentiable objective functions. Constraints C5–C8 are often satisfied by location
and scale estimators but should be checked on a case by case basis. More software
development is required to extend the MCMC implementation beyond the M-estimators
discussed here. The current version of the R package also implements the direct methods
described in Lewis (2014). These methods are effective in lower dimensional problems
and were used in both examples in Section 2.4.

3.2 Computational Strategy

The general style of algorithm we present is a data augmented MCMC targeting
f(θ,y|T (y) = T (yobs)), the joint distribution of θ and the full data given the summary
statistic T (yobs). The Gibbs sampler (Gelfand and Smith, 1990) iteratively samples
from the full conditionals 1) π(θ|y, T (y) = T (yobs)) and 2) f(y|θ, T (y) = T (yobs)).
When y has the summary statistic T (y) = T (yobs), the first full conditional is the same
as the full data posterior π(θ|y). In this case, the condition T (y) = T (yobs) is redun-
dant. This allows us to make use of conventional MCMC steps for generation of θ from
the first full conditional. For typical regression models, algorithms abound. Details of
the recommended algorithms depend on details of the prior distribution and sampling
density and we assume this can be done (see e.g., Liu, 1994; Liang et al., 2008).

For a typical model and conditioning statistic, the second full conditional
f(y|θ, T (y) = T (yobs)) is not available in closed form. We turn to Metropolis-Hastings
(Hastings, 1970), using the strategy of proposing full data y ∈ A := {y ∈ R

n|T (y) =
T (yobs)} from a well defined distribution with support A and either accepting or re-
jecting the proposal. Let yp,yc ∈ A represent the proposed and current full data,
respectively. Denote the proposal distribution for yp by p(yp|θ, T (yp) = T (yobs)) =
p(yp|θ,yp ∈ A) = p(yp|θ). The last equality follows from the fact that our p(·|θ) as-
signs probability one to the event {yp ∈ A}. These equalities still hold if the dummy
argument yp is replaced with yc. The conditional density is

f(y|θ,y ∈ A) =
f(y|θ)I(y ∈ A)∫

A f(y|θ)dy =
f(y|θ)∫

A f(y|θ)dy

for y ∈ A and I(·) the indicator function. This includes both yp and yc. The Metropolis-
Hastings acceptance probability is the minimum of 1 and R, where

R =
f(yp|θ,yp ∈ A)

f(yc|θ,yc ∈ A)

p(yc|θ,yc ∈ A)

p(yp|θ,yp ∈ A)
(9)

github.com/jrlewi/brlm
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=
f(yp|θ)∫

A f(y|θ)dy

∫
A f(y|θ)dy
f(yc|θ)

p(yc|θ)
p(yp|θ)

(10)

=
f(yp|θ)
f(yc|θ)

p(yc|θ)
p(yp|θ)

. (11)

For the models we consider, evaluation of f(y|θ) is straightforward. Therefore, the
difficulty in implementing this Metropolis-Hastings step manifests itself in the ability to
both simulate from and evaluate p(yp|θ) – the well defined distribution with support A.
We now discuss such an implementation method for the linear model in (8).

Construction of the Proposal

Our computational strategy relies on proposing y such that T (y) = T (yobs) where
T (·) = (b(X, ·), s(X, ·)) satisfies the conditions C3–C8. It is not a simple matter to
do this directly, but with the specified conditions, it is possible to scale and shift any
z∗ ∈ R

n which generates a positive scale estimate to such a y via the following theorem,
whose proof is in the Supplementary Material.

Theorem 3.1. Assume that conditions C4–C8 hold. Then, any vector z∗ ∈ R
n with

conditioning statistic T (z∗) for which s(X, z∗) > 0 can be transformed into y with
conditioning statistic T (y) = T (yobs) through the transformation

y = h(z∗) :=
s(X,yobs)

s(X, z∗)
z∗ +X

(
b(X,yobs)− b(X,

s(X,yobs)

s(X, z∗)
z∗)

)
.

Using the theorem, the general idea is to first start with an initial vector z∗ drawn
from a known distribution, say p(z∗), and transform via h(·) to y ∈ A. The proposal
density p(y|θ) is then a change-of-variables adjustment on p(z∗) derived from h(·). In
general however, the mapping h(·) is many-to-one: for any v ∈ R

n and any c ∈ R
+,

cz∗ +Xv map to the same y. This makes the change-of-variables adjustment difficult.
We handle this by first noticing that the set A is an n−p−1 dimensional space: there are
p constraints imposed by the regression coefficients and one further constraint imposed
by the scale. Hence, we restrict the initial z∗ to an easily understood n−p−1 dimensional
space. Specifically, this space is the unit sphere in the orthogonal complement of the
column space of the design matrix: S := {z∗ ∈ C⊥(X) | ||z∗|| = 1}, where C(X) and
C⊥(X) are the column space of X and its orthogonal complement, respectively. The
mapping h : S → A is one-to-one and onto. A proof is provided by Theorem 1.1 of
the Supplementary Material. The one-to-one property makes the change of variables
more feasible. The onto property is important so that the support of the proposal
distribution (i.e. the range of h(·)) contains the support of the target f(y|θ, y ∈ A), a
necessary condition for convergence of the Metropolis-Hastings algorithm (in this case
the supports are both A).

Given the one-to-one and onto mapping h : S → A, the general proposal strategy is
summarized as follows:
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1. Sample z∗ from a distribution with known density whose support is the entirety
of S.

2. Set y = h(z∗) and calculate the Jacobian of this transformation in two steps.

(a) Scale from S to the set Π(A) := {z ∈ R
n| ∃ y ∈ A s.t. z = Qy} with Q = I−

XX�.1 Π(A) is the projection of A onto C⊥(X) and, by condition C7, every

element of this set has s(X, z) = s(X,yobs). Specifically, set z = s(X,yobs)
s(X,z∗) z∗.

There are two pieces of this Jacobian: one for the scaling and one for the
mapping of the sphere onto Π(A). The latter piece is given in equation (12).

(b) Shift from Π(A) to A: y = z +X (b(X,yobs)− b(X, z)). This shift is along
the column space of X to the unique element in A. The Jacobian of this
transformation is given by equation (13).

The final proposal distribution including the complete Jacobian is given in equa-
tion (14) with details in the next section. Before giving these details we provide a
visualization in Figure 3 of each of the sets described above using a notional example
to aid in the understanding of the strategy we take. In the figure, n = 3, p = 1, and the
conditioning statistic is T (y) = (min(y),

∑
(yi − min(y))2). The set A is depicted for

T (yobs) = (0, 1) which we describe as a “warped triangle” in light blue, with each side
corresponding to a particular coordinate of y being the minimum value of zero. The
other two coordinates are restricted by the scale statistic to lie on the quarter circle of
radius one in the positive orthant. In this example, the column vector X = 1 (shown as
a reference) spans C(X) and S is a unit circle on the orthogonal plane (shown in red).
Π(A) is depicted as the bowed triangle in dark blue. We will come back to this artificial
example in the next section in an attempt to visualize the Jacobian calculations.

Evaluation of the Proposal Density

We now explain each step in computing the Jacobian described above.

Scale from S to Π(A) The first step is constrained to C⊥(X) and scales the initial z∗

to z = s(X,yobs)
s(X,z∗) z∗. For the Jacobian, we consider two substeps: first, the distribution

on S is transformed to that along a sphere of radius r = ‖z‖ = s(X,yobs)/s(X, z∗). By
comparison of the volumes of these spheres, this transformation contributes a factor of
r−(n−p−1) to the Jacobian. For the second substep, the sphere of radius r is deformed
onto Π(A). This deformation contributes an attenuation to the Jacobian equal to the
ratio of infinitesimal volumes in the tangent spaces of the sphere and Π(A) at z. Re-
stricting to C⊥(X), this ratio is the cosine of the angle between the normal vectors of
the two sets at z. The normal to the sphere is its radius vector z. The normal to Π(A)
is given in the following lemma with proof provided in the Supplementary Material.
Gradients denoted by ∇ are with respect to the data vector.

1We have used condition C1 to assume without loss of generality that the columns of X form an
orthonormal basis for C(X) (i.e., X�X = I).
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Figure 3: A depiction of A, Π(A), and the unit circle for the illustrative example where
b1(1,y) = min(y) = 0 and s(1,y) =

∑
(yi−b1(1,y))

2 = 1. A is the combination of three
quarter circles, one on each plane defined by yi = 0. The projection of this manifold
onto the deviation space is depicted by the bowed triangular shape in the plane defined
by

∑
yi = 0. The circle in this plane represents the sample space for the intermediate

sample z∗. Also depicted is the vector 1, the design matrix for the location and scale
setting.

Lemma 3.2. Assume that conditions C1–C2, C4, and C7 hold and y ∈ A. Let ∇s(X,y)
denote the gradient of the scale statistic with respect to the data vector evaluated at y.
Then ∇s(X,y) ∈ C⊥(X) and is normal to Π(A) at z = Qy in C⊥(X).

As a result of the lemma, the contribution to the Jacobian of this attenuation is

cos(γ) =
∇s(X,y)�z

‖∇s(X,y)‖‖z‖ , (12)

where γ is the angle between the two normal vectors. This step is visualized in Figure 4
for the notional location-scale example. The figure pictures only C⊥(X), which in this
case is a plane. The unit sphere (here, the solid circle) is stretched to the dashed sphere,
contributing r−(n−p−1) to the Jacobian as seen in panel (a). In panel (b), the dashed
circle is transformed onto Π(A), contributing cos(γ) to the Jacobian. The normal vectors
in panel (b) are orthogonal to the tangent vectors of Π(A) and the circle.

Shift from Π(A) to A The final piece of the Jacobian comes from the transformation
from Π(A) to A. This step involves a shift of z to y along the column space of X.
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Figure 4: Visualization of the scaling from z∗ to z. Top: the first substep scales z∗ on
the unit circle to the circle of radius r = ||z||, resulting in a change-of-variables trans-
formation for the unit circle to a circle of radius r. The contribution to the Jacobian of
this transformation is r−(n−p−1). Bottom: The second substep accounts for the change-
of-variables transformation from the circle of radius r to Π(A). The normal vectors to
these two sets are used to calculate the contribution to the Jacobian of this part of the
transformation are shown in the figure.

Since the shift depends on z, the density on the set Π(A) is deformed by the shift. The

contribution of this deformation to the Jacobian is, again, the ratio of the infinitesimal

volumes along Π(A) at z to the corresponding volume along A at y. The ratio is

calculated by considering the volume of the projection of a unit hypercube in the tangent

space of A at y onto C⊥(X). Computational details are given in the following lemmas

and subsequent theorem. Proofs of the lemmas are given in the Supplementary Material.
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The theorem is a direct result of the lemmas. Throughout, let Ty(A) and T ⊥
y (A) denote

the tangent space to A at y and its orthogonal complement, respectively.

Lemma 3.3. Assume that conditions C1–C5 and C7–C8 hold. Then the p+1 gradient
vectors ∇s(X,y),∇b1(X,y), . . . ,∇bp(X,y) form a basis for T ⊥

y (A) with probability one.

The lemma describes construction of a basis for T ⊥
y (A), leading to a basis for

Ty(A). Both of these bases can be orthonormalized. Let A = [a1, . . . , an−p−1] and
B = [b1, . . . , bp+1] denote the matrices whose columns contain the orthonormal bases
for Ty(A) and T ⊥

y (A), respectively. The columns in A define a unit hypercube in Ty(A)

and their projections onto C⊥(X) define a parallelepiped. We defer construction of A
until later.

Lemma 3.4. Assume that conditions C1–C5 and C7–C8 hold. Then the n× (n−p−1)
dimensional matrix P = QA is of full column rank.

As a consequence of this lemma, the parallelepiped spanned by the columns of P is
not degenerate (it is n− p− 1 dimensional), and its volume is given by

Vol(P ) :=
√
det(P�P ) =

r∏
i=1

σi (13)

where r = rank(P ) = n − p − 1 and σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are the singular values of
P (e.g., Miao and Ben-Israel (1992)). Combining Lemmas 3.3 and 3.4 above leaves us
with the following result concerning the calculation of the desired Jacobian.

Theorem 3.5. Assume that conditions C1–C5 and C7–C8 hold. Then the Jacobian
of the transformation from the distribution along Π(A) to that along A is equal to the
volume given in (13).

The Proposal Density Putting all the pieces of the Jacobian together we have the
following result. Any dependence on other variables, including current states in the
Markov chain, is made implicit.

Theorem 3.6. Assume that conditions C1–C8 hold. Let z∗ be sampled on the unit
sphere in C⊥(X) with density p(z∗). Using the transformation of z∗ to y ∈ A described
in Theorem 3.1, the density of y is

p(y) = p(z∗)r−(n−p−1) cos(γ)Vol(P ) (14)

where r = s(X,yobs)/s(X, z∗), and cos(γ) and Vol(P ) are as in equations (12) and (13),
respectively.

The proposal is governed by the choice of p(z∗) and a poor choice could lead to an
inefficient MCMC algorithm. For all examples in this paper we defined p(z∗) to be the
uniform distribution on S. The advantage of this choice is that it requires no further
tuning parameters. We have noticed good mixing in terms of the ability of the chain
to generate new data y that is accepted with a reasonable probability. To implement
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the method in practice, we generate an n-dimensional independent standard normal y∗

for the proposal and transform this via h(·). Theoretically, the random normal vector
would be projected onto C⊥(X) and scaled to unit norm to generate the uniform on S.
Using simple algebra and conditions C5–C8, one can show that h(·) is invariant to this
projection and scaling. Another option for the proposal suggested by a reviewer that
the authors have yet to study is generating a random walk. As we are proposing values
on a complicated manifold, it might be possible to implement this by conducting the
random walk on y∗ before transforming via h(·). This could provide advantages in some
situations, though we have yet to run into any serious issues with convergence using the
independence proposal we utilize here.

Some details for computing the needed quantities are worth further explanation.
Computing Vol(P ) involves finding an orthornormal matrix A whose columns span
Ty(A). This matrix can be found by supplementing B with a set of n linearly inde-
pendent columns on the right, and applying Gram-Schmidt orthonormalization. The
computational complexity of this step is O(n3). This is infeasibly slow when n is large
because it must be repeated at each iterate of the MCMC when a complete data set
is drawn. However, using results related to principal angles found in Miao and Ben-
Israel (1992) the volume (13) can be computed using only B. B is constructed by
Gram-Schmidt orthogonalization of ∇s(X,y),∇b1(X,y), . . . ,∇bp(X,y), reducing the
computational complexity to O(np2) – a considerable reduction in computational bur-
den when n  p. The following corollary formally states how computation of A can be
circumvented.

Corollary 3.7. Let U be a matrix whose columns form an orthonormal basis for C(X)
and set Q = WW� where the columns of W form an orthonormal basis for C⊥(X).
Then the non-unit singular values of U�B are the same as the non-unit singular values
of W�A.

The lemma implies that Vol(P ) is the product of the singular values of U�B.

Second, the gradients of ∇s(X,y),∇b1(X,y), . . . ,∇bp(X,y) are easily computed in
many cases. For example, below we consider M-estimators defined by the estimating
equations:

n∑
i=1

ψ

(
yi − x�

i b(y, X)

s(y, X)

)
xij = 0,

n∑
i=1

χ

(
yi − x�

i b(y, X)

s(y, X)

)
= 0, (15)

for j = 1, 2, . . . , p, xij are the components of xj and ψ and χ are almost surely differ-
entiable. The gradients can be found by differentiating this system of equations with
respect to each yi. In theory, finite differences could also be used as an approximation
if needed.

Finally, it is clear the estimators themselves must be computed for every iteration of
the Markov Chain. We have found this burden to be marginal relative to computation
of the needed Jacobian. In the simulations and real data analyses presented below, we
will see that the additional computational expense needed to fit the Bayesian model is
often worthwhile, leading to better performance compared to traditional, non-Bayesian
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robust regression estimators. This is most evident when substantive prior information
is available and information in the data is limited.

4 Simulated Data

We study the performance of restricted likelihood methods in two simulation settings.
The first is a hierarchical setting. The second is a variable selection setting where there
are several potential covariates but only a few have non-zero effect sizes.

4.1 Simulation 1

The first is a hierarchical setting where the data are contaminated with outliers. Specif-
ically, simulated data come from the following model:

θi ∼ N(μ, τ2), i = 1, 2, . . . , 90

yij ∼ (1− pi)N(θi, σ
2) + piN(θi,miσ

2), j = 1, 2, . . . , ni

(16)

with μ = 0, τ2 = 1, σ2 = 4. The values of pi,mi, and ni depend on the group and are
formed using 5 replicates of the full factorial design over factors pi,mi, ni with levels
pi = .1, .2, .3, mi = 9, 25, and ni = 25, 50, 100. This results in 90 groups that have
varying levels of outlier contamination and sample size. We wish to build models that
offer good prediction for the good portion of data within each group. The full model for
fitting is a corresponding normal model without contamination:

θi ∼ N(μ, τ2), σ2
i ∼ IG(as, bs), i = 1, 2, . . . , 90,

yij ∼ N(θi, σ
2
i ), j = 1, 2, . . . , ni.

(17)

For the restricted likelihood versions we condition on robust M-estimators of location
and scale in each group: Ti(yi1, . . . , yini) = (θ̂i, σ̂

2
i ), i = 1, 2, . . . , 90. These estimators are

solutions to equation (15) (where xi ≡ 1) with user specified ψ and χ functions designed
to discount outliers. The two versions use Huber’s and Tukey’s ψ function, while both
versions use Huber’s χ function. The tuning parameters associated with these functions
are chosen so that the estimators are 95% efficient under normally distributed data.
These classical M-estimators are commonly used in robust regression settings (Huber
and Ronchetti, 2009).

To complete the specification of model (17), the hyperparameters μ, τ2, as, and bs
must be given priors or fixed. The joint prior density for μ and τ2 is improper and
proportional to τ−2. The pair as and bs are fixed to a variety of values representing
different levels of prior knowledge. For each pair, we set bs = 4asc resulting in a prior

mean for each σ2
i of 4cas

as−1 , as > 1. The precision is (as−1)2(as−2)
(4cas)2

, meaning larger as and

smaller c result in a more informative prior. With c = 1 the shrinkage (for large as) is
to the true value of σ2 = 4. We consider as = 1.25, 5, 10 and c = 0.5, 1, 2 for a total of
nine different priors.

K = 30 data sets are generated from (16). For each data set and each pair (as, c),
the Bayesian models are fit using MCMC. The MCMC for the restricted likelihood
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version requires no computational details other than those described for the traditional
Bayesian model in Section 3. This is because there are conditioning statistics for each
group and the model’s conditional independence between the groups allows the data
augmentation described earlier to be performed independently within each group. That
is, there is a separate Gibbs step for each group to generate the group level data matching
the statistics for that group. The acceptance rates for newly generated data across all
groups and simulations ranged from 0.57 to 0.68.

Figure 5: Average MSE plus/minus one standard error for each value of as and c. Smaller
values represent better fits. The panels correspond to c = 0.5 (left), c = 1 (middle), and
c = 2 (right), with the values of as on the horizontal axis. The average MSE for the
normal theory model ranges from 0.24 to 0.25 and is left out of the figure.

The performance of the methods can be evaluated in many ways. For these simula-
tions, we know the true data generating mechanism, and this allows us to make direct
comparisons between the fitted model and the truth. The Bayesian methods provide a
full predictive distribution for the response, given group, while the classical methods
provide only point estimates of parameters. Our comparisons have focused on two main
summaries. One summary, not presented here, is the average Kullback-Liebler diver-
gence from the good portion of the true distribution of Y given group to the predictive
distribution (Bayes) or to the distribution with point estimates plugged in (classical).
For the Bayesian models, the divergence does not have a closed form and must be eval-
uated numerically. The second summary, preferred by a referee, is the mean squared
error (MSE), averaged across groups. Results are presented in Figures 5 and 6. Formally,
with the superscript M indicating the method and the additional subscript k indexing
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the data set,

MSE
(M)
ik = (θ̂

(M)
ik − θik)

2, (18)

MSE(M) =
1

90K

K∑
k=1

90∑
i=1

MSE
(M)
ik . (19)

The Bayesian restricted likelihood methods show superior performance under both
summaries, but especially for MSE. Figure 5 displays the MSE grouped by pairs as and
c with error bars plus/minus one standard error within the group. The values of as and c
do not affect the classical robust linear models. The average MSEs for the normal theory
models ranges from 0.24 to 0.25 and are left out of the figure. The results uniformly
favor the Bayesian restricted likelihood methods, as seen by substantially lower values
of MSE. For both classical and restricted likelihood methods, Tukey’s ψ function leads
to better performance than does Huber’s ψ function.

Figure 6: Average MSE plus/minus one standard error grouped by the factors m (left),
n (middle), and p (right). These results are for the single prior with as = 5 and c = 1.

It is also interesting to consider the effects of factors n, p, and m. We present the
results for a single prior (as = 5 and c = 1). For each simulation k, the main effect
average MSE is found for each factor n, p, and m. Figure 6 displays the average MSE
over the K = 30 simulations along with error bars plus/minus one standard error. For
each group n, p, and m, the Bayesian restricted likelihood versions have better average
loss than do the classical methods. As expected, the average MSE gets larger as the
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contamination gets more severe (larger m or larger p) and tends to get smaller as the
sample size n grows. The advantage of the Bayesian methods is greater for smaller
sample sizes and for more severe contamination.

This simulation shows the potential of the restricted likelihood methods to dramati-
cally improve estimation. The simulation also conveys some cautions that are apparent
from consideration of KL divergence but not MSE. Specifically, the choice of summary
statistic along with the corresponding tuning parameters is important. For the tuning
parameters for the ψ functions, we applied the default choice of 95% efficiency at the
normal. Under the simulation model here, this choice results in bias in the scale esti-
mation which affects the performance of the method. Tuning parameters must be set
when using both classical and Bayesian methods. The Bayesian approach encourages
use of a hierarchical model structure and allows one to incorporate prior information in
the analysis. These features can improve predictive performance substantially. If poorly
handled, they can, of course, harm performance.

4.2 Simulation 2

In this simulation the data are generated from the following mechanism: y = β�x +
ε with β = (β1, β2, β3)

� and the error ε ∼ N(0, σ2) with probability 0.8 and ε ∼
Half-Normal(0, 25σ2) with probability 0.2 (i.e., there is a relatively large amount of
one-sided outlier contamination). The components of x = (x1, x2, x3) are correlated
with x1 ∼ N(0, 1) and xj = x1 + ηj with ηj ∼ N(0, 4) for j = 2, 3. This results in a
theoretical correlation of 1/

√
5 ≈ 0.44 between x1 and both xj , j = 2, 3. The model

used for fitting contains an additional 27 covariates, some of which are also correlated
with x1, x2, and x3. Specifically the fitting model is y = β�x + β∗�x∗ + ε where x∗

and β∗ are 27 dimensional vectors of extra covariates and slope parameters. Of these
27 covariates, 21 are generated independently from standard normal distributions. Of
the remaining 6, two each are generated by adding standard normal noise to x1, x2,
and x3. This represents a common situation where several covariates with various levels
of correlation amongst them are available for fitting, but only a few govern the data
generating mechanism.

For the simulation, K = 30 data sets (including the additional covariates) of size
n = 500 are generated from the true model with true values β = (1, 1, 1)� and σ2 = 2.
We fit the model including all 30 covariates and consider the following methods for the fit
1) classical robust regression with Tukey’s estimator of location and Huber’s estimator of
scale, 2) the corresponding restricted likelihood version 3) a heavy-tailed Bayesian model
with a Student-t likelihood with ν = 5 degrees of freedom. For the Bayesian models we
take βall ∼ N20(0, σ

2
βI) with βall = (β,β∗)� and σ2 ∼ IG(5, 8) under the restricted

model and σ2 ∼ IG(5, ν−2
ν 8) under the Student-t model. For each data set, we fit the

models for σβ = 0.4, 0.6, 0.8, . . . , 1.4. The acceptance rates for the restricted likelihood
MCMC data-augmentation step range from 0.3 to 0.36 across all the data sets and values

of σβ . To compare performance we first consider the MSE = (||β − β̂||2 + ||β̂∗||2)/30
for each simulation where β̂ and β̂

∗
are point estimates for the fitted model. For the

Bayesian models, we use posterior means. The average MSEs plus/minus one standard
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Figure 7: Average MSE plus/minus one standard error over the K = 30 simulations
for each value of the prior standard deviation (σβ) and each of the fitting methods.
‘Restricted’ is our method conditioning on Tukey’s estimator of location and Huber’s
estimator of scale. ‘rlm’ refers to the classical robust linear model fit with the same
estimators and ‘t’ is the heavy-tailed Bayesian model with a Student-t likelihood. The
‘rlm’ results are the same for each σβ .

error over the simulations for each σ2
β are displayed in Figure 7. The classical fit is

labeled ‘rlm’ and is the same for each value of the prior standard deviation σ2
β . We

see for most values of the prior standard deviation, the Bayesian models (‘restricted’
and ‘t’) outperform the classical fit. The correlation amongst the covariates causes
a certain level of confounding and the prior shrinkage helps to improve estimation.
However, too much shrinkage can be detrimental as demonstrated for σβ = 0.4. While
this will help for estimation of β∗ = 0, the estimation of the active parameters β can
be hindered. The t model seems more sensitive to this effect than the restricted model.
The restricted model also has an additional advantage when it comes to prediction of
the non-outlying data. To see this, for each simulation we consider the mean negative

log-likelihood of the non-outlying data: MNLL = − 1
N

∑
log f(yi|β̂, β̂

∗
, σ̂) where f is

the assumed likelihood and the average is taken over the N non-outlying points yi.
For the classical and restricted fits, f is the normal likelihood and for the ‘t’ it is the
heavy-tailed Student-t likelihood. The average MNLL plus/minus one standard error
over the simulations for each σ2

β are displayed in Figure 8. First, the restricted version
has a small but consistent improvement over the classical method. Second, it is clear
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Figure 8: Average MNLL plus/minus one standard error over the K = 30 simulations
for each value of the prior standard deviation (σβ) and each of the fitting methods.
‘Restricted’ is our method conditioning on Tukey’s estimator of location and Huber’s
estimator of scale. ‘rlm’ refers to the classical robust linear model fit with the same
estimators and ‘t’ is the heavy-tailed Bayesian model with a Student-t likelihood. The
‘rlm’ results are the same for each σβ .

that the heavy-tailed model suffers when trying to predict the non-outlying data since
it assumes the entire data generating mechanism is heavy-tailed.

5 Real Data

We illustrate our methods with a pair of regression models for data from Nationwide
Insurance Company that concern prediction of the performance of insurance agencies.

Nationwide sells many of its insurance policies through agencies which provide di-
rect service to policy holders. The contractual agreements between Nationwide and
these agencies vary. Our interest is the prediction of future performance of agencies
where performance is measured by the total number of households an agency services
(‘household count’).

The data are grouped by states with a varying number of agencies by state. Identi-
fiers such as agency/agent names are removed. Likewise, state labels and agency types
(identifying the varying contractual agreements) have been made generic to protect the
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Figure 9: The square root of (scaled) count in 2012 versus that in 2010 for four states.
The colors represent the varying contractual agreements as they stood in 2010 (‘Type’).
Agencies that closed during the 2010–2012 period are represented by the zero counts
for 2012.

proprietary nature of the data. Additionally, the counts were scaled to have standard
deviation one before analysis.

As an exploratory view, a plot of the square root of (scaled) household count in
2012, against that in 2010 is shown in Figure 9 for four states. The states have varying
numbers of agencies and the different colors represent the varying types of contractual
agreements as they stood in 2010 (‘Type’). A significant number of agencies closed
sometime before 2012, as represented by the 0 counts for 2012. Among the open agencies,
linear correlations exists with strength depending on agency type and state. ‘Type 1’
agencies open in 2012 are of special interest. One could easily subset the analysis to
only these agencies, removing the others. However, we leave them and use the data as a
test bed for our techniques by fitting models that do not account for agency closures or
contract type. Our expectation is that the restricted likelihood will facilitate prediction
for the ‘good’ part of the data (i.e., open, ‘Type 1’ agencies). It is of concern to the
company to predict closures and future performance for agencies that remain open. It
is important for planning purposes that the predictions are not overly influenced by a
handful of over/underperforming agencies. Our analysis focuses on one aspect of the
business problem – the prediction of future performance for agencies, given they remain
open.
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5.1 State Level Regression Model

The first analysis is based on individual regressions fit separately within states. The
following normal theory regression model is used as the full model for a single state:

β ∼ N(μ0,Σ0); σ2 ∼ IG(a0, b0); yi = x�
i β + εi, εi

iid∼ N(0, σ2), i = 1, . . . , n, (20)

where β is a three dimensional vector (p = 3) of regression coefficients for the covariate
vector xi consisting of the square root of household count in 2010, and two different
size/experience measures related to the number of employees associated with the agency.
The response, yi is the square root of household count in 2012. The hyper-parameters
a0, b0, μ0 and σ2

0 are all fixed and set from a robust regression fit to the corresponding

state’s data from the time period two years before. Specifically, let β̂ and σ̂2 be estimates
from the robust linear regression of 2010 counts on 2008 counts. We fix a0 = 5 and set
b0 = σ̂2(a0 − 1) so the prior mean is σ̂2. We set μ0 = β̂ and Σ0 = npΣ̂0 where np is

the number of agencies in the prior data set and Σ̂0 is the estimated covariance matrix
of β̂ derived from the robust regression. This prior is in the spirit of the Zellner’s g-
prior (Zellner, 1986; Liang et al., 2008). In general, scaling the prior variance by a factor
g = np is analogous to the unit-information prior (Kass and Wasserman, 1995), with the
difference that we are using a prior data set, not the current data set, to set the prior.
The obvious reason why this model is misspecified is due to omission of the contract
type and agency closure information. Closing our eyes to these variables, many of the
cases appear as outliers. Additionally, the model assumes equal variance within each
state, an assumption whose worth is arguable (see Figure 9).

We compare four Bayesian models: the standard Bayesian normal theory model, two
restricted likelihood models, both with simultaneous M-estimators, and a heavy-tailed
model. For the restricted likelihood methods we use the same simultaneous M-estimators
as in the simulation of Section 4 adapted to linear regression. The heavy-tailed model
replaces the normal sampling density in (20) with a t-distribution with ν = 5 degrees
of freedom. The Bayesian models are all fit using MCMC, with the restricted versions
using the algorithm presented in Section 3.2. We also fit the corresponding classical
robust regressions and a least squares regression.

Method of Model Comparison

We wish to examine the performance of the models in a fashion that preserves the
essential features of the problem. Since we are concerned with outliers and model mis-
specification, we understand that our models are imperfect and prefer to use an out-of-
sample measure of fit. This leads us to cross-validation. We repeatedly split the data
into training and holdout data sets; fitting the model to the training data and assessing
performance on the holdout data.

The presence of numerous outliers in the data implies that both training and val-
idation data will contain outliers. For this reason, the evaluation must be robust to a
certain fraction of bad data. The two main strategies are to robustify the evaluation
function (e.g., Ronchetti et al., 1997) or to retain the desired evaluation function and
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trim cases (Jung et al., 2014). Here, we pursue the trimming approach with log predic-
tive density for the Bayesian models and log density from plug-in maximum likelihood
for the classical fits used as the evaluation function.

The trimmed evaluation proceeds as follows in our context. The evaluation function
for case i in the holdout data is the log predictive density, say log(f(yi)), with the
conditioning on the summary statistic suppressed. The trimming fraction is set at 0 ≤
α < 1. To score a method, we first identify a base method. Denote the predictive density
under this method by fb(y). Under the base method, log(fb(yi)) is computed for each
case in the holdout sample, say i = 1, . . . ,M . Order the holdout sample according to
the ordering of log(fb(yi)) and denote this ordering by yb(1), y

b
(2), . . . , y

b
(M). That is, for

i < j log(fb(y
b
(i))) < log(fb(y

b
(j))). All of the methods are then scored on the holdout

sample with the mean trimmed log marginal pseudo likelihood,

TLMb(A) = (M − [αM ])−1
M∑

i=[αM ]+1

log(fA(y
b
(i))),

where fA corresponds to the predictive distribution under the method “A” being scored.
In other words, the [αM ] observations with the smallest values of log(fb(y)) are removed
from the validation sample and all of the methods are scored using only the remaining
M − [αM ] observations. Larger values of TLMb(A) indicate better predictive perfor-
mance. This process is advantageous to the base method since the smallest scores from
this method are guaranteed to be trimmed. A method that performs poorly when it is
the base method is discredited.

Comparison of Predictive Performance

‘Type 1’ agencies are of special interest to the company and so the evaluation of the TLM
is done on only holdout samples of ‘Type 1’, whereas the training is done on agencies of
all types. This is intended to demonstrate the robustness properties of the various meth-
ods. Models are fit to four states labelled State 2, 15, 27, and 36, with n = 222, 40, 117,
and 46, representing a range of sample sizes. Fitting is done on K = 50 training sam-
ples with training sample sizes taken to be 0.25n and 0.50n. Holdout evaluation is done
on the remaining (‘Type 1’) samples. The acceptance rates for the data augmentation
step, for all but one training set, range from 0.10 to 0.8 across the states, repetitions,
and two versions of the model. The exception was a single training set from State 15
resulting in an usually small acceptance rate under Tukey’s version. This case didn’t
effect the overall results of the simulations but emphasizes the need to check conver-
gence on a case by case basis. The average TLMb(A) over the K = 50 training/holdout
samples for the four states and seven methods are shown in Figure 10 where the base
model is the Student-t model and α = 0.3. Similar results are observed for other base
models. The error bars are plus/minus one standard deviation of the average TLMb(A)
over the K = 50 training/holdout samples. It is clear that the normal Bayesian model
used as the full model (Normal) and the classical ordinary least squares fits (OLS) have
poor performance due to the significant amount of outlier contamination in the data.
In comparing our restricted methods to their corresponding classical methods, there
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Figure 10: Average TLM plus/minus one standard deviation over K = 50 splits into
training and holdout samples. The panels are for the different states 2, 15, 27, and 36,
with n = 222, 40, 117, and 46, respectively. The horizontal axis is the percent of n used
in each training set. The color corresponds to the fitting model. Larger values of TLM
are better.

is small, but consistent improvement across the states and training sample size. Addi-
tionally, variance reduction for the Bayesian versions is evident, especially in State 15,
highlighted by the smaller error bars. For state 2, the largest state with n = 222, the
restricted and classical robust methods have similar performance especially for larger
training sample size. This reflects the diminishing effect of the prior as the sample size
grows. Notably, the Student-t model performs poorly in comparison for this state. The
predictive distribution explicitly accounts for heavy-tailed values, resulting in poorer
predictions of the ‘good’ data (i.e., the ‘Type 1’ agencies). Likewise, for State 27, an-
other larger state, the Student-t model is outperformed by our restricted methods. For
the other states (State 15 and 36), the Student-t performs better than our restricted
methods for smaller training sample size (25% of the sample). However, this advantage
goes away for the larger training sample size (50% of the sample). Intuitively, as more
data is available for fitting, more outliers appear and the heavy-tailed model compen-
sates for them by assuming they come from the tails of the model; an assumption which
is detrimental for prediction. Comparisons of the models depend on α as seen in Fig-
ure 11 which shows results for different α for training sample size 0.5n. For smaller α
(in this case α = 0.1), many outliers are left untrimmed resulting in lower TLM for
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Figure 11: Average TLM plus/minus one standard deviation over K = 50 splits into
training and holdout samples for several values of the trimming fraction α. The training
sample size used is 0.5n. Larger values of TLM are better.

all methods and noticeably larger standard deviation for the classical robust methods
and our restricted likelihood. Larger values of α ensure that the predictive performance
assessment excludes the majority of outliers. The proportion of 0 counts in the data is
roughly 0.14, suggesting that α should be at least this large.

5.2 Hierarchical Regression Model

The previous analysis treated states independently. A natural extension is to reflect sim-
ilar business environments between states using a hierarchical regression. The proposed
model is:

β ∼ Np(μ0, aΣ0); βj
iid∼ Np(β, bΣ0); σ2

j ∼ IG(a0, b0); (21)

yij = x�
ijβj + εij , εij

iid∼ N(0, σ2
j ), i = 1, . . . , nj , j = 1, . . . , J (22)

where yij is the i
th observation of square rooted household count in 2012 in the jth state,

nj is the total number of agencies in state j, and J is the number of states. xij is same
three-dimensional covariate vector as before and βj represents the individual regression
coefficient vector for state j. The parameters μ0, Σ0, a0, and b0 are fixed by fitting the
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regression yij = x�
ijβ + εij using Huber’s M-estimators to the prior data set from two

years before. Using the estimates from this model, we set μ0 = β̂, Σ0 = npΣ̂0 (np = 2996
is the number of observations in the prior data set), a0 = 5 and b0 = σ̂2(a0 − 1). We
constrain a+ b = 1 in an attempt to partition the total variance between the individual
βj ’s and the overall β and take b ∼ beta(v1, v2). Using the prior data set, we assess
the variation between individual estimates of the βj to set v1 and v2 to allow for a
reasonable amount of shrinkage. To allow for dependence across the σ2

j we first take

(z1, . . . , zJ) ∼ NJ(0,Σρ) with Σρ = (1 − ρ)I + ρ11�. Then we set σ2
j = H−1(Φ(zj))

where H is the cdf of an IG(a0, b0) and Φ is the cdf of a standard normal. This results
in the specified marginal distribution, while introducing correlation via ρ. We assume
ρ ∼ beta(aρ, bρ) with mean μρ = aρ/(aρ+bρ) and precision ψρ = aρ+bρ. The parameters
μρ and ψρ are given beta and gamma distributions, with fixed hyperparameters. More
details on setting prior parameters are given in the Supplementary Material.

Using the same techniques as in the previous section, we fit the normal theory
hierarchical model above, a thick-tailed t version with ν = 5 d.f., and two restricted
likelihood versions (Huber’s and Tukey’s) of the model. For the restricted methods,
we condition on robust regression estimates fit separately within each state. We also
fit classical robust regression counterparts and a least squares regression separately
within each state. Additionally, we compare our method to an ABC fit. The ABC
version conditions on the Tukey statistics used in our restricted likelihood version. We
choose the Tukey version for comparison to ABC since it naturally trims outliers and
we expect it to perform the best in this situation. Recall, ABC will approximate the
restricted posterior using π(θ|ρ(T (yobs), T (y

∗)) < ε). Due to the high-dimension of
the parameters and statistics we use the MCMC method called Gibbs ABC developed
by Turner and Van Zandt (2014) to obtain samples from the ABC posterior. A brief
description of this algorithm is as follows with theoretical details provided by Turner and
Van Zandt (2014). Let yj,obs denote the observed data for state j = 1, . . . , J . The shared
higher-level parameters are sampled as before since they are, a posteriori conditionally
independent of the data. The state-level parameters θj = (βj , σj), j = 1, 2, . . . , J , are
sampled using Gibbs ABC. For each iterate of the chain, denote the current state-level
parameters and data for state j by θj,curr and yj,curr. A single update for the state-level
parameters loops over j as follows. Propose θj,prop from the prior and then propose new
data yj,prop from the normal model conditional on θj,prop. The proposed parameters
are accepted with Metropolis-Hastings acceptance probability

αmh = min{1,
φ(ρ(T (yj,prop), T (yj,obs))/δabc)

φ(ρ(T (yj,curr), T (yj,obs))/δabc)
} (23)

with φ(·) the standard normal pdf and δabc a tolerance parameter. Here, we use ρ(·) for
the standard Euclidean distance metric to conform to common ABC notation (this is
not the ρ of M-estimation). This method makes use of kernel-based ABC (Wilkinson,
2013). Instead of checking whether the distance between the sampled and observed
statistics is strictly below some threshold, this method computes the kernel value of the
distance which offers a smoother transition between acceptance and rejection. We use a
standard Gaussian kernel for this application. The smaller δabc, the closer the statistics
must be for acceptance.
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A few notes on our implementation are warranted. First, we are not restricted to
sampling the parameters from their prior. A more general proposal distribution can
be applied with standard adjustments to αmh to adjust for the proposal (Turner and
Van Zandt, 2014). We tried a few different options, including sampling from the full-
conditional distributions, but found proposing from the priors was both the easiest to
implement and provided the most satisfactory convergence results for this problem.
Additionally, the choice of δabc is important and can be different for each state. For this
we started with a small value for each state (δabc = 0.01) and iteratively checked the
within-state acceptance rate. After each check, if the rate was below 0.1 we increased the
δabc for that state by a factor of 1.2. These choices were based on some experimentation
in order to reach satisfactory convergence in a reasonable number of iterations. To
reach satisfactory convergence we had to run the chains for a total of 40, 000 iterations
which was 10-fold more than were needed for the restricted likelihood algorithm. In our
experimentation, our method takes only about 1.6 times as long as ABC per iteration.
We believe that this modest increase in per-iteration computational time is outweighed
by apparently better convergence and mixing of the Markov chain. It is quite possible
that better choices for the ABC algorithm could help improve its convergence, but we
leave this for further research as computational efficiency is not the main focus of this
paper.

Hierarchical models naturally require more data and so we include states having at
least 25 agencies with sufficient variation within each covariate, resulting in 20 states in
total and n =

∑
j nj = 3094 total agencies. For training data we take a stratified (by

state) sample of size 3094/2 = 1547 where the strata sizes are nj/2 (rounded to the near-
est integer). The remaining data is used for a holdout evaluation using TLM computed

separately within each state: TLMb(A)j = (Mj − [αMj ])
−1

∑Mj

i=[αMj ]+1 log(fA(y
b
(i)j))

where yb(1)j , y
b
(2)j , . . . , y

b
(Mj)j

is the ordering of the Mj holdout observations within state

j according to the log marginals under the base model b. For the non-Bayesian models,
fA(y

b
(i)j) is estimated using plug-in estimators for the parameters for state j. TLMb(A)j

is computed for each state for K = 50 splits of training and holdout sets. The Bayesian
models are fit using MCMC, with the restricted versions applying the algorithm laid
out in Section 3 and adapted to the hierarchical setting as described in Section 4. For
the MH-step proposing augmented data, the acceptance rates for the two restricted
likelihood models across all states and repetitions ranged from 0.01 to 0.75, with only
7 cases (out of 50 ∗ 20 ∗ 2 = 2000 chains) with rates below 0.1.

The average over states, TLM b(A)· =
1
22

∑22
j=1 TLMb(A)j for each of the K repeti-

tions is summarized in Figure 12 for several trimming fractions using the Student-t as
the base model. The points are the average of the TLM b(A)· over theK repetitions with
error bars plus/minus one standard deviation over K with larger values representing
better predictive performance. As the trimming fraction used for the TLM increases,
so does TLM since more outliers are being trimmed. Similar patterns were seen in the
individual state level regressions in Section 5.1. Despite being used as the base model
to compute TLM, the Student-t doesn’t perform well in comparison to the robust re-
gressions. We attribute this to the assumption of heavier tails resulting in smaller log
marginal values on average; emphasizing again that the t-model will do well to discount
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Figure 12: Hierarchical model results: TLM b(A)· plus/minus one standard deviation
over K = 50 splits into training and holdout sets with the Student-t as the base model
and several values of the trimming fraction α. Larger values of TLM are better.

outlying observations but does not provide a natural mechanism for predicting non-
outlying data. For each trimming fraction, our restricted likelihood hierarchical models
outperform the classical robust regressions fit separately within each state. The hierar-
chical model also reduces variance in predictions resulting in smaller error bars. On the
surface, ABC performs quite well in comparison to the restricted likelihood. A table of
the mean and standard deviation values for trimming fraction 0.3 is provided in Table 1
where we see that the average TLM for ABC is larger than that for restricted likelihood
by 0.03. Additionally, the standard deviation of TLM for ABC is half the size of that
for restricted likelihood. A closer look at the results shows that the difference in average
TLM can be attributed entirely to a single state with a relatively small sample size (see
next paragraph).

Model Trimming Fraction mean std. deviation
Restricted - Tukey 0.3 1.87 0.06

ABC - Tukey 0.3 1.90 0.03

Table 1: Comparison of the average TLM over all states for Restricted and ABC methods
with trimming fraction 0.3.



1424 Bayesian Restricted Likelihood Methods

Figure 13: Hierarchical model results: TLM b(A)j plus/minus one standard deviation
over K = 50 repetitions for each state and α = 0.3. The states are ordered along the
x-axis according to number of agencies within the state (shown in parentheses). Results
displayed are for the robust models using Tukey’s M-estimators. Larger values of TLM
are better.

It is also interesting to examine the results within each state. Figure 13 summarizes
TLM b(A)j with α = 0.3 for each state where the points and error bars are the averages
plus/minus one standard deviation of TLM b(A)j over the K = 50 repetitions. The
results are only given for the models using Tukey’s M-estimators (Huber’s version is
qualitatively similar). The states are ordered along the x-axis according to number of
agencies within the state (shown in parentheses). State 28 is removed from the figure
as the error bars for the classical robust regression are excessively large and distort the
comparison. In several of the smaller states, the restricted hierarchical model performs
better than the classical method, with similar performance between the models in most
of the larger states, a reflection of the decreased influence of the prior. The hierarchical
structure pools information across states, improving performance in the smaller states.
The standard deviations are smaller for the hierarchical model in smaller states than
they are for the corresponding classical model. In larger states, the standard deviations
are virtually identical. Similar benefits are often seen for hierarchical models (e.g., Gel-
man, 2006). Restricted likelihood performs better when considering the metric at the
individual state-level. While there are a few small states that perform much better un-
der ABC (especially state 31), the restricted likelihood average TLM is larger in 14 of
the 20 states with a median difference (restricted minus ABC) of 0.04.
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6 Discussion

This paper develops a Bayesian version of restricted likelihood where posterior inference
is conducted by conditioning on a summary statistic rather than the complete data. The
framework blends classical estimation with Bayesian methods. Here, we concentrate on
outlier-prone settings where natural choices for the conditioning statistic are classical
robust estimators targeting the mean of the non-outlying data (e.g., M-estimators).
The likelihood conditioned on these estimators is used to move from prior to posterior.
The update follows Bayes’ Theorem, conditioning on the observed estimators exactly.
Computation is driven by MCMC methods, requiring only a supplement to existing
algorithms by adding a Gibbs step to sample from the space of data sets satisfying
the observed statistic. This step has additional computation costs arising from the
need to compute the estimator and an orthonormal basis derived from gradients of the
estimator at each iteration. The cost of finding the basis can be reduced by exploiting
properties of the geometric space from which the samples are drawn as described in
Section 3.2. We have seen good mixing of the MCMC chains across a wide-variety of
examples. We have found the benefits of using our Bayesian technique to outweigh
the additional computational burden (relative to a classical estimator) in the situation
where substantive prior information that will impact the results is available.

The Bayesian restricted likelihood framework can be used to address model mis-
specification, of which the presence of outliers is but one example. The traditional view
is that, if the model is inadequate, one should build a better model. In our empirical
work, as data sets have become larger and more complex, we have bumped into set-
tings where we cannot realistically build the perfect model. We ask the question “by
attempting to improve our model through elaboration, will the overall performance of
the model suffer?” If yes, we avoid the elaboration, retaining a model with some level of
misspecification. Acknowledging that the model is misspecified implies acknowledging
that the sampling density is incorrect, exactly as we do when outliers are present. In
this sense, misspecified models and outliers are reflections of the same phenomenon, and
we see restricted likelihood as a method for dealing with this more general problem.

Outside of outlier-prone settings, we might condition on the results of a set of es-
timating equations designed to enforce a lexical preference for those features of the
analysis considered most important, yet still producing inferences for secondary as-
pects of the problem. This leads to questions regarding the choice of summary statistic
to apply. In the literature, great ingenuity has been used to create a wide variety of
estimators designed to handle specific manifestations of a misspecified model. The es-
timators are typically accompanied by asymptotic results on consistency and limiting
distribution. These results can be used as a starting point to choose appropriate condi-
tioning statistics in specific settings. For example, a set of regression quantiles may be
judged the most important feature of a model. It would then be natural to condition on
the estimated regression quantiles and to use a flexible prior distribution to allow for
nonlinearities in the quantiles. The computational strategies we have devised allow us
to apply our methods in this setting and to make full predictive inference. In general,
we recommend a choice of conditioning statistic based on the analyst’s understanding
of the problem, model, reality, deficiencies in the model, inferences to be made, and the
relative importance of various inferences.
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The framework we develop here allows us to retain many benefits of Bayesian meth-
ods: it requires a complete model for the data; it lets us combine various sources of
information both through the use of a prior distribution and through creation of a hier-
archical model; it guarantees admissibility of our decision rules among the class based
on the summary statistic T (y); and it naturally leads us to focus on predictive inference.
The work does open a number of questions for further work, including a need to inves-
tigate restricted likelihood methods as they relate to model selection, model averaging
for predictive performance, and model diagnostics.

Supplementary Material

Bayesian Restricted Likelihood Methods: Conditioning on Insufficient Statistics in
Bayesian Regression – Supplementary Materials (DOI: 10.1214/21-BA1257SUPP; .pdf).
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Invited Discussion∗

Christian P. Robert†

“...the prior distribution, the loss function, and the likelihood or sampling density (...)
a healthy skepticism encourages us to question each of them.”

This paper by John Lewis, Steven MacEachern, and Yoonkyung Lee, starts with the
great motivation of a misspecified model requiring the use of a (thus necessarily) insuf-
ficient statistic and moving to their central concern of simulating the posterior based
on that statistic. Indeed, model misspecification sadly remains understudied from a
Bayesian perspective and this paper is thus most welcome in addressing the issue.
However, when reading through it, one of my reservations is in the authors defining
misspecification as equivalent to the presence of outliers in the sample. In my opinion,
an outlier model stands as a relatively easy case of misspecification, since the original
and hypothetical model remains meaningful for the “good” part of the data. Further-
more, it seems to me that, under this outlying assumption, adding a non-parametric
component for the unspecified part of the data would sound like a “more Bayesian”
alternative (Robert and Rousseau, 2002). The problem in selecting a statistic T is not
really discussed in the paper, while every choice of a statistic T leads to a different
answer to what misspecified means and suggests a comparison with Bayesian empirical
likelihood (Lazar, 2003; Yang and He, 2012; Mengersen et al., 2013).

I must admit that, when I first reached the Markov chain Monte Carlo (MCMC)
component of the paper, I wondered at its relevance for the misspecification issues that
sounded central above, before realising this had become the central focus of the paper.
I cannot but agree that simulating the observations conditional on a value of the sum-
mary statistic T is a true simulation challenge. I remember for instance George Casella
mentioning it in association with a Student’s t sample in the 1990’s. In the same vein,
Persi Diaconis has written several papers on the problem Diaconis and Sturmfels (1998)
and I am somewhat surprised at the dearth of references on this far from unexplored
area, including also the recent papers by Byrne and Girolami (2013); Florens and Si-
moni (2016); Bornn et al. (2019). In the present case, the linear model assumed as the
true model has the rather exceptional feature that it leads to a feasible transform of an
unconstrained simulation into a simulation with fixed insufficient statistic T (y), with
no ensuing measure theoretic worries if not free from considerable efforts to establish
the operation is truly valid. And, while simulating (θ, y) makes perfect sense in an in-
sufficient setting, the simulation cost is precisely the same as when running a vanilla
Approximate Bayesian computation (ABC) (Sisson et al., 2018). This natural compar-
ison with ABC thus begs for the following remark. While taking ε = 0 may sound
optimal for being “exact”, it is not so from an ABC perspective since the convergence
rate (in n) of the (summary) statistic should be roughly the one of the tolerance (Li and
Fearnhead, 2018; Frazier et al., 2018). I also note that, in its practical implementation,

∗This work was partly supported by a PaRis AI Research InstitutE (prAIrie) from the Agence
Nationale de la Recherche (ANR-19-P3IA-0001).

†CEREMADE, Université Paris Dauphine PSL, University of Warwick, and CREST,
xian@ceremade.dauphine.fr
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ABC does not suffer from low acceptance rates, since the tolerance is derived (as a
quantile) from the simulated distances, i.e., induced by the simulations themselves.

While this may sound irrelevant, let me last mention, if only as a side note for
measure-theoretic purists, that the derivation of the conditional distribution of y given
T (y) = T0 is usually arbitrary since the conditioning event has probability zero (i.e., the
conditioning set is of measure zero). This connects with the Borel-Kolmogorov paradox.
The computations in the paper are correct, obviously, but they also rely on one among
many choices of a transform.
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1 Likelihood Selection

Arguably, the chief contribution of this paper is the computational technique given in
Subsection 3.2. This new technique is effective in the context of the factorization (3)
given at the beginning of Subsection 2.2. Sections 1 and 2 provide the motivation for (3).
Both the new computational technique and its motivation merit discussion. Here, we
focus on the latter since the examples in the paper show that the computing technique
performs as claimed.

The motivation for (3) focuses on a treatment of outliers. Updating a prior using
data that has outliers is a challenge to our standard conceptualization of simply choosing
a model and prior to form a posterior because model selection is so much harder. There
are standard techniques such as using a heavier tailed model that accommodates the
outliers. The problem with this is that the model then reflects all the data including the
data we don’t trust. As a generality this weakens inference. Another standard technique
is to isolate the outliers in the ‘bad’ component of a mixture distribution. The problem
with this is that often it is not clear whether the outliers are indeed outlying. They may
not fit comfortably with the other data but this cannot in general be distinguished from
not fitting the proposed model for the ‘good’ component because it is mis-specified.
A generalization of this technique, not as standard as it perhaps should be, is called
cherry-picking introduced in House and Banks (2004) and developed in Banks et al.
(2009). The idea is to construct a mixture model by fitting a model to a subset of the
data that are in conformity with it, remove the data, and repeat the procedure until all
the data is assigned to a model. The resulting mixture of models should be robust. One
benefit of this strategy is that the models are used to cluster the data and the result can
be investigated with standard model validation methods. The problem with this (in the
view of some) is that the models are used as data summarization rather than proposed
representations for the data generator (DG).

By contrast, Lewis et al. (2021) proposes to replace model selection treatments
of outliers with a statistic selection treatment of outliers. This naturally necessitates a
likelihood selection as well. One way to see the proposed procedure is as a generalization
of sufficiency. Instead of writing

f(y | θ) = g(T (y) | θ)h(y) (1)

for a density f , a parameter θ, a random variable Y , a statistic T (y), a function g
summarizing the dependence of T on θ, and function of the data h(·), write

f(y | θ) = f(T (y) | θ)f(y | θ, T (y)). (2)

∗bclarke3@unl.edu

mailto:bclarke3@unl.edu
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(Unless otherwise specified we use the same notation as in Lewis et al. (2021).) The
function h(y) is obviously a special case of f(y | θ, T (y)). Otherwise put, when T is
sufficient (Y | θ, T ) = (Y | T ) i.e., (Y | θ, T ) does not involve θ.

The idea behind using (2) rather than (1) is that T no longer has to be sufficient and
therefore can be chosen to reduce the influence of outliers. Indeed, using an insufficient
statistic may be better than using a sufficient statistic if the model cannot be assumed
accurate to arbitrary precision, a situation that is typical not exceptional. In Lewis et al.
(2021), Figures 1 and 2, the authors give a variety of examples that condition parameters
or future outcomes on several non-sufficient statistics and give better inference than
using certain ‘natural’ models that have sufficient or asymptotically sufficient statistics.
Since the focus in the paper is on outliers, using statistics that are robust may be more
important than using statistics that are sufficient – even if they exist. Indeed, being able
to drop θ as in (1) – sufficiency – may only be appropriate in models that are wrong
since the true model if it exists need not have a sufficient statistic.

In this sense, the authors’ proposal is to choose a conditioning statistic to compensate
for inadequate model selection because statistics that are sufficient with respect to it
may not encapsulate the inferential information in the data due to model bias. Indeed,
the inferential information in the data may be model dependent. That is, some data
may be outliers with respect to one model but not another.

2 Likelihoods vs. Models

Taking this one step further, there is no rule that says a likelihood has to come from
a model that can be taken as true. A likelihood is simply a function of the parameter
holding the data fixed. Techniques such as estimating equations take this line of think-
ing even further by proposing an optimization problem that may or may not be related
to any model that might be taken as true. So, the authors’ proposal should properly be
termed likelihood selection as opposed to model selection or objective function selec-
tion. Otherwise put, the authors are proposing to choose a likelihood for a conditioning
statistic (that they have also chosen) in the hope that it will extract the most impor-
tant information in the data. This seems overall neither more nor less subjective than
choosing a model class, prior, loss function, etc.

Thus, after choosing a statistic T , the authors choose a likelihood and proceed in the
usual way to equip it with a prior, find the posterior given the conditioning statistic,
and generate a predictive density. It is then the adequacy of predictions that are the
true demonstration of how good a technique is.

One further benefit of this approach is that the main inputs it requires are T and
a likelihood. So the authors’ method can be seen as a technique for dealing with cases
where no model exists. These are termed M-open problems and they are ubiquitous.
Recall,M-closed problems are model selection (or predictor selection) problems in which
the analyst must choose among finitely many alternatives, implicitly assuming one of
them is the DG or objectively ‘right’ i.e., the selection of the best model/predictor is
a source of error far smaller than any other source of errors. M-complete problems are
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those in which the analyst must choose among possibly countably many alternatives
The assumption is that one of them is right – or at least most right in the sense of
introducing negligible errors only – and may be best exhibited as a limit of wrong
models (or predictors). In this case, the notion of a true model or best predictor –
the two are nearly identical asymptotically, see Theorem 2 in Rissanen (1984)1 and
the discussion following – can be used conceptually but is not available in closed form.
M-open problems are those for which there is no true model. This is the typical case
because models are rarely (if ever) known to arbitrary precision and there are many
problems for which it is implausible to assume a true model. The definitions given here
are modified from Bernardo and Smith (2000) to be disjoint.

One difference between M-open and M-complete problems is that expectations and
convergence are well defined only in M-complete problems. Also, the status of the prior
is different in the two classes of problems. In M-open problems we can redefine the
prior to be some sort of weighting on ‘models’ treated as if they were actions giving
predictions but expectations and modes of convergence must be replaced, for instance by
predictive error. The general prequential approach see Dawid (1984), Dawid and Vovk
(1999) and the Shtarkov solution, see Shtarkov (1987), or its Bayes counterpart, Le and
Clarke (2016), are other examples of techniques appropriate for M-open settings.

The authors’ likelihood selection technique, based on a statistic, may also be useful
for a special case at the complex end of M-complete models where there is a true model
but we are unable to formulate it in any realistic way, perhaps due to lack of data or other
information. An example of this can be seen in standard one-way analysis of variance
(ANOVA). Even if the treatments can be regarded as identical, the subjects generally
are not. There are subtle differences that may be important and in any realistic problem
where we generate subjects we will not be able to identify a ‘true model’ for each of
them, at least not to arbitrary precision. In the classic example of the treatment being
a fertilizer and the subjects being plots of land it is easy to imagine small differences
in soil composition, moisture, ambient weather, etc. that may be important. The best
we can hope to do is to identify a model whose error can be safely assumed smaller
than other sources of error. However, this is an assumption we can rarely verify. Taken
together this means that although we can imagine a true model for the plots we cannot
write it down. Thus, one-way ANOVA is an M-complete problem that we typically
approximate by an M-closed problem. So, the authors’ approach would apply to these
problems as well as M-open problems.

3 Choices, Choices. . .

The most disconcerting aspect of the methodology proposed by Lewis et al. (2021)
may be the freedom it seems to give to analysts. After all, it is hard to give general

1Actually, Rissanen showed that in the standard autoregressive moving average case with p autore-
gressive terms and q model avearge terms (ARMA(p, q)), the true model is the best predictor in the
sense of achieving the minimal variance asymptotically. It not hard to see that this result generalizes
readily to other model classes. An exception to this result is that pre-asymptotically a good approxi-
mation to a true model may give a predictor that outperforms the predictor from true model because
the true model has high variance as a result of its complexity.
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guidance as to how to choose a statistic or a likelihood for it well. On the other hand,
adopting a prequential approach removes much of the seeming excess flexibility by
imposing a predictive performance criterion. As argued elsewhere, e.g., Section 5 in Le
and Clarke (2021), a method’s predictive success is a measure how much we should
trust it. Moreover, there are other efforts to ‘square the circle’ of merging interpretable
modeling with black-box modeling; see Wang and Lin (2021).

With this in mind, suppose we have chosen a statistic that we think extracts the
information from the data that we think is most relevant to our inferential goal. The
question becomes how to assign a likelihood to it. In their paper Lewis et al. (2021)
select a likelihood based on convenience or (coarse) physical modeling. However, it is
important to note that the modeling is for the statistic not the data directly. The authors
also note that a statistic and its asymptotic distribution could also be used.

Indeed, there are many statistics that are robust, asymptotically sufficient, and may
provide good inference even if they are not efficient. A natural choice is to use order
statistics. If dim(θ) = d then one can choose d order statistics, condition on them, and
obtain posterior normality. This is possible because any two percentiles are typically
asymptotically independent in the M-complete case when the joint distribution of the
data is independent. For the special case d = 1, we have the following.

Let X1, . . . , Xn, . . . be a sequence of i.i.d. random variables with common density
function fθ(x) and distribution function Fθ(x), α be a constant, 0 ≤ α ≤ 1, and l = [αn],
bn = l/(n+1), an =

√
l(n− l + 1)/(n+ 1)3, and let μ(θ) = F−1

θ (α). Let Ω be a compact

set such that infθ∈Ω w(θ) ≥ c > 0, f
(i)
θ (x) be the i-th derivative of fθ(x) w.r.t. x.

Theorem (Yuan and Clarke, 1999). Assume that w(θ) is continuous at the true parame-
ter θ0, and that μ′′ exists for θ ∈ Ω and that i) infθ∈Ω |μ′(θ)| > 0, ii) supθ∈Ω |μ′(θ)| < ∞,
and iii) ∃ δ > 0 so that

sup
θ∈Ω

sup
x∈(−δ,δ)

|f ′′
θ (F

−1
θ (α+ x))| < ∞.

Then,
Eθ0 |w(θ|Xl:n)−N(θ, θ0, θ̂)|dθ → 0,

where θ̂ = μ−1(Xl:n), N(θ, θ0, θ̂) is the density of normal distribution with mean θ̂ and
variance σ2(θ0)α(1− α)/n(μ′(θ0))

2 and σ−1(θ) = fθ(F
−1
θ (α)).

The result and proof are a variation on Clarke and Ghosh (1995) and a special
case of Yuan and Clarke (2004). So, if regularity conditions are satisfied and n is large
enough, asymptotic normality can be invoked for use in (4) and (5) in Lewis et al.
(2021). More generally, if dim(θ) = d, w(θ | �1, . . . , �d) → M(θT , V ) (in L1) where V is
a d × d diagonal matrix that can be given explicitly if desired. This can be extended
to some wrong model analyses i.e., certain M-closed or -complete cases because Berk
(1970) can be extended as in Clarke and Le (2021) Appendix C.

A separate approach to assigning a likelihood follows from the concept of minimally
informative likelihoods (MIL) – a sort of ‘dual’ concept to reference priors, see Clarke
et al. (2014). The idea is, given a statistic, a loss function, and a prior, to choose a
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likelihood, or in the parlance of information theory a channel, that provides optimal data
compression subject to a distortion constraint i.e., a maximal tolerance on inaccuracy.
The MIL achieves the rate distortion function lower bound for a given tolerance. Of
course, allowing too large a tolerance means no information is retained and insisting on
too small a tolerance means that the data compression will be too little to be helpful.
To find the MIL requires the Blahut-Arimoto algorithm but provides a likelihood – a
function of the parameter for fixed data – that can be fed into the framework of Lewis
et al. (2021). Again, the statistic can be chosen by the analyst – although some statistics
are easier to use than others. The MIL in principle loses the least important information
in the data or equivalently adds the least information to the data via likelihood selection.
The MIL can be generally used although the computing may be unstable in some cases.

Taken together, these two examples illustrate that choosing a statistic may often be
enough for inference since the likelihood can be found automatically, through asymp-
totics or optimization. Moreover, one can in principle evaluate the robustness of infer-
ence to statistic or likelihood selection by comparing asymptotic inference to the MIL
and other choices for both the statistic and likelihood. Overall, asserting a model, as op-
posed to merely identifying a statistic and a likelihood that can be used pragmatically,
may make inferences model-driven (and subjective) rather than data driven.

4 Two Final Thoughts

A theoretical gap that the authors might want to fill at some point concerns the com-
puting. Specifically, much of the conditioning results in degenerate distributions in the
sense that sets such as {T (y) = T (yobs)} have measure zero in the overall measure
space so conditioning on them must be done carefully to ensure the conditional dis-
tributions are compatible from observed value to observed value. Careful conditioning
arguments generally come down to the Radon-Nikodym theorem and fortunately are
generally common-sense, at least once they are worked out. Can the authors explain
their technique in these more formal terms or at least give the intuition to support its
theoretical foundation?

A final thought that the authors might want to address is that one of the more
valid criticisms of the Bayesian approach as compared to the frequentist approach is
that exploratory data analysis (EDA) or initial data analysis (IDA) is much harder –
indeed often not feasible – in the Bayesian paradigm. After all, the frequentist doesn’t
require a likelihood to compute and use meaningful summary statistics. However, the
computational methodology in this paper, especially if formalized, amounts to mak-
ing Bayesian EDA/IDA feasible. One can pick a statistic T (sufficient or not), assign
a likelihood through modeling, asymptotics, or MIL’s, and then find the posterior or
predictive given that statistic. The frequentists can still do EDA/IDA faster (less de-
manding computationally) but now Bayesian EDA/IDA can be done routinely. So, how
can we compare the frequentist EDA/IDA use of summary or descriptive statistics to a
Bayesian approach for EDA/IDA based on ‘summary’ or ‘descriptive’ posteriors – pos-
teriors based on statistics and likelihoods we can readily choose, at least in principle.
Can the authors comment on what sort of results we should expect from a comparison
of their Bayesian methodology for EDA/IDA to the established frequentist version?
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Invited Discussion

Fabrizio Ruggeri∗

1 Discussion

I start by congratulating the authors for an original idea and its brilliant implementation
and then I move on to a question to which I wish I could have an answer of my own. I
am not a deep expert of Bayesian foundations but I grew up thinking that the likelihood
function contains all the necessary evidence about the parameters of a given statistical
model. The question is: how do you cope with the likelihood principle?

Another curiosity concerns the behaviour of the procedure when there are no outliers:
there should be some protection if applied inappropriately. A similar problem arises
when there are influential data.

The authors write that the “tuning parameters for the M-estimators are chosen to
achieve 95% efficiency under normality”. Although used in classical robustness studies,
this choice seems very arbitrary to me, especially when data are far from normality.
I wonder if there is a way, similar to Akaike Information Criterion (AIC), to choose
among different values of those parameters. This could be a relatively simple way to
select the parameters, without resorting to more complex approaches such as a prior
distribution or a loss function within a decision theoretic framework.

Comparisons have been done with Gaussian and t distributions, or mixtures of the
former. I wonder what would have happened if the authors had considered a more robust
distribution, such as the family of exponential power-series distributions introduced by
Box and Tiao in 1962.

I think the authors should mention another approach meant to deal with outliers: the
choice of a (broad) class of statistical models or (neighbourhood of) likelihood functions
and the computation of the range (lower and upper bounds) of the Bayesian estimator of
the parameter of interest. This approach is (or was?) known as robust Bayesian analysis.

The authors have presented a remarkable approach but it would be more effective
if they could provide guidance on which M-estimators are recommended in different
situations.

According to the authors, the data augmented Markov chain Monte Carlo algorithm
is one of the major contributions of their work. I am impressed by the way they have
dealt with it and I expect other discussants, more involved in computational aspects, will
comment on it. I have only a concern about the increase in computational complexity
when dealing with very high dimensions, both in sample size and parameter space. I
would like to know more about it.

∗CNR IMATI – Via Alfonso Corti 12 – 20133 Milano – Italy, fabrizio@mi.imati.cnr.it; url:
http://www.mi.imati.cnr.it/fabrizio
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I have also a suggestion about the comparison of different values of the parameters of
the M-estimators. At the beginning of Section 3.2, the authors mention a Gibbs sampler
with two full conditionals: the first one is the same as the full data posterior whereas the
second one depends on the chosen statistics. I think it could be possible to run many
chains in parallel with the first full conditional common to all of them and the second
one with different values of the parameters.

It would be interesting to see extensions of the current work in other frameworks.
The most obvious one is about generalised linear models, but one could also think of
non-homogeneous Poisson processes or other stochastic processes.

I believe the work by Lewis, MacEachern and Lee can stimulate further methodolog-
ical research and be applied in many practical situations. I commend them one more
time for a remarkable paper.
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Contributed Discussion∗

Christopher Drovandi†, David J. Nott‡, and David T. Frazier§

1 Discussion

We congratulate the authors on a very interesting article. The paper was of interest to
us, and perhaps the wider likelihood-free community, for at least two reasons. First, this
is another example of how conditioning on summary statistics can be useful outside the
intractable likelihood setting. Second, the authors devise a way to condition exactly (for
linear regression models) on the observed statistic, avoiding the error from imperfect
matching associated with approximate Bayesian computation (ABC).

For inference about unknown parameters θ based on data y, with observed value
yobs, the authors make a compelling case for Bayesian inference conditional on a robust
summary statistic Tobs = T (yobs) when there is concern about model misspecification.
When T (y) is an insufficient statistic, the likelihoods f(yobs|θ) and f(Tobs|θ) differ,
and for certain choices of T (·), the “restricted likelihood” can be less sensitive to model
misspecification. This leads to Bayesian inference on θ via the “restricted” posterior,
π(θ|Tobs) ∝ f(Tobs|θ)π(θ). Accessing the restricted likelihood f(Tobs|θ) using conven-
tional methods can be difficult. The authors circumvent this issue by generating samples
from, in turn, y ∼ f(y|θ, T (y) = Tobs), and θ ∼ π(θ|y). The former sampling step re-
quires that certain Jacobian terms be exactly calculated. This can be achieved in the
important case of linear regression models with some specific choices of robust summary
statistics.

We are interested in the authors opinion about whether this exact conditioning
approach can be extended to more complex regression models? In more complex settings,
likelihood-free computational methods that the paper avoids may be re-visited.

We would like to bring the authors attention to another useful likelihood-free method
called synthetic likelihood (SL) (Wood, 2010; Price et al., 2018), which could be par-
ticularly useful in complex regression models where exact conditioning is difficult. SL
also targets a posterior based on the restricted likelihood π(θ|Tobs) ∝ f(Tobs|θ)π(θ).
However, SL approximates f(T (y)|θ) directly using a multivariate normal density, lead-
ing to the “synthetic likelihood” N{Tobs; b(θ),Σ(θ)}, where b(θ) = E[T (y)|θ] and
Σ(θ) = Var [T (y)|θ] can be estimated from m independent simulated datasets. Combin-
ing the estimated SL with a prior yields the Bayesian SL (BSL) posterior πBSL(θ|Tobs).
BSL is appealing since it does not require tuning of the tolerance and distance function

∗This work was supported by the Australian Research Council and a Singapore Ministry of Educa-
tion Academic Research Fund Tier 1 grant.

†Centre for Data Science, Queensland University of Technology, Australia, c.drovandi@qut.edu.au
‡Department of Statistics and Applied Probability, National University of Singapore, Singapore,

standj@nus.edu.sg
§Department of Econometrics and Business Statistics, Monash University, Australia,

david.frazier@monash.edu

mailto:c.drovandi@qut.edu.au
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Figure 1: Comparison of BSL and the restricted Bayesian linear model (RBLM).

as in ABC. Further, it has been shown (Price et al., 2018; Frazier et al., 2021) that the
BSL posterior depends weakly on m, so that it can be chosen to maximise computa-
tional efficiency. Third, when the summary statistic is asymptotically Gaussian, Frazier
et al. (2021) show that BSL is more computationally efficient than ABC.

The robust summaries considered by the authors are asymptotically Gaussian under
mild conditions, and BSL may be of interest for more complex regression models with
similar summaries. If f(Tobs|θ) ≈ N{Tobs; b(θ),Σ(θ)}, then BSL can well approximate

π(θ|Tobs). Under regularity conditions (Yuan and Clarke, 2004), π(
√
n(θ− θ̂n)|Tobs) is

well-approximated by N{√n(θ − θ̂n); 0,Σ(θ0)}, where θ̂n is the restricted maximum
likelihood estimate, and converges towards some θ0. Similarly, Frazier et al. (2021)

demonstrate that πBSL(
√
n(θ− θ̂n)|Tobs) converges to N{√n(θ− θ̂n); 0,Σ(θ0)}. Hence,

in large samples, or when f(Tobs|θ) is approximately Gaussian, πBSL(
√
n(θ−θ̂n)|Tobs) ≈

π(
√
n(θ − θ̂n)|Tobs). Although asymptotic arguments motivate the BSL normal likeli-

hood, its semiparametric extensions often result in better finite sample approximations
than a direct use of these asymptotic results.

To illustrate the potential of BSL for robust regression, we run BSL on the insur-
ance agency dataset for state number 27, and use m = 20. As shown in Figure 1, the
approximate posteriors are almost identical to the approach of the paper.
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Michael Lavine∗

It was a pleasure to read this thoughtful and well-written article by Lewis, MacEach-
ern, and Lee. It seems to us that it makes two main contributions: first, replacing the
usual likelihood function with one that is hoped to be more robust to outliers and mis-
specification and second, providing a Markov Chain Monte Carlo (MCMC) scheme for
drawing from the posterior distribution. We focus our remarks on the first contribution.

The authors’ purpose in replacing the usual likelihood function is to summarize the
data “through a set of insufficient statistics, targeting inferential quantities of interest”1

out of “[c]oncern for imperfections in the likelihood.”2 To us, it seems the authors’
purpose is very similar to that of marginal and conditional likelihoods in Royall (1997).
In Royall’s words (page 155),

For example, when X1, . . . , Xn are i.i.d. random variables, unless n is small, we need not spec-
ify the precise form of the distribution of a single element, X, in order to confidently model the
marginal distribution of X̄ as normal (because of the central limit theorem). When the variance of
this marginal distribution is replaced by a consistent estimator, the resulting estimated likelihood
function for the mean, EX, is valid, in a specific approximate sense, under a wide range of specific
parametric models for the distribution of X (Tsou and Royall, 1995).

Indeed, the major contribution of Tsou and Royall (1995) is to

. . . examine the concept of robustness as it relates to likelihood functions. We note five ways that
likelihood functions can be used to represent and interpret statistical data as evidence. These various
uses suggest corresponding senses in which one likelihood function can approximate another, and
these in turn suggest different senses in which a likelihood function can be ‘robust.’ We establish
some general relationships among these senses of robustness, and examine two general techniques
for producing robust likelihoods.3

Tsou and Royall (1995) and Royall (1997) write about likelihood functions, not
about posterior distributions, so they don’t say they are conditioning on insufficient
statistics. But that is, in effect, what they are doing, or would be doing if they used
their robust likelihood functions to produce posteriors. Further development is in Royall
and Tsou (2003) which makes a careful distinction between the object of inference and
the object of interest when the hypothesized model is wrong.

Tsou and Royall (1995), Royall (1997), and Royall and Tsou (2003) consider ro-
bust likelihoods for inference about parameters, whereas Lewis, MacEachern, and Lee
demonstrate the value of their methods for predictions. The two points of view might
be combined by adapting the ideas of the first three papers to the setting of predictive
likelihood. The basic idea of predictive likelihood is that predictands can be treated

∗Department of Mathematics and Statistics, UMass, Amherst, lavine@math.umass.edu
1Quotation from the abstract.
2Quotation from page 2.
3Quotation from the abstract.
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as unknowns similarly to parameters. See Bjørnstad (1990) and Bjørnstad (1996) for
further discussion.

Finally, we would like to add to Lewis, MacEachern, and Lee’s summary of the
literature on concerns for imperfections in the likelihood. An approach they did not
mention is that of Lavine (1991b) which “introduces a method for computing ranges of
posterior expectations over reasonable classes of sampling distributions that lie ‘close
to’ a given parametric family. By treating the prior as a probability measure on the
space of sampling distributions this article also gives a unified treatment to what are
usually considered two separate problems—sensitivity to the prior and sensitivity to
the sampling model.” See Lavine (1991a) for details. In those articles the posterior
expectation could also be a predictive expectation.
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Jong-Min Kim∗

1 Summary

It is a great honor to have the chance of congratulating the authors (John R. Lewis,
Steven N. MacEachern, and Yoonkyung Lee) on an interesting and valuable paper.
This paper develops a Bayesian version of restricted likelihood where posterior infer-
ence is conducted by conditioning on a summary statistic rather than the complete
data. The authors found the benefits of using our Bayesian technique to outweigh the
additional computational burden in the situation where substantive prior information
that will impact the results is available. My suggestion to reduce computational burden
can be Copula-based models which have received much attention in recent years in var-
ious fields because of several attractive properties. First, due to Sklar’s theorem (Sklar,
1959), copulas allow us to model the marginal distributions and the joint dependence
structure separately (Joe, 1997). Second, they are invariant under increasing and contin-
uous transformations. Third, copulas do not require the normal distribution assumption
to find the measure of dependence, unlike Pearson’s correlation. Copula models have
been widely used to model dependence between macroeconomic and financial time series
(Cherubini et al., 2011).

Masarotto and Varin (2012) proposed Gaussian Copula marginal regression (GCMR)
which implemented maximum simulated likelihood estimation based on a variant of the
GHK algorithm (Geweke, Hajivassiliou and Keane) because Gaussian copula provides
a mathematically convenient framework to handle various forms of dependence in re-
gression models arising longitudinal and spatial data.

The extension of the GCMR method is Guolo and Varin (2014) marginal beta re-
gression model exploits the probability integral transformation to relate response Yt

to covariates xt and to a standard normal error εt. Kim and Hwang (2017) proposed
copula directional dependence by using the Guolo and Varin (2014) marginal extension
of the beta regression model for time series analysis and the cumulative distribution
function of a normal variable. But the GCMR method has also a computation burden.
To reduce the computation cost, Masarotto and Varin (2017) suggested composite like-
lihoods to reduce the computational effort through convenient likelihood factorizations
(Varin et al., 2011) and sparse methods designed to approximate the Gaussian copula
correlation matrix with a more manageable block-diagonal matrix. The suggestion by
Masarotto and Varin (2017) can be applied to the authors’ paper.

Another interesting Copula approach for the authors’ proposed method to reduce the
computation cost is Wojtyś et al. (2016) sample selection models under the situation in
which an outcome of interest is observed for a restricted non-randomly selected sample
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of the population. The estimation of these models is based on a binary equation, which
describes the selection process, and an outcome equation, which is used to examine the
substantive question of interest. Once again, I was very impressive to read the authors’
paper. I hope my comment to this wonderful research paper will be helpful.
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Contributed Discussion∗

Malay Ghosh† and Debashis Ghosh‡

We congratulate the authors for their novel contribution to the Bayesian literature.
As mentioned by the authors, the success of any Bayesian method depends on three
components: the likelihood, the prior and the loss. For an applied scientist, specification
of the loss is not that critical or is often not explicitly dealt with, as often descriptive
measures such as posterior means, medians, variances and quantiles suffice to meet
inferential needs.

That leaves one with the likelihood and the prior. The present paper focuses on
“imperfect likelihood”. They seem also to be linking model misspecification with lack
of model robustness. Introduction of M-estimators in this regard is an age-long practice
as embraced in this article. The paper does a nice job summarizing the literature dating
back to the work of Huber. One obvious extension beyond the current paper is to
examine the utility of the restricted likelihood approach in comparison to Bayesian
nonparametric methods (Hjort et al., 2010).

Much of the success of the present approach hinges not just on an arbitrary linear
model, but specifically on the fixed effects linear regression model where the two basic
components for inference are the least squares estimator of the regression parameters
as well as the residual error variance. In fact, abusing the terminology, we can even
label these estimators as “approximately sufficient” when no distributional assumption
is made. Indeed these are minimal sufficient with the added assumption of normality.
The very natural question that emerges then is how to extend the present proposal
to other linear models, for example, in mixed linear models with unknown regression
parameters as well as unknown variance components.

More specifically, the pivotal Theorem 3.1 does not seem to have a natural extension
beyond what is given this paper. Particularly, the choice of the T (·) statistic becomes
an arduous task as one steps outside the proposed linear model. Even the estimating
equations related to M-estimators emanate from the given linear model. Proceeding
to generalized linear models as well as nonlinear models, the choice of T (·) becomes
formidable, although such a choice may turn out to be somewhat simpler for the former
than the latter. A similar comment applies to the development of the proposal density
of y as done in Theorem 6, an ingenious derivation in this article. Some insight may be
derived by the following heuristic argument. Suppose z∗ is drawn from a distribution F
whose mean is μZ ∈ Rn. Then y ≡ h(z∗) is approximately equal to

s(X,yobs)

s(X,μZ)
z∗ +X

(
b(X,yobs)− b

(
X,

s(X,yobs)

s(X,μZ)
μZ

))
.
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Thus, we have a linearity condition for y|z∗ that bears some parallel to the linearity
condition given in the sufficient dimension reduction literature (Li and Duan, 1989;
Li, 1991; Brillinger, 2012). By drawing on the vast literature for sufficient dimension
reduction, summarized recently in Li (2018), this might suggest models to which we can
expand the approach to.

There seems to be a bigger issue involved. Many view the likelihood and the prior
combined into a single multilevel model. Misspecification can occur in one or in the
other, or even in both. Thus model diagnostics have turned out to be a real favorite
tool for Bayesians, although there too one lacks a more or less universally accepted
procedure.

In summary, we commend the authors for an original and thought-provoking article.
But then the question is not unlike that of Alice in Wonderland: “Where do we go from
here”?
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Contributed Discussion

Shota Gugushvili∗ and Carel F. W. Peeters†

Motivated by robustness considerations against model misspecification, in this paper the
Authors propose to perform posterior inference by conditioning on (insufficient) sum-
mary statistics rather than the full data at hand. Their proposal can be seen as a hybrid
Bayesian-frequentist approach, or as a Bayesian take on restricted likelihood estimation.
The Authors numerically implement and examine their idea in the linear model setting.
We commend the Authors for their highly interesting, well-written contribution, and
for expanding the literature at the interface of Bayesianism and frequentism. Below we
bring up several points for discussion.

Our first point revolves around the issue of dimension. The Authors (at least partly)
justify their approach as feasible in higher dimensions (in terms of the conditioning
statistic T (yobs) and parameters θ). The success and efficiency of their Markov chain
Monte Carlo (MCMC) sampler depends on the data augmentation step (Section 3.2).
The latter happens to be a Metropolis-Hastings step to sample y conditional on the
observed statistic T (yobs) (and the current parameter value θ). However, when the
dimension of y, i.e. the sample size n, is large, the Metropolis-Hastings steps, and
as such the Authors’ MCMC sampler too, might run into problems. A mathematical
reason for this are the opposing forces of volume and density for probability measures in
high-dimensional spaces; see, e.g., Betancourt (2018) and Giraud (2015). In particular,
probability measures in high-dimensional spaces tend to concentrate on ‘typical sets’
that become increasingly singular as the dimension of the space grows. In the present
setting, the situation becomes exacerbated with a growing parameter space or feature
space dimension p as well: though y is n-dimensional, when conditioned on T (yobs), its
density effectively lives on the (n − p − 1)-dimensional subspace that is much smaller
than the original space. Performing naive Metropolis-Hastings steps in such a situation
may effectively reduce to looking for a needle in a haystack. We also note that many
situations of current interest are characterized by p being (much) larger than n. This
does not appear to be covered by the Authors’ method, that requires n − p − 1 > 0.
We would appreciate if the Authors could provide some clarification regarding these
musings.

Our second point concerns the assessment of the added practical value of the Au-
thors’ MCMC sampling method. As one of the referees has pointed out, the MCMC
technique developed in the paper is not required when the asymptotic approximation
is sufficient. An additional computational burden of the proposed method seems jus-
tified when, quoting the Authors, “substantive prior information that will impact the
results is available”. However, how does one reliably deduce that one indeed has such
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substantive prior information? This question appears particularly difficult to us in the
high-dimensional setting (large p).

The third point concerns a comparison of the proposed method to approximate
Bayesian computation (ABC). The Authors note a similarity of their approach to ABC
(Section 2.3), but regrettably do not perform a full comparison, except in the example
from Section 5.2. Now both practical experience and some recent theoretical work (see
Frazier et al. 2018 and Frazier et al. 2020) tell us that ABC runs into problems in
misspecified and high-dimensional model settings. Given a degree of similarity of the
Authors’ method to ABC, a fuller comparison with the latter would have been welcome.

The fourth point concerns the restricted notion of misspecification employed by the
Authors. We realize that covering all the interesting questions is nigh impossible in a
single paper. However, model misspecification can hardly be restricted to presence of
a certain percentage of outliers in the data. We note that in the context of variational
inference, Wang and Blei (2019) examine several relevant examples that go beyond this
notion of misspecification. Can the Authors indicate how their methods would fare in
the face of other departures from the model assumptions?

The fifth point deals with the question whether conditioning on insufficient statis-
tics leads to adequate uncertainty quantification in inferential conclusions, even if the
approximate posterior is roughly centered on the correct parameter value.

To conclude, we enjoyed reading the paper. Once again, we congratulate the Authors
on their work, and look forward to their input in the discussion.
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Jack Jewson∗ and David Rossell†

We congratulate the authors for a thought-provoking paper. The idea is compelling:
by conditioning on estimators that are robust to misspecification (e.g. outliers) one ro-
bustifies posterior inference. Our main comment is that robust estimators often require
hyper-parameters that can critically affect the quality of inference, as pointed out by
the authors: “the choice of summary statistic along with the corresponding tuning pa-
rameters is important”. For illustration, inference using Tukey’s loss can be sensitive to
the “cut-off’ parameter k (Figure 1, left). The authors adopt a default k = 4.685 that
ensures 95% efficiency if the data were Gaussian. While reasonable, such defaults are
sub-optimal under stronger-than-expected contamination (Figure 1, right).

Ideally one would like to learn which hyper-parameter values are most appropriate
for the data at hand. For example, one may learn the degrees of freedom for a Student’s-t
model (which can be seen as a hyper-parameter) via standard inference, but more gener-
ally the task can be challenging. Losses such as Tukey’s do not define a proper probability
model on the data, so likelihood-based methods do not apply. It is nevertheless possi-
ble to learn hyper-parameters in such situations using a recent strategy in Jewson and
Rossell (2021). The idea is to view Tukey’s loss as defining an improper model indexed
by (β, σ, k) that can be embedded into a generalized Bayes framework, and to then find

k̂ such that the improper model best approximates the data-generating mechanism (in
Fisher’s divergence). The strategy uses the so-called Hyvärinen score (Hyvärinen, 2005),

which can accommodate infinite normalization constants (improper models). Once k̂ is
obtained, one can apply the author’s Bayesian restricted likelihood methods (BRLM).
That is, one first learns how robust the summary statistics should be from the observed
data, and then applies BRLM. If the contamination is little then one hopes to set large k̂
(k = ∞ recovers the Gaussian model), whereas under strong contamination one hopes

for small k̂. Below we extend one of the authors’ examples to illustrate that learning
k̂ can have non-negligible effects on inference. Doing so, robustifies inference to poor
hyper-parameter choices, which we believe aligns with the motivation for BRLM.

We reproduce the authors’ Simulation 2 where the parameters β of a Bayesian
linear regression are estimated under a one-sided outlier contamination. Figure 1 (left)
illustrates the sensitivity of BRLM to the choice of k, for several prior variances σβ .
Learning k from data improves the mean squared error (MSE) for all σβ , whereas setting
different defaults (k = 2.5 and k = 6) significantly increases MSE. Figure 1 (right)
displays the relative MSE vs. the oracle least-squares using only uncontaminated data,
showing that the default k = 4.685 becomes less efficient as the proportion of outliers
increases, relative to learning k via the H-score.
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Figure 1: Left: MSE over K = 30 simulations under several prior specifications σβ and
Tukey’s hyper-parameter k. Right: relative MSE vs. oracle uncontaminated least-squares
of default and H-score estimated values of k under increasing outlier contamination.

Figure 2: Restricted likelihood Gaussian density (left) and Tukey-based improper den-
sity (right) approximation to the fitted residuals produced by those methods.

Our second main comment is on predictive inference. As argued eloquently by the
authors, in some settings one wishes to obtain a predictive distribution that represents
future non-contaminated data, e.g. the BRLM-estimated Gaussian in Figure 2 (left). In
other settings outliers are not a contamination but part of the inherent process, e.g. ex-
treme weather or finance events. Then, the posterior predictive should acknowledge that
future extreme events are possible. Such predictive distributions are non-standard when
the loss does not define a proper model, e.g. for Tukey’s loss (Figure 2 right). However,
in a generalized Bayes framework they can still be interpreted as being informative
about relative (rather than absolute) probabilities. Figure 2 right has a normal-like
central component and flat tails, expressing ignorance on the magnitude of possible
outliers. Both views (uncontaminated vs. all data) can be valuable, depending on the
application.
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Contributed Discussion

Arnab Hazra∗

I would first congratulate the authors for this thought-provoking paper in the area
of Bayesian robust regression. For a random sample y from a continuous distribution
indexed by a parameter vector θ, usual Bayesian techniques draw posterior inferences
through π(θ|y) ∝ π(θ)π(y|θ), where π(θ) is the prior distribution of θ and π(y|θ) is
the data likelihood. Alternatively, the authors propose to draw inferences about θ using
π(θ|T (y)) =

∫
π(θ,y|T (y))dy, where T (y) is a robust estimator of θ. Further, this high

dimensional integral is approximated using a Gibbs sampler with two full conditionals
π(θ|y, T (y)) and π(y|θ, T (y)). In general, sampling from these full conditionals is non-
trivial and the authors develop a computationally intensive but rigorous strategy.

There is a gigantic literature on the choices of T (·). The paper focuses on some more
traditional choices like Huber’s and Tukey’s M-estimators, least median squares, and
least trimmed squares. The class of M-estimators is also large; for example, a popular
minimum density power divergence estimation (MDPDE) method was proposed by
Basu et al. (1998) which has certain advantages over other M-estimators. To implement
Bayesian MDPDE or some other classes, allowing user-defined estimating equations in
the R package brlm would be beneficial. Ghosh and Basu (2013) proposed an MDPDE
approach for linear regression in a frequentist setting and their estimating equations
satisfy all the conditions C1 through C8 described in the paper. Thus, a Bayesian
implementation using the technique developed in this paper is direct.

The method developed in Section 3 does not have any distributional assumption; the
condition C2 only assumes the existence of a density with respect to Lebesgue measure
on the real line. However, all the examples discussed in the paper assume normality. It
would be helpful if some examples for other distributions are discussed.

The limiting posterior/sampling variances in Bayesian/frequentist settings are the
same. Thus, for a large sample size, the performance of the proposed method for
noninformative/weakly-informative priors and a traditional classical robust estimator
would be similar. The sample sizes used in the simulation settings are generally not
small. Some examples with smaller sample sizes would be helpful for clarification.
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Contributed Discussion

Kali Chowdhury∗

This contribution respectfully wishes to discuss some thoughts and open questions on
this work, based on existing literature. The authors outline a method that summa-
rizes “the data through a set of insufficient statistics”, where “the prior distribution
is updated with the summary statistics rather than the complete data.” The major
contribution of this construction seems to be “the development of a data augmented”
Markov Chain Monte Carlo (MCMC) algorithm for linear models and certain class of
summary statistics.

Thus, it is discussed that Bayesian inference considers “the prior distribution, the
loss function and the likelihood or sampling density.” Further that imperfection in the
likelihood could be due to “rounding of the observations”, “the occurance of outliers”,
or the model being misspecified. The first of which may be overcome by MCMC and
the “second and third are duals”. In regards to the duals, I first kindly draw attention
of the reader to Chowdhury (2017) where the author specifically discusses an outlier
to be a model specific phenomenon, and thus both gross errors and model mispecifi-
cations may give rise to observed “outliers.” In regards to the MCMC method, which
generally require say ergodicity and/or aperiodicity for convergence, it may be good
to better understand under what circumstances the proposed method would attain the
true distribution, subject to the tuning parameters constraints.

Accordingly, please note that Chowdhury (2021a) discusses in detail how such a
Markov chain may be induced through the conditional distributions of hierarchical pa-
rameters and why the distributional convergence results are robust. Chowdhury (2021b)
and Chowdhury (2021c) greatly extended this approach to various even more general set-
tings under minimal assumptions, which ensures almost sure convergence of the param-
eter estimates without the need for a tuning parameter, or insufficient statistics specif-
ically. The algorithm termed Latent Adaptive Hierarchical Expectation-Maximization
Like (LAHEML) algorithm, ensures that through a hierarchical model we may ensure
almost sure convergence of the parameter estimates, as the link condition holds for all
observations. As such, the authors correctly compare their method to other restricted
likelihood methods and Approximate Bayesian Computation (ABC) already existing.1

This is apropos, since cross-validation under the Bayesian MCMC paradigm may
add burdensome computational requirements and may not give unique convergence
results. For example, while various MCMC runs may yield better results in particular
situations, the problem of unique model specification may be elusive despite the various
strong assumptions made (Assumptions C5–C8 need to be checked “on a case by case
basis”). As such the LAHEML framework given in Chowdhury (2021a), Chowdhury
(2021b), and Chowdhury (2021c) may be an alternative for robust strongly convergent
estimators.
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Rejoinder

John R. Lewis∗, Steven N. MacEachern†, and Yoonkyung Lee‡

It is a rare opportunity to receive commentary on one’s work from thought leaders in
the field of Bayesian statistics. We are grateful that the editorial staff selected our paper
for discussion and have enjoyed reading the discussions. Many of the comments provide
perspective of the kind best suited for a conversation. We look forward to a time when
we can have those conversations with the discussants (and others!) in person.

The collection of discussions touches on a wide variety of issues, with most discus-
sants making several points. There is considerable overlap across discussants, and so we
have organized this brief rejoinder to non-exhaustively cover the issues that have been
raised.

Model misspecification Several discussants and referees have viewed our work as per-
haps suggesting that the presence of outliers is equivalent to model misspecification or
dealing only with the case of outliers. We do not view outliers and model misspeci-
fication as equivalent and would describe our work as directly addressing the central
question of model misspecification.

We focus our initial presentation (around equation (1) in the paper) on the thought-
experiment where a known subset of cases is known to not follow the model under
consideration as a device to convey the thinking behind our methods. We believe that
there is universal agreement that these cases should be discarded for the analysis. We
then move on to more realistic cases. The Belgian call data in Section 2.4 and the
Nationwide Insurance data in Section 5 are examples of a more general form of model
misspecification – namely where an important covariate is missing. Incorporating the
covariate would adjust the model and moderate the misspecification. As is typical in
examples used to motivate robust regression, we understand quite a lot about the nature
of the misspecification and we could build a better model by using this additional
knowledge. The examples are used to motivate techniques for the situation where we
do not have this additional knowledge.

The style of analysis we suggest can be used quite broadly. The analyst has great
flexibility in the model that is written and in the choice of conditioning statistic (in
practice, this may well feel like “conditioning statistics” rather than a single statistic).
Many choices lead to straightforward computational implementations. This is particu-
larly true when conditioning on a set of order statistics that lead easily to generation
of complete data sets.
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The Borel paradox Clarke and Robert quite rightly point out that we do not justify
our computational strategy at a measure-theoretic level. The paradox is very relevant.
The standard approach of considering the limit of a sequence of partitions with non-
null probabilities resolves the paradox. The partitions are effectively implicit in the
conditions in Section 3 of the paper.

Tied to the notion of conditioning is a caution. In some settings, a seemingly innocu-
ous choice of conditioning statistic may be equivalent to conditioning on the entire data
set. Examples include certain discrete problems where there is a single configuration
of the data that leads to the observed conditioning statistic; others are more subtle.
Darnieder (2011) encounters this phenomenon when using a portion of the likelihood
to specify the prior distribution and the remainder to move from prior distribution to
posterior distribution.

Asymptotics The majority of discussants note that asymptotic arguments suggest
that, for large samples, one could substitute a normal distribution for the likelihood to
obtain essentially the same results with much quicker computation. The substitution
may require an adjustment to the likelihood, as described in the work of Royall and
Tsou, and has become commonplace in generalized Bayesian inference. We are in full
agreement that, when appropriate, asymptotic approximation of the likelihood coupled
with the prior distribution provides a quick and effective means of fitting a Bayesian
model. We also believe that there are many situations where sample sizes are too small
for the asymptotics to have kicked in. A typical example is a hierarchical model where
there is a shortage of data for some portions of the model.

Bayesian statistics (and as a consequence all of statistics) was changed by Markov
chain Monte Carlo (MCMC). One key reason for the success of MCMC was that it
allowed Bayesian inference in settings where asymptotic approximation failed. The past
30 years show the variety and importance of situations where there is a need to turn to a
finite sample fit rather than asymptotic approximation. The dividing line between ade-
quacy and inadequacy of analytic approximation is blurry. Drovandi, Nott and Frazier’s
example makes this point clear and suggests the possibility of splitting a model into por-
tions with large sample (or other) approximation for some portions and finite-sample
evaluation for other portions. The structure of the hierarchical model may provide guid-
ance on where to split.

Choice of conditioning statistic Ruggieri raises the issue of whether a particular con-
ditioning statistic T (·) can be selected from a candidate set via data-based choice of
a tuning parameter. Jewson and Rossell raise the same issue and implement a data-
based tune, showing that inference can be sharpened in this fashion. Hazra suggests an
alternative conditioning statistic.

More generally, several discussants raise the issue of choice of the conditioning sum-
mary. This is open territory, and it is our belief that the choice should depend upon the
goal of the analysis as well as an understanding of potential shortcomings of the working
model. While not prescriptive, this is in keeping with the practice of data analysis. The
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classical literature on generalized estimating equations that Clarke touches on contains
a wealth of information about choice of statistic. We view this literature as a modern
classical take on the method of moments where the inferential targets determine the es-
timating equations. For Bayesians, the literature on approximate Bayesian computation
(ABC) methods has primarily focused on ABC as a technique for situations where the
likelihood is difficult to evaluate. Nevertheless, the chosen summaries are often closely
tied to the goals of the analysis. From our vantage point, the deliberate use of reduced
conditioning via data summarization to improve inference for misspecified models in
conjunction with ABC should be explored. The recent growth of loss-based replace-
ment of the log-likelihood in Bayesian models implicitly ties inference to the goal of the
analysis, although typically by sacrificing Bayes’ Theorem.

Complex problems Bayesian models are used throughout the academic and corporate
worlds and increasingly by governmental and non-profit groups – in short everywhere
that data is collected and decisions are to be made. Many of these settings are charac-
terized by the use of complex models that are universally agreed to be very approximate
and which are informed by data of questionable quality. The problem may require the
use of information from different data sets. In addition, much is often known about
certain aspects of the problem. These are precisely the settings where we see the great-
est need for Bayesian restricted likelihood methods. The variety of such problems is
immense, and we see this as fertile ground for further development of the techniques we
advocate.

Ghosh and Ghosh place a spotlight on the mixed model – the hierarchical model for
the Nationwide Insurance data is one example of this type of model, but a different mix
of information on the individual (state) and the collection of individuals (states) would
necessitate different conditioning and perhaps different computation. Drovandi, Nott
and Frazier raise the question of more complex regression models. Some will submit to
the same strategy that we have used, though straightforward use of our techniques will
break down for models with enough complexity. Gugushvili and Peters call attention
to one such situation, the challenging p > n problem and to high-dimensional problems
more generally. In the absence of strong prior information, we are uncertain how to use
our techniques for such problems. Kim describes the use of copula models that would
require a different conditioning statistic to match the models and analysis.

Robust Bayes Lavine and Ruggieri both make the point that robust Bayesian methods
provide a well-developed approach to handling model misspecification. These methods
yield a range of posterior summaries, say the smallest set within which the posterior
mean is known to lie as the likelihood is varied over a class. Lavine’s advances sub-
stantially expanded the scope of robust Bayesian analysis. It would be interesting to
examine the interplay of restricted likelihood and robust Bayesian methods. A natural
approach is to consider the restricted likelihood posterior based on the chosen condi-
tioning statistic as the likelihood ranges over a class. This may well lead to a narrower
interval for the posterior mean than does a traditional robust Bayesian analysis.
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The question of how restricted likelihood relates to the likelihood principle is un-
settling. After summarization through the conditioning statistic, inference is fully like-
lihood based—it is exactly Bayesian. When viewed before summarization, it appears
to violate the likelihood principle in some cases. It can certainly clash with the usual
match between sequential updating and updating in one shot. The reason for this is that
joint likelihood arising from separate summarization of two sets of data may differ from
the likelihood that arises from a single summary of the combined data. With different
likelihoods, the two restricted posteriors would differ (Lewis, 2014).

Prediction As part of his rich discussion, Clarke connects our work to the philosophy
and work on M-open and M-complete inference. The prequential approaches that we
associate with Dawid and with Clarke’s own move to Bayesianize them are strongly
sequential as is natural for many prediction problems. As noted above, as currently
formulated, our techniques are better suited to “one-shot” analyses than to sequential
analyses.

Bayesian EDA Clarke suggests use of restricted likelihood techniques for a Bayesian
version of EDA. We had not thought of this possibility, but would be interested to hear
more. EDA is one area where Bayesians lag.

References The discussants provide numerous references to which many more could
be added. In particular, we thank Robert for the references on computation. Though
MacEachern had heard of the early Diaconis and Sturmfels paper, he did not make
the connection to this setting. We were unaware of the more recent references, had not
recently searched for work in the area, and certainly did not intentionally turn a blind
eye to existing work. The computational methods we employ have been stable since
2013, widely disseminated in talks, and available on the web.

We thank the discussants for the time they have spent on our work and their sharply
written perspectives. While these discussions contain diverse views, we suspect that the
full range of views within the Bayesian community on how to handle model misspecifi-
cation is much greater. As Bayesian applied statistics has matured following the devel-
opment of MCMC methods, many have asked what the next big challenge is. We would
identify model misspecification as one of the two or three biggest challenges currently
faced by the Bayesian community.

Our focus has been on methods that are formally Bayesian after summarization of
the data through an insufficient statistic. There are, of course, many other approaches
that are under development. A few that we see as most closely related to this work are
ABC, loss-based generalized Bayesian inference, and the use of fractional likelihoods
for Bayesian robustness. The approach of fitting very flexible models and pushing the
“model” from specification into inference is also promising. We believe that all of these
directions are worth exploration and suspect that we will all be working with a blend
of these ideas and others in ten years’ time.
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