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This paper delivers improved theoretical guarantees for the convex pro-
gramming approach in low-rank matrix estimation, in the presence of (1) ran-
dom noise, (2) gross sparse outliers and (3) missing data. This problem, often
dubbed as robust principal component analysis (robust PCA), finds applica-
tions in various domains. Despite the wide applicability of convex relaxation,
the available statistical support (particularly the stability analysis in the pres-
ence of random noise) remains highly suboptimal, which we strengthen in
this paper. When the unknown matrix is well conditioned, incoherent and
of constant rank, we demonstrate that a principled convex program achieves
near-optimal statistical accuracy, in terms of both the Euclidean loss and the
�∞ loss. All of this happens even when nearly a constant fraction of obser-
vations are corrupted by outliers with arbitrary magnitudes. The key analysis
idea lies in bridging the convex program in use and an auxiliary nonconvex
optimization algorithm, and hence the title of this paper.

1. Introduction. A diverse array of science and engineering applications (e.g., video
surveillance, joint shape matching, graph clustering, covariance modeling, graphical mod-
els) involves estimation of low-rank matrices (Candès et al. (2011), Chandrasekaran, Parrilo
and Willsky (2012), Chen, Guibas and Huang (2014), Chen et al. (2014), Chi, Lu and Chen
(2019), Davenport and Romberg (2016), Fan, Liao and Mincheva (2013)). The imperfect-
ness of data acquisition processes, however, presents several common yet critical challenges:
(1) random noise: which reflects the uncertainty of the environment and/or the measurement
processes; (2) outliers: which represent a sort of corruption that exhibits abnormal behav-
ior and (3) incomplete data, namely, we might only get to observe a fraction of the matrix
entries. Low-rank matrix estimation algorithms aimed at addressing these challenges have
been extensively studied under the umbrella of robust principal component analysis (Robust
PCA) (Candès et al. (2011), Chandrasekaran et al. (2011)), a terminology popularized by the
seminal work (Candès et al. (2011)).

To formulate the above mentioned problem in a more precise manner, imagine that we seek
to estimate an unknown low-rank matrix L� ∈ R

n1×n2 . What we can obtain is a collection of
partially observed and corrupted entries as follows:

(1.1) Mij = L�
ij + S�

ij + Eij , (i, j) ∈ �obs,

where S� = [S�
ij ] is a matrix consisting of outliers, E = [Eij ] represents the random noise,

and we only observe entries over an index subset �obs ⊆ [n1]×[n2] with [n] := {1,2, . . . , n}.
The current paper assumes that S� is a relatively sparse matrix whose nonzero entries might
have arbitrary magnitudes. This assumption has been commonly adopted in prior work to
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model gross outliers, while enabling reliable disentanglement of the outlier component and
the low-rank component (Candès et al. (2011), Chandrasekaran et al. (2011), Chen et al.
(2013), Li (2013)). In addition, we suppose that the entries {Eij } are independent zero-mean
sub-Gaussian random variables, as commonly assumed in the statistics literature to model
a large family of random noise. The aim is to reliably estimate L� given the grossly cor-
rupted and possibly incomplete data (1.1). Ideally, this task should be accomplished without
knowing the locations and magnitudes of the outliers S�.

1.1. A principled convex programming approach. Focusing on the noiseless case with
E = 0, the papers by Candès et al. (2011), Chandrasekaran et al. (2011) delivered a positive
and somewhat surprising message: both the low-rank component L� and the sparse compo-
nent S� can be efficiently recovered with absolutely no error by means of a principled convex
program

(1.2) minimize
L,S∈Rn1×n2

‖L‖∗ + τ‖S‖1 subject to P�obs(L + S − M) = 0,

provided that certain “separation” and “incoherence” conditions on (L�,S�,�obs) hold1 and
that the regularization parameter τ is properly chosen. Here, ‖L‖∗ denotes the nuclear norm
(i.e., the sum of the singular values) of L, ‖S‖1 = ∑

i,j |Sij | denotes the usual entrywise �1
norm, and P�obs(M) denotes the Euclidean projection of a matrix M onto the subspace of
matrices supported on �obs. Given that the nuclear norm ‖ · ‖∗ (resp., the �1 norm ‖ · ‖1) is
the convex relaxation of the rank function rank(·) (resp., the �0 counting norm ‖ · ‖0), the
rationale behind (1.2) is rather clear: it seeks a decomposition (L,S) of M by promoting the
low-rank structure of L as well as the sparsity structure of S.

Moving on to the more realistic noisy setting, a natural strategy is to solve the following
regularized least-squares problem:

(1.3) minimize
L,S∈Rn1×n2

1

2

∥∥P�obs(L + S − M)
∥∥2

F + λ‖L‖∗ + τ‖S‖1.

With the regularization parameters λ, τ > 0 properly chosen, one hopes to strike a balance
between enhancing the goodness of fit (by enforcing L + S − M to be small) and promoting
the desired low-complexity structures (by regularizing both the nuclear norm of L and the �1
norm of S). A natural and important question comes into our mind:

Where does the algorithm (1.3) stand in terms of its statistical performance in the presence
of random noise, sparse outliers and missing data?

Unfortunately, however simple this program (1.3) might seem, the existing theoretical sup-
port remains far from satisfactory, as we shall discuss momentarily.

1.2. Theory-practice gaps under random noise. To assess the tightness of prior statistical
guarantees for (1.3), we find it convenient to first look at a simple setting where (i) n1 = n2 =
n, (ii) E consists of independent Gaussian components, namely, Eij ∼ N (0, σ 2) and (iii)
there is no missing data. This simple scenario is sufficient to illustrate the suboptimality of
prior theory.

Prior statistical guarantees. The paper Zhou et al. (2010) was the first to derive a sort of
statistical performance guarantees for the above convex program. Under mild conditions,

1Clearly, if the low-rank matrix L� is also sparse, one cannot possibly separate S� from L�. The same holds
true if the matrix S� is simultaneously sparse and low-rank.
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Zhou et al. (2010) demonstrated that any minimizer (L̂, Ŝ) of (1.3) achieves2

(1.4)
∥∥L̂ − L�

∥∥
F = O

(
n‖E‖F

) = O
(
σn2)

with high probability, where we have substituted in the well-known high-probability bound
‖E‖F = O(σn) under i.i.d. Gaussian noise. While this theory corroborates the potential sta-
bility of convex relaxation against both additive noise and sparse outliers, it remains unclear
whether the estimation error bound (1.4) reflects the true performance of the convex program
in use. In what follows, we shall compare it with an oracle error bound and collect some
numerical evidence.

Comparisons with an oracle bound. Consider an idealistic scenario where an oracle informs
us of the outlier matrix S�. With the assistance of this oracle, the task of estimating L� reduces
to a low-rank matrix denoising problem (Donoho and Gavish (2014)). By fixing S to be S�

in (1.3), we arrive at a simplified convex program

(1.5) minimize
L∈Rn×n

1

2

∥∥L − (
L� + E

)∥∥2
F + λ‖L‖∗.

It is known that (e.g., Chen et al. (2020a), Donoho and Gavish (2014)): under mild conditions
and with a properly chosen λ, the estimation error of (1.5) satisfies

(1.6)
∥∥L̂ − L�

∥∥
F = O(σ

√
nr),

where we abuse the notation and denote by L̂ the minimizer of (1.5). The large gap between
the above two bounds (1.4) and (1.6) is self-evident; in particular, if r = O(1), the gap be-
tween these two bounds can be as large as an order of n1.5.

A numerical example without oracles. One might naturally wonder whether the discrepancy
between the two bounds (1.4) and (1.6) stems from the magical oracle information (i.e., S�)
which (1.3) does not have the luxury to know. To demonstrate that this is not the case, we
conduct some numerical experiments to assess the importance of such oracle information.
Generate L� = X�Y �	, where X�,Y � ∈ R

n×r are random orthonormal matrices. Each entry
of S� is generated independently from a mixed distribution: with probability 1/10, the entry is
drawn from N (0,10); otherwise, it is set to be zero. In other words, approximately 10% of the
entries in L� are corrupted by large outliers. Throughout the experiments, we set λ = 5σ

√
n

and τ = 2σ
√

logn with σ the standard deviation of each noise entry {Eij }. Figure 1(a) fixes
r = 5, σ = 10−3 and examines the dependency of the Euclidean error ‖L̂ − L�‖F on the size√

n. Similarly, Figure 1(b) fixes r = 5, n = 1000 and displays the estimation error ‖L̂−L�‖F
as the noise size σ varies in a log-log plot. As can be seen from Figure 1, the performance of
the oracle-aided estimator (1.5) matches the theoretical prediction (1.6), namely, the numeri-
cal estimation error ‖L̂ − L�‖F is proportional to both

√
n and σ . Perhaps more intriguingly,

even without the help of the oracle, the original estimator (1.3) performs quite well and be-
haves qualitatively similarly. In comparison with the bound (1.4) derived in the prior work
(Zhou et al. (2010)), our numerical experiments suggest that the convex estimator (1.3) might
perform much better than previously predicted.

All in all, there seems to be a large gap between the practical performance of (1.3) and the
existing theoretical support. This calls for a new theory that better explains practice, which
we pursue in the current paper. We remark in passing that statistical guarantees have been de-
veloped in Agarwal, Negahban and Wainwright (2012), Klopp, Lounici and Tsybakov (2017)
for other convex estimators (i.e., the ones that are different from the convex estimator (1.3)
considered herein). We shall compare our results with theirs later in Section 1.4.

2Mathematically, Zhou et al. (2010) investigated an equivalent constrained form of (1.3) and developed an upper
bound on the corresponding estimation error.
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FIG. 1. (a) Euclidean estimation errors of (1.3) and (1.5) versus the problem size
√

n, where we fix r = 5,
σ = 10−3; (b) Euclidean estimation errors of (1.3) and (1.5) versus the noise level σ in a log-log plot, where
we fix n = 1000, r = 5. For both plots, we take λ = 5σ

√
n and τ = 2σ

√
logn. The results are averaged over 50

independent trials.

1.3. Models, assumptions and notation. As it turns out, the appealing empirical perfor-
mance of the convex program (1.3) in the presence of both sparse outliers and zero-mean
random noise can be justified in theory. Toward this end, we need to introduce several no-
tations and model assumptions that will be used throughout. Let U���V �	 be the singular
value decomposition (SVD) of the unknown rank-r matrix L� ∈ R

n1×n2 , where U � ∈ R
n1×r

and V � ∈ R
n2×r consist of orthonormal columns and �� = diag{σ�

1 , . . . , σ �
r } is a diagonal

matrix. Here, we let

σmax := σ�
1 ≥ σ�

2 ≥ · · · ≥ σ�
r =: σmin and κ := σmax/σmin

represent the singular values and the condition number of L�, respectively. We denote by ��

the support set of S�, that is,

(1.7) �� := {
(i, j) ∈ �obs : S�

ij �= 0
}
.

With this set of notation in place, we list below our key model assumptions.

ASSUMPTION 1.1 (Incoherence). The low-rank matrix L� with SVD L� = U ���V �	
is assumed to be μ-incoherent in the sense that

(1.8)
∥∥U �

∥∥
2,∞ ≤

√
μ

n1

∥∥U �
∥∥

F =
√

μr

n1
and

∥∥V �
∥∥

2,∞ ≤
√

μ

n2

∥∥V �
∥∥

F =
√

μr

n2
.

Here, ‖U‖2,∞ denotes the largest �2 norm of all rows of a matrix U .

ASSUMPTION 1.2 (Random sampling). Each entry is observed independently with
probability p, namely,

(1.9) P
{
(i, j) ∈ �obs

} = p.

ASSUMPTION 1.3 (Random locations of outliers). Each observed entry is independently
corrupted by an outlier with probability ρs, namely,

(1.10) P
{
(i, j) ∈ �� | (i, j) ∈ �obs

} = ρs,

where �� ⊆ �obs is the support of the outlier matrix S�.
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ASSUMPTION 1.4 (Random signs of outliers). The signs of the nonzero entries of S�

are i.i.d. symmetric Bernoulli random variables (independent from the locations), namely,

(1.11) sign
(
S�

ij

) ind.=
{

1, with probability 1/2,

−1, else,
for all (i, j) ∈ ��.

ASSUMPTION 1.5 (Random noise). The noise matrix E = [Eij ] is composed of inde-
pendent symmetric3 zero-mean sub-Gaussian random variables with sub-Gaussian norm at
most σ > 0, that is, ‖Eij‖ψ2 ≤ σ (see Vershynin (2012), Definition 5.7, for precise defini-
tions).

We take a moment to expand on our model assumptions. Assumption 1.1 is standard in the
low-rank matrix recovery literature (Candès and Recht (2009), Candès et al. (2011), Chen
(2015), Chi, Lu and Chen (2019)). If μ is small, then this assumption specifies that the sin-
gular spaces of L� is not sparse in the standard basis, thus ensuring that L� is not simultane-
ously low-rank and sparse. Assumption 1.3 requires the sparsity pattern of the outliers S� to
be random, which precludes it from being simultaneously sparse and low-rank. In essence,
Assumptions 1.1 and 1.3 are identifiability conditions, taken together as a sort of separation
condition on (L�,S�), which plays a crucial role in guaranteeing exact recovery in the noise-
less case (i.e., E = 0); see Candès et al. (2011) for more discussions on these conditions.
Assumption 1.4 requires the signs of the outliers to be random, which has also been made in
Wong and Lee (2017), Zhou et al. (2010).4 We shall discuss in detail the crucial role of this
random sign assumption (as opposed to deterministic sign patterns) in Section 1.6.

Finally, we introduce several notation to be used throughout. Denote by f (n) � g(n) or
f (n) = O(g(n)) the condition |f (n)| ≤ Cg(n) for some constant C > 0 when n is suffi-
ciently large; we use f (n) � g(n) to denote f (n) ≥ C|g(n)| for some constant C > 0 when
n is sufficiently large; we also use f (n)  g(n) to indicate that f (n) � g(n) and f (n) � g(n)

hold simultaneously. The notation f (n) � g(n) (resp., f (n) � g(n)) means that there exists
a sufficiently large (resp., small) constant c1 > 0 (resp., c2 > 0) such that f (n) ≥ c1g(n)

(resp., f (n) ≤ c2g(n)). For any subspace T , we denote by PT (M) the Euclidean projection
of a matrix M onto the subspace T , and let PT ⊥(M) := M − PT (M). For any index set �,
we denote by P�(M) the Euclidean projection of a matrix M onto the subspace of matrices
supported on �, and define P�c(M) := M −P�(M). For any matrix M , we let ‖M‖, ‖M‖F,
‖M‖∗, ‖M‖1 and ‖M‖∞ denote its spectral norm, Frobenius norm, nuclear norm, entrywise
�1 norm and entrywise �∞ norm, respectively.

1.4. Main results. Armed with the above model assumptions, we are positioned to
present our improved statistical guarantees for convex relaxation (1.3) in the random noise
setting. Without loss of generality, assume that

n1 ≥ n2.

As we shall elucidate in Section 1.5 and Section 3, our theory is established by exploiting an
intriguing and intimate connection between convex relaxation and nonconvex optimization,
and hence the title of this paper.

For the sake of simplicity, we shall start by presenting our statistical guarantees when the
rank r , the condition number κ and the incoherence parameter μ of L� are all bounded by

3In fact, we only require Eij to be symmetric for all (i, j) ∈ ��.
4Note that while the theorems in Wong and Lee (2017), Zhou et al. (2010) do not make explicit this random

sign assumption, the proofs therein do rely on this assumption to guarantee the existence of certain approximate
dual certificates.
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some constants. Despite its simplicity, this setting subsumes as special cases a wide array of
fundamentally important applications, including angular and phase synchronization (Singer
(2011)) in computational biology, joint shape mapping problem (Chen, Guibas and Huang
(2014), Huang and Guibas (2013)) in computer vision, and so on. All of these problems
involve estimating a very well-conditioned matrix L� with a small rank.

THEOREM 1.6. Suppose that Assumptions 1.1–1.5 hold, and that r, κ,μ = O(1). Take
λ = Cλσ

√
n1p and τ = Cτσ

√
logn2 in (1.3) for some large enough constants Cλ,Cτ > 0.

Assume that

(1.12) n1n2p ≥ Csamplen1 log6 n1,
σ

σmin

√
n1

p
≤ cnoise√

logn1
and ρs ≤ coutlier

logn1

for some sufficiently large constant Csample > 0 and some sufficiently small constants
cnoise, coutlier > 0. Then with probability exceeding 1 − O(n−3

2 ), the following hold:

1. Any minimizer (Lcvx,Scvx) of the convex program (1.3) obeys∥∥Lcvx − L�
∥∥

F ≤ Cerr
σ

σmin

√
n1

p

∥∥L�
∥∥

F,(1.13a)

∥∥Lcvx − L�
∥∥∞ ≤ Cerr

σ

σmin

√
n1 logn1

p

∥∥L�
∥∥∞,(1.13b)

∥∥Lcvx − L�
∥∥ ≤ Cerr

σ

σmin

√
n1

p

∥∥L�
∥∥(1.13c)

for some constant Cerr > 0.
2. Letting Lcvx,r := arg minL:rank(L)≤r ‖L − Lcvx‖F be the best rank-r approximation of

Lcvx, we have

(1.14) ‖Lcvx,r − Lcvx‖F ≤ 1

n5
2

· σ

σmin

√
n1

p

∥∥L�
∥∥

F,

and the statistical guarantees (1.13) hold unchanged if Lcvx is replaced by Lcvx,r .

Before we embark on interpreting our statistical guarantees, let us first parse the required
conditions (1.12) in Theorem 1.6. For simplicity, we assume that n1 = n2 = n.

• Missing data. Theorem 1.6 accommodates the case where a dominant fraction of entries
are unobserved (more precisely, the sample size can be as low as an order of npoly logn).
This is an appealing result since, even when there is no noise and no outlier (i.e., E = 0
and ρs = 0), the minimal sample size required for exact matrix completion is at least on the
order of n logn (Candès and Tao (2010)). In comparison, prior theory on robust PCA with
both sparse outliers and dense additive noise is either based on full observations (Agarwal,
Negahban and Wainwright (2012), Zhou et al. (2010)), or assumes the sampling rate p

exceeds some universal constant (Wong and Lee (2017)). In other words, these prior results
require the number of observed entries to exceed the order of n2. The only exception
is Klopp, Lounici and Tsybakov (2017), which also allows a significant amount of missing
data (i.e., p � (poly logn)/n).

• Noise levels. The noise condition, namely σ
√

n logn/p � σmin, accommodates a wide
range of noise levels. To see this, it is straightforward to check that this noise condition is
equivalent to

σ �
√

np

logn

∥∥L�
∥∥∞
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as long as r,μ, κ  1. In other words, the entrywise noise level σ is allowed to be signif-
icantly larger than the maximum magnitude of the entries in the low-rank matrix L�, as
long as p � (logn)/n.

• Tolerable fraction of outliers. The above theorem assumes that no more than a fraction
ρs � 1/ logn of observations are corrupted by outliers. In words, our theory allows nearly
a constant proportion (up to a logarithmic order) of the entries of L� to be corrupted with
arbitrary magnitudes.

Next, we move on to the interpretation of our statistical guarantees. Note that we still
assume that n1 = n2 = n for ease of presentation.

• Near-optimal statistical guarantees. Our first result (1.13a) gives an Euclidean estimation
error bound of (1.3)

(1.15)
∥∥Lcvx − L�

∥∥
F � σ

√
n

p
.

This cannot be improved even when an oracle has informed us of the outliers S� and the
tangent space of L�; see Candès and Plan (2010), Section III.B. We remark that under
similar model assumptions, the paper Wong and Lee (2017) derived an estimation error
bound for a constrained version of the convex program (1.3), which asserts that this convex
estimator L̃cvx satisfies5

(1.16)
∥∥L̃cvx − L�

∥∥
F � σn1.5,

with the proviso that p is at least on the constant order. The restriction on p arises from
the dual certificate constructed in Candès et al. (2011), which is also used in the proof of
Theorem 4 in Wong and Lee (2017). While this is suboptimal compared to our results in
the setting considered herein, it is worth pointing out that the bound therein accommodates
arbitrary noise matrix E (e.g., deterministic, adversary), and here in (1.16) we specialize
their result to the random noise setting, namely the noise E obeys Assumption 1.5. In
addition, under the full observation (i.e., p = 1) setting, the paper Agarwal, Negahban and
Wainwright (2012) derived an estimation error bound for a convex program similar to (1.3),
but with an additional constraint regularizing the spikiness of the low-rank component.
Note that instead of imposing the incoherence condition as in Assumption 1.1, the prior
work Agarwal, Negahban and Wainwright (2012) assumes a milder spikiness condition
on L�, which only constrains the maximum entry in the matrix L� is not too large. When
{Eij } are i.i.d. drawn from N (0, σ 2) and when there is no missing data (i.e. p = 1), the
Euclidean estimation error bound achievable by their estimator LANW

cvx reads

(1.17)
∥∥LANW

cvx − L�
∥∥

F � σ
√

nmax{1,
√

nρs logn} + ∥∥L�
∥∥∞n

√
ρs,

which is suboptimal compared to our results. In particular, (i) the bound (1.17) does not
vanish even as the noise level decreases to zero, and (ii) it becomes looser as ρs grows
(e.g., if ρs  1/ logn, the bound (1.17) is O(

√
n) larger than our bound). Moreover, the

work Agarwal, Negahban and Wainwright (2012) did not account for missing data. Similar
to Agarwal, Negahban and Wainwright (2012) (but with an additional spikiness condition
on S�), the paper Klopp, Lounici and Tsybakov (2017) derived an estimation error bound

5More specifically, Wong and Lee (2017), Theorem 4, studies the following convex program
minimizeL,S∈Rn×n‖L‖∗ + λ‖S‖1 s.t. ‖P�obs (L + S − M)‖F ≤ δ. Here, the quantity δ needs to be larger than
‖P�obs (L + S − M)‖F. Under our setting, the minimum level of δ should be a high-probability upper bound on
‖P�obs (E)‖F, which is on the order of σn

√
p. With this choice of δ, Wong and Lee (2017), Theorem 4, yields

‖L̃cvx − L�‖F ≤ [2 + 8
√

n(1 + √
8/p)]δ � σn1.5.
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TABLE 1
Comparison of our statistical guarantee and prior theory

Euclidean estimation error Accounting for missing data

Zhou et al. (2010) σn2 no

Agarwal, Negahban and Wainwright (2012) σ
√

nmax{√r,
√

nρs logn} no

+ ‖L�‖∞n
√

ρs

Wong and Lee (2017) σn1.5 yes (p � 1)

Klopp, Lounici and Tsybakov (2017) max{σ,‖L�‖∞,‖S�‖∞}· yes (p � (poly logn)/n)
√

(n logn)/p max{1,
√

npρs}
This paper σ

√
nr/p yes (p � κ4μ2r2(poly logn)/n)

for a constrained convex program, with a new constraint regularizing the spikiness of the
sparse outliers. Their Euclidean estimation error bound reads

(1.18)
∥∥LKLT

cvx − L�
∥∥

F � max
{
σ,

∥∥L�
∥∥∞,

∥∥S�
∥∥∞

}√n logn

p
max{1,

√
npρs},

which is also suboptimal compared to our results. In particular, (1) their error bound de-
grades as the magnitude ‖S�‖∞ of the outlier increases; (2) when there is no missing data
(i.e., p = 1), their bound might be off by a factor as large as O(

√
n). It is worth em-

phasizing that the theory developed in these prior works is developed to accommodate a
broader range of matrices. For example, both Agarwal, Negahban and Wainwright (2012)
and Klopp, Lounici and Tsybakov (2017) study the set of entrywise bounded low-rank ma-
trices (without assuming the incoherence condition); Agarwal, Negahban and Wainwright
(2012) even allows L� to be approximately low rank. To ease comparison, Table 1 displays
a summary of our results versus prior statistical guarantees when specialized to the settings
considered herein.

• Entrywise and spectral norm error control. Moving beyond Euclidean estimation errors,
our theory also provides statistical guarantees measured by two other important metrics:
the entrywise �∞ norm (cf. (1.13b)) and the spectral norm (cf. (1.13c)). In particular, our
entrywise error bound (1.13b) in reads

(1.19)
∥∥Lcvx − L�

∥∥∞ � σ

√
logn

np

as long as r, κ,μ  1, which is about O(n) times small than the Euclidean loss (1.15)
modulo some logarithmic factor. This uncovers an appealing “delocalization” behavior of
the estimation errors, namely, the estimation errors of L� are fairly spread out across all
entries. This can also be viewed as an “implicit regularization” phenomenon: the convex
program automatically controls the spikiness of the low-rank solution, without the need of
explicitly regularizing it (e.g., adding a constraint ‖L‖∞ ≤ α as adopted in the prior work
Agarwal, Negahban and Wainwright (2012), Klopp, Lounici and Tsybakov (2017)). See
Figure 2 for the numerical evidence for the relative entrywise and spectral norm error of
Lcvx.

• Approximate low-rank structure of the convex estimator Lcvx. Last but not least, Theo-
rem 1.6 ensures that the convex estimate Lcvx is nearly rank-r , so that a rank-r approxi-
mation of Lcvx is extremely accurate. In other words, the convex program automatically
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FIG. 2. The relative estimation error of Lcvx measured by both ‖ · ‖∞ (i.e., ‖Lcvx − L�‖∞/‖L�‖∞) and ‖ · ‖
(i.e., ‖Lcvx − L�‖/‖L�‖) versus the standard deviation σ of the noise in a log-log plot. The results are reported
for n = 1000, r = 5, p = 0.2, ρs = 0.1, λ = 5σ

√
np, τ = 2σ

√
logn, and are averaged over 50 independent trials.

In addition, the data generating process is similar to that in Figure 1.

adapts to the true rank of L� without having any prior knowledge about r . As we shall see
shortly, this is a crucial observation underlying the intimate connection between convex
relaxation and a certain nonconvex approach.

Moving beyond the setting with r, κ,μ  1, we have developed theoretical guarantees that
allow r , κ , μ to grow with the problem dimension n1, n2. The result is this.

THEOREM 1.7. Suppose that Assumptions 1.1–1.5 hold and that n1 ≥ n2. Take λ =
Cλσ

√
n1p and τ = Cτσ

√
logn2 in (1.3) for some large enough constants Cλ,Cτ > 0. As-

sume that

n1n2p ≥ Csampleκ
4μ2r2n1 log6 n1,

σ

σmin

√
n1

p
≤ cnoise√

κ4μr logn1

, and ρs ≤ coutlier

κ3μr logn1

(1.20)

for some sufficiently large constant Csample > 0 and some sufficiently small constants
cnoise, coutlier > 0. Then with probability exceeding 1 − O(n−3

2 ), the following hold:

1. Any minimizer (Lcvx,Scvx) of the convex program (1.3) obeys∥∥Lcvx − L�
∥∥

F ≤ Cerrκ
σ

σmin

√
n1

p

∥∥L�
∥∥

F,(1.21a)

∥∥Lcvx − L�
∥∥∞ ≤ Cerr

√
κ3μr · σ

σmin

√
n1 logn1

p

∥∥L�
∥∥∞,(1.21b)

∥∥Lcvx − L�
∥∥ ≤ Cerr

σ

σmin

√
n1

p

∥∥L�
∥∥(1.21c)

for some constant Cerr > 0.
2. Letting Lcvx,r := arg minL:rank(L)≤r ‖L − Lcvx‖F be the best rank-r approximation of

Lcvx, we have

(1.22) ‖Lcvx,r − Lcvx‖F ≤ 1

n5
2

· σ

σmin

√
n1

p

∥∥L�
∥∥

F,

and the statistical guarantees (1.21) hold unchanged if Lcvx is replaced by Lcvx,r .
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FIG. 3. Euclidean estimation errors of (1.3) versus ρs under four different ranks r = 5,10,15,20. The re-
sults are reported for n = 1000, p = 0.04r , σ = 10−3, λ = 5σ

√
np, τ = 2σ

√
logn, and are averaged over 50

independent trials. In addition, the data generating process is similar to that in Figure 1.

Similar to Theorem 1.6, our general theory (i.e., Theorem 1.7) provides the estimation
error of the convex estimator Lcvx in three different norms (i.e., the Euclidean, entrywise and
operator norms), and reveals the near low-rankness of the convex estimator (cf. (1.22)) as
well as the implicit regularization phenomenon (cf. (1.21b)).

Finally, we make note of several aspects of our general theory that call for further improve-
ment. For instance, when there is no missing data and n1 = n2 = n, the rank r of the unknown
matrix L� needs to satisfy r � √

n. On the positive side, our result allows r to grow with the
problem dimension n. However, prior results in the noiseless case (Candès et al. (2011), Li
(2013)) allow r to grow almost linearly with n. This unsatisfactory aspect arises from the
suboptimal analysis (in terms of the dependency on r) of a tightly related nonconvex estima-
tion algorithm (to be elaborated on later), which to the best of our knowledge, has not been
resolved in the nonconvex low-rank matrix recovery literature (Chen, Liu and Li (2020), Ma
et al. (2020)). See Section 2 for more discussions about this point. Moreover, when E = 0, it
is known that ρs can be as large as a constant even when the rank r is allowed to grow with
the dimension n (Chen et al. (2013), Li (2013)). Our current theory, however, fails to cover
the case with ρs  1 in the presence of noise. We demonstrate through numerical experi-
ments that the dependence of ρs on r might indeed by suboptimal in our current theory. More
specifically, Figure 3 depicts the numerical Euclidean estimation errors w.r.t. the corruption
probability ρs as we vary the rank while fixing the sampling ratio. It can be seen that the
estimation error curves corresponding to different ranks align very well with each other, thus
suggesting the capability of convex relaxation in tolerating a constant fraction ρs of outliers.

1.5. A peek at our technical approach. Before delving into the proof details, we immedi-
ately highlight our key technical ideas and novelties. For simplicity, we assume n1 = n2 = n

throughout this section.

Connections between convex and nonconvex optimization. Instead of directly analyzing the
convex program (1.3), we turn attention to a seemingly different, but in fact closely related,
nonconvex program

(1.23) minimize
X,Y∈Rn×r ,S∈Rn×n

1

2

∥∥P�obs

(
XY	 + S − M

)∥∥2
F + λ

2

(‖X‖2
F + ‖Y‖2

F
) + τ‖S‖1.

This idea is inspired by an interesting numerical finding (cf. Figure 4) that the solution to
the convex program (1.3), and an estimate obtained by attempting to solve the nonconvex
formulation (1.23), are exceedingly close in our experiments. If such an intimate connection
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FIG. 4. (a) The relative estimation errors of both Lcvx (the convex estimator ((1.3))) and Lncvx (the estimate
returned by the nonconvex approach tailored to ((1.23))) and the relative distance between them versus the stan-
dard deviation σ of the noise. (b) The relative estimation errors of both Scvx (the convex estimator in ((1.3))) and
Sncvx (the estimate returned by the nonconvex approach tailored to ((1.23))) and the relative distance between
them versus the standard deviation σ of the noise. The results are reported for n = 1000, r = 5, p = 0.2, ρs = 0.1,
λ = 5σ

√
np, τ = 2σ

√
logn and are averaged over 50 independent trials.

can be formalized, then it suffices to analyze the statistical performance of the nonconvex
approach instead.6 Fortunately, recent advances in nonconvex low-rank factorization (see
Chi, Lu and Chen (2019) for an overview) provide powerful tools for analyzing nonconvex
low-rank estimation, allowing us to derive the desired statistical guarantees that can then be
transferred to the convex approach. Of course, this is merely a high-level picture of our proof
strategy, and we defer the details to Section 3.

It is worth emphasizing that our key idea—that is, bridging convex and nonconvex
optimization—is drastically different from previous technical approaches for analyzing con-
vex estimators (e.g., (1.3)). As it turns out, these prior approaches, which include constructing
dual certificates and/or exploiting restricted strong convexity, have their own deficiencies in
analyzing (1.3) and fall short of explaining the effectiveness of (1.3) in the random noise set-
ting. For instance, constructing dual certificates in the noisy case is notoriously challenging
given that we do not have closed-form expressions for the primal solutions (so that it is diffi-
cult to invoke the powerful dual construction strategies like the golfing scheme (Gross (2011))
developed for the noiseless case). If we directly utilize the dual certificates constructed for
the noiseless case, we would end up with an overly conservative bound like (1.4), which is
exactly why the results in Wong and Lee (2017), Zhou et al. (2010) are suboptimal. On the
other hand, while it is viable to show certain strong convexity of (1.3) when restricted to some
highly local sets and directions, it is unclear how (1.3) forces its solution to stay within the
desired set and follow the desired directions, without adding further (and often unnecessary)
constraints to (1.3).

Nonconvex low-rank estimation with nonsmooth loss functions. It is worth noting that a sim-
ilar connection between convex and nonconvex optimization has been pointed out by Chen
et al. (2020a) toward understanding the power of convex relaxation for noisy matrix com-
pletion. Due to the absence of sparse outliers in the noisy matrix completion problem, the
nonconvex loss function considered therein is smooth in nature, which greatly simplifies

6On the surface, the convex program (1.3) and the nonconvex one (1.23) are closely related: the convex solution
(Lcvx,Scvx) coincides with that of the nonconvex program (1.23) if Lcvx is rank-r . This is an immediate conse-
quence of the algebraic identity ‖Z‖∗ = infX,Y∈Rn×r :XY	=Z(‖X‖2

F + ‖Y‖2
F) (Mazumder, Hastie and Tibshirani

(2010), Srebro and Shraibman (2005)). However, it is difficult to know a priori the rank of the convex solution.
Hence such a connection does not prove useful in establishing the statistical properties of the convex estimator.
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FIG. 5. The red (resp., blue) line displays the Euclidean estimation error of ((1.3)) versus
√

n under fixed
(resp., random) sign patterns of S�. The green line displays the Euclidean distance between Lcvx and L̃

� under
fixed sign patterns of S�. The results are reported for r = 5, p = 1, σ = 10−3 and ρs = 1/ logn, with λ = 5σ

√
np

and τ = 2σ
√

logn and are averaged over 50 independent trials. For the random sign setting, the nonzero entries
of S� are independently generated as z · 5σ , where z follows a Rademacher distribution. For the fixed sign setting,
each nonzero entry of S� equals to 5σ .

both the algorithmic and theoretical development. By contrast, the nonsmoothness inherent
in (1.23) makes it particularly challenging to achieve the two desiderata mentioned above,
namely, connecting the convex and nonconvex solutions and establishing the optimality of
the nonconvex solution. In fact, to establish the connection between convex and nonconvex
solutions, we put forward a novel two-step analysis strategy. Specifically, we first develop a
crude upper bound on the Euclidean estimation error leveraging the idea of approximate dual
certificates; see Theorem 3.1. While this crude upper bound is far from optimal, it serves as
an important starting point toward formalizing the intimate relation between the convex so-
lution (Lcvx,Scvx) and the nonconvex solution (X,Y ,S), since it is challenging to establish
XY ≈ Lcvx and S ≈ Scvx simultaneously without the aid of a crude bound. Second, in estab-
lishing the optimality of the nonconvex solution, the nonsmoothness nature of the nonconvex
loss prevents us from applying the vanilla gradient descent scheme (as has been done in Chen
et al. (2020a). To address this issue, we develop an alternating minimization scheme—which
alternates between gradient updates on (X,Y ) and minimization of S—aimed at minimiz-
ing the nonsmooth nonconvex loss function (1.23); see Algorithm 1 for details. As it turns
out, such a simple algorithm allows us to track the proximity of the convex and nonconvex
solutions and establish the optimality of the nonconvex solution all at once.

1.6. Random signs of outliers. The careful reader might wonder whether it is possible to
remove the random sign assumption on S� (namely, Assumption 1.4) without compromising
our statistical guarantees. After all, the results of Candès et al. (2011), Chandrasekaran et al.
(2011), Li (2013) derived for the noise-free case do not rely on such a random sign assump-
tion at all.7 Unfortunately, removal of such a condition might be problematic in general, as
illustrated by the following example.

An example with nonrandom signs. Suppose that (i) n1 = n2 = n, (ii) each nonzero entry of
S� obeys S�

ij = c0σ , (iii) ρs = c1/ logn for some sufficiently small constant c1 > 0, and (iv)
there is no missing data (i.e., p = 1). In such a scenario, the data matrix can be decomposed

7Notably, in the noisy setting, prior theory (Wong and Lee (2017), Zhou et al. (2010)) also implicitly assumes
this random sign condition, while Agarwal, Negahban and Wainwright (2012), Klopp, Lounici and Tsybakov
(2017) do not require this condition.
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as

M = L� + S� + E = L� +E
[
S�]︸ ︷︷ ︸

=:L̃�

+ S� −E
[
S�] + E︸ ︷︷ ︸

=:Ẽ
.

Two observations are worth noting: (1) given that E[S�] = c0ρsσ11	 with 1 the all-one
vector, the rank of the matrix L̃

� = L� + E[S�] is at most r + 1; (2) Ẽ is a zero-mean
random matrix consisting of independent entries with sub-Gaussian norm O(σ). In other
words, the decomposition M = L̃

� + Ẽ corresponds to a case with random noise but no
outliers. Consequently, we can invoke Theorem 1.6 to conclude that (assuming r = O(1)

and L̃
� is incoherent with condition number O(1)): any minimizer (Lcvx,Scvx) of (1.3)

obeys ∥∥Lcvx − L� − ρsσ11	∥∥
F = ∥∥Lcvx − L̃

�∥∥
F � σ

σmin(L̃
�
)

√
n
∥∥L̃�∥∥

F

� σ
√

nr
σmax(L̃

�
)

σmin(L̃
�
)
� σ

√
n

with high probability. Here, the last step follows since L̃
� is of constant rank and condition

number. This, however, leads to a lower bound on the estimation error∥∥Lcvx − L�
∥∥

F ≥ ∥∥c0ρsσ11	∥∥
F − ∥∥Lcvx − L� − ρsσ11	∥∥

F = σ
(
c0ρsn − O(

√
n)

)
= (

1 − o(1)
)c0c1σn

logn
,

which can be O(
√

n/ logn) times larger than the desired estimation error O(σ
√

n). Numer-
ical experiments under the above setting (with c0 = 5 and c1 = 1) also suggest that (i) the
estimation error under the fixed sign setting might be orderwise larger than that under the
random sign setting; and (ii) under the fixed sign setting, the estimator (1.3) approximately
recovers L̃

� instead of L�; see Figure 5.
The take-away message is this: when the entries of S� are of nonrandom signs, it might

sometimes be possible to decompose S� into (1) a low-rank bias component with a large
Euclidean norm, and (2) a random fluctuation component whose typical size does not exceed
that of E. If this is the case, then the convex program (1.3) might mistakenly treat the bias
component as a part of the low-rank matrix L�, thus dramatically hampering its estimation
accuracy.

2. Prior art. Principal component analysis (PCA) (Fan et al. (2018), Jolliffe (1986),
Pearson (1901)) is one of the most widely used statistical methods for dimension reduction
in data analysis. However, PCA is known to be quite sensitive to adversarial outliers—even a
single corrupted data point can make PCA completely off. This motivated the investigation of
robust PCA, which aims at making PCA robust to gross adversarial outliers. As formulated
in Candès et al. (2011), Chandrasekaran et al. (2011), this is closely related to the problem of
disentangling a low-rank matrix L� and a sparse outlier matrix S� (with unknown locations
and magnitudes) from a superposition of them. Consequently, robust PCA can be viewed as
an outlier-robust extension of the low-rank matrix estimation/completion tasks (Candès and
Recht (2009), Chi, Lu and Chen (2019), Keshavan, Montanari and Oh (2010)). In a similar
vein, robust PCA has also been extensively studied in the context of structured covariance es-
timation under approximate factor models (Fan, Fan and Lv (2008), Fan, Liao and Mincheva
(2013), Fan, Wang and Zhong (2017), Fan, Wang and Zhong (2019)), where the population
covariance of certain random sample vectors is a mixture of a low-rank matrix and a sparse
matrix, corresponding to the factor component and the idiosyncratic component, respectively.
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Focusing on the convex relaxation approach, Candès et al. (2011), Chandrasekaran et al.
(2011) started by considering the noiseless case with no missing data (i.e., E = 0 and p = 1)
and demonstrated that, under mild conditions, convex relaxation succeeds in exactly decom-
posing both L� and S� from the data matrix L� + S�. More specifically, Chandrasekaran
et al. (2011) adopted a deterministic model without assuming any probabilistic structure on
the outlier matrix S�. As shown in Chandrasekaran et al. (2011) and several subsequent works
(Chen et al. (2013), Hsu, Kakade and Zhang (2011)), convex relaxation is guaranteed to work
as long as the fraction of outliers in each row/column does not exceed O(1/r). In contrast,
Candès et al. (2011) proposed a random model by assuming that S� has random support
(cf. Assumption 1.3); under this model, exact recovery is guaranteed even if a constant frac-
tion of the entries of S� are nonzero with arbitrary magnitudes. Following the random location
model proposed in Candès et al. (2011), the paper Ganesh et al. (2010) showed that, in the
absence of noise, convex programming can provably tolerate a dominant fraction of outliers,
provided that the signs of the nonzero entries of S� are randomly generated (cf. Assump-
tion 1.4). Later, the papers Chen et al. (2013), Li (2013) extended these results to the case
when most entries of the matrix are unseen; even in the presence of highly incomplete data,
convex relaxation still succeeds when a constant proportion of the observed entries are arbi-
trarily corrupted. It is worth noting that the results of Chen et al. (2013) accommodated both
models proposed in Chandrasekaran et al. (2011) and Candès et al. (2011), while the results
of Li (2013) focused on the latter model.

The literature on robust PCA with not only sparse outliers but also dense noise—namely,
when the measurements take the form M = P�obs(L

� + S� + E) —is relatively scarce.
Agarwal, Negahban and Wainwright (2012), Zhou et al. (2010) were among the first to
present a general theory for robust PCA with dense noise, which was further extended in
Klopp, Lounici and Tsybakov (2017), Wong and Lee (2017). As we mentioned before,
the first three (Agarwal, Negahban and Wainwright (2012), Wong and Lee (2017), Zhou
et al. (2010)) accommodated arbitrary noise with the last one (Klopp, Lounici and Tsybakov
(2017)) focusing on the random noise. As we have discussed in Section 1.4, the statistical
guarantees provided in these papers are highly suboptimal when it comes to the random noise
setting considered herein. The paper Chen and Chi (2014) extended the robust PCA results to
the case where the truth is not only low-rank but also of Hankel structure. The results therein,
however, suffered from the same suboptimality issue.

Moving beyond convex relaxation methods, another line of work proposed nonconvex ap-
proaches for robust PCA (Cai, Cai and Wei (2019), Cherapanamjeri, Gupta and Jain (2017),
Drusvyatskiy, Ioffe and Lewis (2021), Gu, Wang and Liu (2016), Li et al. (2019), Netrapalli
et al. (2014), Yi et al. (2016), Zhang, Wang and Gu (2018)), largely motivated by the recent
success of nonconvex methods in low-rank matrix factorization (Cai and Wei (2018), Candès,
Li and Soltanolkotabi (2015), Charisopoulos et al. (2019), Chen and Candès (2017), Chen
and Candès (2018), Chen and Wainwright (2015), Chen et al. (2019a), Chi, Lu and Chen
(2019), Jain, Netrapalli and Sanghavi (2013), Keshavan, Montanari and Oh (2010), Ma et al.
(2020), Netrapalli, Jain and Sanghavi (2015), Sun and Luo (2016), Wang, Giannakis and El-
dar (2018), Wei et al. (2016), Zhang, Chi and Liang (2016), Zheng and Lafferty (2016)).
Following the deterministic model of Chandrasekaran et al. (2011), the paper Netrapalli
et al. (2014) proposed an alternating projection/minimization scheme to seek a low-rank and
sparse decomposition of the observed data matrix. In the noiseless setting, that is, E = 0,
this alternating minimization scheme provably disentangles the low-rank and sparse ma-
trix from their superposition under mild conditions. In addition, Netrapalli et al. (2014) ex-
tended their result to the arbitrary noise case where the size of the noise is extremely small,
namely, ‖E‖∞ � σmin/n. When the noise {Eij } ∼ N (0, σ 2), this is equivalent to the con-
dition σ � σmin/(n

√
logn). Comparing this with our noise condition σ � σmin/(

√
n logn)
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(cf. (1.12)) when r,μ, κ  1, one sees that our theoretical guarantees cover a wider range
of noise levels. Similarly, Yi et al. (2016) applied regularized gradient descent on a smooth
nonconvex loss function which enjoys provable convergence guarantees to (L�,S�) under the
noiseless and partial observation setting. A recent paper Drusvyatskiy, Ioffe and Lewis (2021)
considered the nonsmooth nonconvex formulation for robust PCA and established rigorously
the convergence of subgradient-type methods in the rank-1 setting, that is, r = 1. However,
the extension to more general rank remains out of reach.

It is worth noting that noisy matrix completion problem (Candès and Plan (2010), Chen
et al. (2020a)) is subsumed as a special case by the model studied in this paper (namely, it
is a special case with S� = 0). Statistical optimality under the random noise setting (cf. As-
sumption 1.5)—including the convex relaxation approach (Chen et al. (2020a), Klopp (2014),
Koltchinskii, Lounici and Tsybakov (2011), Negahban and Wainwright (2012)) and the non-
convex approach (Chen, Liu and Li (2020), Ma et al. (2020))—has been extensively studied.
Focusing on arbitrary deterministic noise, Candès and Plan (2010) established the stability of
the convex approach, whose resulting estimation error bound is similar to the one established
for robust PCA with noise in Zhou et al. (2010)) (see (1.4)). The paper Krahmer and Stöger
(2021) later confirmed that the estimation error bound established in Candès and Plan (2010)
is the best one can hope for in the arbitrary noise setting for matrix completion, although it
might be highly suboptimal if we restrict attention to random noise.

Finally, there is also a large literature considering robust PCA under different settings
and/or from different perspectives. For instance, the computational efficiency in solving the
convex optimization problem (1.3) and its variants has been studied in the optimization lit-
erature (e.g., Goldfarb, Ma and Scheinberg (2013), Ma and Aybat (2018), Shen, Wen and
Zhang (2014), Tao and Yuan (2011)). The problem has also been investigated under a stream-
ing/online setting (Feng, Xu and Yan (2013), Guo, Qiu and Vaswani (2014), Qiu and Vaswani
(2010), Qiu et al. (2014), Vaswani and Narayanamurthy (2018), Zhan et al. (2016)). These
are beyond the scope of the current paper.

3. Architecture of the proof. In this section, we give an outline for proving Theo-
rem 1.7. The proof of Theorem 1.6 follows immediately as it is a special case of Theorem 1.7.
For simplicity of presentation, our proof sets n1 = n2 = n. It is straightforward to obtain the
proof for the general rectangular case via minor modification.

The main ingredient of the proof lies in establishing an intimate link between convex and
nonconvex optimization. Unless otherwise noted, we shall set the regularization parameters
as

(3.1) λ = Cλσ
√

np and τ = Cτσ
√

logn

throughout. In addition, the soft thresholding operator at level τ is defined such that

(3.2) Sτ (x) := sign(x)max
(|x| − τ,0

)
.

For any matrix X, the matrix Sτ (X) is obtained by applying the soft thresholding operator
Sτ (·) to each entry of X separately. Additionally, we define the true low-rank factors as
follows:

(3.3) X� := U �(��)1/2 and Y � := V �(��)1/2
,

where U ���V �	 is the SVD of the true low-rank matrix L�.
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3.1. Crude estimation error bounds for convex relaxation. We start by delivering a crude
upper bound on the Euclidean estimation error, built upon the (approximate) duality certifi-
cate previously constructed in Chen et al. (2013). The proof is postponed to Appendix 4.

THEOREM 3.1. Consider any given λ > 0 and set τ  λ
√

(logn)/np. Suppose that As-
sumptions 1.1–1.4 hold, and that

n2p ≥ Cμ2r2n log6 n and ρs ≤ c

hold for some sufficiently large (resp. small) constant C > 0 (resp., c > 0). Then with proba-
bility at least 1 − O(n−10), any minimizer (Lcvx,Scvx) of the convex program (1.3) satisfies

(3.4)
∥∥Lcvx − L�

∥∥2
F + ∥∥Scvx − S�

∥∥2
F � λ2n5 log3 n + n

λ2

∥∥P�obs(E)
∥∥4

F.

It is worth noting that the above theorem holds true for an arbitrary noise matrix E. When
specialized to the case with independent sub-Gaussian noise, this crude bound admits a sim-
pler expression as follows.

COROLLARY 3.2. Take λ = Cλσ
√

np and τ = Cτσ
√

logn for some universal constant
Cλ,Cτ > 0. Under the assumptions of Theorem 3.1 and Assumption 1.5, we have—with prob-
ability exceeding 1 − O(n−10)—that

(3.5)
∥∥Lcvx − L�

∥∥
F � σn3 log3/2 n and

∥∥Scvx − S�
∥∥

F � σn3 log3/2 n.

PROOF. This corollary follows immediately by combining Theorem 3.1 and Lemma 3.3
below. �

LEMMA 3.3. Suppose that Assumption 1.5 holds and that n2p > C1n log2 n for some
sufficiently large constant C1 > 0. Then with probability exceeding 1 − O(n−10), one has∥∥P�obs(E)

∥∥ � σ
√

np and
∥∥P�obs(E)

∥∥
F � σn

√
p.

While the above results often lose a polynomial factor in n, namely, the optimal error
bound, it serves as an important starting point that paves the way for subsequent analytical
refinement.

3.2. Approximate stationary points of the nonconvex formulation. Instead of analyzing
the convex estimator directly, we take a detour by considering the following nonconvex opti-
mization problem

minimize
X,Y∈Rn×r ,S∈Rn×n

F (X,Y ,S)

:= 1

2p

∥∥P�obs

(
XY	 + S − M

)∥∥2
F + λ

2p
‖X‖2

F + λ

2p
‖Y‖2

F︸ ︷︷ ︸
=:f (X,Y ;S)

+ τ

p
‖S‖1.

(3.6)

Here, f (X,Y ;S) is a function of X and Y with S frozen, which contains the smooth compo-
nent of the loss function F(X,Y ,S). As it turns out, the solution to convex relaxation (1.3)
is exceedingly close to an estimate (X,Y ,S) obtained by a nonconvex algorithm aimed at
solving (3.6)—to be detailed in Section 3.3. This fundamental connection between the two
algorithmic paradigms provides a powerful framework that allows us to understand convex
relaxation by studying nonconvex optimization.

In what follows, we set out to develop the afforementioned intimate connection. Before
proceeding, we first state the following conditions concerned with the interplay between the
noise size, the estimation accuracy of the nonconvex estimate (X,Y ,S), and the regulariza-
tion parameters.
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CONDITION 3.4. The regularization parameters λ and τ  λ
√

(logn)/np satisfy

• ‖P�obs(E)‖ < λ/16 and ‖P�obs(E)‖∞ ≤ τ/4;
• ‖S − S�‖ < λ/16 and ‖XY	 − L�‖∞ ≤ τ/4;
• ‖P�obs(XY	 − L�) − p(XY	 − L�)‖ < λ/8.

As an interpretation, the above condition says that: (1) the regularization parameters are not
too small compared to the size of the noise, so as to ensure that we enforce a sufficiently large
degree of regularization; (2) the estimate represented by the point (XY	,S) is sufficiently
close to the truth. At this point, whether this condition is meaningful or not remains far from
clear; we shall return to justify its feasibility shortly.

In addition, we need another condition concerning the injectivity of P�� w.r.t. a certain
tangent space. For a rank-r matrix L with singular value decomposition U�V 	 where
U ,V ∈R

n×r , the tangent space of the set of rank-r matrices at the point L is given by{
UA	 + BV 	|A,B ∈R

n×r}.
Again, the validity of this condition will be discussed momentarily.

CONDITION 3.5 (Injectivity). Let T be the tangent space of the set of rank-r matrices at
the point XY	. Assume that there exist a constants cinj > 0 such that for all H ∈ T , one has

p−1∥∥P�obs(H )
∥∥2

F ≥ cinj

κ
‖H‖2

F and p−1∥∥P��(H )
∥∥2

F ≤ cinj

4κ
‖H‖2

F.

With the above conditions in place, we are ready to make precise the intimate link between
convex relaxation and a candidate nonconvex solution. The proof is deferred to Appendix 5.

THEOREM 3.6. Suppose that n ≥ κ and ρs ≤ c/κ for some sufficiently small constant
c > 0. Assume that there exists a triple (X,Y ,S) such that

(3.7)
∥∥∇f (X,Y ;S)

∥∥
F ≤ 1

n20

λ

p

√
σmin, and S = P�obs

(
Sτ

(
M − XY	))

.

Further, assume that any singular value of X and Y lies in [√σmin/2,
√

2σmax]. If the solution
(Lcvx,Scvx) to the convex program (1.3) admits the following crude error bound

(3.8)
∥∥Lcvx − L�

∥∥
F � σn4,

then under Conditions 3.4–3.5 we have∥∥XY	 − Lcvx
∥∥

F � σ

n5 and ‖S − Scvx‖F � σ

n5 .

This theorem is a deterministic result, focusing on some sort of “approximate stationary
points” of F(X,Y ,S). To interpret this, observe that in view of (3.7), one has ∇f (X,Y ;S) ≈
0, and S minimizes F(X,Y , ·) for any fixed X and Y . If one can identify such an approximate
stationary point that is sufficiently close to the truth (so that it satisfies Condition 3.4), then
under mild conditions our theory asserts that

XY	 ≈ Lcvx and S ≈ Scvx.

This would in turn formalize the intimate relation between the solution to convex relaxation
and an approximate stationary point of the nonconvex formulation. The existence of such
approximate stationary points will be verified shortly in Section 3.3.

The careful reader might immediately remark that this theorem does not say anything
explicit about the minimizer of the nonconvex optimization problem (3.6); rather, it only pays
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Algorithm 1 Alternating minimization method for solving the nonconvex problem (3.6)

Suitable initialization: X0 = X�, Y 0 = Y �, S0 = S�.
Gradient updates: for t = 0,1, . . . , t0 − 1 do

Xt+1 = Xt − η∇Xf
(
Xt ,Y t ;St ) = Xt − η

p

[
P�obs

(
XtY t	 + St − M

)
Y t + λXt ];(3.9a)

Y t+1 = Y t − η∇Y f
(
Xt ,Y t ;St ) = Y t − η

p

{[
P�obs

(
XtY t	 + St − M

)]	
Xt + λY t};(3.9b)

St+1 = Sτ

[
P�obs

(
M − Xt+1Y t+1	)]

.(3.9c)

attention to a special class of approximate stationary points of the nonconvex formulation.
This arises mainly due to a technical consideration: it seems more difficult to analyze the
nonconvex optimizer directly than to study certain approximate stationary points. Fortunately,
our theorem indicates that any approximate stationary point obeying the above conditions
serves as an extremely tight approximation of the convex estimate and, therefore, it suffices
to identify and analyze any such points.

3.3. Constructing an approximate stationary point via nonconvex algorithms. By virtue
of Theorem 3.6, the key to understanding convex relaxation is to construct an approximate
stationary point of the nonconvex problem (3.6) that enjoys desired statistical properties.
For this purpose, we resort to the iterative algorithm (Algorithm 1) to solve the nonconvex
program (3.6).

In a nutshell, Algorithm 1 alternates between one iteration of gradient updates (w.r.t. the
decision matrices X and Y ) and optimization of the nonsmooth problem w.r.t. S (with X

and Y frozen).8 For the sake of simplicity, we initialize this algorithm from the ground truth
(X�,Y �,S�), but our analysis framework might be extended to accommodate other more
practical initialization (e.g., the one obtained by a spectral method Chen et al. (2020b)).

The following theorem makes precise the statistical guarantees of the above nonconvex
optimization algorithm; the proof is deferred to Appendix 6. Here and throughout, we define

(3.10) H t := arg min
R∈Or×r

(∥∥XtR − X�
∥∥2

F + ∥∥Y tR − Y �
∥∥2

F

)1/2
,

where Or×r denotes the set of r × r orthonormal matrices.

THEOREM 3.7. Instate the assumptions of Theorem 1.7 and define

δn := σ

σmin

√
n

p
.

Take t0 = n47 and η  1/(nκ3σmax) in Algorithm 1. With probability at least 1 −O(n−3), the
iterates {(Xt ,Y t ,St )}0≤t≤t0 of Algorithm 1 satisfy

max
{∥∥XtH t − X�

∥∥
F,

∥∥Y tH t − Y �
∥∥

F

}
� δn

∥∥X�
∥∥

F,(3.11a)

max
{∥∥XtH t − X�

∥∥,∥∥Y tH t − Y �
∥∥}

� δn

∥∥X�
∥∥,(3.11b)

8Note that for any given X and Y , the solution to minimizeSF(X,Y ,S) is given precisely by Sτ (P�obs (M −
XY	)).
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max
{∥∥XtH t − X�

∥∥
2,∞,

∥∥Y tH t − Y �
∥∥

2,∞
}

� κ
√

lognδn max
{∥∥X�

∥∥
2,∞,

∥∥Y �
∥∥

2,∞
}
,

(3.11c)

∥∥St − S�
∥∥ � σ

√
np.(3.11d)

In addition, with probability at least 1 − O(n−3), one has

(3.12) min
0≤t<t0

∥∥∇f
(
Xt ,Y t ;St )∥∥

F ≤ 1

n20

λ

p

√
σmin.

In short, the bounds (3.11a)–(3.11c) reveal that the entire sequence {Xt ,Y t }t0t=0 stays suf-
ficiently close to the truth (measured by ‖ · ‖F, ‖ · ‖, and more importantly, ‖ · ‖2,∞), the in-
equality (3.11d) demonstrates the goodness of fit of {St }0≤t≤t0 in terms of the spectral norm
accuracy, whereas the last bound (3.12) indicates that there is at least one point in the se-
quence {Xt ,Y t ,St }0≤t≤t0 that can serve as an approximate stationary point of the nonconvex
formulation.

We shall also gather a few immediate consequences of Theorem 3.7 as follows, which
contain basic properties that will be useful throughout.

COROLLARY 3.8. Instate the assumptions of Theorem 3.7. Suppose that the sample size

obeys n2p � κ4μ2r2n log4 n, the noise satisfies δn � 1/
√

κ4μr logn, the outlier fraction

satisfies ρs � 1/(κ3μr logn). With probability at least 1 −O(n−3), the iterates of Algorithm
1 satisfy ∥∥XtY t	 − L�

∥∥
F � κδn

∥∥L�
∥∥

F,(3.13a) ∥∥XtY t	 − L�
∥∥∞ �

√
κ3μr lognδn

∥∥L�
∥∥∞,(3.13b) ∥∥XtY t	 − L�

∥∥ � δn

∥∥L�
∥∥(3.13c)

simultaneously for all t ≤ t0.

PROOF. See Chen et al. (2020a), Appendix D.12. �

3.4. Proof of Theorem 1.7. Define

t∗ := arg min
0≤t<t0

∥∥∇f
(
Xt ,Y t ;St )∥∥

F;(3.14)

(Xncvx,Y ncvx,Sncvx) := (
Xt∗H t∗,Y t∗H t∗,St∗).(3.15)

Theorem 3.7 and Corollary 3.8 have established appealing statistical performance of the non-
convex solution (Xncvx,Y ncvx,Sncvx). To transfer this desired statistical property to that of
(Lcvx,Scvx), it remains to show that the nonconvex estimator (XncvxY

	
ncvx,Sncvx) is extremely

close to the convex estimator (Lcvx,Scvx). Toward this end, we intend to invoke Theorem 3.6;
therefore, it boils down to verifying the conditions therein.

1. The small gradient condition (cf. (3.7)) holds automatically under (3.12).
2. By virtue of the spectral norm bound (3.11b), one has∥∥Xncvx − X�

∥∥ = ∥∥Xt∗H t∗ − X�
∥∥ � σ

σmin

√
n

p

∥∥L�
∥∥ ≤

√
σmin

10
,

as long as σ
√

κn/p � σmin. This together with the Weyl inequality verifies the constraints
on the singular values of (Xncvx,Y ncvx).

3. The crude error bounds are valid in view of Theorem 3.1.
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4. Regarding Condition 3.4 and Condition 3.5, Lemma 3.3 and standard inequalities
about sub-Gaussian random variables imply that ‖P�obs(E)‖ < λ/16 and ‖P�obs(E)‖∞ ≤
τ/4. In addition, the bounds (3.11d) and (3.13b) ensure the second assumption ‖Sncvx −
S�‖ ≤ λ/16 and ‖XY	 −L�‖∞ ≤ τ/4 in Condition 3.4. We are left with the last assumption
in Condition 3.4 and Condition 3.5, which are guaranteed to hold in view of the following
lemma (see Appendix 3 for the proof).

LEMMA 3.9. Instate the notation and assumptions of Theorem 1.7. Then with probability
exceeding 1 − O(n−10), we have∥∥P�

(
XY	 − M�) − p

(
XY	 − M�)∥∥ < λ/8,(3.16a)

1

p

∥∥P�obs(H )
∥∥2

F ≥ 1

32κ
‖H‖2

F, ∀H ∈ T ,(3.16b)

p−1∥∥P��(H )
∥∥2

F ≤ 1

128κ
‖H‖2

F, ∀H ∈ T(3.16c)

simultaneously for all (X,Y ) obeying∥∥X − X�
∥∥

2,∞ ≤ C∞κ
σ

σmin

√
n logn

p
max

{∥∥X�
∥∥

2,∞,
∥∥Y �

∥∥
2,∞

};(3.17a)

∥∥Y − Y �
∥∥

2,∞ ≤ C∞κ
σ

σmin

√
n logn

p
max

{∥∥X�
∥∥

2,∞,
∥∥Y �

∥∥
2,∞

}
.(3.17b)

Here, T denotes the tangent space of the set of rank-r matrices at the point XY	, and C∞ > 0
is an absolute constant.

Armed with the above conditions, we can readily invoke Theorem 3.6 to reach∥∥XncvxY
	
ncvx − Lcvx

∥∥
F � σ

n5 and ‖Sncvx − Scvx‖F � σ

n5

with high probability. This taken collectively with Corollary 3.8 gives∥∥Lcvx − L�
∥∥

F ≤ ∥∥XncvxY
	
ncvx − Lcvx

∥∥
F + ∥∥XncvxY

	
ncvx − L�

∥∥
F

� σ

n5 + κ
σ

σmin

√
n

p

∥∥L�
∥∥

F

 κ
σ

σmin

√
n

p

∥∥L�
∥∥

F.

Similar arguments lead to the advertised high-probability bounds∥∥Lcvx − L�
∥∥∞ �

√
κ3μr

σ

σmin

√
n logn

p

∥∥L�
∥∥∞,

∥∥Lcvx − L�
∥∥ � σ

σmin

√
n

p

∥∥L�
∥∥.

Finally, given that XncvxY
	
ncvx is a rank-r matrix, the rank-r approximation Lcvx,r :=

arg minZ:rank(Z)≤r ‖Z − Lcvx‖F of Lcvx necessarily satisfies

‖Lcvx,r − Lcvx‖F ≤ ∥∥XncvxY
	
ncvx − Lcvx

∥∥
F � σ

n5 ≤ 1

n5 · σ

σmin

√
n

p

∥∥L�
∥∥,

which establishes (1.22). In view of the triangle inequality, the properties (1.21) hold un-
changed if Lcvx is replaced by Lcvx,r .
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4. Discussion. This paper investigates the unreasonable effectiveness of convex pro-
gramming in estimating an unknown low-rank matrix from grossly corrupted data. We de-
velop an improved theory that confirms the optimality of convex relaxation in the presence of
random noise, gross sparse outliers and missing data. In particular, our results significantly
improve upon the prior statistical guarantees (Zhou et al. (2010)) under random noise, while
further allowing for missing data. Our theoretical analysis is built upon an appealing connec-
tion between convex and nonconvex optimization, which has not been established previously.

Having said this, our current work leaves open several important issues that call for fur-
ther investigation. To begin with, the conditions (1.20) stated in the main theorem are likely
suboptimal in terms of the dependency on both the rank r and the condition number κ . For
example, we shall keep in mind that in the noise-free setting, the sample size can be as low
as O(nrpoly logn) and the tolerable outlier fraction can be as large as a constant (Chen et al.
(2013), Li (2013)), both of which exhibit more favorable scalings w.r.t. r and κ compared
to our current condition (1.20). Moving forward, our analysis ideas suggest a possible route
for analyzing convex relaxation for other structured estimation problems under both random
noise and outliers, including but not limited to sparse PCA (the case with a simultaneously
low-rank and sparse matrix) (Cai, Ma and Wu (2013)), low-rank Hankel matrix estimation
(the case involving a low-rank Hankel matrix) (Chen and Chi (2014)), and blind deconvolu-
tion9 (the case that aims to recover a low-rank matrix from structured Fourier measurements)
(Ahmed, Recht and Romberg (2014)). Last but not least, we would like to point out that it is
possible to design a similar debiasing procedure as in Chen et al. (2019b) for correcting the
bias in the convex estimator, which further allows uncertainty quantification and statistical
inference on the unknown low-rank matrix of interest.
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