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OPTIMAL DIFFERENCE-BASED VARIANCE ESTIMATORS IN TIME
SERIES: A GENERAL FRAMEWORK

BY KIN WAI CHANa

Department of Statistics, The Chinese University of Hong Kong, akinwaichan@cuhk.edu.hk

Variance estimation is important for statistical inference. It becomes
nontrivial when observations are masked by serial dependence structures
and time-varying mean structures. Existing methods either ignore or sub-
optimally handle these nuisance structures. This paper develops a general
framework for the estimation of the long-run variance for time series with
nonconstant means. The building blocks are difference statistics. The pro-
posed class of estimators is general enough to cover many existing estimators.
Necessary and sufficient conditions for consistency are investigated. The first
asymptotically optimal estimator is derived. Our proposed estimator is the-
oretically proven to be invariant to arbitrary mean structures, which may in-
clude trends and a possibly divergent number of discontinuities.

1. Introduction.

1.1. Motivation and background. Let the observed time series X1:n = {X1, . . . ,Xn} be
generated from the signal-plus-noise model:

(1.1) Xi = μi + Zi, i = 1, . . . , n,

where the deterministic signals μi and the zero-mean stationary noises Zi are not directly
observable. Many statistics designed for inferring μ1:n = {μ1, . . . ,μn} admit the form Tn =
Tn(v̂), where v̂ is an estimator of the long-run variance (LRV) v = limn→∞ nVar(Z̄n) of
Z̄n = ∑n

i=1 Zi/n. Deriving a good estimator v̂ is, therefore, important, and is the major goal
of this article.

Examples of such Tn(v̂) include, but are not restricted to, the Kolmogorov–Smirnoff (KS)
change point test and its variants (Crainiceanu and Vogelsang (2007), Górecki, Horváth and
Kokoszka (2018), Horváth, Kokoszka and Steinebach (1999), Juhl and Xiao (2009)), mean
constancy tests (Dalla, Giraitis and Phillips (2015), Wu (2004)), mass excess tests of rele-
vant mean changes (Dette and Wu (2019)), tests for monotone trends (Wu, Woodroofe and
Mentz (2001)), simultaneous confidence bands (SCBs) for trends (Wu and Zhao (2007)), etc.
Serving as a normalizer in Tn(v̂), the estimator v̂ measures the significance of the signals μi

relative to the noises Zi . Constructing a good v̂ is nevertheless difficult due to two nuisance
structures.

1. Nuisance structure 1: variability of μ1:n. The stochastic variability of Z1:n =
{Z1, . . . ,Zn} is masked by the deterministic variability of μ1:n; see Figure 1. Disentangling
the variabilities of μ1:n and Z1:n can be challenging. Without the nuisance structure 2 be-
low, this task was studied by, for example, Hall, Kay and Titterington (1990). Similar and
extended results include Anderson (1971), Rice (1984) and Levine and Tecuapetla-Gómez
(2019).
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FIG. 1. The black and red lines denote X1:n and μ1:n, respectively. Here, H1a : μi = �1(i > 2n/10); H1b :
μi = �{1(i > 2n/10) + sin(2πi/n)/2}; H1c : μi = �1(2n/10 < i < 8n/10), where � ∈ R measures the magni-
tude of jump(s) and/or the amplitude of trend. The noises Z1:n are generated from an autoregressive AR(2) model:
Zi = Zi−1/2 + Zi−2/5 + εi for each i, where εi follow N(0,1) independently. In particular, n = 200 and � = 2
are used in the above plots.

2. Nuisance structure 2: serial dependence of Z1:n. Under regularity conditions, v =∑
k∈Z γk is a sum of infinitely many unknowns, where γk = E(Z0Zk) is the autocovariance

function (ACVF). So, estimation of v is hard. Without the nuisance structure 1 above, this
task was studied by, for example, Chen and Schmeiser (2013), Carlstein (1986), Newey and
West (1987), Künsch (1989), Andrews (1991), Politis (2011), Yau and Chan (2016) and Chan
and Yau (2017a).

In this article, we propose a general framework of estimators of v; see Definition 1 and
equation (2.3). Necessary and sufficient conditions for consistency are derived; see Theorems
4.1 and 4.2. They are proven to achieve the optimal L2 rate of convergence under various
strengths of serial dependence (see Theorems 5.1 and 5.2) and are robust against a wide class
of mean structures (see Theorem 3.1). The optimal mth order difference-based variance esti-
mator v̂(m) is given in Corollary 5.3, where the optimality refers to the best possible difference
statistics used in the estimator. In particular, one special case (with m = 3) is given by

v̂(3) = ∑
|k|<�

{
1 −

( |k|
�

)2}
1

n

n∑
i=mh+|k|+1

DiDi−|k|,

where Di = 0.1942Xi +0.2809Xi−h +0.3832Xi−2h −0.8582Xi−3h for each i, � = O(n1/5),
and h = 2�. The proposed estimator with the optimally selected � is presented in (6.3).
This estimator outperforms all existing estimators in terms of the mean-squared error (MSE)
asymptotically; see (5.4). We conclude this subsection with an example to illustrate the im-
portance of this project.

EXAMPLE 1.1 (Change point detection). Suppose we want to test H0 : μ1 = · · · = μn.
The celebrated KS change point (CP) test statistic (see, e.g., Csörgő and Horváth (1997)) is
defined as

Tn(v) = 1√
nv

max
k∈{1,...,n}

∣∣∣∣∣
k∑

i=1

(Xi − X̄n)

∣∣∣∣∣, where X̄n = 1

n

n∑
i=1

Xi.(1.2)

We reject H0 at size 5% if Tn(v) > 1.358. Although this test is designed for a one-CP al-
ternative (H1a), it is still applicable to more complicated situations, for example, a one-CP
alternative in the presence of a smooth trend (H1b), and a multiple-CP alternative (H1c); see
Figure 1. No matter which situation we consider, having a good estimator of v is still neces-
sary. We compare two estimators: the classical Bartlett kernel estimator v̂(A) with a bandwidth
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FIG. 2. Power curves of the KS tests with the classical estimator v̂(A) and the proposed estimator v̂(3) in three
different types of alternative hypotheses stated in Figure 1.

selected by fitting an AR(1) model proposed in Andrews (1991), and our proposed estimator
v̂(3) with optimally selected parameters to be discussed in (6.3).

Consider the time series defined in Figure 1 with different magnitudes of jump �. We
compute the power of the classical test Tn(v̂(A)) and the proposed test Tn(v̂(3)) against �; see
Figure 2. Under H1a , the test Tn(v̂(A)) is valid but less powerful than Tn(v̂(3)) because v̂(A) is
inaccurate for v when � �= 0. Under H1b or H1c, the test Tn(v̂(A)) even fails to demonstrate
monotone power when � increases because v̂(A) → ∞ in probability as � → ∞ in these
cases. So a robust and efficient estimator of v is crucial.

1.2. Notation and mathematical background. Let μi = μ(i/n) for i = 1, . . . , n, where
μ : [0,1] → R is a mean function. Suppose that μ(·) consists of a continuous part c(·) and a
step-discontinuous part s(·) such that

μ(t) = c(t) + s(t), s(t) =
J∑

j=0

ξj1(Tj /n ≤ t < Tj+1/n),(1.3)

where J is the number of discontinuities, 1 ≡ T0 < T1 < · · · < TJ < TJ+1 ≡ n + 1 are the
times of discontinuities, and ξ0, . . . , ξJ are the step sizes such that ξj �= ξj−1 for each j . Note
that c(·), J , ξ0, . . . , ξJ , and T1, . . . , TJ are possibly dependent on n. For example, J and
ξ0, . . . , ξJ can be divergent with n. Denote the minimal gap between two consecutive CP
times by

G = min
0≤j≤J

(Tj+1 − Tj ).

We measure the smoothness of c(·) by C, the maximum step magnitude of s(·) by S , and the
overall variability of μ(·) by V , where

C = sup
0≤t ′<t≤1

∣∣∣∣c(t) − c(t ′)
t − t ′

∣∣∣∣, S = sup
1≤j≤J

|ξj − ξj−1|, V =
∫ 1

0

{
μ(t) − μ̄

}2 dt,

and μ̄ = ∫ 1
0 μ(t)dt . Clearly, C = 0 iff there is no trend effect; S = 0 or J = 0 iff there is no

discontinuity; and V = 0 iff the mean function is a constant.
Let Zi = g(Fi ) for some measurable function g, where Fi = (. . . , εi−1, εi) and {εi}i∈Z

are independent and identically distributed (i.i.d.) innovations. Let ε′
j be an i.i.d. copy of εj ,

Fi,{j} = (Fj−1, ε
′
j , εj+1, . . . , εi), and Zi,{j} = g(Fi,{j}). Define Pi · = E(· | Fi )−E(· | Fi−1).

For p ≥ 1, define the physical dependence measure and its aggregated value by

(1.4) θp,i = ‖Zi − Zi,{0}‖p and 	p =
∞∑
i=0

θp,i,
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respectively, where ‖ · ‖p = (E| · |p)1/p . The finiteness of 	p provides a mild and easily
verifiable condition for asymptotic theory; see Wu (2005, 2007, 2011).

ASSUMPTION 1 (Weak dependence). The noise sequence {Zi}i∈Z is a zero-mean strictly
stationary time series that satisfies E(Zr

1) < ∞ for some r > 4, and 	4 < ∞.

Indeed, Assumption 1 implies that the ACVFs are absolutely summable, that is, u0 :=∑
k∈Z |γk| < ∞, which ensures the existence of v = ∑

k∈Z γk . We remark that there exist other
ways of quantifying dependence, including various types of mixing coefficients (Rosenblatt
(1956), Volkonskiı̆ and Rozanov (1959)) and near epoch approach (Ibragimov (1962)). They
have been widely adopted and studied; see Taqqu and Eberlein (1986) and Bradley (2005)
for some surveys of results. It is certainly interesting to develop our theoretical results under
these settings, however, it is beyond the scope of this paper. We leave it for further study.

The following notation is used. Let N= {1,2,3, . . .}, N0 = {0,1,2, . . .}, and R
+ = (0,∞).

For any statement E, 1(E) = 1 if E is true, otherwise 1(E) = 0. For any a, b ∈ R, a+ =
max(a,0) and a ∧b = min(a, b). For any {an}n∈N and {bn}n∈N with an, bn ∈ R

+, the relation
an ∼ bn means an/bn → 1; an � bn means there is C ∈ R

+ such that 1/C ≤ an/bn ≤ C for
all large n; an � bn or an = o(bn) means an/bn → 0; an � bn or an = O(bn) means there
is C > 0 such that an/bn ≤ C for all large n. Convergence in probability and convergence

in distribution are denoted by
pr→ and ⇒, respectively. Write ‖ · ‖ = ‖ · ‖2. For any sequence

of random variables {Zn}n∈N, Zn = Op(an) means for any ε > 0 there exist C ∈ R
+ and

N ∈ N such that P(|Zn/an| > C) < ε for all n > N ; Zn = op(an) means Zn/an
pr→ 0. For

any estimator θ̂ of θ , denote Bias(θ̂; θ) = Bias(θ̂) = E(θ̂ ) − θ and MSE(θ̂; θ) = MSE(θ̂) =
E(θ̂ − θ)2.

In this article, we propose and study a general framework for estimating

v = lim
n→∞nVar(Z̄n) = ∑

k∈Z
γk, where γk = Cov(Z0,Zk),(1.5)

by using difference statistics. This article is structured as follows. Section 2 defines the pro-
posed class of estimators. We show that it covers many existing estimators as special cases.
Section 3 demonstrates its invariance to mean structures. Section 4 derives the necessary and
sufficient conditions for consistency. Section 5 shows that the proposed estimator is asymp-
totically optimal. Section 6 addresses implementation issues and generalization. Section 7
presents simulation experiments, applications and real-data examples. We conclude the pa-
per with a summary of major contributions and possible future work in Section 8. All proofs
are deferred to a separate supplementary note (Chan (2022b)). An R-package "dlrv" is
available on the author’s website.

2. A general framework for variance estimation.

2.1. Difference-based statistics. Variance estimators usually require centering to achieve
mean invariance. For example, if μ1 = · · · = μn, one may globally center the data as D′

i =
Xi − X̄n; if μ1:n are not constant, one may locally center each Xi by the kernel method and
the lag-1 difference:

(2.1) D′′
i = Xi −

∑
j H(

i−j
m/2 )Xj∑

j ′ H(
i−j ′
m/2 )

and D′′′
i = Xi − Xi−1,

where H(·) is a kernel, and m/2 is a bandwidth. The statistics D′
i , D′′

i and D′′′
i are special

cases of the following class of general difference statistics.
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DEFINITION 1 (Difference statistics). A real-valued sequence {dj }mj=0 is said to be an

mth order difference sequence if d0 + · · · + dm = 0. If, in addition, δ0 = d2
0 + · · · + d2

m = 1,
then {dj } is said to be normalized. For h ∈ N, the mth order lag-h difference statistics are
defined as

(2.2) Di =
m∑

j=0

djXi−jh, i = mh + 1, . . . , n.

The zeroth-order difference statistics are Di = Xi − X̄n for i = 1, . . . , n. Also denote δs =∑m
j=|s| djdj−|s| for |s| ≤ m and δs = 0 for |s| > m.

The condition
∑m

j=0 dj = 0 is used to ensure that E(Di) ≈ 0 when μi ≈ μi−h ≈ · · · ≈
μi−mh. This property is important for deriving asymptotic mean invariance of statistics based
on Di ; see Section 3 for a precise and rigorous definition of mean invariance. The require-
ment δ0 = 1 is used to regularize Di such that Var(Di) = Var(Xi) when X1:n are serially
uncorrelated. One can easily normalize dj by dj/

√
δ0 provided that δ0 �= 0. From now on,

we assume the difference sequence {dj } is normalized. The lag parameter h is used to control
how frequent the observations are used for constructing one difference statistic. When the
data are independent, h = 1 works well. When the data are serially dependent, a larger h can
be used to reduce the serial dependence among the observations that are used in the same
difference statistic. Some difference sequences are shown in Example 2.1.

EXAMPLE 2.1. Some commonly used difference sequences {dj }mj=0 are listed below:

• Binomial differencing: dj = ( m
j

)
(−1)j /

( 2m
m

)1/2
for j = 0, . . . ,m. It gives δk = (−1)k ×

(m!)2/{(m + k)!(m − k)!} for k = 0,1, . . . ,m.
• Local differencing: d0 = √

m/(m + 1) and dj = −1/
√

m2 + m for j = 1, . . . ,m. It gives
δ0 = 1 and δk = −k/(m2 + m) for k = 1, . . . ,m.

• Hall, Kay and Titterington (1990): Define {dj }mj=0 by minimizing
∑m

k=1 δ2
k ; see Table 1 for

the solution. It gives δ0 = 1 and δk = −1/(2m) for k = 1, . . . ,m.

Note that m = mn is allowed to diverge with n. In this case, we need the following as-
sumption to regularize the difference sequence.

ASSUMPTION 2. The difference sequence {dj } satisfies (i) supn∈N
∑m

j=0 |dj | < ∞, and
(ii) supn∈N

∑
|s|≤m |δs | < ∞.

2.2. Proposed difference-based variance estimator. Since Dmh+1, . . . ,Dn are approxi-
mately centered at zero, it motivates us to utilize them as building blocks for estimating v.

TABLE 1
Hall, Kay and Titterington’s (1990) difference sequence {dj }mj=0 for m = 1, . . . ,4

m d0 d1 d2 d3 d4

1 0.7071 −0.7071 – – -
2 0.8090 −0.5000 −0.3090 – –
3 0.1942 0.2809 0.3832 −0.8582 –
4 0.2708 −0.0142 0.6909 −0.4858 −0.4617
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We define the mth order difference-based estimator of v by

v̂ = ∑
|k|<�

K

(
k

�

)
γ̂ D
k , where γ̂ D

k = 1

n

n∑
i=mh+|k|+1

DiDi−|k|.(2.3)

We may write v̂ as v̂(m) to emphasize the order m. In (2.3),

m = mn ∈ N0, � = �n ∈ {1, . . . , n}, h = hn ∈ {1, . . . , n}(2.4)

are the order of differencing, bandwidth parameter and lag parameter of the estimator v̂, re-
spectively. The function K : R→R is called a kernel, which satisfies that K(0) = 1, K(t) =
K(−t) for all t , K(t) = 0 for |t | ≥ 1 and K is continuous on (−1,1). Popular kernels include
the Bartlett kernel KBart(t) = (1 − |t |)+ and the flat-top truncated kernel KFlat(t) = 1(|t |<1).
In (2.3), one may alternatively use

∑n
i=mh+|k|+1(Di − D̄n)(Di−|k| − D̄n)/n instead of γ̂ D

k ,

where D̄n = ∑n
i=mh+1 Di/n. It does not affect the asymptotic results in this article.

The kernel estimator v̂ can be written in a subsampling form. For each i = �, . . . , n, define
the ith subsample of size � as {Dt : t ∈ �i}, where �i = {i − � + 1, . . . , i}. If I ⊆ {mh + � +
1, . . . , n} is the set of subsample indices to be used, then the subsampling estimator of v is
defined as

v̂′ = 1

|I|
∑
i∈I

v̂′(i), where v̂′(i) = ∑
t,t ′∈�i

K(|t − t ′|/�)
� − |t − t ′| DtDt ′,(2.5)

and |I| is the total number of subsamples. The overlapping subsamples and nonoverlapping
subsamples utilize I1 = {mh + 1 + �, . . . , n} and

I0 = {
mh + 1 + �,2(mh + 1 + �), . . . ,

⌊
n/(mh + 1 + �)

⌋
(mh + 1 + �)

}
,

respectively. Similar ideas can be found in, for example, Carlstein (1986) and Welch (1987).
The estimator v̂′ can be regarded as a “bagged” estimator of v by averaging the rough esti-
mators (or weak “learners”) {v̂′(i)}i∈I . If computational time is a concern, we may use the
nonoverlapping subsamples. However, its statistical efficiency is reduced; see, for example,
Alexopoulos, Goldsman and Wilson (2011). On the other hand, if the overlapping subsamples
are used, the estimators v̂′ and v̂ are asymptotically equivalent in the following sense.

PROPOSITION 2.1 (Asymptotic equivalence of v̂ and v̂′). Consider v̂′ with the overlap-
ping subsamples I = I1, and the order of differencing m = mn. If Assumptions 1–2 hold,
1/� + (� + mh)/n → 0, and G � � + mh, then for any μ(·) and K(·), we have

∥∥v̂ − v̂′∥∥ = O

(
� + mh

n

)(
1 + ‖v̂‖) + rsub,(2.6)

where rsub = O{C2(� + mh)4/n3 + S2/n}.

The proof of Proposition 2.1 can be found in Section A.1 of the supplement. By
Minkowski’s inequality, (2.6) implies ‖v̂ − v̂′‖ ≤ O{(� + mh)/n}(1 + v + ‖v̂ − v‖) + rsub,
where the root-MSE ‖v̂ − v‖ → 0 if v̂ is L2 consistent for v. So, (2.6) reduces to
‖v̂ − v̂′‖ = O{(� + mh)/n} + rsub if v̂ is L2 consistent. The remainder term rsub is negli-
gible if � + mh is not too large. For example, if � + mh = O(nθ) for some θ ∈ (0,1/2],
then rsub = O{(C2 + S2)/n}. We emphasize that Proposition 2.1 is true even for a possibly
divergent m = mn and a possibly nonconstant μ(·) under the regularity conditions in Propo-
sition 2.1.
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2.3. Existing variance estimators. Many popular variance estimators admit the forms of
(2.3) or (2.5). They are presented and categorized in Examples 2.2–2.5 according to the values
of h and m.

EXAMPLE 2.2 (Serially uncorrelated case: h = 1). Assume γ1 = γ2 = · · · = 0. Then
v = ∑

k∈Z γk reduces to v = γ0. Hall, Kay and Titterington (1990) proposed to estimate v

by the v̂ in (2.3) with h = 1. Such v̂ is just an estimator of the marginal variance γ0 but not
v = ∑

k∈Z γk . Recently, Tecuapetla-Gómez and Munk (2017) and Levine and Tecuapetla-
Gómez (2019) extended it to estimation of γk for M-dependent time series, that is, γk = 0
for |k| > M . Their proposal is a special case of γ̂ D

k in (2.3) when n → ∞. The assumption of
M-dependence can be restrictive in real applications. Most importantly, they did not consider
the estimation of v = ∑

k∈Z γk .

EXAMPLE 2.3 (Constant-mean case: m = 0). Assume μ1 = · · · = μn. Let D′
i = Xi − X̄n

for each i. Then v is estimated by v̂ and v̂′ with m = 0:

v̂ = ∑
|k|≤�

K(k/�)

n

n∑
i=1+|k|

D′
iD

′
i−|k|, v̂′ = 1

|I|
∑
i∈I

∑
t,t ′∈�i

K(|t − t ′|/�)
� − |t − t ′| D′

tD
′
t ′ .(2.7)

The kernel estimator v̂ in (2.7) has a long history in statistics, econometrics and opera-
tional research; see, for example, Newey and West (1987), Andrews (1991) and Politis,
Romano and Wolf (1999). The subsampling estimator v̂′ in (2.7) is studied in, for exam-
ple, Song and Schmeiser (1995) and Chan and Yau (2017b). If K = KBart and I = I1,
then v̂′ = ∑n

i=�(
∑i

j=i−�+1 D′
j )

2/{�(n − � + 1)} is the well-known overlapping batch means
(OBM) estimator (Chen and Schmeiser (2013)). Besides, Carlstein (1986) and Alexopoulos,
Goldsman and Wilson (2011) studied the nonoverlapping and partially overlapping subsam-
ples, however, these schemes are suboptimal in terms of MSE.

EXAMPLE 2.4 (General case: m = 1, h → ∞). In the presence of both serial depen-
dence and time-varying means, the estimation of v is less well studied. Let ṽ′ = �

∑
i∈I(Si −

Si−�)
2/{2|I|}, where Si = ∑i

j=i−�+1 Xj/� is the ith subsample mean. This class of estima-
tors is independently proposed by various authors. For example, Dette and Wu (2019) used
I = I1, whereas Wu, Woodroofe and Mentz (2001), Wu (2004), Wu and Zhao (2007), Dette,
Eckle and Vetter (2020) and Chen, Wang and Wu (2021) used I = I0. In either case, ṽ′ is just
a special case of v̂′ with m = 1, h = � = O(n1/3) and K = KBart. Moreover, none of them
provides the optimal value of �.

EXAMPLE 2.5 (General case: m → ∞, h = 1). Altissimo and Corradi (2003) proposed
to locally center Xi by using the D′′

i defined in (2.1) with H = KFlat, K = KBart and m → ∞.
Their estimator is asymptotically equivalent to v̂ with dj = {1(j=�m/2�) − wj }/c for j =
0, . . . ,m, where c,w0, . . . ,wm are some constants such that w0 + · · · + wm = 1 and δ0 = 1.
A similar proposal can be found in Juhl and Xiao (2009).

Some estimators cannot be expressed as (2.3) or (2.5); see Examples 2.6–2.8. All of them
are suboptimal or require restrictive assumptions.

EXAMPLE 2.6 (Removal of one CP). Crainiceanu and Vogelsang (2007) proposed to es-
timate one single potential CP T1 by the standard CUSUM-type estimator T̂1. After centering

{Xi}T̂1−1
i=1 and {Xi}ni=T̂1

by their respective sample means, one may apply (2.7) to the centered
series to estimate v. This method is vulnerable to the one-CP assumption. Although it can be
extended to handle multiple CPs, the accumulated errors may ruin the final estimator.
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Recently, Dehling, Fried and Wendler (2020) proposed to split X1:n into three disjoint
subsamples of (approximately) equal length so that (2.7) can be applied to each of the three
subsamples. The final estimator is the sample median of the three estimators. This method
incurs a huge loss of efficiency. It is remarked that their method is applied to ranks of X1:n
instead of X1:n, but their idea is still applicable generally.

EXAMPLE 2.7 (Mean and median of absolute deviations). Apart from the estimator ṽ′ in
Example 2.4, Wu and Zhao (2007) also proposed two other estimators that utilize the sample
mean and sample median of {|Si − Si−�|}i∈I1 , that is,

ṽ′′ = π

4(�n/�� − 1)2

∑
i∈I1

|Si − Si−�| and ṽ′′′ = 1

2z2
3/4

median
i∈I1

|Si − Si−�|,

where mediank∈K xk is the sample median of {xk}k∈K, and zp is the 100p% quantile of
N(0,1). They proved that the convergence rates of ṽ′′ and ṽ′′′ are much slower than that
of the v̂′ in Example 2.4.

EXAMPLE 2.8 (Insufficient differencing). Chan (2022a) proposed an estimator that
is asymptotically equivalent to v̂ = ∑

|k|≤� K(k/�)γ̂ k , where γ̂ k = ∑n
i=k+�+1 Xi(Xi−k −

Xi−k+�)/n. It is an incomplete special case of v̂ with m = 1 and h = �. It is an incom-
plete version because γ̂ k is constructed by the product of the raw observation Xi and the
difference statistic Xi−k − Xi−k+�, whereas our proposed statistic γ̂ D

k in (2.3) is constructed
by the product of two difference statistics Di and Di−k . We prove that v̂ is uniformly better
than this “insufficient” difference-based estimator v̂.

We also remark that some statistical procedures do not require estimation of the LRV by
utilizing self-normalization; see, for example, Lobato (2001), Shao (2010), and Cheng and
Chan (2022). However, different specifically designed self-normalizers may be needed for
handling different types of mean structure; see, for example, Zhao (2011), Zhang and Lavitas
(2018) and Pešta and Wendler (2020). This alternative approach may also lead to a decrease
in power or statistical efficiency. Nevertheless, they enjoy some added appealing properties.
We refer interested readers to an excellent review by Shao (2015).

2.4. Interpretation and representation. Recall the definitions of h and � in (2.4). We
parametrize h = �λ ∈ N for some λ := λn → λ∞ ∈ [0,∞]. The goal of this section is to
provide statistical interpretations of v̂ under different values of λ.

PROPOSITION 2.2. Suppose Assumptions 1–2 hold, and 1/� + (� + mh)/n = o(1). Let
the differencing kernel be

(2.8) Kdiff(t) =
�(1−t)/λ�∑

s=�−(1+t)/λ�
δ|s|K(t + λs), t ∈ R.

Define the differencing kernel estimator as v̂diff = ∑
|k|≤�+mh Kdiff(k/�)γ̂ X

k , where γ̂ X
k =∑n

i=|k|+1(Xi − X̄n)(Xi−|k| − X̄n)/n.

1. (Representation) If μ(t) ≡ μ0 for all t ∈ [0,1], then as n → ∞,

‖v̂ − v̂diff‖ = O
{
(� + mh)/n

}
.(2.9)

It remains true if γ̂ X
k is replaced by γ̂ Z

k = ∑n
i=|k|+1 ZiZi−|k|/n in v̂diff.

2. (Differencing property) If m = 0, then Kdiff = K . If m > 0, then Kdiff satisfies that∑
|k|≤�+mh Kdiff(k/�) = 0.
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FIG. 3. Comparisons between K and Kdiff when m = 1, K = KBart and λ ∈ {1/2,1,2,3}. The quantity �∞ in
the first plot is defined in Assumption 3.

3. (Kernel necessity) If λ ≥ 1, then Kdiff(0) = 1.
4. (Matching property) If λ ≥ 2, then Kdiff(t) = K(t) for all t ∈ [−1,1].

The proof can be found in Section A.2 of the supplement. Proposition 2.2(1) states that
v̂ smoothes {γ̂ X

k } by the distorted kernel Kdiff instead of the intended kernel K . So, v̂ may
not inherit the properties of K , for example, the higher-order property of achieving a faster
convergence rate of v̂ as in Andrews (1991). Proposition 2.2(2) states that v̂diff is invariant
to μ(·) because the kernel weights must sum to zero. This property is not achieved by most
commonly used kernels. Proposition 2.2(3) states that Kdiff satisfies the minimal requirement
as a kernel if λ ≥ 1. A striking fact conveyed by Proposition 2.2(4) is that if λ = h/� is large
enough (≥ 2), then

v̂ ≡ ∑
|k|≤�

K

(
k

�

)
γ̂ D
k = ∑

|k|≤�

K

(
k

�

)
γ̂ X
k + rdiff,

where the remainder term rdiff involves only {γ̂k}|k|>�, which are expected to have a negligible
contribution to v̂ owing to weak dependence (Assumption 1). In this case, v̂ correctly uses the
intended kernel K(·) to smooth {γ̂k}|k|≤�. However, the existing estimators in Example 2.4,
which employ λ = h/� = 1, incorrectly utilize another kernel. Example 2.9 below visualizes
this fact.

EXAMPLE 2.9. Consider m = 1 and K = KBart. Figure 3 visualizes how Kdiff changes
with λ. When λ < 1, we have Kdiff(0) �= 1. So, Kdiff is not even qualified as a kernel for
estimating v. When 1 ≤ λ < 2, we have Kdiff(0) = 1 but Kdiff(t) �≡ K(t) even for |t | ≤ 1. It
implies that Kdiff does not share the same properties as K . When λ ≥ 2, we have Kdiff(t) ≡
K(t) for all |t | ≤ 1. In this case, Kdiff copies most properties of the kernel K .

REMARK 2.1. The differencing kernel Kdiff may depend on n when λ = λn or m =
mn depends on n. We do not recommend to use v̂diff in practice as it has a larger influence
by a nonconstant μ(·) than our proposed v̂ and v̂′ in (2.3) and (2.5). The representation
(2.9) is true only under the constant μ(·) assumption. If μ(·) is not a constant, the upper
bound for ‖v̂ − v̂diff‖ is larger than that in (2.9). It may not be enough to establish asymptotic
equivalence. Nevertheless, it is informative to use Kdiff to understand the proposed v̂.

2.5. Dual representations. There are two types of ambiguous dual representations of v̂.
First, a high order but sparse difference sequence can be represented by a lower-order se-
quence with a larger lag h, for example, the fourth-order sequence {−1/

√
2,0,0,0,1/

√
2}

with h = 1 is equivalent to the first-order sequence {−1/
√

2,1/
√

2} with h = 4. Sparse dif-
ference sequences lead to δs = 0 for all small s. Second, consider v̂ with kernel K◦(·), band-
width �◦, and lag h◦. The estimator does not change if we stretch the kernel to K(·) = K◦(C·)



OPTIMAL VARIANCE ESTIMATOR 1385

with � = C�◦ and h = h◦, where C > 1. This type of stretched kernel truncates earlier than
±1, that is, K(t) = 0 for |t | ≥ 1/C. Assumption 3 below rules out these ambiguous dual
representations.

ASSUMPTION 3 (Unambiguity). For λ < 1, 2
∑�1/λ�

s=1 δsK(λs) → �∞ �= 0.

Most commonly used kernels and difference sequences satisfy Assumption 3. For example,
if K = KBart, Assumption 3 is satisfied for all 0 ≤ m ≤ 10, all h, and all {dj } in Example 2.1.
Indeed, �∞ measures the limiting gap between 1 and Kdiff(0), that is, Kdiff(0) − 1 → �∞ as
n → ∞; see Figure 3.

However, it is possible that Assumption 3 is not satisfied when m → ∞. It may happen
when the difference sequence is approximately “uncorrelated,” that is, δs ≈ 0 for s �= 0. We
formalize this situation by the following assumption.

ASSUMPTION 4 (Approximately uncorrelated differencing). There are c′, c′′ > 0 such
that −c′′/m ≤ δs ≤ −c′/m for all s = ±1, . . . ,±m.

Note that Assumption 4 is satisfied by the local difference sequence and Hall, Kay and
Titterington’s (1990) difference sequence (see Example 2.1). We will show in Section 5.2
that the first type of sequence is nearly optimal whereas the second type is asymptotically
optimal.

3. Invariance to time-varying means.

3.1. Strength of robustness. When the true mean function is μ(·), we denote the bias,
variance and MSE of v̂ by Biasμ(v̂;v), Varμ(v̂) and MSEμ(v̂;v), respectively. If μ(t) ≡ 0, we
write them as Bias0(v̂;v), Var0(v̂) and MSE0(v̂;v) to emphasize that it is the ideal situation
as Xi = Zi for all i. If the estimand is v, we may omit the argument “v” in the bias and MSE.

DEFINITION 2 (Robustness against mean functions). Let M be a family of mean func-
tions. An estimator θ̂ of θ is said to be strictly robust in M if MSEμ(θ̂; θ) ∼ MSE0(θ̂; θ)

for all μ ∈ M; and loosely robust in M if MSE0(θ̂; θ) → 0 implies MSEμ(θ̂; θ) → 0 for all
μ ∈ M.

If θ̂ is strictly robust, its first-order L2 asymptotic properties are the same for any μ ∈M.
It is the most desirable. If θ̂ is loosely robust, its L2 consistency is maintained within M but
the convergence rate and MSE may be different.

THEOREM 3.1 (Robustness). Let κ := ∫ 1
−1 K(t)dt �= 0. Suppose Assumptions 1–2 hold,

�/n → 0, and G � � + mh. Also let �,h ∈ N and m ∈ N0, which are possibly divergent. Then

Biasμ(v̂;v) = Bias0(v̂;v) +
{
κ�V + O

(
�

n

)}
1(m=0) + Rbias,√

Varμ(v̂) = √
Var0(v̂) + O

{
�(C + SJ )√

n

}
1(m=0) + Rse,

where

Rbias = O

[
�

n

{
(�1m=0 + mh)S2J + (�1m=0 + mh)2C2

n

}]
,

Rse = O

[
�√
n

{
mhC

n
+ S

(
mhJ

n

)1/2}]
.
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The proof can be found in Section A.3 of the supplement. Theorem 3.1 states that the bias
and variance of v̂ are governed by (i) the performance of v̂ when μ ≡ 0, (ii) the order m and
(iii) the mean function μ(·).

Factor (i) is the idealistic performance. The estimator v̂ is good if Biasμ(v̂) ∼ Bias0(v̂)

and Varμ(v̂) ∼ Var0(v̂). Factor (ii) has the greatest impact on v̂. When m = 0, the estimator
reduces to the classical estimators in Example 2.3. It has a divergent bias if the mean is a fixed
nonconstant function. If V = o(1/�), v̂ is still consistent. However, in this case, the variability
of μ(·) is diminishing as n → ∞. This robustness is insufficient for most real applications.
Similar results have been documented in, for example, Gonçalves and White (2002). Factor
(iii) depends on μ(·) only through C, S and J . When m > 0, μ(·) only affects Rbias and Rse,
which are typically negligible; see Section 3.2.

Besides, Theorem 3.1 is also applicable to the estimators in Examples 2.2–2.5. We com-
pare them in Example 3.1 below.

EXAMPLE 3.1 (Comparison). In the presence of time-varying mean and autocorrelation,
our proposed estimator v̂ and the existing estimators in Examples 2.4–2.8 can be used for
estimating v. We compare their robustness as follows:

• Our framework in (2.3) covers the proposed v̂ and the estimators in Examples 2.4–2.5.
Although they use different values of m > 0 and h, all of them satisfy

MSEμ(v̂) = {
Bias0(v̂) + Rbias

}2 + {√
Var0(v̂) + Rse

}2

according to Theorem 3.1 with

Rbias = O

[
�

n

{
HS2J + H 2C2

n

}]
and Rse = O

{
�√
n

(
HC
n

+ S
(

HJ
n

)1/2)}
,

where H := mh. Clearly, as long as � and H remain unchanged, the orders of Rbias and
Rse do not change with h and m. In other words, all these estimators are equally robust
against the mean functions asymptotically. It is worth mentioning that we further enhance
the finite-sample robustness of our proposed estimator in Section 6.1.

• Since the estimators in Examples 2.6–2.8 do not fall into our framework, we compare their
robustness via simulation in Section 7.1. It indicates that our proposed v̂ is more robust
against the mean functions than all competitors.

3.2. Class of well-behaved mean functions. We will prove in Sections 4–5 that, under
the assumption uq := ∑

k∈Z |k|q |γk| < ∞, the estimator v̂ is consistent and rate optimal with
MSE0(v̂) � n−2q/(1+2q) when m ∈ N, h/� = λ ∈ (0,∞), and � � n1/(1+2q); see (5.3). The
same optimal MSE is also achieved by the standard estimators; see, for example, Andrews
(1991). Using the baseline MSE0(v̂) � n−2q/(1+2q), Theorem 3.1 shows that v̂ is strictly
robust in

Mq := {
μ(·) : R2

bias + R2
se = o

(
MSE0(v̂)

)}
= {

μ(·) : C2 = o
(
n

3q−1
1+2q

)
,S2J = o

(
n

q−1
1+2q

)
,G � n

1
1+2q

}
,

(3.1)

which covers a large class of mean functions. A larger class can similarly be derived if we
only require v̂ to be loosely robust. Example 3.2 discuss a special case when q = 2.

EXAMPLE 3.2 (Strict robustness of v̂ with q = 2). Suppose u2 < ∞. The optimal MSE
satisfies MSE0(v̂) = O(n−4/5). Then M2 = {μ(·) : C2 = o(n),S2J = o(n1/5),G � n1/5},
which includes (i) all Lipschitz continuous functions with o(n1/2) Lipschitz constants, (ii)
all step functions with o(n1/5) number of finite-jump discontinuities that are separated by at
least O(n1/5) and (iii) a sum of (i) and (ii). For example, all mean functions in Figure 1 are
members of M2.



OPTIMAL VARIANCE ESTIMATOR 1387

4. Classes of consistent and rate-optimal estimators. It is unclear whether v̂ is con-
sistent for v = ∑

k∈Z γk even under the constant mean assumption because the ACVF of {Di}
is not equal to γk :

γ D
k := Cov(Di,Di+k) =

m∑
j,j ′=0

djdj ′γh(j−j ′)+k = ∑
|s|≤m

δsγhs+k �= γk.(4.1)

In this section, we study the conditions for consistency and rate optimality for v̂ when
the mean function μ(·) is mildly nonconstant in the sense that J , S , C � 1. Our asymptotic
theory requires the following regularity conditions on K .

ASSUMPTION 5 (Near-origin property). The kernel K satisfies that there exist q ∈ N and
B ∈ R \ {0} such that {K(t) − K(0)}/|t |q → B as t ↓ 0.

ASSUMPTION 6 (Near-boundary property). The kernel K satisfies that there exist q ′ ∈N

and B ′ ∈ R \ {0} such that {K(1) − K(1 − t)}/|t |q ′ → B ′ as t ↓ 0.

Assumption 5 is standard. The index q is called the characteristic exponent (CE) of K(·);
see Parzen (1957). We say that a kernel K is of order q if Assumption 5 is satisfied. The
larger the value of q , the flatter the kernel is around 0. It governs the order of bias of v̂ in the
stationary case. In particular, for the kernel estimator with a qth order kernel in Example 2.3,
if uq = ∑

k∈Z |k|q |γk| < ∞, the best possible bias is O(1/�q), and the resulting optimal
MSE is O(n−2q/(1+2q)); see, for example, Andrews (1991). Therefore, we say that v̂ is rate
optimal if its MSE attains O(n−2q/(1+2q)) for all time series that satisfy uq < ∞. Some
commonly used kernels are shown in Table 2. We suggest to use Parzen’s (1957) kernel
Kq(t) = (1 − |t |q)+ as a convenient choice as it satisfies Assumption 5 with any specified
q ∈ N.

Assumption 6 is nonstandard. It states the flatness of K(t) when t ↑ 1; see Table 2 for a
summary of kernels that satisfy Assumption 6. Although Assumption 6 does not affect the
convergence rate of the classical estimators in Example 2.3, it plays an important role for
difference-based estimators when h/� → 1.

4.1. Fixed-m difference-based estimators. Theorem 4.1 below studies the consistency
and rate-optimality of v̂ when 0 < m < ∞ in different regimes according to the limiting
value of h/�; see (2.4) for the definitions of m, � and h.

TABLE 2
Some commonly used kernels. The last two columns indicate the values of q and q ′ so that Assumptions 5 and 6
are satisfied, respectively. In lugsail kernel, r ≥ 1, c ∈ [0,1) and K0 is any initial kernel. In trapezoidal kernel,

c′ ∈ (0,1]. Trapezoidal and truncated kernels do not satisfy Assumption 5 because B = 0 for any q ∈N

Kernel Definition Assumption 5 Assumption 6

Bartlett (Newey and West (1987)) K(t) = (1 − |t |)+ q = 1 q ′ = 1
Tukey–Hanning (Andrews (1991)) K(t) = {1 + cos(πt)}1(|t | ≤ 1)/2 q = 2 q′ = 2

Parzen (Gallant (1987)) K(t) = { 1 − 6t2 + 6|t |3, |t | ≤ 1/2;
2{(1 − |t |)+}3, |t | > 1/2.

q = 2 q ′ = 3

qth order polynomial (Parzen (1957)) K(t) = (1 − |t |q)+ q ∈N q ′ = 1
Lugsail (Vats and Flegal (2021)) K(t) = {K0(t) − cK0(rt)}/(1 − c) Same as K0 Depends on K0

Trapezoidal (Politis and Romano (1995)) K(t) = { 1, |t | ≤ c′;
(1 − |t |)+/(1 − c′), |t | > c′. Not satisfied q ′ = 1

Truncated (White (1984)) K(t) = 1(|t | < 1) Not satisfied Not satisfied
Modified qth order polynomial Equation (4.2) q ∈N q ′ = q
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THEOREM 4.1 (Finite-m regime). Suppose that μ(·) satisfies (1.3) with J , S , C � 1;
and {Zi}i∈Z satisfies Assumption 1 and uq = ∑

k∈Z |k|q |γk| < ∞ for some q ∈ N. Let � be
an unknown free bandwidth satisfying 1/� + (� + mh)/n → 0. Suppose 0 < m < ∞ is fixed,
and Assumption 5 holds. Under the least favorable data generating mechanism, we have the
following results:

1. If h/� → 0, then v̂ is inconsistent in L2.
2. If h/� → λ∞ ∈ (0,1), then under Assumption 3, v̂ is inconsistent in L2.
3. If h/� → 1, then under Assumption 6 and |h − �| = O(1), the best possible MSE is

MSEμ(v̂) � n−2(q∧q ′)/{1+2(q∧q ′)}, which is achieved by � � n1/{1+2(q∧q ′)}.
4. If h/� → λ∞ ∈ (1,∞), then the best possible MSE is MSEμ(v̂) � n−2q/(1+2q), which is

achieved by � � n1/(1+2q).
5. Suppose h/� → ∞.

(a) If q = 1, then v̂ is rate suboptimal in L2.
(b) If q > 1, then the best possible MSE is MSEμ(v̂) � n−2q/(1+2q), which is achieved

by � � n1/(1+2q) and n1/(1+2q) � h� nq/(1+2q).

The proof can be found in Section A.4 of the supplement. From Theorem 4.1(1)–(2), v̂

with h/� → λ∞ ∈ [0,1) should never be used as it is guaranteed to be inconsistent for v.
Theorem 4.1(3)–(5) state the fastest possible convergence rate of v̂. Under Assumption 5, the
optimal MSE in the stationary case is O{n−2q/(1+2q)}; see Andrews (1991). In case (5), the
rate optimality cannot be achieved for handling time series that satisfies uq < ∞ with q = 1
only. In case (3), the rate optimality cannot be achieved by all qth order kernels unless they
satisfy Assumption 6 with q ′ ≥ q , which means that K(t) is flatter or equally flat near the
boundary t ↑ 1 than near the origin t ↓ 0. The condition |h − �| = O(1) means that h/� →
1 sufficiently quickly. The requirement q ′ ≥ q is not satisfied by all kernels; see Table 2.
For example, Parzen’s (1957) kernel Kq(t) = (1 − |t |q)+ satisfies Assumption 5 for any
q ∈ N, but it only satisfies Assumption 6 with q ′ = 1. Hence, the rate optimality cannot be
achieved when q > 1. One may design a smooth and differentiable kernel with q ′ = q as
follows:

(4.2) K̃(t) =

⎧⎪⎪⎨⎪⎪⎩
1 − |t |q + a|t |q+1 + b|t |q+2 if |t | ≤ 1/2;(
1 − |t |)q − a

(
1 − |t |)q+1 − b

(
1 − |t |)q+2 if 1/2 < |t | ≤ 1;

0 if |t | > 1,

where a = 4 − (q + 1)2q and b = q2q+1 − 4. In this case, MSE(v̂) = O(n−2q/(1+2q)) if
� � n1/(1+2q). In case (4), it is more well behaved as v̂ is rate optimal for all K(·) without
any additional assumption. We remark that users always know whether v̂ is consistent or
not as the values of m, � and h are specified by users. In practice, we suggest to select
h = λ∞� whenever it is possible so that h/� equals to λ∞ not only in the limit but also in
finite samples.

4.2. Divergent-m difference-based estimator. This section investigates the convergence
properties of v̂ with m = mn → ∞ as n → ∞.

THEOREM 4.2 (Divergent-m regime). Assume all conditions in Theorem 4.1 except that
0 < m < ∞ is replaced by m = mn → ∞. In addition, suppose Assumption 2 holds. Under
the least favorable data generating mechanism, we have the following results:

1. Suppose h/� → 0.

(a) If Assumption 3 holds, then v̂ is inconsistent in L2.
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(b) If Assumption 4 holds and K is decreasing on [0,1], then (i) v̂ is inconsistent in
L2 for �/h�m, and (ii) v̂ is rate suboptimal in L2 for �/h � m.

2. Suppose h/� → λ∞ ∈ (0,1).

(a) If Assumption 3 holds, then v̂ is inconsistent in L2.
(b) If Assumption 4 holds and K is decreasing on [0,1], then v̂ is rate suboptimal

in L2.

3. Suppose h/� → 1. Suppose further that |h − �| = O(1), and Assumptions 4 and 6 hold.

(a) If q = 1 or �q � m�q ′
, then v̂ is rate suboptimal in L2.

(b) If q > 1 and �q � m�q ′
, then the best possible MSE is MSEμ(v̂) � n−2q/(1+2q),

which is achieved by � � n1/(1+2q) and any m → ∞ such that n(q−q ′)/(1+2q) � m �
n(q−1)/(1+2q).

4. Suppose h/� → λ∞ ∈ (1,∞) and Assumption 4 holds.

(a) If q = 1, then v̂ is rate suboptimal in L2.
(b) If q > 1, then the best possible MSE is MSEμ(v̂) � n−2q/(1+2q), which is achieved

by � � n1/(1+2q) and 1 � m� n(q−1)/(1+2q).

5. Suppose h/� → ∞.

(a) If q = 1, then v̂ is rate suboptimal in L2.
(b) If q > 1, then the best possible MSE is MSEμ(v̂) � n−2q/(1+2q), which is achieved

by h � � � n1/(1+2q) and n1/(1+2q) � mh � nq/(1+2q).

The proof can be found in Section A.5 of the supplement. Theorem 4.2 implies that v̂ with
a divergent m is inconsistent or suboptimal in Cases 1–2. Although v̂ is consistent in Cases
3–5, the rate optimality cannot be achieved for handling time series that satisfies uq < ∞ with
q = 1 only. It is worth emphasizing that the variance estimators in Example 2.5 utilize a local
centering technique with h = 1 and m,� → ∞. Since they fall in the regime m → ∞ and
h/� → 0, the resulting estimators are inadmissible. Theorems 4.1 and 4.2 are summarized in
Table 3.

5. Asymptotic optimality of variance estimators.

5.1. Mean squared error. From Section 4, v̂ is always rate optimal iff h/� → λ∞ ∈
[1,∞) and m < ∞. So, we study v̂ in this regime. From now on, we use a fixed λ ≡ h/� =
λ∞ ∈ [1,∞) and a fixed m for simplicity.

TABLE 3
Convergence properties of v̂ when μ satisfies (1.3) with J , S , C � 1 and uq = ∑

k∈Z |k|q |γk | < ∞.
“Inconsistent” means that MSEμ(v̂) � 0 for some time series. “Suboptimal” means that MSEμ(v̂) → 0 at a

suboptimal rate for some q ∈N. “Optimal” means that MSEμ(v̂) → 0 at the optimal rate for all q ∈N. “May be
optimal” means that MSEμ(v̂) → 0 at the optimal rate for all q ∈N iff the kernel satisfies q ′ ≥ q; see

Assumption 6. An asterisk “*” means that additional regularity conditions on K , {dj }, h or � are needed

Regimes 0 < m < ∞ m → ∞
h/� → 0 Inconsistent Inconsistent or suboptimal*
h/� → λ∞ ∈ (0,1) Inconsistent* Inconsistent or suboptimal*
h/� → 1 May be optimal* Suboptimal*
h/� → λ∞ ∈ (1,∞) Optimal Suboptimal*
h/� → ∞ Suboptimal Suboptimal
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THEOREM 5.1 (Bias). Let {Xi}i∈Z be a stationary time series with {Zi}i∈Z satisfying
Assumption 1 and uq < ∞ for some q ∈ N. Suppose 1/� + �/n → 0, h/� = λ ∈ [1,∞), and
m < ∞.

1. Let rbias = o(1/�q) + O(�/n). Then

(5.1) Bias0(v̂) = ∑
|k|≤�

{
Kdiff

(
k

�

)
− 1

}
γk + rbias.

2. If, in addition, λ ∈ [2,∞), and K(·) satisfies Assumption 5, then Bias(v̂) = Bvq/�
q +

rbias, where B is defined in Assumption 5, and vq = ∑
k∈Z |k|qγk .

THEOREM 5.2 (Variance). Let {Xi}i∈Z be a stationary time series with {Zi}i∈Z sat-
isfying Assumption 1. Suppose 1/� + �/n → 0, h/� = λ ∈ [2,∞), and m < ∞. Let A =∫ 1

0 K2(t)dt , �m = ∑
|s|≤m δ2

s and r2
se = o(�/n). Then

Var0(v̂) = 4A�v2�m

n
+ r2

se.

The proofs of Theorems 5.1 and 5.2 can be found in Sections A.6 and A.7 of the supple-
ment, respectively. Note that if � = o{n1/(1+q)}, then r2

bias + r2
se = o{MSE0(v̂)}. In this case,

Theorem 5.1(2) and Theorem 5.2 imply that

MSE0(v̂) ∼ B2v2
q

�2q
+ 4A�v2�m

n
,

whose magnitude is controlled by the following factors:

• (Kernel K) The constants B2 and A are determined by the user-specified kernel K(·). In
practice, different users may use different kernels. Our theory is flexible enough to support
general kernels, but the existing estimators in Example 2.4 only support the Bartlett kernel.

• (Serial dependence {γk}) The process-dependent constants v and vq are functions of
{γk}k∈Z. They govern the magnitudes of variance and squared bias, respectively. Although
users cannot control them, it is possible to select the best � to adapt to the observed depen-
dence structure of X1:n; see Section 5.2.

• (Lag h) The value of h = λ� has a great impact on the bias. When λ is small (λ ∈ [1,2)),
the bias (5.1) admits no simple form. When λ is large enough (λ ∈ [2,∞)), the bias is
asymptotically unaffected by the differencing operation because of the matching property
in Proposition 2.2 (4). We recommend λ = 2 due to finite-sample consideration.

• (Difference sequence {dj }) In the regime λ ∈ [2,∞), the variance neatly depends on m

and {dj }mj=0 only through �m. In practice, we should pick the {dj } to minimize the MSE;
see Section 5.2.

• (Bandwidth � and sample size n) The bandwidth � affects the squared bias and variance in
an opposite direction. A large � leads to a large variance and a small squared bias. So, the
well-known bias-variance tradeoff occurs. Section 5.2 discusses the selection of �.

• (Reminder term rbias) It has two parts: o(1/�q) and O(�/n). The term o(1/�q) comes from
approximating

∑
|k|≤� |k/�|qγk by vq/�q . The other one comes from approximating v̂ by

v̂diff; see Proposition 2.2.
• (Reminder term rse) It appears when we apply the invariance principle (Theorem 3 of Wu

(2011)) to approximate the moments of v̂ by the moments of a Brownian motion.
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5.2. Optimal parameters selection. From now on, we use λ = 2 as it has the best prop-
erties. The optimal � and {dj } are derived for each m below.

COROLLARY 5.3. Suppose the conditions stated in Theorem 5.1(2) and Theorem 5.2
hold. In addition, assume vq �= 0, � = o{n1/(1+q)} and λ = 2.

1. The MSE-optimal � is given by

(5.2) �� =
{
q(vq/v)2B2n

2A�m

}1/(1+2q)

.

2. For each m, the optimal {dj }mj=0, denoted by {d�
j }mj=0, satisfies δ1 = · · · = δm =

−1/(2m), which implies �m = 1 + 1/(2m). The solution {d�
j }mj=0 is a sequence of univer-

sal constants that depends on m only.

The proof can be found in Section A.8 of the supplement. From Corollary 5.3, if the
optimal �� is used, the optimal MSE satisfies

n2q/(1+2q) MSE0(v̂)/v2 → (1 + 2q)

{
B2

(
2A�m

q

)2q

(vq/v)2
}1/(1+2q)

=: M(m),(5.3)

which can be generalized to n2q/(1+2q) MSEμ(v̂)/v2 → M(m) if μ ∈ Mq ; see (3.1) for the
definition of Mq . So, the L2 convergence rate of v̂ is nq/(1+2q), which is the best possible.

If, in addition, the optimal {d�
j }mj=0 is used, we have M(1) > M(2) > · · · . Indeed, for any

ε > 0, there is m ∈ N such that |M(m) − M(0)| < ε, where M(0) is the best possible MSE
achieved by the classical (nonrobust) estimator v̂(0). Hence, the proposed framework covers
the optimal estimator asymptotically. The optimal {d�

j }mj=0 can be obtained numerically by
the innovation algorithm (Definition 8.3.1 of Brockwell and Davis (2006)); see Table 1 for
the solution. It is worth mentioning that the mth order local differencing in Example 2.1 is
nearly optimal in the sense that �m = 1 + (2m + 1)/(3m2 + 3m) ≈ 1 when m is large. It can
be a good and convenient choice in practice.

For reference, we compare our proposed estimator v̂(3) (i.e., using m = 3) with the best
existing robust estimator v̂(C) in Chan (2022a) (see Example 2.8) and the best proposal v̂(W)

in Wu and Zhao (2007) (see Example 2.4). If K = KBart, then v̂(3) uniformly dominates v̂(C)

and v̂(W) in the sense that

MSE0{v̂(C)}
MSE0{v̂(3)} →

(
12

7

)2/3
≈ 1.43 and

MSE0{v̂(W)}
MSE0{v̂(3)} →

(
3

2

)4/3
≈ 1.71;(5.4)

see Section B.8 of the supplement for a detailed derivation.
Since �� depends on the unknowns vq and v0, we need also to estimate vq . Similar to (2.3),

we propose to estimate vp (p ∈ N0) by

v̂p = ∑
|k|<�

|k|pK

(
k

�

)
γ̂ D
k .

We may write v̂p as v̂p,(m) to emphasize the order m. The following corollaries show that v̂p

is a consistent and robust estimator of vp .

COROLLARY 5.4 (Consistency). Let p ∈ N0 and {Xi}i∈Z be a stationary time series
with {Zi}i∈Z satisfying Assumption 1 and up+q < ∞ for some q ∈ N. Suppose K(·) satisfies
Assumption 5, 1/� + �1+2p/n → 0, h/� = λ ∈ [2,∞) and m < ∞. Then

MSE0(v̂p;vp) =
(

Bvp+q

�q
+ rp,bias

)2
+

(
4Ap�1+2pv2�m

n
+ r2

p,se

)
,
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where rp,bias = o(1/�q) + O(�1+p/n); r2
p,se = o(�1+2p/n); the constant B is defined in As-

sumption 5; and Ap = ∫ 1
0 |t |2pK2(t)dt .

COROLLARY 5.5 (Robustness). Assume the conditions in Theorem 3.1. Let p ∈ N0,
Rp,bias = O(�pRbias) and Rp,se = O(�pRse). Then

Biasμ(v̂p;vp) = Bias0(v̂p;vp) +
{
κ�1+pV + O

(
�1+p

n

)}
1(m=0) + Rp,bias,

√
Varμ(v̂p) =

√
Var0(v̂p) + O

{
�1+p(C + SJ )√

n

}
1(m=0) + Rp,se,

The proofs of Corollaries 5.4 and 5.5 can be found in Sections A.9 and A.10 of the supple-
ment, respectively. By Corollary 5.4, we know that, in the constant mean case, v̂p converges
in L2 optimally, that is, MSE0(v̂p;vp) = O(n−2q/(1+2p+2q)), if � � n1/(1+2p+2q). By Corol-
lary 5.5, if m ∈ N, h/� = λ ∈ (0,∞) and � � n1/(1+2p+2q) are used for v̂p , then v̂p is strictly
robust in

Mp,q := {
μ(·) : R2

p,bias + R2
p,se = o

(
MSE0(v̂p;vp)

)}
= {

μ(·) : C2 = o
(
n

3p+3q−1
1+2p+2q

)
,S2J = o

(
n

p+q−1
1+2p+2q

)
,G � n

1
1+2p+2q

}
.

So, under up+q < ∞, we have MSEμ(v̂p;vp) ∼ MSE0(v̂p;vp) for μ ∈ Mp,q .

6. Implementation issue and generalization.

6.1. Rough centering procedure. If there are obvious jumps and trends, one may roughly
remove them. It improves finite-sample performance. We only roughly center X1:n because
consistent centering either distorts the autocovariance structure or deteriorates the conver-
gence rate of v̂; see Theorem 4.2. We propose a two-step rough centering procedure (RCP).
The first and second steps remove obvious jumps and trends, respectively.

In step 1, we locate the N most obvious CP times t1, . . . , tN , where N ≤ N ′ for some
N ′ < ∞, for example, N ′ = 10. We initialize X

(1)
i = Xi for each i, and iterate the following

steps for k = 1,2, . . . Let ξ
(k)
i = ∑i+b−1

i′=i X
(k)
i′ /b−∑i

i′=i−b+1 X
(k)
i′ /b be the local batch-mean

difference at time i for i = b, . . . , n − b + 1, where b = �n1/3�. An unusually large ξ
(k)
i

indicates that i is a potential CP. Denote the distance of ξ
(k)
i from Tukey’s fences by O

(k)
i =

max{0, ξ
(k)
i − 4Q

(k)
1 + 3Q

(k)
3 ,4Q

(k)
3 − 3Q

(k)
1 − ξ

(k)
i }, where Q

(k)
1 and Q

(k)
3 are the lower and

upper quartiles of {ξ (k)
i }n−b+1

i=b , respectively. By Tukey’s rule, if

I (k) := {
i ∈ {b, . . . , n − b + 1} \ {t1, . . . , tk−1} : O(k)

i > 0
} �= ∅,

we define the kth most obvious CP as tk = arg maxi∈I (k) O
(k)
i , and let X

(k+1)
i = X

(k)
i −

[X(k)
tk

− X
(k)
tk−1]M−M1(i ≥ tk), where [·]M−M = max{−M,min(·,M)} and M = M ′{∑n

i=2(Xi −
Xi−1)

2/(2n)}1/2 for some M ′ ∈ R
+, for example, M ′ = 100. The iteration stops if I (k) = ∅

or k = N ′. So, the jump-removed series is

X
†
i = Xi − ∑

j∈{1,...,N}:tj≤i

[Xtj − Xtj−1]M−M.(6.1)
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In step 2, we run a segmented linear regression on X
†
tj
, . . . ,X

†
tj+1−1 against tj , . . . , tj − 1

for each j = 0, . . . ,N , where t0 = 1 and tN+1 = n + 1. After shifting the segmented regres-
sion lines to ensure continuity, we obtain

X
‡
i = X

†
i −

N∑
j=0

{
β̂j,0 + β̂j,1(i − tj )

}
1(tj ≤ i ≤ tj+1 − 1),(6.2)

where, for each j = 0, . . . ,N , β̂j,1 = α̂j,1, β̂j,0 = ∑j−1
j ′=0 α̂j ′,1(tj ′+1 −1− tj ′), (α̂j,0, α̂j,1)

ᵀ =
(Z

ᵀ
jZj )

−1
Z
ᵀ
jXj ; and Xj = (X

†
tj
, . . . ,X

†
tj+1−1)

ᵀ, Zj is a (tj+1 − tj ) × 2 matrix whose first
column is a vector of 1 and the second column is [0, . . . , tj+1 − tj − 1]ᵀ. Applying v̂p on
the roughly centered time series {X‡

i }, we obtain a finite-sample-adjusted estimator v̂‡
p . The

following corollary ensures that the RCP does not inflate the asymptotic MSE.

COROLLARY 6.1. Assume the conditions in Corollary 5.4. If p ∈ N0, q ∈ N, m ∈ N and
� = O(n1/(1+2p+2q)), then MSEμ(v̂‡

p;vp) ∼ MSEμ(v̂p;vp) for any μ ∈ Mp,q .

The proof can be found in Section A.11 of the supplement. For clarity, denote v̂p =
v̂p(X1:n;�,K,m,d) if data X1:n, bandwidth ���, kernel K(·), order m, difference sequence
{dj }mj=0 and λ = h/� = 2 are used. In practice, we always use the (universally) optimal dif-
ference sequence {d�

j } in Table 1. The suggested estimator of the LRV v is

v̂� = v̂0
(
X

‡
1:n; �̂�,K,m,d�), where �̂� =

{
q(v̂

�
q/v̂�)2B2n

2A�m

}1/(1+2q)

,(6.3)

where v̂
�
q = v̂q(X

‡
1:n;2n1/(5+2q),K2,m,d�) and v̂� = v̂0(X

‡
1:n;2n1/5,K2,m,d�) are pilot

estimators of vq and v, respectively. We recommend m = 3 and Parzen’s (1957) kernel
Kq(t) = (1 − |t |q)+ with q = 2; see Section 7 for some simulation evidence.

6.2. Multivariate time series. We generalize (1.1) to the multivariate setting such that
{Zi}i∈Z is a sequence of S-dimensional zero-mean stationary noises with γk = E(Z0Z

ᵀ
k ); and

μi = μ(i/n) ∈ R
S are S-dimensional signals. We also use the decomposition in (1.3) but

ξ0, . . . , ξJ ∈ R
S . Denote the sth element of a vector e by e[s], and the (r, s)th element of a

matrix E by E[r,s].
We assume Zi = g(. . . , εi−1, εi), where {εi}i∈Z are i.i.d. RS′

-dimensional innovations.
Generalize (1.4) to θ

[s]
p,i := ‖Z[s]

i −Z
[s]
i,{0}‖p and 	[s]

p := ∑∞
i=0 θ

[s]
p,i , for s = 1, . . . , S. Assump-

tion 1 is generalized as follows.

ASSUMPTION 1* (Weak dependence). The S-dimensional zero-mean strictly stationary
{Zi} satisfies E(Z

[s]
1 )4 < ∞ and 	

[s]
4 < ∞ for all s = 1, . . . , S.

The quantity of interest is the long-run variance (-covariance matrix) v =
limn→∞ nE(Z̄nZ̄

ᵀ
n) = ∑

k∈Z γk ∈ R
S×S . Our proposed estimator of v admits the same

form as (2.3) with γ̂ D
k = ∑n

i=mh+|k|+1 DiD
ᵀ
i−|k|/n. We define vp = ∑

k∈Z |k|pγk and
up = ∑

k∈Z |k|p|γk|, where |γk| is the entrywise absolute value of γk . Let w be a S × S

matrix whose (r, s)th element is

w[r,s] = (
v[r,r]v[s,s] + v[r,s]v[r,s])/2, r, s ∈ {1, . . . , S}.

COROLLARY 6.2. The results in Corollaries 5.4 and 5.5 remain valid if (v̂p, vp, vp+q,

v2) is replaced by (v̂[r,s]
p , v[r,s]

p , v
[r,s]
p+q,w

[r,s]) for each r, s ∈ {1, . . . , S}, provided that Assump-

tion 1 is replaced by Assumption 1*, and up+q < ∞ is replaced by u
[r,s]
p+q < ∞ for all r , s.
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The proof can be found in Section A.12 of the supplement.

7. Experiments, applications and real-data examples. We consider a nonlinear time
series model for all simulation studies in this section. Let {Z′

i}ni=1 be generated from a thresh-
old autoregressive (TAR) model:

Z′
i =

{
θ1Z

′
i−1 + εi if Z′

i−1 ≥ 0;

θ2Z
′
i−1 + εi if Z′

i−1 < 0,
(7.1)

where θ1, θ2 are the AR parameters in regimes 1 and 2, respectively, and εi follow N(0,1)

independently. We use θ1 ∈ {0.1, . . . ,0.9} and θ2 = 0.5. Let Zi = Z′
i/

√
v, where v = vθ1,θ2 is

the LRV for the time series (7.1). So, {Zi} is stationary and satisfies Assumption 1; see Wu
(2011).

7.1. Efficiency and robustness. Let μ(t) = �{et + 1(t > 0.3) + 21(t > 0.6) + 41(t >

0.8)}, where � ∈ {0,1, . . . ,4}. When � �= 0, it contains three jumps and an exponentially
increasing trend. We study the following estimators of v: (i) v̂(W) the best proposal in Wu
and Zhao (2007) (see Example 2.4), (ii) v̂(D) the OBM estimator with Dehling, Fried and
Wendler’s (2020) adjustment (see Example 2.6), (iii) v̂(C) the suggested estimator in Chan
(2022a) (see Example 2.8), (iv) v̂�

(0) a classical estimator (see Example 2.3) and (v) v̂�
(m) the

proposed estimator with m = 1,2,3. We use K(t) = (1 − t2)+ in v̂�
(0), . . . , v̂

�
(3). We compare

their (a) efficiency and (b) robustness via 104 replications.
For (a), the values of MSE0(·) are reported for different values of θ1. For (b), the values

of MSEμ(·) are reported for different values of � when θ1 = 0.4. The results when n =
200 are plotted in Figure 4. Our worst proposal v̂�

(1) is already considerably more efficient
than the existing estimators. The improvement of v̂�

(2) over v̂�
(1) is substantial. Although the

improvement of v̂�
(3) over v̂�

(2) looks incremental, the advantage of v̂�
(3) becomes obvious when

n increases; see Figure C.2 of the supplement for the results when n = 400. When � �= 0,
the existing estimators still show a certain degree of robustness relative to the non-robust
v̂�
(0). But their MSEs are substantially affected. All of our proposed estimators are of nearly

constant risk for all �. It is remarked that the asymptotic relative efficiency does not improve
significantly when m ≥ 4 because

MSE(v̂(2))

MSE(v̂(1))
− 1 ≈ −13.6%,

MSE(v̂(3))

MSE(v̂(2))
− 1 ≈ −5.4%,

MSE(v̂(4))

MSE(v̂(3))
− 1 ≈ −2.9%.

A similar finding is also documented in Hall, Kay and Titterington (1990). Moreover, an
excessively large m may affect the robustness of v̂(m) in finite samples. Hence, in practice,
we suggest using m = 3.

FIG. 4. (a) The values of log{MSE0(·)/MSE0(v̂�
(0)

)} when μ1 = · · · = μn = 0. (b) The values of log MSEμ(·)
against � (i.e., the magnitude of the mean function).
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For reference, we also compute the following estimators: (vi) the estimators in Wu and
Zhao (2007) that use the sum of absolute (SA) differences and the median of absolute (MA)
differences (see Example 2.7), (vii) Altissimo and Corradi’s (2003) estimator (see Exam-
ple 2.5), (viii) Crainiceanu and Vogelsang’s (2007) estimator (see Example 2.6) and (ix) Juhl
and Xiao’s (2009) estimator (see Example 2.5). Their performances are obviously worse than
other estimators either in terms of efficiency or robustness; see Figure C.1 of the supplement.
Additional simulation experiments that further investigate the robustness (in terms of S and
C) can be found in Section D of the supplement.

7.2. Hypothesis tests for structural breaks. An estimator of v is needed in many hypoth-
esis testing problems. We present two examples here: (a) the KS CP test, and (b) a structural
break test in the presence of trends (Wu and Zhao (2007)). The test statistic (a) is defined in
(1.2). The test statistic (b) is defined as

Tn(v) = 1

kn

√
v

max
kn≤i≤n−kn

∣∣∣∣∣
kn+i∑

j=i+1

Xj −
i∑

j=i−kn+1

Xj

∣∣∣∣∣,(7.2)

where kn = nβ and 1/2 < β < 2/3. The estimators (i)–(v) with m = 3 described in Sec-
tion 7.1 are used to estimate the v in (1.2) and (7.2).

In reality, when a structural break occurs, the mean may suddenly jump to a high level but
return to a lower level after that. So, we consider μ(t) = �{101(t > 0.3) − 91(t > 0.35)}.
The mean jumps from 0 to 10� at t = 0.3 and drops to � at t = 0.35. Figure 5 shows the
powers and size-adjusted powers of the tests (a) and (b) when n = 200 and the nominal size
is 5%.

First, the sizes (type-I error rates) of the tests with v̂(W), v̂(D) or v̂(C) are not well controlled
at the nominal value because these estimators of v are not accurate under the null hypothesis
H0 : μ(t) ≡ 0. Second, the powers of the tests with v̂(W), v̂(D) and v̂(C) are low because these

FIG. 5. The powers and adjusted powers of different CP tests with various estimators of v.
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estimators are not robust against μ under the alternative hypothesis H1. For test (a) with v̂(W)

and v̂(D), it even fails to be monotonically powerful with respect to �. It means that it is
harder to reject a more obviously wrong H1. Clearly, the tests (a) and (b) with our proposed
estimator v̂�

(3) control the size well and are monotonically powerful.

7.3. Simultaneous confidence bands for trends. An estimator of v is an essential com-
ponent in many automatic procedures, for example, bandwidth selection for nonparametric
regression, and construction of SCBs, etc. In this section, we present the local linear regres-
sion estimator (Wu and Zhao (2007)):

μ̂b(t) = 2μ̄b(t) − μ̄
b
√

2(t), where μ̄b(t) =
n∑

i=1

H {(t − i/n)/b}
nb

Xi,(7.3)

and H(·) is a kernel, for example, the Gaussian kernel, and b is a bandwidth. They suggest
that b could be selected as bn = 2(v̂/γ̂0)

1/5b∗, where γ̂0 = ∑n
i=1{Xi − μ̂b∗(i/n)}2/n, b∗ is

the optimal bandwidth under the i.i.d. assumption (Ruppert, Sheather and Wand (1995)), and
v̂ is an estimator of v. Since bn is crucial to the performance of μ̂bn(·), an efficient estimator
of v is important.

SCBs for μ(·) directly depend on v̂. In particular, 95% SCBs are given by μ̂bn(t) ±√
v̂q0.95, where q0.95 is the 95% quantile of sup0≤t≤1 |μ̂◦

b◦
n
(t)| with μ̂◦

b◦
n
(t) and b◦

n computed
on i.i.d. data X◦

1, . . . ,X
◦
n ∼ N(0,1). The quantile q0.95 can be easily obtained from simula-

tion; see Table 2 of Wu and Zhao (2007). A simulation experiment is performed to compare
the coverage probability and the expected half-width of the 95% SCBs when n = 200 and
the true mean function is μ(t) = cos(2πt). We try different bandwidth 0.05 ≤ b ≤ 0.1. The
results are shown in Table 4. The SCBs with v̂�

(0) or v̂(D) are overcovered, and their expected
half-widths are large. The SCBs with v̂(W) or v̂(C) are undercovered. The SCBs with our
proposed v̂�

(3) have a quite accurate coverage rate and a reasonable expected width.

7.4. Southern hemispheric land and ocean temperature. The earth’s surface tempera-
ture has been an actively discussed topic in various fields. This section studies the southern
hemispheric land and ocean monthly temperature from 1880 to 2018 (n = 139 × 12). The
data set is freely accessible from the website of NOAA’s National Centers for Environmental
Information.

Since land temperature changes more rapidly than ocean temperature, the land temperature
is expected to be more volatile. The LRV v is a measure of the stochastic variability of the
average. Using v̂�

(3), the long-run standard deviations (
√

v) for the land and ocean series are
about 0.525 and 0.313, respectively. We can also compute the long-run correlation between

TABLE 4
The coverage probabilities of 95% SCBs for μ(·) under different bandwidth b and different estimators of v. The

numbers inside parentheses are the expected half-widths

b WZ (2007) DFW (2020) C (2020) v̂�
(0)

(Classical) v̂�
(3)

(Proposal)

0.05 92.0%(1.4) 99.4%(2.1) 91.8%(1.4) 100%(3.1) 94.9%(1.5)

0.06 91.7%(1.2) 99.2%(1.9) 91.7%(1.2) 100%(2.8) 94.7%(1.3)

0.07 91.4%(1.2) 99.1%(1.8) 91.3%(1.1) 100%(2.6) 94.4%(1.2)

0.08 91.4%(1.1) 99.1%(1.6) 91.3%(1.1) 100%(2.4) 94.4%(1.2)

0.09 91.3%(1.0) 99.1%(1.5) 91.2%(1.0) 100%(2.3) 94.3%(1.1)

0.1 90.9%(1.0) 99.0%(1.4) 91.1%(1.0) 100%(2.2) 94.2%(1.0)
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FIG. 6. (a) Trend estimate and 95% SCBs for the mean of the land surface temperature. (b) Estimated break
location for the mean of the ocean surface temperature.

the land and ocean average temperature. It is about 0.651, which indicates a moderately
strong correlation. If the nonrobust v̂�

(0) is used, it is inflated to 0.966 as v̂�
(0) mistakenly

regards comovement of trends as correlation.
Next, we test whether the global temperature has a structural break even it has a possibly

increasing trend. The test in Wu and Zhao (2007) is used. The p-values for the land series and
ocean series are 15.4% and < 10−5, respectively. Since the land mean temperature is smooth,
we produce a trend estimate together with 95% SCBs in Figure 6(a). The bandwidth selected
for μ̂bn(·) in (7.3) is bn = 2(0.276/0.062)1/5(0.017) ≈ 0.046. For the ocean temperature, the
structural break is detected at around 1940 using the break location estimator proposed in Wu
and Zhao (2007); see Figure 6(b). We suspect that it is easier to detect a structural break in
the ocean series because the ocean temperature has a smaller LRV relative to the variation of
μ(·).

8. Summary, discussion and future work. This article presents a general class of
difference-based estimators v̂ (2.3) for the long-run variance (1.5). Many existing estima-
tors are special cases. We derive the regimes in which v̂ is consistent and rate optimal; see
Table 3. In particular, the intuitive estimator with locally centered X1:n is inadmissible. We
also derive detailed L2 properties of v̂. It is proven to be asymptotically optimal even in the
presence of trends and a possibly divergent number of change points. The suggested estimator
is stated in (6.3). We list some possible future work below:

• From Theorem 3.1, a possible estimator of V = ∫ 1
0 {μ(t) − μ̄}2 dt is V̂(m) = {v̂(0) −

v̂(m)}/{� ∫ 1
−1 K(t)dt} for some m > 0; see To and Chan (2022). It can be used to test con-

stancy of μ(·), that is, H0 : V = 0. The resulting test is expected to perform well because
the estimator v̂(m) has a small MSE.

• To test for a variance change point in the presence of a nonconstant mean, a possible test
statistic can be constructed by using Q̂(m) = ∑

i D
2
i /n with parameters chosen to minimize

the long-run variance of log Q̂(m), where Di is our proposed mth order difference statistics;
see Leung and Chan (2022). This test could be used as an alternative to the recent work by
Gao et al. (2019).

All of these directions rely on the optimal framework proposed in this article.
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SUPPLEMENTARY MATERIAL

Supplement to “Optimal difference-based variance estimators in time series: A gen-
eral framework” (DOI: 10.1214/21-AOS2154SUPP; .pdf). Appendix A: Proofs of main re-
sults. The proofs of Propositions 2.1, 2.2, Theorems 3.1, 4.1, 4.2, 5.1, 5.2, Corollaries 5.3,
5.4 and Corollaries 6.1, 6.2 are placed in Sections A.1–A.12, respectively. Appendix B: Aux-
iliary results. Technical results of independent interest are stated in Sections B.1–B.7. The
derivation of (5.4) is stated in Section B.8. Appendix C: Additional plots. It contains addi-
tional simulation results for Section 7.1. Appendix D: Additional simulation experiments. It
contains additional simulation experiments about the robustness against mean functions.
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